JP2013037796A - Nonaqueous electrolyte coin-shaped battery - Google Patents

Nonaqueous electrolyte coin-shaped battery Download PDF

Info

Publication number
JP2013037796A
JP2013037796A JP2011170685A JP2011170685A JP2013037796A JP 2013037796 A JP2013037796 A JP 2013037796A JP 2011170685 A JP2011170685 A JP 2011170685A JP 2011170685 A JP2011170685 A JP 2011170685A JP 2013037796 A JP2013037796 A JP 2013037796A
Authority
JP
Japan
Prior art keywords
battery
sealing plate
clad material
inventive
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011170685A
Other languages
Japanese (ja)
Other versions
JP5879482B2 (en
Inventor
忠義 ▲高▼橋
Tadayoshi Takahashi
Yasuhisa Hattori
泰久 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011170685A priority Critical patent/JP5879482B2/en
Publication of JP2013037796A publication Critical patent/JP2013037796A/en
Application granted granted Critical
Publication of JP5879482B2 publication Critical patent/JP5879482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte coin-shaped battery which can ensure a high capacity while exhibiting excellent long-term storage characteristics by using low-price exterior parts.SOLUTION: A clad material produced by cladding a nickel plate at least to the outer surface of a steel base is applied as the constituent raw material of a sealing plate. When compared with a conventional nonaqueous electrolyte coin-shaped battery having a stainless steel sealing plate, manufacturing cost can be reduced, and rusting on the outer surface or leakage of electrolyte is minimized. A high capacity nonaqueous electrolyte coin-shaped battery similar to that using a stainless steel sealing plate is provided.

Description

本発明は、長期保存特性に優れた非水電解液コイン形電池に関するものである。   The present invention relates to a non-aqueous electrolyte coin-type battery having excellent long-term storage characteristics.

二酸化マンガンリチウム電池やフッ化黒鉛リチウム電池などに代表される非水電解液コイン形電池は、封口板や正極ケースの基材としてステンレス鋼板が一般的に用いられている。ステンレス鋼板は強度が高く、封口板および正極ケースの厚みをある程度薄くしても強度が確保でき、漏液や電池の変形などの問題が生じにくい。   In a non-aqueous electrolyte coin-type battery represented by a manganese dioxide lithium battery, a graphite fluoride lithium battery, or the like, a stainless steel plate is generally used as a base material for a sealing plate or a positive electrode case. The stainless steel plate has high strength, and even if the sealing plate and the positive electrode case are thinned to some extent, the strength can be secured, and problems such as leakage and battery deformation are unlikely to occur.

しかしながらステンレス鋼板は価格が高いため、電池の製造コストが増大するという課題があった。この課題に対し、ステンレス鋼板に比べて安価であるNiメッキ鋼板に置き換えることで、製造コストを下げ得る可能性がある。しかしながらNiメッキ鋼板を用いた場合には、外装部品表面の錆の発生や、ステンレスに比べて強度が低いことから封止性能が低下して漏液発生といった長期保存特性に課題を有していた。   However, since the price of the stainless steel plate is high, there is a problem that the manufacturing cost of the battery increases. In response to this problem, there is a possibility that the manufacturing cost can be reduced by replacing the Ni-plated steel sheet, which is cheaper than the stainless steel sheet. However, when using Ni-plated steel sheets, there was a problem in long-term storage characteristics such as generation of rust on the surface of exterior parts and low sealing performance due to low strength compared to stainless steel. .

この課題に対して、非水電解液コイン形電池の負極外装部品となる上面壁およびその上面壁から下方向に湾曲した湾曲部を有する封口板において、少なくとも鉄鋼基材の外表面がNiメッキされ、かつNiメッキ部分と鉄鋼基材部分の間に、FeとNiとが互いに拡散した領域が存在しているNiメッキ鋼板で構成されており、上記封口板の上記湾曲部の曲率半径R(mm)と湾曲部の内角θ(°)との比R/θが、0.0060〜0.0160にすることで、上述したNiメッキ鋼板の課題を解決する発明が提案されている(特許文献1参照)。   In response to this problem, at least the outer surface of the steel substrate is Ni-plated in a sealing plate having an upper surface wall that serves as a negative electrode exterior component of a nonaqueous electrolyte coin-type battery and a curved portion curved downward from the upper surface wall. And a Ni-plated steel plate in which a region where Fe and Ni are diffused between each other exists between the Ni-plated portion and the steel substrate portion, and the curvature radius R (mm) of the curved portion of the sealing plate ) And the internal angle θ (°) of the curved portion is set to 0.0060 to 0.0160, whereby an invention for solving the above-described problem of the Ni-plated steel sheet has been proposed (Patent Document 1). reference).

特開2007−207534号公報JP 2007-207534 A

しかしながら、特許文献1に開示されているようなNiメッキ鋼板を非水電解液コイン形電池の封口板に用いると、長期保存した際に漏液が生じたり、封口板の湾曲部に錆による外観不良が発生したりするものがあった。特許文献1では、Niメッキ鋼板のNiメッキ部分と鉄鋼基材部分の間に、FeとNiとが互いに拡散した領域を形成するために、熱処理を施しており、そのため鉄自身が焼きなましされることで硬度が低下し、従来のステンレス鋼に比べての硬度差が大きくなり、カシメ封口の強さを軽減しなければならず、長期保存した際に封止性の弱いところから漏液が発生した。また、熱処理によりNiメッキ層が凝集することで粒子径が大きくなってしまうために、カシメ封口時の変形により一部鉄鋼面が露出することで錆が発生してしまった。   However, when a Ni-plated steel sheet as disclosed in Patent Document 1 is used for a sealing plate of a non-aqueous electrolyte coin-type battery, leakage occurs when stored for a long period of time, or the curved portion of the sealing plate has an appearance due to rust. There was something that caused defects. In Patent Document 1, heat treatment is performed to form a region in which Fe and Ni are diffused between the Ni-plated portion and the steel base portion of the Ni-plated steel sheet, and thus the iron itself is annealed. The hardness decreases at the same time, the difference in hardness compared to conventional stainless steel becomes larger, the strength of the caulking seal must be reduced, and leakage occurs from a place with poor sealing properties when stored for a long period of time. . In addition, since the Ni plating layer aggregates due to heat treatment, the particle size becomes large, so that rust is generated by partially exposing the steel surface due to deformation during caulking sealing.

また、特許文献1では、上面壁およびその上面壁から下方向に湾曲した湾曲部を有する封口板であり、上記湾曲部の曲率半径R(mm)とその湾曲部の内角θ(°)との比R/θが、0.0060〜0.0160という値を守る必要があり、そのために形状的な規制によって容積効率が悪くなり、電池の高容量化を実現できない。   Moreover, in patent document 1, it is a sealing board which has a curved part curved downward from the upper surface wall and the upper surface wall, and the curvature radius R (mm) of the said curved part and the internal angle (theta) (degree) of the curved part The ratio R / θ needs to keep a value of 0.0060 to 0.0160. For this reason, the volumetric efficiency is deteriorated due to the shape restriction, and the battery cannot be increased in capacity.

本発明は上記事情に鑑みてなされたものであり、その目的は、鉄鋼基材を構成素材とする封口板を有しており、長期保存時の外表面の錆の発生や漏液の発生を抑制し、加えて高容量化が可能な非水電解液コイン形電池を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to have a sealing plate made of a steel base material, and to prevent the occurrence of rust and leakage on the outer surface during long-term storage. The object is to provide a non-aqueous electrolyte coin-type battery that can be suppressed and additionally have a high capacity.

上記目的を達成するために、本発明の非水電解液コイン形電池は、正極と負極とをセパレータを介して対向配置した発電要素を非水電解液とともに、金属材からなる正極ケースと封口板、樹脂からなるガスケットの外装部品に封入されてなる非水電解液コイン形電池において、前記封口板として鉄鋼基材の少なくとも外表面にニッケル板をクラッド化したクラッド材を用いたことを特徴とするものである。   In order to achieve the above object, a non-aqueous electrolyte coin-type battery of the present invention includes a positive electrode case and a sealing plate made of a metal material together with a non-aqueous electrolyte and a power generation element in which a positive electrode and a negative electrode are arranged to face each other via a separator. In the non-aqueous electrolyte coin-type battery encapsulated in an exterior part of a gasket made of resin, a clad material in which a nickel plate is clad on at least the outer surface of a steel substrate is used as the sealing plate. Is.

本発明によれば、封口板の構成素材に特定のNiメッキ鋼板を適用することにより、従来のステンレス鋼製封口板を有する非水電解液コイン形電池に比べて、製造時のコストダウンが図られ、更に外表面の錆や漏液の発生を抑制し、加えてステンレス鋼製封口板を用いた場合と同様の高容量である非水電解液コイン形電池を提供することができる。   According to the present invention, by applying a specific Ni-plated steel plate to the constituent material of the sealing plate, the cost during manufacturing can be reduced as compared with a nonaqueous electrolyte coin-type battery having a conventional stainless steel sealing plate. In addition, it is possible to provide a non-aqueous electrolyte coin-type battery that has the same high capacity as the case where a stainless steel sealing plate is used in addition to suppressing the occurrence of rust and liquid leakage on the outer surface.

本発明の一実施の形態における非水電解液コイン形電池の断面図Sectional drawing of the nonaqueous electrolyte coin-type battery in one embodiment of this invention 本発明の一実施の形態における非水電解液コイン形電池の封口板の要部を示す拡大図The enlarged view which shows the principal part of the sealing board of the nonaqueous electrolyte coin-type battery in one embodiment of this invention

本発明における第1の発明は、正極と負極とをセパレータを介して対向配置した発電要素を非水電解液とともに、金属材からなる電池ケースと封口板、樹脂からなるガスケットの外装部品に封入されてなる非水電解液コイン形電池において、前記封口板として鉄鋼基材の少なくとも外表面にニッケル板をクラッド化したクラッド材を用いたことを特徴とする非水電解液コイン形電池である。ここで外表面とは電池を製造したときに、電池の外側に位置する面を意味する。この構成により、製造時のコストダウンを図って生産性を高め、更に外表面の錆の発生や漏液の発生を抑制も達成し、加えてステンレス鋼製封口板を用いた場合と同様の高容量である非水電解液コイン形電池が得られる。   According to a first aspect of the present invention, a power generation element in which a positive electrode and a negative electrode are arranged opposite to each other with a separator interposed between a battery case made of a metal material and a sealing plate, and a gasket made of a resin, together with a non-aqueous electrolyte. In the non-aqueous electrolyte coin-type battery, a clad material in which a nickel plate is clad on at least the outer surface of a steel substrate is used as the sealing plate. Here, the outer surface means a surface located outside the battery when the battery is manufactured. This configuration reduces production costs and increases productivity, and further suppresses the occurrence of rust and leakage on the outer surface. In addition, the same high level as when using a stainless steel sealing plate is used. A non-aqueous electrolyte coin-type battery having a capacity can be obtained.

鉄鋼基材の少なくとも外表面にニッケル板をクラッド化することにより、封口板を様々な形状に加工しても、鉄鋼基材自身が外部に露出することがなく、錆の発生し易い高温多湿環境下でも安定に存在し、錆の発生はまったく見られない。また、錆の発生がないため、封口板の形状について制限を設ける必要がなく、ステンレスと同様の形状に加工することが可能で、封止による漏液性能もステンレスと同等レベルのものが得られ、電池の放電容量も小さくならず、高容量化が可能である。加えて、部品の素材部分のコストダウンも実現できる。   By clad a nickel plate on at least the outer surface of the steel substrate, even if the sealing plate is processed into various shapes, the steel substrate itself is not exposed to the outside, and high temperature and high humidity environment is likely to generate rust. It is stable even underneath, and no rust is seen. In addition, since there is no generation of rust, there is no need to limit the shape of the sealing plate, it can be processed into the same shape as stainless steel, and the liquid leakage performance by sealing is equivalent to that of stainless steel. Further, the discharge capacity of the battery is not reduced, and the capacity can be increased. In addition, the cost of the material part of the parts can be reduced.

本発明における第2の発明は、前記クラッドのビッカース硬度が160〜240HVであることを特徴とする。使用するクラッド材のビッカース硬度により電池にした際の性能に大きく影響を与える。非水電解液コイン形電池は、カシメることにより、正極ケースを変形させて、パッキン材のガスケットを圧縮させて封止を行っている。正極ケースを変形させるときの加重がすべて封口板に掛かる。封口板の強度が十分でない場合には、封口板が変形して、電池の形状がおかしくなったり、液漏れしたりしてしまう。逆に、封口板の変形を抑えるために、カシメ加重を小さくすると、正極ケースの変形が不十分になったり、ガスケットの圧縮が不十分になり、封止性が低下して漏液してしまう。240HVを超えると部品の加工が難しくなり、場合によっては部品にクラックなどが発生してしまう危険性があり、好ましくない。   According to a second aspect of the present invention, the clad has a Vickers hardness of 160 to 240 HV. Depending on the Vickers hardness of the clad material used, the battery performance is greatly affected. The nonaqueous electrolyte coin-type battery is sealed by crimping to deform the positive electrode case and compress the gasket of the packing material. All the load applied when deforming the positive electrode case is applied to the sealing plate. When the strength of the sealing plate is not sufficient, the sealing plate is deformed, and the shape of the battery becomes strange or the liquid leaks. On the contrary, if the caulking load is reduced to suppress the deformation of the sealing plate, the positive electrode case is not sufficiently deformed, the gasket is not sufficiently compressed, the sealing performance is lowered, and the liquid leaks. . If it exceeds 240 HV, it is difficult to process the part, and in some cases, there is a risk that the part may crack, which is not preferable.

本発明における第3の発明は、クラッド材の厚みが0.15〜0.25mmであることを特徴とする。厚みが0.15mmより薄くなると、クラッド材自身の強度低下によりカ
シメ封口の加重耐圧も低下し、耐漏液性能が低下する。厚みが0.25mmより厚くなっても、強度的に著しく向上することが無く、電池容量の観点から好ましくない。
According to a third aspect of the present invention, the thickness of the clad material is 0.15 to 0.25 mm. If the thickness is less than 0.15 mm, the strength of the clad material itself is reduced, so that the weighted pressure resistance of the caulking seal is also lowered, and the leakage resistance performance is lowered. Even if the thickness is greater than 0.25 mm, the strength is not significantly improved, which is not preferable from the viewpoint of battery capacity.

本発明における第4の発明は、前記クラッド材のニッケル層の厚みが2〜5μmであることを特徴とする。従来のメッキではピンホール発生などのリスクから厚みを厚くしなければならないが、クラッドにすることで薄くでき、1μm程度まで可能である。しかし、外的な傷に対する安定性から厚みは2μmより厚くすることが好ましい。5μmより厚くなっても特性的に差がなく、価格が上がることから、5μm以下にすることが好ましい。   According to a fourth aspect of the present invention, the thickness of the nickel layer of the clad material is 2 to 5 μm. In conventional plating, the thickness must be increased due to the risk of pinholes and the like. However, the thickness can be reduced to about 1 μm by using a clad. However, from the viewpoint of stability against external scratches, the thickness is preferably greater than 2 μm. Even if it becomes thicker than 5 μm, there is no difference in characteristics and the price increases.

図1に、本発明の非水電解液コイン形電池の一例を示す。図1に示すように、非水電解液コイン形電池では、封口板2と正極ケース1およびガスケット3からなる外装で形成される内部に、負極4と正極6をセパレータ5を介して対向配置させた発電要素が、非水電解液(図示しない)とともに封入されている。   FIG. 1 shows an example of the non-aqueous electrolyte coin-type battery of the present invention. As shown in FIG. 1, in a non-aqueous electrolyte coin-type battery, a negative electrode 4 and a positive electrode 6 are arranged opposite to each other with a separator 5 inside an exterior formed by a sealing plate 2, a positive electrode case 1 and a gasket 3. The power generation element is enclosed together with a non-aqueous electrolyte (not shown).

封口板2は、鉄鋼基材の少なくとも外表面にニッケル板をクラッド化したクラッド材である。なお、鉄鋼基材の両面にニッケル板をクラッド化したクラッド材の場合は、部品の保管中における鉄鋼基材の錆の発生を防止するための管理が容易となるので好ましい。   The sealing plate 2 is a clad material obtained by clad a nickel plate on at least the outer surface of a steel substrate. In the case of a clad material in which a nickel plate is clad on both surfaces of a steel base, it is preferable because management for preventing the occurrence of rust on the steel base during storage of parts becomes easy.

クラッド材のビッカース硬度は160〜240HVであることが好ましい。   The Vickers hardness of the clad material is preferably 160 to 240 HV.

クラッド材の厚みは0.15〜0.25mmであることが好ましい。   The thickness of the clad material is preferably 0.15 to 0.25 mm.

クラッド材のニッケル層の厚みは2〜5μmであることが好ましい。   The thickness of the nickel layer of the clad material is preferably 2 to 5 μm.

図2に、図1に示した封口板2の要部を示す拡大図である。ここでは封口板2は鉄鋼基材7の両面にニッケル層8を持つクラッド材を示した。封口板2は上面壁2aから湾曲部2bが伸びている。封口板2の湾曲部2bとは、略平坦な上面壁2aから下方向へ向う変曲部を始端とし、次に曲率が変化する変曲部を終端とする、曲率が一定の部分を意味する。湾曲部2bの曲率半径Rとは、図2に示すように、封口板2の湾曲部2bの外表面(電池外表面)の曲面の曲率半径のことであり、湾曲部2bの内角θとは、湾曲部2b外表面の両端から曲率中心に向かう線分を引いたときの、両線分間の内角のことである。   FIG. 2 is an enlarged view showing a main part of the sealing plate 2 shown in FIG. Here, the sealing plate 2 is a clad material having nickel layers 8 on both surfaces of the steel substrate 7. The sealing plate 2 has a curved portion 2b extending from the upper surface wall 2a. The curved portion 2b of the sealing plate 2 means a portion having a constant curvature, starting from a curved portion directed downward from the substantially flat top wall 2a and ending with a curved portion where the curvature changes. . The curvature radius R of the curved portion 2b is a curved radius of curvature of the outer surface (battery outer surface) of the curved portion 2b of the sealing plate 2 as shown in FIG. 2, and the inner angle θ of the curved portion 2b is It is the inner angle between the two line segments when a line segment toward the center of curvature is drawn from both ends of the outer surface of the curved portion 2b.

正極ケース1は、ニッケルメッキを施したステンレス鋼板を絞り加工によって有底円筒状に成形したものである。   The positive electrode case 1 is formed by forming a nickel-plated stainless steel plate into a bottomed cylindrical shape by drawing.

本発明の非水電解液コイン形電池に係る正極6は、正極活物質、導電助剤およびバインダーを含む正極合剤を、ペレット状に加圧成形したものである。正極活物質は特に限定されないが、マンガン、コバルト、ニッケル、マグネシウム、銅、鉄、ニオブなどの酸化物またはこれらの複合酸化物、マンガン、コバルト、ニッケル、マグネシウム、銅、鉄、ニオブとリチウムとの複合酸化物、フッ化黒鉛などを用いることができる。   The positive electrode 6 according to the non-aqueous electrolyte coin-type battery of the present invention is obtained by pressure-molding a positive electrode mixture containing a positive electrode active material, a conductive additive and a binder into a pellet shape. The positive electrode active material is not particularly limited, but is an oxide of manganese, cobalt, nickel, magnesium, copper, iron, niobium, or a composite oxide thereof, manganese, cobalt, nickel, magnesium, copper, iron, niobium and lithium. A composite oxide, graphite fluoride, or the like can be used.

導電助剤としては、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、人造黒鉛などの黒鉛類などを使用できる。導電材は1種を単独でまたは2種以上を組み合わせて使用できる。   As the conductive assistant, carbon black such as acetylene black and ketjen black, graphite such as artificial graphite, and the like can be used. A conductive material can be used individually by 1 type or in combination of 2 or more types.

バインダーとしては、たとえば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、PVDFの変性体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロ
エチレン共重合体(ETFE樹脂)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体などのフッ素樹脂、スチレンブタジエンゴム(SBR)、変性アクリロニトリルゴム、エチレン−アクリル酸共重合体などが挙げられる。結着剤は1種を単独でまたは2種以上を組み合わせて使用できる。
Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), modified PVDF, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer. Polymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin), vinylidene fluoride-pentafluoropropylene copolymer Polymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, etc. Fluorocarbon resin, styrene-butadiene rubber (SBR), modified acrylonitrile rubber, ethylene - like acrylic acid copolymer. A binder can be used individually by 1 type or in combination of 2 or more types.

本発明に係る負極4としては、リチウムまたはリチウム合金を用いることができる。リチウム合金としては、たとえば、Li−Al、Li−Sn、Li−Si、Li−Pbなどが挙げられる。また、負極活物質として天然黒鉛、人造黒鉛、難黒鉛化性炭素などの炭素系材料、一酸化珪素、チタン酸リチウム、五酸化ニオブ、二酸化モリブデンなどの酸化物を用いることができる。炭素系材料や酸化物の負極活物質に、導電助剤、バインダーからなる合剤として負極として用いる。   As the negative electrode 4 according to the present invention, lithium or a lithium alloy can be used. Examples of the lithium alloy include Li—Al, Li—Sn, Li—Si, and Li—Pb. Further, as the negative electrode active material, carbon-based materials such as natural graphite, artificial graphite, and non-graphitizable carbon, and oxides such as silicon monoxide, lithium titanate, niobium pentoxide, and molybdenum dioxide can be used. It is used as a negative electrode as a mixture comprising a conductive additive and a binder for a carbon-based material or an oxide negative electrode active material.

導電助剤、バインダーとしては、上記正極のところで例示したものを用いることができる。   As the conductive auxiliary agent and binder, those exemplified for the positive electrode can be used.

非水電解液としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状炭酸エステル、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状炭酸エステルや、1,2−ジメトキシエタン、ジグライム(ジエチレングリコールメチルエーテル)、トリグライム(トリエチレングリコールジメチルエーテル)、テトラグライム(テトラエチレングリコールジメチルエーテル)、1,2−ジメトキシエタン、1,2−ジエトキシメタン、テトラヒドロフランなどのエーテルより選ばれる1種の溶媒あるいは2種以上の混合溶媒に電解質を0.3〜2.0mol/L程度の濃度に溶解させることによって調製した有機電解液が用いられる。上記電解質としては、例えば、LiBF、LiPF、LiAsF、LiSbF、LiClO、LiCFSO、LiCSO、LiN(CFSO、LiN(CSOなどが用いられる。 Non-aqueous electrolytes include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate and vinylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate, 1,2-dimethoxyethane, diglyme ( 1 type of solvent selected from ethers such as diethylene glycol methyl ether), triglyme (triethylene glycol dimethyl ether), tetraglyme (tetraethylene glycol dimethyl ether), 1,2-dimethoxyethane, 1,2-diethoxymethane, tetrahydrofuran, or 2 An organic electrolytic solution prepared by dissolving an electrolyte in a mixed solvent of seeds or more to a concentration of about 0.3 to 2.0 mol / L is used. Examples of the electrolyte include LiBF 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiClO 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 etc. are used.

セパレータ5としては、正極6と負極4とが短絡することを防止できるのであれば特に制限される訳ではなく、さらに電解液の浸透性に優れ、イオンの移動抵抗とならないことが望ましい。代表的な素材としてはポリオレフィン、ポリエステル、ポリカーボネート、ポリアクリレート、ポリメタクリレート、ポリアミド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリスルホン、ポリエーテルスルホン、ポリベンズイミダゾール、ポリエーテルエーテルケトン、ポリフェニレンなどが挙げられ、形状としては不織布、微多孔フィルムなどが挙げられる。   The separator 5 is not particularly limited as long as the positive electrode 6 and the negative electrode 4 can be prevented from being short-circuited. Further, it is desirable that the separator 5 is excellent in electrolyte permeability and does not become an ion migration resistance. Typical materials include polyolefin, polyester, polycarbonate, polyacrylate, polymethacrylate, polyamide, polytetrafluoroethylene, polyvinylidene fluoride, polysulfone, polyethersulfone, polybenzimidazole, polyetheretherketone, polyphenylene, etc. Examples of the shape include a nonwoven fabric and a microporous film.

ガスケット3の素材としては、例えば、PP、PPS、PEEKなどを用いることができる。   As a material of the gasket 3, for example, PP, PPS, PEEK, or the like can be used.

以下、本発明の好ましい実施例について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

(実施例1)
図1は、本発明の実施例で用いた厚さ3.2mm、直径20mmの非水電解液コイン形電池の断面図である。
Example 1
FIG. 1 is a cross-sectional view of a non-aqueous electrolyte coin cell battery having a thickness of 3.2 mm and a diameter of 20 mm used in an example of the present invention.

正極ケース1に、厚み3μmのニッケルメッキを施した厚み0.2mmのステンレス鋼板を絞り加工によって周壁の高さ3mmの有底円筒状に成形したものを用いた。   For the positive electrode case 1, a stainless steel plate having a thickness of 3 mm and plated with a nickel plate having a thickness of 0.2 μm formed into a bottomed cylindrical shape having a peripheral wall height of 3 mm by drawing.

封口板2には、鉄鋼基材の両面にニッケル板をクラッド化したクラッド材を用いた。クラッド材の両外表面のニッケル層の厚みがともに3μmで、内装の鉄鋼の厚みが0.25mmであり、ビッカース硬度が200HVのものを用いた。封口板2はこのクラッド材を絞り加工により図2に示すように湾曲部2bを有する形を有し、周縁部に折り返し構造からなる有底円筒状に成形したものである。   For the sealing plate 2, a clad material in which a nickel plate was clad on both surfaces of a steel base material was used. The thickness of the nickel layer on both outer surfaces of the clad material was 3 μm, the thickness of the steel in the interior was 0.25 mm, and the Vickers hardness was 200 HV. The sealing plate 2 is formed by drawing the clad material into a bottomed cylindrical shape having a curved portion 2b as shown in FIG.

また、封口板2の湾曲部2bの形状としては、曲率半径Rを0.4mm、湾曲部2bの内角θを90°とした。この際のR/θは0.0044であった。   Further, as the shape of the curved portion 2b of the sealing plate 2, the radius of curvature R was 0.4 mm, and the internal angle θ of the curved portion 2b was 90 °. At this time, R / θ was 0.0044.

正極6は、正極活物質として二酸化マンガンを、導電助剤としてカーボンブラックを、バインダーとしてポリテトラフルオロエチレンを用いた合剤からなる。二酸化マンガンが90質量%、人造黒鉛が5質量%、ポリテトラフルオロエチレンが5質量%となるようにこれらを混合して正極合剤を調製した。この正極合剤を、加圧成形して正極6を作製した。この正極6は直径が16mmであり、厚さが1.9mmであった。   The positive electrode 6 is composed of a mixture using manganese dioxide as a positive electrode active material, carbon black as a conductive additive, and polytetrafluoroethylene as a binder. These were mixed so that manganese dioxide was 90% by mass, artificial graphite was 5% by mass, and polytetrafluoroethylene was 5% by mass to prepare a positive electrode mixture. This positive electrode mixture was subjected to pressure molding to produce a positive electrode 6. The positive electrode 6 had a diameter of 16 mm and a thickness of 1.9 mm.

非水電解液としては、プロピレンカーボネートと1,2−ジメトキシエタンとの体積比1:1の混合溶媒にLiClOを0.5mol/l溶解させることによって調製した電解液を用いた。 As the non-aqueous electrolyte, an electrolyte prepared by dissolving 0.5 mol / l of LiClO 4 in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 1: 1 was used.

負極4には、厚みが0.58mmのリチウム板を、直径16mmの円形に打ち抜いたものを用い、この負極4を封口板2に収容した。   As the negative electrode 4, a lithium plate having a thickness of 0.58 mm punched out into a circle having a diameter of 16 mm was used, and the negative electrode 4 was accommodated in the sealing plate 2.

セパレータ5としてはポリプロピレン不織布を用い、環状のガスケット3にはポリプロピレン製のものを用いている。   A polypropylene nonwoven fabric is used as the separator 5 and a polypropylene gasket is used as the annular gasket 3.

正極6、負極4、セパレータ5、非水電解液などからなる発電要素を、正極ケース1、封口板2およびガスケット3で形成される空間内に収容し、正極ケース1の開口端部を内方に締め付ける、いわゆるカシメ加工をすることによって環状のガスケット3を封口板2の周辺折り返し部と正極ケース1の開口端部内周面とに圧接させることによって正極ケース1の開口部を封口して電池内部が密閉状態にされている。   A power generation element composed of the positive electrode 6, the negative electrode 4, the separator 5, the nonaqueous electrolyte, and the like is accommodated in a space formed by the positive electrode case 1, the sealing plate 2, and the gasket 3, and the open end of the positive electrode case 1 is inward The annular gasket 3 is pressed against the peripheral folded portion of the sealing plate 2 and the inner peripheral surface of the opening end portion of the positive electrode case 1 by so-called caulking, thereby sealing the opening portion of the positive electrode case 1 to the inside of the battery. Is sealed.

このようにして得られた非水電解液二次電池を、本実施例1に係る発明電池1とした。   The non-aqueous electrolyte secondary battery thus obtained was designated as an inventive battery 1 according to Example 1.

発明電池1の封口板2の形状として、曲率半径Rを0.55mm、湾曲部2bの内角θを85°とした以外は、発明電池1と同構成である発明電池2を作製した。   An inventive battery 2 having the same configuration as the inventive battery 1 was produced except that the shape of the sealing plate 2 of the inventive battery 1 was such that the radius of curvature R was 0.55 mm and the internal angle θ of the curved portion 2b was 85 °.

発明電池1の封口板2の形状として、曲率半径Rを0.52mm、湾曲部2bの内角θを90°とした以外は、発明電池1と同構成である発明電池3を作製した。   An inventive battery 3 having the same configuration as the inventive battery 1 was prepared except that the sealing plate 2 of the inventive battery 1 had a radius of curvature R of 0.52 mm and an internal angle θ of the curved portion 2b of 90 °.

発明電池1の封口板2の形状として、曲率半径Rを0.45mm、湾曲部2bの内角θを85°とした以外は、発明電池1と同構成である発明電池4を作製した。   An inventive battery 4 having the same configuration as the inventive battery 1 was prepared except that the sealing plate 2 of the inventive battery 1 had a curvature radius R of 0.45 mm and an internal angle θ of the curved portion 2b of 85 °.

発明電池1の封口板2の形状として、曲率半径Rを0.35mm、湾曲部2bの内角θを90°とした以外は、発明電池1と同構成である発明電池5を作製した。   Inventive battery 5 having the same configuration as that of inventive battery 1 was prepared except that the shape of the sealing plate 2 of the inventive battery 1 was such that the radius of curvature R was 0.35 mm and the internal angle θ of the curved portion 2b was 90 °.

発明電池1の封口板2の形状として、曲率半径Rを0.6mm、湾曲部2bの内角θを80°とした以外は、発明電池1と同構成である発明電池6を作製した。   An inventive battery 6 having the same configuration as the inventive battery 1 was produced except that the sealing plate 2 of the inventive battery 1 had a curvature radius R of 0.6 mm and an internal angle θ of the curved portion 2b of 80 °.

発明電池1の封口板2の基材であるクラッド材に変えて、鉄鋼基材の両面に無光沢Niメッキを施したものを用いた。無光沢Niメッキ層の厚みと鉄鋼基材の厚みはそれぞれ、
3μmと0.25mmである。このNiメッキ鋼板は、連続焼鈍法を用いて780℃で60秒間の条件により熱処理を行い、メッキ層と鉄鋼基材との間にFe−Ni拡散領域を形成したものである。ビッカース硬度は120HVである。このようにして得られた非水電解液コイン形電池を比較電池Aとした。
Instead of the clad material which is the base material of the sealing plate 2 of the inventive battery 1, a steel base material having a matte Ni plating on both surfaces was used. The thickness of the matte Ni plating layer and the thickness of the steel substrate are respectively
3 μm and 0.25 mm. This Ni-plated steel plate is heat-treated at 780 ° C. for 60 seconds using a continuous annealing method to form an Fe—Ni diffusion region between the plating layer and the steel substrate. Vickers hardness is 120HV. The non-aqueous electrolyte coin-type battery thus obtained was designated as comparative battery A.

発明電池1の封口板2の基材であるクラッド材に変えて、鉄鋼基材の両面に無光沢Niメッキを施したものを用いた。無光沢Niメッキ層の厚みと鉄鋼基材の厚みはそれぞれ3μmと0.25mmである。このNiメッキ鋼板は、連続焼鈍法を用いて780℃で60秒間の条件により熱処理を行い、メッキ層と鉄鋼基材との間にFe−Ni拡散領域を形成したものである。ビッカース硬度が120HVのものを用いた。また、封口板2の湾曲部2bの形状としては、曲率半径Rを0.6mm、湾曲部2bの内角θを78°とした。この際のR/θは0.0077であった。このようにして得られた非水電解液コイン形電池を比較電池Bとした。   Instead of the clad material which is the base material of the sealing plate 2 of the inventive battery 1, a steel base material having a matte Ni plating on both surfaces was used. The thickness of the matte Ni plating layer and the thickness of the steel substrate are 3 μm and 0.25 mm, respectively. This Ni-plated steel plate is heat-treated at 780 ° C. for 60 seconds using a continuous annealing method to form an Fe—Ni diffusion region between the plating layer and the steel substrate. A Vickers hardness of 120 HV was used. Further, as the shape of the curved portion 2b of the sealing plate 2, the radius of curvature R was 0.6 mm, and the internal angle θ of the curved portion 2b was 78 °. At this time, R / θ was 0.0077. The non-aqueous electrolyte coin-type battery thus obtained was designated as comparative battery B.

上記発明電池1〜5と比較電池A、Bについて、初期放電容量、高温多湿試験と熱衝撃試験を行った。各電池の試験数はそれぞれ25個ずつ用いた。   The above-described inventive batteries 1 to 5 and comparative batteries A and B were subjected to an initial discharge capacity, a high temperature and high humidity test, and a thermal shock test. The number of tests for each battery was 25.

初期放電容量測定は、20℃において0.2mAの定電流放電を行い、終止電圧2.0Vまでを放電容量とした。容量は25個の平均値を算出したのち、その値を発明電池Aの容量値を100として計算した結果を(表1)に示す。   In the initial discharge capacity measurement, a constant current discharge of 0.2 mA was performed at 20 ° C., and the discharge voltage was up to a final voltage of 2.0 V. Table 1 shows the results of calculating the average value of 25 capacities and then calculating the value with the capacity value of Invention Battery A being 100.

高温多湿試験は、85℃、相対湿度90%の雰囲気中に15日間貯蔵し、漏液発生の有無、および封口板の湾曲部2bの腐食の有無を調べた。加えて、保存後の放電容量を初期容量測定と同様の方法にて測定を行った。その結果を(表1)に示す。   The high temperature and humidity test was stored for 15 days in an atmosphere of 85 ° C. and 90% relative humidity, and the presence or absence of liquid leakage and the presence or absence of corrosion of the curved portion 2b of the sealing plate were examined. In addition, the discharge capacity after storage was measured by the same method as the initial capacity measurement. The results are shown in (Table 1).

熱衝撃試験は、−40℃で30分ホールドしたのち、温度を−40℃から85℃に瞬時に変更して、85℃で30分ホールドする熱衝撃を1サイクルとして、500サイクル後に漏液発生の有無を確認した。その結果を(表1)に示す。   In the thermal shock test, after holding for 30 minutes at -40 ° C, the temperature is instantaneously changed from -40 ° C to 85 ° C, and the thermal shock that is held for 30 minutes at 85 ° C is one cycle. The presence or absence was confirmed. The results are shown in (Table 1).

(表1)に示すように、封口板2に鉄鋼基材の両面にニッケル板をクラッド化したクラッド材を用いた発明電池1〜6は、高温多湿環境試験後においても大きな放電容量を示し、漏液と腐食の発生は一切見られず、優れた性能を示した。また、熱衝撃試験においても優れた漏液性能が得られた。クラッド材を用いることで、封口板の強度が上昇して十分なカシメの加重耐圧を確保することができ、優れた封止性能を実現することができた。   As shown in (Table 1), invention batteries 1 to 6 using a clad material in which a nickel plate is clad on both sides of a steel base material as a sealing plate 2 show a large discharge capacity even after a high-temperature and high-humidity environment test, No leakage or corrosion was observed, and the performance was excellent. Also, excellent liquid leakage performance was obtained in the thermal shock test. By using the clad material, the strength of the sealing plate is increased, and a sufficient caulking pressure resistance can be secured, and an excellent sealing performance can be realized.

比較電池A、Bでは、Fe−Ni拡散領域を有するNiメッキ鋼板を封口板の基材に用いた場合には、高温多湿環境試験後の放電容量が著しく劣化した。また、熱衝撃試験において、漏液電池がたくさん発生した。特にRを小さくし、θを大きくして容量が大きくな
るように設計した封口板形状の比較電池Aでは、高温多湿環境試験後に錆および漏液発生が見られた。Fe−Ni拡散領域を有するNiメッキ鋼板を用いると、封口板の強度が不十分であり、部品形状の規制やカシメ封口を強くできないため、高温多湿環境試験や熱衝撃試験での特性劣化が著しくなった。
In comparative batteries A and B, when a Ni-plated steel sheet having an Fe—Ni diffusion region was used as the base material of the sealing plate, the discharge capacity after the high-temperature and high-humidity environment test was significantly deteriorated. In the thermal shock test, a lot of leaking batteries were generated. In particular, in the comparative battery A having a sealing plate shape designed to increase R by decreasing R and increasing θ, rust and liquid leakage were observed after the high temperature and high humidity environment test. When Ni-plated steel sheet with Fe-Ni diffusion region is used, the strength of the sealing plate is insufficient and the regulation of the part shape and the caulking seal cannot be strengthened. became.

(実施例2)
発明電池1に使用していたクラッド材に変えて、ビッカース硬度が140HVのクラッド材を用いた以外は、発明電池1と同構成である発明電池7を作製した。
(Example 2)
Inventive battery 7 having the same configuration as inventive battery 1 was prepared except that a clad material having a Vickers hardness of 140 HV was used instead of the clad material used in inventive battery 1.

発明電池1に使用していたクラッド材に変えて、ビッカース硬度が160HVのクラッド材を用いた以外は、発明電池1と同構成である発明電池8を作製した。   Inventive battery 8 having the same configuration as inventive battery 1 was produced except that a clad material having a Vickers hardness of 160 HV was used instead of the clad material used in inventive battery 1.

発明電池1に使用していたクラッド材に変えて、ビッカース硬度が180HVのクラッド材を用いた以外は、発明電池1と同構成である発明電池9を作製した。   Inventive battery 9 having the same structure as inventive battery 1 was produced except that a clad material having a Vickers hardness of 180 HV was used instead of the clad material used in inventive battery 1.

発明電池1に使用していたクラッド材に変えて、ビッカース硬度が220HVのクラッド材を用いた以外は、発明電池1と同構成である発明電池10を作製した。   Inventive battery 10 having the same configuration as inventive battery 1 was produced except that a clad material having a Vickers hardness of 220 HV was used instead of the clad material used in inventive battery 1.

発明電池1に使用していたクラッド材に変えて、ビッカース硬度が240HVのクラッド材を用いた以外は、発明電池1と同構成である発明電池11を作製した。   Inventive battery 11 having the same configuration as inventive battery 1 was prepared except that a clad material having a Vickers hardness of 240 HV was used instead of the clad material used in inventive battery 1.

発明電池1に使用していたクラッド材に変えて、ビッカース硬度が260HVのクラッド材を用いた以外は、発明電池1と同構成である発明電池12を作製した。   Inventive battery 12 having the same configuration as inventive battery 1 was produced except that a clad material having a Vickers hardness of 260 HV was used in place of the clad material used in inventive battery 1.

発明電池7〜12について、実施例1と同様の評価を行った結果を(表2)に示す。   Table 2 shows the results of evaluations similar to those in Example 1 for the inventive batteries 7 to 12.

発明電池1と7〜12については、高温多湿保存および熱衝撃試験において優れた漏液性能を示した。クラッド材のビッカース強度が低い発明電池7において、高温多湿環境試験後の放電で若干容量低下が見られた。封止部の機密性が若干低下して、電池内部への水分侵入量が増えたことにより、負極活物質であるリチウムが消費されたことにより容量が低下した。   Inventive batteries 1 and 7 to 12 exhibited excellent liquid leakage performance in high temperature and high humidity storage and thermal shock tests. Inventive battery 7 having a low Vickers strength of the clad material, a slight decrease in capacity was observed in the discharge after the high temperature and high humidity environment test. Since the confidentiality of the sealing part was slightly lowered and the amount of moisture entering the battery was increased, the capacity was reduced due to the consumption of lithium as the negative electrode active material.

また、クラッド材のビッカース強度が高い発明電池12において、高温多湿保存後にひとつだけ封口板のR部に微少な錆が見られた。部品の加工時にストレスが加わり、封口板のR部に傷が発生して下地の鉄鋼基材部が露出したものと考えられる。   Further, in the inventive battery 12 having a high Vickers strength of the clad material, only one minute rust was observed in the R portion of the sealing plate after high temperature and high humidity storage. It is considered that stress was applied during the processing of the parts, scratches were generated in the R portion of the sealing plate, and the underlying steel substrate portion was exposed.

(実施例3)
発明電池1に使用していたクラッド材に変えて、内装の鉄鋼基材の厚みが0.10mm
のクラッド材を用い、それに対応して正極・負極の厚みを変更した以外は、発明電池1と同構成である発明電池13を作製した。
(Example 3)
Instead of the clad material used in the invention battery 1, the thickness of the steel substrate in the interior is 0.10 mm.
An inventive battery 13 having the same configuration as that of the inventive battery 1 was prepared except that the thickness of the positive electrode and the negative electrode was changed correspondingly.

発明電池1に使用していたクラッド材に変えて、内装の鉄鋼基材の厚みが0.15mmのクラッド材を用い、それに対応して正極・負極の厚みを変更した以外は、発明電池1と同構成である発明電池14を作製した。   Instead of the clad material used in the inventive battery 1, a clad material having an inner steel substrate thickness of 0.15 mm was used, and the thicknesses of the positive electrode and the negative electrode were changed accordingly. An inventive battery 14 having the same configuration was produced.

発明電池1に使用していたクラッド材に変えて、内装の鉄鋼基材の厚みが0.25mmのクラッド材を用い、それに対応して正極・負極の厚みを変更した以外は、発明電池1と同構成である発明電池15を作製した。   Instead of the clad material used in the inventive battery 1, a clad material having an inner steel base thickness of 0.25 mm was used, and the thickness of the positive electrode / negative electrode was changed accordingly. Inventive battery 15 having the same configuration was produced.

発明電池1に使用していたクラッド材に変えて、内装の鉄鋼基材の厚みが0.30mmのクラッド材を用い、それに対応して正極・負極の厚みを変更した以外は、発明電池1と同構成である発明電池16を作製した。   Instead of the clad material used in the inventive battery 1, a clad material having an inner steel base thickness of 0.30 mm was used, and the thicknesses of the positive electrode and the negative electrode were changed accordingly. Inventive battery 16 having the same configuration was produced.

発明電池13〜16について、実施例1と同様の評価を行った結果を(表3)に示す。   The results of performing the same evaluation as in Example 1 for the inventive batteries 13 to 16 are shown in (Table 3).

発明電池1、13〜16については高温多湿保存および熱衝撃試験において漏液発生と腐食発生は見られなかった。   Inventive batteries 1 and 13 to 16 showed no occurrence of leakage or corrosion in high-temperature and high-humidity storage and thermal shock tests.

発明電池13,14については鉄鋼基材の厚みが薄くなることにより初期の放電容量が大きくなった。一方、鉄鋼基材の厚みが厚い発明電池15,16については初期の放電容量は小さくなった。但し、発明電池13については保存後に容量劣化が加速された。鉄鋼基材の厚みが薄くなり、封口板の強度が低下し、封止部の機密性が低下したことにより劣化が進んだ。鉄鋼基材の厚みが厚くなるほど、高温多湿前後での放電容量の差が小さく、封口板の強度向上することで封止部の機密性が向上した。   As for the inventive batteries 13 and 14, the initial discharge capacity was increased by reducing the thickness of the steel substrate. On the other hand, the initial discharge capacities of the inventive batteries 15 and 16 having a thick steel substrate were small. However, the capacity deterioration of the inventive battery 13 was accelerated after storage. Deterioration progressed because the steel substrate thickness was reduced, the strength of the sealing plate was lowered, and the confidentiality of the sealed portion was lowered. The thicker the steel substrate, the smaller the difference in discharge capacity before and after the high temperature and humidity, and the sealing plate was improved in strength by improving the strength of the sealing plate.

(実施例5)
発明電池1に使用していたクラッド材に変えて、ニッケル層の厚みが1μmのクラッド材を用いた以外は、発明電池1と同構成である発明電池17を作製した。
(Example 5)
Inventive battery 17 having the same configuration as that of inventive battery 1 was prepared except that a clad material having a nickel layer thickness of 1 μm was used instead of the clad material used in inventive battery 1.

発明電池1に使用していたクラッド材に変えて、ニッケル層の厚みが2μmのクラッド材を用いた以外は、発明電池1と同構成である発明電池18を作製した。   Inventive battery 18 having the same configuration as that of inventive battery 1 was prepared except that a clad material having a nickel layer thickness of 2 μm was used instead of the clad material used in inventive battery 1.

発明電池1に使用していたクラッド材に変えて、ニッケル層の厚みが4μmのクラッド材を用いた以外は、発明電池1と同構成である発明電池19を作製した。   Inventive battery 19 having the same configuration as that of inventive battery 1 was produced except that a clad material having a nickel layer thickness of 4 μm was used instead of the clad material used in inventive battery 1.

発明電池1に使用していたクラッド材に変えて、ニッケル層の厚みが5μmのクラッド材を用いた以外は、発明電池1と同構成である発明電池20を作製した。   Inventive battery 20 having the same configuration as inventive battery 1 was prepared except that a clad material having a nickel layer thickness of 5 μm was used instead of the clad material used in inventive battery 1.

発明電池1に使用していたクラッド材に変えて、ニッケル層の厚みが6μmのクラッド材を用いた以外は、発明電池1と同構成である発明電池21を作製した。   Inventive battery 21 having the same configuration as that of inventive battery 1 was prepared except that a clad material having a nickel layer thickness of 6 μm was used instead of the clad material used in inventive battery 1.

発明電池17〜21について、実施例1と同様の評価を行った結果を(表4)に示す。   Table 4 shows the results of the same evaluations as in Example 1 for the inventive batteries 17 to 21.

発明電池17において、保存後の放電容量が小さくなった。ニッケルメッキの厚みが薄くなることで接触抵抗の値が上昇したために、放電容量に影響が見られたと考えられる。ニッケルメッキの厚みが厚い発明電池20〜21についても性能に差は見られなかった。   In invention battery 17, the discharge capacity after storage was reduced. It is considered that the discharge capacity was affected because the value of the contact resistance was increased by reducing the thickness of the nickel plating. No difference in performance was found for inventive batteries 20 to 21 having a thick nickel plating.

なお、上記の実施例については、鉄鋼基材の両面にニッケル層を設けたクラッド材を用いた場合について記載したが、外表面のみにニッケル層を設けたクラッド材を用いた場合においても同様の効果が得られた。   In addition, about said Example, although described about the case where the clad material which provided the nickel layer on both surfaces of the steel base material was used, it is the same also when the clad material which provided the nickel layer only on the outer surface is used. The effect was obtained.

以上のように本発明は、低価格な外装部品を用い、長期保存特性に優れ、加えて高容量化が可能な非水電解液コイン形電池を提供することで様々な用途に対応することができ、産業上の利用価値は非常に高い。   As described above, the present invention can be applied to various applications by providing a non-aqueous electrolyte coin-type battery that uses low-cost exterior parts, has excellent long-term storage characteristics, and can be increased in capacity. Yes, the industrial utility value is very high.

1 正極ケース
2 封口板
2a 上面壁
2b 湾曲部
3 ガスケット
4 負極
5 セパレータ
6 正極
7 鉄鋼基材
8 ニッケル層
DESCRIPTION OF SYMBOLS 1 Positive electrode case 2 Sealing plate 2a Upper surface wall 2b Curved part 3 Gasket 4 Negative electrode 5 Separator 6 Positive electrode 7 Steel base material 8 Nickel layer

Claims (4)

正極と負極とをセパレータを介して対向配置した発電要素を非水電解液とともに、金属材からなる正極ケースと封口板、樹脂からなるガスケットの外装部品に封入されてなる非水電解液コイン形電池において、前記封口板として鉄鋼基材の少なくとも外表面にニッケル板をクラッド化したクラッド材を用いたことを特徴とする非水電解液コイン形電池。 A non-aqueous electrolyte coin-type battery in which a power generation element in which a positive electrode and a negative electrode are opposed to each other with a separator interposed between a non-aqueous electrolyte, a positive electrode case made of a metal material, a sealing plate, and a gasket made of a resin A non-aqueous electrolyte coin-type battery characterized in that a clad material in which a nickel plate is clad on at least the outer surface of a steel substrate is used as the sealing plate. 前記クラッド材のビッカース硬度が160〜240HVであることを特徴とする請求項1記載の非水電解液コイン形電池。 The non-aqueous electrolyte coin-type battery according to claim 1, wherein the clad material has a Vickers hardness of 160 to 240 HV. 前記クラッド材の厚みが0.15〜0.25mmであることを特徴とする請求項1〜2のいずれかに記載の非水電解液コイン形電池。 The non-aqueous electrolyte coin-type battery according to claim 1, wherein the clad material has a thickness of 0.15 to 0.25 mm. 前記クラッド材のニッケル層の厚みが2〜5μmであることを特徴とする請求項1〜3のいずれかに記載の非水電解液コイン形電池。 The thickness of the nickel layer of the said clad material is 2-5 micrometers, The nonaqueous electrolyte coin type | mold battery in any one of Claims 1-3 characterized by the above-mentioned.
JP2011170685A 2011-08-04 2011-08-04 Non-aqueous electrolyte coin battery Active JP5879482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011170685A JP5879482B2 (en) 2011-08-04 2011-08-04 Non-aqueous electrolyte coin battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011170685A JP5879482B2 (en) 2011-08-04 2011-08-04 Non-aqueous electrolyte coin battery

Publications (2)

Publication Number Publication Date
JP2013037796A true JP2013037796A (en) 2013-02-21
JP5879482B2 JP5879482B2 (en) 2016-03-08

Family

ID=47887259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011170685A Active JP5879482B2 (en) 2011-08-04 2011-08-04 Non-aqueous electrolyte coin battery

Country Status (1)

Country Link
JP (1) JP5879482B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140106391A (en) * 2013-02-26 2014-09-03 세이코 인스트루 가부시키가이샤 Nonaqueous electrolytic secondary battery
WO2017122252A1 (en) * 2016-01-12 2017-07-20 パナソニックIpマネジメント株式会社 Coin-type cell
WO2021208128A1 (en) * 2020-04-16 2021-10-21 广东国光电子有限公司 Lithium ion battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09259844A (en) * 1996-03-18 1997-10-03 Sony Corp Organic electrolyte battery
JPH11104856A (en) * 1997-07-31 1999-04-20 Sumitomo Special Metals Co Ltd High-strength clad material having excellent tensile strength
JP2006179324A (en) * 2004-12-22 2006-07-06 Toshiba Battery Co Ltd Button-shape alkaline battery
JP2007207534A (en) * 2006-02-01 2007-08-16 Hitachi Maxell Ltd Coin-shaped battery
JP2010073473A (en) * 2008-09-18 2010-04-02 Hitachi Maxell Ltd Flat battery
JP2010218709A (en) * 2009-03-13 2010-09-30 Hitachi Maxell Ltd Button cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09259844A (en) * 1996-03-18 1997-10-03 Sony Corp Organic electrolyte battery
JPH11104856A (en) * 1997-07-31 1999-04-20 Sumitomo Special Metals Co Ltd High-strength clad material having excellent tensile strength
JP2006179324A (en) * 2004-12-22 2006-07-06 Toshiba Battery Co Ltd Button-shape alkaline battery
JP2007207534A (en) * 2006-02-01 2007-08-16 Hitachi Maxell Ltd Coin-shaped battery
JP2010073473A (en) * 2008-09-18 2010-04-02 Hitachi Maxell Ltd Flat battery
JP2010218709A (en) * 2009-03-13 2010-09-30 Hitachi Maxell Ltd Button cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140106391A (en) * 2013-02-26 2014-09-03 세이코 인스트루 가부시키가이샤 Nonaqueous electrolytic secondary battery
JP2014165054A (en) * 2013-02-26 2014-09-08 Seiko Instruments Inc Nonaqueous electrolyte secondary battery
TWI609517B (en) * 2013-02-26 2017-12-21 精工電子有限公司 Nonaqueous electrolytic secondary battery
KR102137846B1 (en) * 2013-02-26 2020-07-24 세이코 인스트루 가부시키가이샤 Nonaqueous electrolytic secondary battery
WO2017122252A1 (en) * 2016-01-12 2017-07-20 パナソニックIpマネジメント株式会社 Coin-type cell
JPWO2017122252A1 (en) * 2016-01-12 2018-01-18 パナソニックIpマネジメント株式会社 Coin battery
WO2021208128A1 (en) * 2020-04-16 2021-10-21 广东国光电子有限公司 Lithium ion battery

Also Published As

Publication number Publication date
JP5879482B2 (en) 2016-03-08

Similar Documents

Publication Publication Date Title
US9515301B2 (en) Coin battery having a sealing plate which suppresses deformation
JP3708183B2 (en) Organic electrolyte battery
JP5152886B2 (en) Coin battery
US20080070109A1 (en) Flat-shaped non-aqueous electrolyte secondary battery
JPWO2013145768A1 (en) Cylindrical battery
JP5879482B2 (en) Non-aqueous electrolyte coin battery
JPWO2017047653A1 (en) Non-aqueous secondary battery electrode, manufacturing method thereof, and non-aqueous secondary battery
WO2016195062A1 (en) Nonaqueous electrolyte primary battery and method for producing same
EP2770562B1 (en) Nonaqueous electrolytic secondary battery
WO2019082712A1 (en) Cylindrical battery
WO2023276756A1 (en) Lithium secondary battery
JP5883029B2 (en) Top cap for cylindrical secondary battery, and secondary battery including top cap
CN111164814B (en) Cylindrical secondary battery
US20220320637A1 (en) Non-aqueous coin-shaped battery
JP2009043423A (en) Flat shape nonaqueous electrolytic liquid secondary battery
JP6719100B2 (en) Coin cell battery
US20210075013A1 (en) Non-aqueous electrolyte secondary battery
JP6687344B2 (en) Method of manufacturing flat battery
JPWO2019207924A1 (en) Non-aqueous electrolyte secondary battery
JP5091723B2 (en) Method for producing non-aqueous electrolyte battery
WO2019044238A1 (en) Non-aqueous electrolyte secondary cell
JP2006172876A (en) Alkaline battery and its manufacturing method
JP2010033940A (en) Battery
WO2023074845A1 (en) Lithium secondary battery
JP2011146315A (en) Flat electrochemical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140916

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150914

R151 Written notification of patent or utility model registration

Ref document number: 5879482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151