JP5152886B2 - Coin battery - Google Patents

Coin battery Download PDF

Info

Publication number
JP5152886B2
JP5152886B2 JP2006024039A JP2006024039A JP5152886B2 JP 5152886 B2 JP5152886 B2 JP 5152886B2 JP 2006024039 A JP2006024039 A JP 2006024039A JP 2006024039 A JP2006024039 A JP 2006024039A JP 5152886 B2 JP5152886 B2 JP 5152886B2
Authority
JP
Japan
Prior art keywords
sealing plate
coin
battery
curved portion
type battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006024039A
Other languages
Japanese (ja)
Other versions
JP2007207534A (en
Inventor
浩司 山口
孝史 木村
健一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2006024039A priority Critical patent/JP5152886B2/en
Priority to CN2007100082675A priority patent/CN101013747B/en
Publication of JP2007207534A publication Critical patent/JP2007207534A/en
Application granted granted Critical
Publication of JP5152886B2 publication Critical patent/JP5152886B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、コイン形電池に関し、さらに詳しくは長期貯蔵時の電池缶の耐腐食性能に優れたコイン形電池に関するものである。   The present invention relates to a coin-type battery, and more particularly to a coin-type battery having excellent corrosion resistance performance of a battery can during long-term storage.

二酸化マンガン−リチウム電池などに代表されるコイン形電池は、封口板、外装缶ともにステンレス鋼板が一般的に用いられている。ステンレス鋼板は強度が高いため、封口板および外装缶の厚みを薄くしても強度をある程度確保でき、漏液や電池の変形などの問題が生じにくいことから、こうした問題の発生を抑えつつ高容量化を達成できる点で好ましい。   In coin-type batteries represented by manganese dioxide-lithium batteries, stainless steel plates are generally used for both the sealing plate and the outer can. Since stainless steel sheet has high strength, it can secure a certain level of strength even if the sealing plate and outer can are made thin, and problems such as leakage and battery deformation are unlikely to occur. It is preferable in that it can be achieved.

また、コイン形電池は、電子機器になどの電源として用いられる際に、電子機器内において設置された端子と電池の封口板もしくは外装缶が点接触により通電を行う場合があることから、封口板もしくは外装缶の外面は、接触抵抗を低減させるために、Niメッキなどのメッキ処理が行われているのが一般的である。   In addition, when a coin-type battery is used as a power source for an electronic device or the like, the terminal installed in the electronic device and the battery sealing plate or the outer can may be energized by point contact. Alternatively, the outer surface of the outer can is generally subjected to a plating process such as Ni plating in order to reduce contact resistance.

ところが、コイン形電池は、かしめ加工によって外装缶の開口部を封口しており、封口板、外装缶ともに端部に変形の大きな加工領域を有しているため、外面に設けたNiメッキ層などに亀裂や剥離が生じる場合がある。しかしながら、ステンレス鋼は耐腐食性が高いため、Niメッキ層に亀裂や剥離が生じた場合においても外装缶の腐食の問題が生じないという点でも好ましかった。   However, the coin-type battery seals the opening of the outer can by caulking, and both the sealing plate and the outer can have a large deformation region at the end, so the Ni plating layer provided on the outer surface, etc. May crack or peel off. However, since stainless steel has high corrosion resistance, it is also preferable in that the problem of corrosion of the outer can does not occur even when the Ni plating layer is cracked or peeled off.

コイン形電池の封口板や外装缶の素材としてのステンレス鋼板には、上記のような利点がある反面、高価格であるため、電池の製造コストが増大するというデメリットもある。   The stainless steel plate as the material for the coin-type battery sealing plate and the outer can has the above-mentioned advantages, but also has a demerit that the manufacturing cost of the battery increases because of the high price.

他方、例えば、筒形電池の外装缶を、Fe−Ni拡散層を有するNiメッキ鋼板で構成する技術も提案されている(特許文献1)。このようなNiメッキ鋼板は、ステンレス鋼に比べて安価であるため、コイン形電池において、封口板や外装缶の素材を、上記のNiメッキ鋼板に置き換えることで、製造コストを下げ得る可能性がある。   On the other hand, for example, a technique in which an outer can of a cylindrical battery is formed of a Ni-plated steel plate having an Fe—Ni diffusion layer has also been proposed (Patent Document 1). Since such a Ni-plated steel sheet is cheaper than stainless steel, there is a possibility that the manufacturing cost can be reduced by replacing the material of the sealing plate and the outer can with the above-described Ni-plated steel sheet in the coin-type battery. is there.

特開2005−85480号公報JP 2005-85480 A

しかしながら、本発明者らの検討によると、特許文献1に開示されているようなNiメッキ鋼板をコイン形電池の封口板や外装缶に用いると、これら封口板や外装缶に錆が生じて外観不良などの問題が発生したり、また、漏液が生じてしまうことが判明した。   However, according to the study by the present inventors, when a Ni-plated steel sheet as disclosed in Patent Document 1 is used for a sealing plate or an outer can of a coin-type battery, the sealing plate or the outer can is rusted and has an appearance. It has been found that problems such as defects occur and leakage occurs.

本発明は上記事情に鑑みてなされたものであり、その目的は、鉄鋼板を構成素材とする封口板を有しており、外表面の錆の発生や漏液の発生を抑制したコイン形電池を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a coin-type battery having a sealing plate made of a steel plate and suppressing the occurrence of rust and leakage on the outer surface. Is to provide.

上記目的を達成し得た本発明のコイン形電池は、上面壁および該上面壁から下方向に湾曲した湾曲部を有する封口板と、外装缶の開口部とが、ガスケットを介してかしめられることで封口されているものであって、上記封口板は、少なくとも鉄鋼基材の外表面がNi(ニッケル)メッキされ、かつNiメッキ部分と鉄鋼基材部分の間に、Fe(鉄)とNiとが互いに拡散した領域が存在しているNiメッキ鋼板で構成されており、上記封口板の上記湾曲部の曲率半径R(mm)と該湾曲部の内角θ(°)との比R/θが、0.0060〜0.0160であることを特徴とするものである。   In the coin-type battery of the present invention that can achieve the above object, the sealing plate having the upper wall and the curved portion curved downward from the upper wall and the opening of the outer can are caulked through a gasket. In the sealing plate, at least the outer surface of the steel substrate is Ni (nickel) plated, and between the Ni plated portion and the steel substrate portion, Fe (iron), Ni, and Are composed of Ni-plated steel plates in which regions diffused from each other, and the ratio R / θ between the radius of curvature R (mm) of the curved portion of the sealing plate and the internal angle θ (°) of the curved portion is 0.0060 to 0.0160.

上記封口板を構成する上記Niメッキ鋼板は、無光沢Niメッキ層を有する鉄鋼板に熱処理を施すことで得られたものであることが好ましく、この場合、無光沢Niメッキ層の厚みは、2〜10μmであることが推奨される。   The Ni-plated steel plate constituting the sealing plate is preferably obtained by heat-treating a steel plate having a matte Ni-plated layer. In this case, the thickness of the matte Ni-plated layer is 2 It is recommended to be 10 μm.

本発明のコイン形電池においては、外装缶はステンレス鋼により構成されていることが好ましく、また、リチウムまたはリチウム合金を有する負極を備えていることが推奨される。   In the coin battery of the present invention, the outer can is preferably made of stainless steel, and it is recommended that the outer can be provided with a negative electrode having lithium or a lithium alloy.

なお、電池業界においては、高さより径の方が大きい扁平形電池をコイン形電池と呼んだり、ボタン形電池と呼んだりしているが、そのコイン形電池とボタン形電池との間に明確な差はなく、本発明のコイン形電池も、ボタン形電池と呼ばれるものを排除しているわけではなく、そのようなボタン形電池と呼ばれる電池も、本発明のコイン形電池の範囲内に含まれ、また、平面形状が円形のもののみならず、四角形などの多角形状の扁平形電池も包含される。   In the battery industry, a flat battery with a diameter larger than the height is called a coin-type battery or a button-type battery, but there is a clear gap between the coin-type battery and the button-type battery. There is no difference, and the coin type battery of the present invention does not exclude what is called a button type battery, and such a battery called a button type battery is also included in the scope of the coin type battery of the present invention. Moreover, not only a flat planar shape but also a polygonal flat battery such as a quadrangle is included.

本発明によれば、封口板の構成素材に特定のNiメッキ鋼板を適用することにより、従来のステンレス鋼製封口板を有するコイン形電池に比べて、製造時のコストダウンを図って生産性を高め、更に外表面の錆の発生や漏液の発生を抑制も達成したコイン形電池を提供することができる。   According to the present invention, by applying a specific Ni-plated steel plate to the constituent material of the sealing plate, the productivity is reduced by reducing the cost at the time of manufacture compared to a coin-type battery having a conventional stainless steel sealing plate. It is possible to provide a coin-type battery that is enhanced and also has suppressed the occurrence of rust and leakage on the outer surface.

特許文献1に開示されているような筒形電池では、通常、外装缶は更に外装部材(電池の名称などを印刷したフィルムなど)で覆われるため、外部環境の影響を受け難い。しかし、コイン形電池の封口板や外装缶では、上記の通り、直接点接触により通電する場合があるため、素材をフィルムなどで覆うことができず、外部からの水分などの影響を受け易い。そのため、例えば、封口板や外装缶に加工する際の変形の大きな箇所では、Niメッキ層の剥離やひび割れなどが生じて下地の鉄鋼基材が露出し易く、こうした箇所が外部の水分などの影響を受けて錆が生じるものと考えられる。   In a cylindrical battery as disclosed in Patent Document 1, the outer can is usually covered with an outer member (such as a film on which the name of the battery is printed), so that it is hardly affected by the external environment. However, since the sealing plate and the outer can of the coin-type battery may be energized by direct point contact as described above, the material cannot be covered with a film or the like, and is easily affected by moisture from the outside. Therefore, for example, at places where deformation is great when processing into a sealing plate or an outer can, the Ni plating layer is peeled off or cracked, and the underlying steel substrate is likely to be exposed. It is considered that rust is generated.

そこで、より電池外部への露出部分が少ない封口板について、特定のNiメッキ鋼板を用いて、更に検討を進めたところ、封口板に錆が生じないような加工をしつつ、コイン形電池を完成させると、比較的漏液が生じ易いことが判明した。   Therefore, further investigation was carried out on the sealing plate with fewer exposed parts to the outside of the battery using a specific Ni-plated steel sheet, and the coin-type battery was completed while processing the sealing plate to prevent rusting. As a result, it was found that liquid leakage is relatively easy to occur.

上記の事情に鑑みて、本発明では、封口板を特定のNiメッキ鋼板で構成して、Niメッキ部分の剥離やひび割れを抑制し、また、封口板の形状を制御することで、Niメッキ部分の剥離やひび割れを更に抑制して封口板外面での錆の発生を抑制すると共に、漏液の発生も抑えることに成功した。   In view of the above circumstances, in the present invention, the sealing plate is made of a specific Ni-plated steel plate, and peeling and cracking of the Ni-plated portion are suppressed, and the shape of the sealing plate is controlled, thereby the Ni-plated portion. As a result, it was possible to further suppress the occurrence of rust on the outer surface of the sealing plate by further suppressing peeling and cracking of the sealing plate, and also suppressing the occurrence of liquid leakage.

本発明に係る封口板は、少なくとも鉄鋼基材の外表面がNiメッキされてなり、かつNiメッキ部分と鉄鋼基材部分との間に、FeとNiが互いに拡散した領域が存在するNiメッキ鋼板で構成されている。   The sealing plate according to the present invention is a Ni-plated steel plate in which at least the outer surface of a steel substrate is Ni-plated, and a region in which Fe and Ni are diffused is present between the Ni-plated portion and the steel substrate portion. It consists of

上記のNiメッキ鋼板は、例えば、Niメッキ層を有する鉄鋼板に熱処理を施すことで得ることができる。この熱処理によってNiメッキ層と鉄鋼基材(鉄鋼板)の界面で、Niメッキ層中のNiと、鉄鋼基材中のFeとが互いに拡散した領域(以下、「Fe−Ni拡散領域」という)が層状に形成される。   The Ni-plated steel sheet can be obtained, for example, by performing a heat treatment on a steel sheet having a Ni-plated layer. A region in which Ni in the Ni plating layer and Fe in the steel substrate diffuse to each other at the interface between the Ni plating layer and the steel substrate (steel plate) by this heat treatment (hereinafter referred to as “Fe—Ni diffusion region”). Are formed in layers.

このように、Niメッキ層(Niメッキ部分)と鉄鋼基材(鉄鋼基材部分)との間にFe−Ni拡散領域が存在するNiメッキ鋼板であれば、Fe−Ni拡散領域の存在によって、Niメッキ鋼板表面のNiメッキ層と鉄鋼基材との密着性が向上するため、封口板に加工する際のNiメッキ層の剥離やひび割れの発生が抑制され、錆の発生が抑えられる。なお、本発明に係る封口板を構成しているNiメッキ鋼板では、Fe−Ni拡散領域の形成により、かかるFe−Ni拡散領域との境界が曖昧となるため、例えばNiメッキ層は、Fe−Ni拡散領域と明確に区別できる層ではないが、本明細書では、以降の記載において、Fe−Ni拡散領域が形成された後のNiメッキ鋼板におけるNiメッキ層の残存部分(Niメッキ部分)を、便宜上、「Niメッキ層」という。また、同じ理由から、Fe−Ni拡散領域が形成された後の鉄鋼基材(鉄鋼板)部分についても、「鉄鋼基材」や「鉄鋼板」という。   Thus, if the Ni-plated steel sheet has a Fe—Ni diffusion region between the Ni plating layer (Ni plating portion) and the steel base (steel base portion), the presence of the Fe—Ni diffusion region Since the adhesion between the Ni-plated layer on the surface of the Ni-plated steel plate and the steel base material is improved, peeling of the Ni-plated layer and cracking during processing into a sealing plate are suppressed, and generation of rust is suppressed. In the Ni-plated steel sheet constituting the sealing plate according to the present invention, since the boundary with the Fe-Ni diffusion region becomes ambiguous due to the formation of the Fe-Ni diffusion region, for example, the Ni plating layer is Fe-Ni. Although it is not a layer that can be clearly distinguished from the Ni diffusion region, in this specification, in the following description, the remaining portion (Ni plating portion) of the Ni plating layer in the Ni plated steel sheet after the Fe—Ni diffusion region is formed For convenience, it is referred to as “Ni plating layer”. For the same reason, the steel substrate (steel plate) portion after the Fe—Ni diffusion region is formed is also referred to as “iron substrate” or “steel plate”.

なお、上記の通り、本発明に係る封口板を構成するNiメッキ鋼板は、例えば、Niメッキ鋼板を熱処理することにより得られるが、熱処理前のNiメッキ鋼板では、そのNiメッキ層が、無光沢Niメッキ層であることが好ましい。無光沢Niメッキ層とは、光沢添加剤、レベリング剤、ピンホール抑制剤などの有機系添加剤を用いずに形成した軟質Niメッキ層のことである。軟質Niメッキ層とは、PやSなどの微量合金メッキである通常のNiメッキ層(所謂硬質Niメッキ層)とは異なり、こうしたPやSなどの微量成分を、メッキ層形成時に不可避的に混入するものを除き実質的に含有しないか、仮に含有していても、メッキ層の硬度の増加に影響しない程度であるNiメッキ層を意味している。   As described above, the Ni-plated steel sheet constituting the sealing plate according to the present invention can be obtained, for example, by heat-treating the Ni-plated steel sheet. In the Ni-plated steel sheet before the heat treatment, the Ni-plated layer has a matte surface. A Ni plating layer is preferred. The matte Ni plating layer is a soft Ni plating layer formed without using organic additives such as a gloss additive, a leveling agent, and a pinhole inhibitor. Unlike the ordinary Ni plating layer (so-called hard Ni plating layer) which is a trace alloy plating such as P and S, the soft Ni plating layer inevitably contains such a trace component such as P and S when forming the plating layer. It means a Ni plating layer that does not substantially contain, except for mixed materials, or that does not affect the increase in hardness of the plating layer even if it is contained.

すなわち、通常の硬質Niメッキ層(光沢Niメッキ層や半光沢Niメッキ層と称されているものも含む)では、上記のPやSなどの微量成分が光沢剤として機能すると共に硬化剤としても機能するため、硬度が高く延展性に劣る。これに対し、PやSなどの硬化成分を殆どまたは全く含有していない無光沢メッキ層では延展性が良好であり、上記の熱処理によってFe−Ni拡散領域を形成した後に残されたNiメッキ層においても、良好な延展性が維持されるので、封口板の形状に成形加工した際にも、Niメッキ層の剥離やひび割れが生じ難いため、錆の発生をより抑えることができる。   In other words, in ordinary hard Ni plating layers (including those called glossy Ni plating layers and semi-glossy Ni plating layers), trace components such as P and S described above function as brighteners and as hardeners. Because it functions, it has high hardness and poor spreadability. On the other hand, the matte plating layer containing little or no curing component such as P or S has good spreadability, and the Ni plating layer left after forming the Fe—Ni diffusion region by the above heat treatment However, since good extensibility is maintained, since the Ni plating layer is not easily peeled off or cracked even when it is molded into the shape of the sealing plate, the occurrence of rust can be further suppressed.

上記無光沢Niメッキ層の厚みは、例えば、1.5μm以上、より好ましくは2.5μm以上であって、10μm以下、より好ましくは5μm以下であることが望ましい。無光沢Niメッキ層の厚みが小さすぎると、熱処理により形成されるFe−Ni拡散領域が薄くなるため、封口板に加工する際のNiメッキ層のひび割れや剥離の抑制効果が小さくなることがある。また、無光沢Niメッキ層の厚みが大きすぎると、封口板に加工する際のNiメッキ層のひび割れや剥離の抑制効果が飽和する一方で、製造コストが増大するため好ましくない。   The thickness of the matte Ni plating layer is, for example, 1.5 μm or more, more preferably 2.5 μm or more, and preferably 10 μm or less, more preferably 5 μm or less. If the thickness of the matte Ni plating layer is too small, the Fe-Ni diffusion region formed by the heat treatment becomes thin, so that the effect of suppressing cracking and peeling of the Ni plating layer when processed into a sealing plate may be reduced. . On the other hand, if the thickness of the matte Ni plating layer is too large, the effect of suppressing cracking and peeling of the Ni plating layer when processing into a sealing plate is saturated, but the manufacturing cost increases, which is not preferable.

また、熱処理前の鉄鋼基材(鉄鋼板)の厚みは、例えば、100〜500μmであることが好ましい。   Moreover, it is preferable that the thickness of the steel base material (steel plate) before heat processing is 100-500 micrometers, for example.

上記無光沢Niメッキ層を有するNiメッキ鋼板を熱処理してFe−Ni拡散領域を形成する際には、箱型焼鈍法による熱処理の場合には、例えば、450〜650℃の温度で4〜15時間、連続焼鈍法による熱処理の場合には、例えば、600〜850℃の温度で0.5〜3分、といった熱処理条件を採用することが好ましい。   When forming the Fe-Ni diffusion region by heat-treating the Ni-plated steel sheet having the matte Ni-plated layer, in the case of heat treatment by a box-type annealing method, for example, at a temperature of 450 to 650 ° C, 4 to 15 In the case of heat treatment by a time and continuous annealing method, it is preferable to employ heat treatment conditions such as, for example, 0.5 to 3 minutes at a temperature of 600 to 850 ° C.

図1に、本発明のコイン形電池の一例を示す。図1は、本発明のコイン形電池の要部の断面を示す模式図であり、1はコイン形電池、2は封口板、3は外装缶、4はガスケット(環状ガスケット)、5は負極、6はセパレータ、7は正極である。   FIG. 1 shows an example of a coin battery of the present invention. FIG. 1 is a schematic view showing a cross section of the main part of the coin-type battery of the present invention, wherein 1 is a coin-type battery, 2 is a sealing plate, 3 is an outer can, 4 is a gasket (annular gasket), 5 is a negative electrode, 6 is a separator, and 7 is a positive electrode.

図1に示すように、コイン形電池1では、封口板2と外装缶3とが、ガスケット4を介して、外装缶3の開口端部を内方に締め付けるようにかしめられ、封口板2の周辺折り返し部と外装缶3の開口端部とがガスケット4に圧接されることで封口されている。そして、コイン形電池1の内部には、封口板2に接する負極5と、外装缶3に接する正極7とが、セパレータ6を介して重ねられた状態で装填されており、電解液(図示しない)が注入されている。封口板2は負極側の端子として、外装缶3は正極側の端子として、それぞれ機能する。   As shown in FIG. 1, in the coin-type battery 1, the sealing plate 2 and the outer can 3 are caulked through the gasket 4 so as to tighten the opening end of the outer can 3 inward. The peripheral folded portion and the open end of the outer can 3 are sealed by being pressed against the gasket 4. Inside the coin-shaped battery 1, a negative electrode 5 in contact with the sealing plate 2 and a positive electrode 7 in contact with the outer can 3 are loaded in a state of being stacked with a separator 6 interposed therebetween, and an electrolytic solution (not shown) ) Has been injected. The sealing plate 2 functions as a negative electrode terminal, and the outer can 3 functions as a positive electrode terminal.

また、2aは封口板2の上面壁で、2bは、上面壁2aから下方向に湾曲した湾曲部である。本発明では、封口板2において、その構成素材が上記特定のNiメッキ鋼板であることに加えて、湾曲部2bの曲率半径R(mm)と湾曲部2bの内角θ(°)との比「R/θ」が、0.0060以上、0.0160以下であるところに最大の特徴を有している。   Reference numeral 2a denotes an upper surface wall of the sealing plate 2, and 2b denotes a curved portion curved downward from the upper surface wall 2a. In the present invention, in the sealing plate 2, in addition to the specific Ni-plated steel plate, the ratio of the radius of curvature R (mm) of the curved portion 2b and the internal angle θ (°) of the curved portion 2b is “ R / θ ”has the greatest feature where it is 0.0060 or more and 0.0160 or less.

図2に、図1に示した封口板2の拡大図を示している。なお、図2は、封口板2の断面図を示しているが、理解を容易にするために、封口板2が断面図であることを示す斜線を省略している。封口板2の湾曲部2bとは、封口板2を断面で見た場合に、略平坦な上面壁2aから下方向へ向う変曲部を始端とし、次に曲率が変化する変曲部を終端とする、曲率が一定の部分を意味している。そして、湾曲部2bの曲率半径Rとは、図2に示すように、封口板2の湾曲部2aの外表面(電池外表面)の曲面の曲率半径のことであり、湾曲部2bの内角θとは、湾曲部2b外表面の両端から曲率中心に向かう線分を引いたときの、両線分間の内角のことである。なお、図2では、曲率半径Rや内角θの理解を容易にするように図示しており、例えば曲率半径を求めるための曲率中心の位置などについては、必ずしも正確ではない。   FIG. 2 shows an enlarged view of the sealing plate 2 shown in FIG. FIG. 2 shows a cross-sectional view of the sealing plate 2, but in order to facilitate understanding, a hatched line indicating that the sealing plate 2 is a cross-sectional view is omitted. When the sealing plate 2 is viewed in cross section, the curved portion 2b of the sealing plate 2 starts from a curved portion that faces downward from the substantially flat upper surface wall 2a, and then terminates the curved portion that changes in curvature. Means that the curvature is constant. The curvature radius R of the curved portion 2b is a curved radius of curvature of the outer surface (battery outer surface) of the curved portion 2a of the sealing plate 2 as shown in FIG. 2, and the inner angle θ of the curved portion 2b. The term “inner angle” refers to the inner angle between the two lines when a line segment from the both ends of the outer surface of the curved portion 2b toward the center of curvature is drawn. In FIG. 2, the curvature radius R and the internal angle θ are illustrated so as to facilitate understanding. For example, the position of the curvature center for obtaining the curvature radius is not necessarily accurate.

この封口板2の湾曲部2bにおいて、R/θの値を上記特定値に制御することによって、湾曲部2bにおけるNiメッキ層の剥離やひび割れの発生を防止すると共に、電池とした後の漏液の抑制を達成できる。すなわち、R/θの値が小さすぎると、特に湾曲部2b付近において、Niメッキ層に剥離やひび割れが生じ、錆が発生し易くなる。他方、R/θの値が大きすぎると、Niメッキ層の剥離やひび割れは生じ難いが、電池とした際に漏液が生じ易くなる。R/θの値は、0.008以上であることが好ましく、また、0.015以下であることが好ましい。   In the curved portion 2b of the sealing plate 2, the value of R / θ is controlled to the above specific value to prevent the Ni plated layer from peeling or cracking in the curved portion 2b and to prevent leakage after the battery is formed. Can be achieved. That is, if the value of R / θ is too small, peeling or cracking occurs in the Ni plating layer, particularly in the vicinity of the curved portion 2b, and rust is likely to occur. On the other hand, if the value of R / θ is too large, peeling or cracking of the Ni plating layer is difficult to occur, but liquid leakage tends to occur when the battery is manufactured. The value of R / θ is preferably 0.008 or more and preferably 0.015 or less.

R/θの値を制御することは、上記特定のNiメッキ鋼板を用いて封口板を成形する際の、湾曲部における変形領域の大きさを調節することを意味している。   Controlling the value of R / θ means adjusting the size of the deformation region in the curved portion when the sealing plate is formed using the specific Ni-plated steel plate.

例えば、湾曲部の曲率半径Rを小さく加工すると、湾曲部での変形は大きくなる。そのため、R/θの値が上記特定値を下回ることになるように、Rを小さく、湾曲部での変形が大きくなるように加工すると、湾曲部近傍において、Niメッキ層の剥離やひび割れが生じてしまう。また、θが大きくなりすぎるように加工すると、上部が内向きに曲げられることになり、電池内容積に無駄が生じることがある。   For example, when the radius of curvature R of the curved portion is reduced, the deformation at the curved portion increases. Therefore, if R is reduced so that the value of R / θ is lower than the above specific value and the deformation at the curved portion is increased, the Ni plating layer is peeled off or cracked in the vicinity of the curved portion. End up. Further, if processing is performed so that θ becomes too large, the upper part is bent inward, and the battery internal volume may be wasted.

他方、湾曲部の曲率半径Rを大きく加工したり、湾曲部の内角θを小さく加工したりすると、湾曲部での変形が小さくなるため、Niメッキ層の剥離やひび割れは生じ難くなるが、Niメッキ鋼板の加工硬化の程度が小さくなる。そのため、R/θの値が上記特定値を超えることとなるように、Rを大きくしたり、θを小さくすると、湾曲部における加工硬化が不十分になり、封口板の強度不足が生じて、電池とした際に漏液が生じてしまう。   On the other hand, if the radius of curvature R of the curved portion is processed to be large or the internal angle θ of the curved portion is processed to be small, deformation at the curved portion becomes small, so that the Ni plating layer is hardly peeled off or cracked. The degree of work hardening of the plated steel sheet is reduced. Therefore, when R is increased or θ is decreased so that the value of R / θ exceeds the specific value, work hardening in the curved portion becomes insufficient, resulting in insufficient strength of the sealing plate, Liquid leakage occurs when the battery is used.

上記湾曲部の曲率半径Rは、例えば、0.40mm以上、より好ましくは0.50mm以上であって、0.90mm以下、より好ましくは0.70mm以下であることが望ましい。また、上記湾曲部の内角θは、例えば、60°以上、より好ましくは70°以上であって、90°以下、より好ましくは85°以下であることが望ましい。   The curvature radius R of the curved portion is, for example, 0.40 mm or more, more preferably 0.50 mm or more, and preferably 0.90 mm or less, more preferably 0.70 mm or less. Further, it is desirable that the internal angle θ of the curved portion is, for example, 60 ° or more, more preferably 70 ° or more, 90 ° or less, and more preferably 85 ° or less.

なお、本発明において、封口板の上記湾曲部におけるR/θを制御するのは、封口板の電池外に露出する部分のうち、上記湾曲部が、封口板に加工成形された際に最も変形を受けている箇所であるからである。   In the present invention, the R / θ at the curved portion of the sealing plate is controlled by the deformation of the portion of the sealing plate exposed outside the battery when the curved portion is processed and formed into the sealing plate. It is because it is the place that has received.

本発明の電池に係る外装缶としては、ステンレス鋼により構成されたものであることが好ましい。封口板は、電池とした際にかしめ部(封口板と外装缶とをガスケットを介してかしめた封口部)を内側から支持する機能もあるが、上記特定のNiメッキ鋼板を用いて構成した封口板では、ステンレス鋼で構成した封口板に比べると多少強度が劣るため、例えば、外装缶にも上記特定のNiメッキ鋼板を用いると、かしめ部の強度の更なる低下を引き起こしてしまう。   The outer can according to the battery of the present invention is preferably made of stainless steel. The sealing plate has a function of supporting the caulking portion (sealing portion obtained by caulking the sealing plate and the outer can via a gasket) from the inside when the battery is used, but the sealing plate is configured using the specific Ni-plated steel plate. Since the plate is somewhat inferior in strength to the sealing plate made of stainless steel, for example, when the specific Ni-plated steel plate is used for the outer can, the strength of the caulking portion is further lowered.

また、本発明のコイン形電池では、例えば有機電解液電池とする場合には、負極にリチウムやリチウム合金を用いることが好ましいが、このような負極を有する場合には、電池電圧が約3Vとなり、上記特定のNiメッキ鋼板を素材とすると、封口板については酸化されることは無いが、外装缶については、酸化により腐食孔が生じてしまう虞がある。   In the coin battery of the present invention, for example, when an organic electrolyte battery is used, it is preferable to use lithium or a lithium alloy for the negative electrode. When such a negative electrode is used, the battery voltage is about 3V. When the specific Ni-plated steel sheet is used as the material, the sealing plate is not oxidized, but the outer can may be corroded by oxidation.

本発明のコイン形電池には、電解液として有機電解液を有する有機電解液電池、電解液としてアルカリ電解液(アルカリ水溶液)を有するアルカリ電池のいずれの態様も含まれる。   The coin-type battery of the present invention includes both modes of an organic electrolyte battery having an organic electrolyte as an electrolyte and an alkaline battery having an alkaline electrolyte (alkaline aqueous solution) as an electrolyte.

本発明のコイン形電池に係る正極は、正極活物質、導電助剤およびバインダーを含む正極合剤を、ペレット状に加圧成形したものである。正極活物質は特に限定されないが、例えば、有機電解液電池である場合には、マンガン、コバルト、ニッケル、マグネシウム、銅、鉄、ニオブなどの酸化物;これらの複合酸化物;これらとリチウムとの複合酸化物;フッ化黒鉛;などが、アルカリ電池である場合には、二酸化マンガン、オキシ水酸化ニッケル、酸化銀などが挙げられる。また、導電助剤としては、例えば、カーボンブラック、鱗片状黒鉛、ケッチェンブラック、アセチレンブラック、繊維状炭素などが用いられ、バインダーとしては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン、カルボキシメチルセルロース、スチレンブタジエンラバーなどが使用できる。   The positive electrode according to the coin-type battery of the present invention is obtained by pressure-molding a positive electrode mixture containing a positive electrode active material, a conductive additive and a binder into a pellet form. The positive electrode active material is not particularly limited. For example, in the case of an organic electrolyte battery, an oxide such as manganese, cobalt, nickel, magnesium, copper, iron, or niobium; a composite oxide thereof; In the case where the composite oxide; fluorinated graphite; etc. is an alkaline battery, manganese dioxide, nickel oxyhydroxide, silver oxide and the like can be mentioned. Examples of the conductive assistant include carbon black, scaly graphite, ketjen black, acetylene black, and fibrous carbon. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride, Carboxymethyl cellulose, styrene butadiene rubber and the like can be used.

本発明に係る負極としては、有機電解液電池である場合には、負極活物質として、リチウム金属またはリチウム合金を用いたものが好ましい。リチウム合金としては、例えば、リチウム−アルミニウム合金、リチウム−鉛合金、リチウム−ビスマス合金、リチウム−インジウム合金、などの二元系リチウム合金や、リチウム−インジウム−ガリウム合金などの三元系リチウム合金などが挙げられる。これらリチウム合金の中では、リチウム−アルミニウム合金が特に好適である。また、本発明の電池がアルカリ電池である場合には、負極としては、亜鉛や亜鉛合金を用いることができる。   In the case of an organic electrolyte battery, the negative electrode according to the present invention preferably uses lithium metal or a lithium alloy as the negative electrode active material. Examples of the lithium alloy include binary lithium alloys such as lithium-aluminum alloy, lithium-lead alloy, lithium-bismuth alloy, and lithium-indium alloy, and ternary lithium alloys such as lithium-indium-gallium alloy. Is mentioned. Of these lithium alloys, lithium-aluminum alloys are particularly suitable. When the battery of the present invention is an alkaline battery, zinc or a zinc alloy can be used as the negative electrode.

電解液としては、本発明の電池が有機電解液電池である場合には、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状炭酸エステル;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状炭酸エステル;や、1,2−ジメトキシエタン、ジグライム(ジエチレングリコールメチルエーテル)、トリグライム(トリエチレングリコールジメチルエーテル)、テトラグライム(テトラエチレングリコールジメチルエーテル)、1,2−ジメトキシエタン、1,2−ジエトキシメタン、テトラヒドロフランなどのエーテル;より選ばれる1種の溶媒あるいは2種以上の混合溶媒に電解質を0.3〜2.0mol/L程度の濃度に溶解させることによって調製した有機電解液が用いられる。   As the electrolyte, when the battery of the present invention is an organic electrolyte battery, for example, cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate; dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, etc. Chain carbonate ester; and 1,2-dimethoxyethane, diglyme (diethylene glycol methyl ether), triglyme (triethylene glycol dimethyl ether), tetraglyme (tetraethylene glycol dimethyl ether), 1,2-dimethoxyethane, 1,2-di By dissolving the electrolyte in a concentration of about 0.3 to 2.0 mol / L in one solvent selected from ethers such as ethoxymethane and tetrahydrofuran; The organic electrolytic solutions prepared Te is used.

上記電解質としては、例えば、LiBF、LiPF、LiAsF、LiSbF、LiClO、LiCFSO、LiCSO、LiN(CFSO、LiN(CSOなどが用いられる。 Examples of the electrolyte include LiBF 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiClO 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 etc. are used.

また、本発明の電池がアルカリ電池である場合には、電解液には、アルカリ性の水溶液(例えば、水酸化リチウム水溶液、水酸化カリウム水溶液、水酸化ナトリウム水溶液など)を用いることができる。   When the battery of the present invention is an alkaline battery, an alkaline aqueous solution (for example, a lithium hydroxide aqueous solution, a potassium hydroxide aqueous solution, a sodium hydroxide aqueous solution, etc.) can be used as the electrolytic solution.

セパレータとしては、微孔性樹脂フィルム、樹脂不織布のいずれも用いることができる。その材質としては、例えば、PE、PP、ポリメチルペンテンなどのポリオレフィンのほか、耐熱用として、テトラフルオロエチレン−パーフルオロアルコキシエチレン共重合体(PFA)などのフッ素樹脂;PPS;ポリエーテルエーテルケトン(PEEK);PBTなどが挙げられる。また、上記材質の微孔性樹脂フィルムと樹脂不織布とを複数積層したり、微孔性樹脂フィルム同士や樹脂不織布同士を複数積層することによってセパレータを構成してもよい。   As the separator, either a microporous resin film or a resin nonwoven fabric can be used. Examples of the material include polyolefins such as PE, PP, and polymethylpentene, and as heat resistance, fluororesin such as tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA); PPS; polyether ether ketone ( PEEK); PBT and the like. Moreover, you may comprise a separator by laminating | stacking two or more microporous resin films and resin nonwoven fabrics of the said material, or laminating | stacking two or more microporous resin films or resin nonwoven fabrics.

封口板と外装缶の間に介在させるガスケットの素材としては、例えば、PP;ナイロン(ナイロン6、ナイロン66など);などの他、耐熱用に、PFAなどのフッ素樹脂;ポリフェニレンエーテル(PPE);ポリスルフォン(PSF);ポリアリレート(PAR);ポリエーテルスルフォン(PES);PPS;PEEK;などが例示できる。   As a material of the gasket interposed between the sealing plate and the outer can, for example, PP; nylon (nylon 6, nylon 66, etc.); etc., and for heat resistance, fluorine resin such as PFA; polyphenylene ether (PPE); Examples include polysulfone (PSF); polyarylate (PAR); polyethersulfone (PES); PPS; PEEK;

本発明のコイン形電池は、上記に例示した各構成要素(発電要素)の選択によって、一次電池、二次電池いずれの形態も採り得る。そして、本発明のコイン形電池は、従来公知のコイン形一次電池やコイン形二次電池が適用されている各種用途に好適に用いることができる。   The coin-type battery of the present invention can take either a primary battery or a secondary battery depending on the selection of the constituent elements (power generation elements) exemplified above. And the coin-type battery of this invention can be used suitably for the various uses to which the conventionally well-known coin-type primary battery and coin-type secondary battery are applied.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.

実施例1
この実施例1のコイン形電池1を作製するにあたって、外装缶3、封口板2、環状ガスケット4、正極7、負極5、セパレータ6、電解液は以下に示すものを用いた。まず、外装缶3には、厚み3μmのニッケルメッキを施した厚み200μmのステンレス鋼板を、絞り加工によって周壁の高さ3mmの有底円筒状に成形したものを用いた。
Example 1
In producing the coin-type battery 1 of Example 1, the outer can 3, the sealing plate 2, the annular gasket 4, the positive electrode 7, the negative electrode 5, the separator 6, and the electrolytic solution shown below were used. First, as the outer can 3, a stainless steel plate having a thickness of 3 μm and plated with a nickel plate having a thickness of 200 μm and formed into a bottomed cylindrical shape having a peripheral wall height of 3 mm by drawing is used.

封口板2には、3μmの無光沢Niメッキを施した厚み250μmの冷間圧延鋼板(鉄鋼板)に熱処理を施すことによって、Fe−Ni拡散領域を形成し、湾曲部2bを有する形状に成形したものを用いた。ここで、熱処理は、連続焼鈍法を用いて780℃で60秒間の条件にて行った。   The sealing plate 2 is formed into a shape having a curved portion 2b by forming a Fe-Ni diffusion region by heat-treating a cold-rolled steel plate (steel plate) having a thickness of 250 μm with a 3 μm matte Ni plating. What was done was used. Here, the heat treatment was performed at 780 ° C. for 60 seconds using a continuous annealing method.

また、封口板2の湾曲部の形状としては、曲率半径Rを0.6mm、湾曲部の内角θを78°とした。この際のR/θは0.0077であった。   Further, as the shape of the curved portion of the sealing plate 2, the radius of curvature R was 0.6 mm, and the internal angle θ of the curved portion was 78 °. At this time, R / θ was 0.0077.

正極7の作製にあたっては、正極活物質として二酸化マンガンを用い、導電助剤として人造黒鉛を用い、バインダーとしてポリテトラフルオロエチレンを用い、二酸化マンガンが91.7質量%、人造黒鉛が7.6質量%、ポリテトラフルオロエチレンが0.7質量%となるようにこれらを混合して正極合剤を調製した。この正極合剤を金型に充填し、加圧成形して正極7を作製した。この正極7は直径が16mmであり、厚さが1.9mmであった。   In the production of the positive electrode 7, manganese dioxide is used as the positive electrode active material, artificial graphite is used as the conductive additive, polytetrafluoroethylene is used as the binder, manganese dioxide is 91.7% by mass, and artificial graphite is 7.6% by mass. % And polytetrafluoroethylene were mixed so as to be 0.7% by mass to prepare a positive electrode mixture. The positive electrode mixture was filled in a mold and pressure-molded to produce a positive electrode 7. This positive electrode 7 had a diameter of 16 mm and a thickness of 1.9 mm.

電解液としては、プロピレンカーボネートと1,2−ジメトキシエタンとの体積比1:1の混合溶媒にLiClOを0.5mol/l溶解させることによって調製した有機電解液を用いた。 As an electrolytic solution, an organic electrolytic solution prepared by dissolving 0.5 mol / l of LiClO 4 in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 1: 1 was used.

負極5には、厚みが0.58mmのリチウム板を、直径16mmの円形に打ち抜いたものを用い、この負極5を封口板2に収容した。   As the negative electrode 5, a lithium plate having a thickness of 0.58 mm punched into a circle having a diameter of 16 mm was used, and the negative electrode 5 was accommodated in the sealing plate 2.

そして、セパレータ6としてはポリプロピレン不織布を用い、環状ガスケット4にはポリプロピレン製のものを用い、それらと上記の外装缶3、封口板2、正極7、負極5、および電解液などを用いて、図1に示す構造で直径20mm、高さ3.2mmのコイン形電池を作製した。ここで、この実施例1の電池を図1を参照しつつ説明すると、正極1は上記のように二酸化マンガンを正極活物質とする正極合剤を加圧成形したものからなり、負極5は上記のようにリチウムからなり、これらの正極7と負極5との間にはポリプロピレン不織布からなるセパレータ6が介在し、図示していないが、この電池には上記の電解液が注入され、これら、正極7、負極5、セパレータ6、電解液などからなる発電要素は、上記外装缶3、封口板2および環状ガスケット4で形成される空間内に収容されている。そして、電池は、その組立時において、外装缶3の開口端部を内方に締め付ける、いわゆるカシメ加工をすることによって環状ガスケット4を封口板2の周辺折り返し部と外装缶3の開口端部内周面とに圧接させることによって外装缶3の開口部を封口して、電池内部が密閉状態にされている。   The separator 6 is made of polypropylene non-woven fabric, the annular gasket 4 is made of polypropylene, and the outer can 3, the sealing plate 2, the positive electrode 7, the negative electrode 5, and the electrolytic solution are used. A coin-shaped battery having a structure of 1 and a diameter of 20 mm and a height of 3.2 mm was produced. Here, the battery of Example 1 will be described with reference to FIG. 1. The positive electrode 1 is formed by pressure-molding a positive electrode mixture containing manganese dioxide as a positive electrode active material as described above, and the negative electrode 5 is formed by the above-described method. The separator 6 made of a polypropylene non-woven fabric is interposed between the positive electrode 7 and the negative electrode 5 as shown in FIG. 7, the negative electrode 5, the separator 6, the electrolytic solution, and the like are housed in a space formed by the outer can 3, the sealing plate 2, and the annular gasket 4. When the battery is assembled, the opening end portion of the outer can 3 is tightened inward, so that a so-called caulking process is performed to connect the annular gasket 4 to the peripheral folded portion of the sealing plate 2 and the inner periphery of the opening end portion of the outer can 3. The opening of the outer can 3 is sealed by being brought into pressure contact with the surface, and the inside of the battery is sealed.

実施例2
封口板2の湾曲部の形状を、曲率半径Rを0.6mm、湾曲部の内角θを60°にした以外は、実施例1と同様にしてコイン形電池を作製した。なお、封口板2の湾曲部のR/θは0.0100であった。
Example 2
A coin-type battery was fabricated in the same manner as in Example 1 except that the curved portion of the sealing plate 2 had a curvature radius R of 0.6 mm and an internal angle θ of the curved portion of 60 °. The R / θ of the curved portion of the sealing plate 2 was 0.0100.

実施例3
封口板2の湾曲部の形状を、曲率半径Rを0.55mm、湾曲部の内角θを84°にした以外は、実施例1と同様にしてコイン形電池を作製した。なお、封口板2の湾曲部のR/θは0.0065であった。
Example 3
A coin-type battery was fabricated in the same manner as in Example 1 except that the curved portion of the sealing plate 2 had a curvature radius R of 0.55 mm and an internal angle θ of the curved portion of 84 °. The R / θ of the curved portion of the sealing plate 2 was 0.0065.

実施例4
封口板2の湾曲部の形状を、曲率半径Rを0.9mm、湾曲部の内角θを60°にした以外は、実施例1と同様にしてコイン形電池を作製した。なお、封口板2の湾曲部のR/θは0.0150であった。
Example 4
A coin-type battery was fabricated in the same manner as in Example 1 except that the curved portion of the sealing plate 2 had a curvature radius R of 0.9 mm and an internal angle θ of the curved portion of 60 °. The R / θ of the curved portion of the sealing plate 2 was 0.0150.

実施例5
封口板2を形成するための材料として、1.5μmの無光沢Niメッキを施した厚み250μmの冷間圧延鋼板(鉄鋼板)に、実施例1と同じ条件で熱処理を施したものを用いた以外は、実施例1と同様にしてコイン形電池を作製した。
Example 5
As a material for forming the sealing plate 2, a cold-rolled steel plate (steel plate) having a thickness of 250 μm subjected to 1.5 μm matte Ni plating and subjected to heat treatment under the same conditions as in Example 1 was used. A coin-type battery was produced in the same manner as in Example 1 except for the above.

比較例1
封口板2の湾曲部の形状を、曲率半径Rを0.45mm、湾曲部の内角θを78°にした以外は、実施例1と同様にしてコイン形電池を作製した。なお、封口板2の湾曲部のR/θは0.0058であった。
Comparative Example 1
A coin-type battery was fabricated in the same manner as in Example 1 except that the curved portion of the sealing plate 2 had a curvature radius R of 0.45 mm and an internal angle θ of the curved portion of 78 °. The R / θ of the curved portion of the sealing plate 2 was 0.0058.

比較例2
封口板2の湾曲部の形状を、曲率半径Rを0.45mm、湾曲部の内角θを86°にした以外は、実施例1と同様にしてコイン形電池を作製した。なお、封口板2の湾曲部のR/θは0.0052であった。
Comparative Example 2
A coin-type battery was fabricated in the same manner as in Example 1 except that the curved portion of the sealing plate 2 had a radius of curvature R of 0.45 mm and an internal angle θ of the curved portion of 86 °. The R / θ of the curved portion of the sealing plate 2 was 0.0052.

比較例3
封口板2の湾曲部の形状を、曲率半径Rを1.1mm、湾曲部の内角θを60°にした以外は、実施例1と同様にしてコイン形電池を作製した。なお、封口板2の湾曲部のR/θは0.0183であった。
Comparative Example 3
A coin-type battery was fabricated in the same manner as in Example 1 except that the curved portion of the sealing plate 2 had a curvature radius R of 1.1 mm and an internal angle θ of the curved portion of 60 °. The R / θ of the curved portion of the sealing plate 2 was 0.0183.

比較例4
封口板2を形成するための材料として、3μmの無光沢Niメッキを施した厚み250μmの冷間圧延鋼板(鉄鋼板)を、熱処理を施さず、Fe−Ni拡散領域を形成せずにそのまま用いた以外は、実施例1と同様にしてコイン形電池を作製した。
Comparative Example 4
As a material for forming the sealing plate 2, a cold-rolled steel plate (steel plate) having a thickness of 250 μm and subjected to 3 μm matte Ni plating is used without being heat-treated and without forming an Fe—Ni diffusion region. A coin-type battery was produced in the same manner as in Example 1 except that.

上記実施例1〜5、および比較例1〜4の電池を、85℃、相対湿度90%の雰囲気中に15日間貯蔵し、漏液発生の有無、および湾曲部の腐食の有無を調べた。それぞれの判別は目視にて行った。これらの試験にあたっては、実施例1〜5の電池、比較例1〜4の電池を、それぞれ25個ずつ用いた。その結果を表1に示す。   The batteries of Examples 1 to 5 and Comparative Examples 1 to 4 were stored in an atmosphere at 85 ° C. and a relative humidity of 90% for 15 days, and the presence / absence of leakage and the presence / absence of corrosion of the curved portion were examined. Each discrimination was made visually. In these tests, 25 batteries each of Examples 1 to 5 and Comparative Examples 1 to 4 were used. The results are shown in Table 1.

また、図3に実施例1の電池の封口板における湾曲部を電子顕微鏡にて撮影した写真を、図4に比較例4の電池の封口板における湾曲部を電子顕微鏡にて撮影した写真を示す。   Moreover, the photograph which image | photographed the curved part in the sealing board of the battery of Example 1 with an electron microscope in FIG. 3 is shown in FIG. 4, and the photograph which image | photographed the curved part in the sealing board of the battery of the comparative example 4 with an electron microscope is shown. .

表1に示すように、Fe−Ni拡散領域を有するNiメッキ鋼板を用い、R/θが好適値となるように加工された封口板を有する実施例1〜5のコイン形電池は、比較例1、2、4のコイン形電池に比べて湾曲部での腐食を生じておらず、また、比較例3のコイン形電池のように漏液の発生もなく、封口板に鉄鋼板を用いても電池缶の腐食および強度の低下による漏液の問題が改善されていることが確認できる。   As shown in Table 1, coin-type batteries of Examples 1 to 5 having a sealing plate processed so that R / θ becomes a suitable value using a Ni-plated steel sheet having a Fe—Ni diffusion region are comparative examples. Corrosion at the curved portion does not occur compared to coin-type batteries 1, 2, and 4, and no leakage occurs as in the coin-type battery of Comparative Example 3, and a steel plate is used for the sealing plate. In addition, it can be confirmed that the problem of leakage due to the corrosion of the battery can and the decrease in strength is improved.

ここで、実施例1の電池の封口板における湾曲部を電子顕微鏡にて撮影した写真である図3と、比較例4の電池の封口板における湾曲部の写真である図4とを比較すると、実施例の電池では、Niメッキ部分の亀裂の発生を顕著に抑制できていることが確認できる。   Here, comparing FIG. 3, which is a photograph of the curved portion of the sealing plate of the battery of Example 1 taken with an electron microscope, and FIG. 4, which is a photograph of the curved portion of the sealing plate of the battery of Comparative Example 4, In the battery of the example, it can be confirmed that generation of cracks in the Ni-plated portion can be remarkably suppressed.

本発明のコイン形電池の要部の一例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically an example of the principal part of the coin-type battery of this invention. 図1に示したコイン形電池に係る封口板の要部を示す拡大図である。It is an enlarged view which shows the principal part of the sealing board which concerns on the coin-type battery shown in FIG. 実施例1に係るコイン形電池の封口板の湾曲部の電子顕微鏡写真である。3 is an electron micrograph of a curved portion of a sealing plate of a coin-type battery according to Example 1. FIG. 比較例4に係るコイン形電池の封口板の湾曲部の電子顕微鏡写真である。6 is an electron micrograph of a curved portion of a sealing plate of a coin-type battery according to Comparative Example 4.

符号の説明Explanation of symbols

1 コイン形電池
2 封口板
2a 上面壁
2b 湾曲部
3 外装缶
4 ガスケット
DESCRIPTION OF SYMBOLS 1 Coin type battery 2 Sealing plate 2a Upper surface wall 2b Curved part 3 Exterior can 4 Gasket

Claims (5)

上面壁および該上面壁から下方向に湾曲した湾曲部を有する封口板と、外装缶の開口部とが、ガスケットを介してかしめられることで封口されているコイン形電池であって、
上記封口板は、少なくとも鉄鋼基材の外表面がNiメッキされ、かつNiメッキ部分と鉄鋼基材部分の間に、FeとNiとが互いに拡散した領域が存在しているNiメッキ鋼板で構成されており、
上記封口板の上記湾曲部の曲率半径R(mm)と該湾曲部の内角θ(°)との比R/θが、0.0060〜0.0160であることを特徴とするコイン形電池。
A coin-type battery in which a sealing plate having a top wall and a curved portion curved downward from the top wall and an opening of an outer can are sealed by caulking through a gasket,
The sealing plate is made of a Ni-plated steel plate in which at least the outer surface of the steel base is Ni-plated, and a region in which Fe and Ni are diffused between each other exists between the Ni-plated portion and the steel base portion. And
A coin-type battery, wherein a ratio R / θ between a radius of curvature R (mm) of the curved portion of the sealing plate and an internal angle θ (°) of the curved portion is 0.0060 to 0.0160.
封口板の湾曲部の内角θが、60〜90°である請求項1に記載のコイン形電池。The coin-type battery according to claim 1, wherein an inner angle θ of the curved portion of the sealing plate is 60 to 90 °. 上記封口板を構成する上記Niメッキ鋼板は、無光沢Niメッキ層を有する鉄鋼板に熱処理を施すことで得られたものである請求項1または2に記載のコイン形電池。 The coin-type battery according to claim 1 or 2 , wherein the Ni-plated steel plate constituting the sealing plate is obtained by heat-treating a steel plate having a matte Ni-plated layer. 上記無光沢Niメッキ層の厚みが、2〜10μmである請求項に記載のコイン形電池。 The coin-type battery according to claim 3 , wherein the matte Ni plating layer has a thickness of 2 to 10 μm. 上記外装缶はステンレス鋼により構成されており、かつリチウムまたはリチウム合金を有する負極を備えている請求項1〜のいずれかに記載のコイン形電池。
The outer can coin cells according to any one of claims 1 to 4, which comprises a negative electrode having a stainless steel is constituted by steel, and lithium or a lithium alloy.
JP2006024039A 2006-02-01 2006-02-01 Coin battery Active JP5152886B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006024039A JP5152886B2 (en) 2006-02-01 2006-02-01 Coin battery
CN2007100082675A CN101013747B (en) 2006-02-01 2007-01-26 Coin-shape cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006024039A JP5152886B2 (en) 2006-02-01 2006-02-01 Coin battery

Publications (2)

Publication Number Publication Date
JP2007207534A JP2007207534A (en) 2007-08-16
JP5152886B2 true JP5152886B2 (en) 2013-02-27

Family

ID=38486808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006024039A Active JP5152886B2 (en) 2006-02-01 2006-02-01 Coin battery

Country Status (2)

Country Link
JP (1) JP5152886B2 (en)
CN (1) CN101013747B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100068614A1 (en) * 2008-09-18 2010-03-18 Koji Yamaguchi Flat battery
JP5879482B2 (en) * 2011-08-04 2016-03-08 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte coin battery
US9515301B2 (en) 2011-09-30 2016-12-06 Panasonic Intellectual Property Management Co., Ltd. Coin battery having a sealing plate which suppresses deformation
JP6066064B2 (en) * 2013-02-18 2017-01-25 セイコーインスツル株式会社 Electrochemical cell and method for producing electrochemical cell
CN105811025A (en) * 2014-12-31 2016-07-27 青岛中科移动物联科技有限公司 CR2450 lithium-manganese dioxide battery applicable for frozen work environment
CN105811026A (en) * 2014-12-31 2016-07-27 青岛中科移动物联科技有限公司 CR2032 lithium-manganese dioxide battery applicable for frozen work environment
CN105810967A (en) * 2014-12-31 2016-07-27 青岛中科移动物联科技有限公司 CR2450 lithium-manganese dioxide battery applicable in refrigerated working environment
CN105810969A (en) * 2014-12-31 2016-07-27 青岛中科移动物联科技有限公司 CR2032 lithium-manganese dioxide battery applicable for frozen work environment
CN105810968A (en) * 2014-12-31 2016-07-27 青岛中科移动物联科技有限公司 CR2016 lithium-manganese dioxide battery applicable for frozen work environment
CN105811008A (en) * 2014-12-31 2016-07-27 青岛中科移动物联科技有限公司 CR2016 lithium-manganese dioxide battery applicable in refrigerated working environment
CN108023036B (en) * 2016-11-02 2021-10-08 缪汉平 Button type lithium battery cathode metal cap structure workpiece
KR102026044B1 (en) * 2017-03-24 2019-09-26 히타치 긴조쿠 가부시키가이샤 Method of manufacturing clad material
CN110379949A (en) * 2019-07-31 2019-10-25 福建南平南孚电池有限公司 Steel shell of alkaline zinc-manganese battery and alkaline zinc-manganese battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235594A (en) * 1985-04-11 1986-10-20 Nisshin Steel Co Ltd Ni plated steel sheet having superior workability and corrosion resistance and its manufacture
JPH0810586B2 (en) * 1986-12-08 1996-01-31 松下電器産業株式会社 Sealed battery
JP3165189B2 (en) * 1991-06-25 2001-05-14 東芝電池株式会社 Organic electrolyte battery
JP2000251851A (en) * 1999-02-26 2000-09-14 Toshiba Battery Co Ltd Coin type lithium battery
JP2003249232A (en) * 2002-02-25 2003-09-05 Toshiba Battery Co Ltd Cylindrical alkaline cell
CN1321469C (en) * 2004-03-04 2007-06-13 松下电器产业株式会社 Square gas battery

Also Published As

Publication number Publication date
CN101013747B (en) 2010-05-19
CN101013747A (en) 2007-08-08
JP2007207534A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP5152886B2 (en) Coin battery
JP4491208B2 (en) Battery can, manufacturing method thereof, and battery
JP6044789B2 (en) Coin battery
JP4851707B2 (en) Method for producing alkaline battery
US10103361B2 (en) Coin type battery
JP2008071612A (en) Flat nonaqueous electrolyte secondary battery
JP2002373644A (en) Electrode for lithium secondary battery, and manufacturing method therefor
JP2009272051A (en) All-solid battery
JP5355012B2 (en) Battery cans and alkaline batteries
JP2017126420A (en) Coin-shaped battery
WO2017047653A1 (en) Non-aqueous secondary cell electrode, method for manufacturing same, and non-aqueous secondary cell
JP2006228439A (en) Nonaqueous electrolyte battery and manufacturing method of same
WO2016103590A1 (en) Coin-shaped battery
JP4815777B2 (en) Nonaqueous electrolyte secondary battery
JP2009211840A (en) Method for manufacturing alkaline battery and alkaline battery
JP2009272050A (en) All-solid battery and manufacturing method of the same
JP5879482B2 (en) Non-aqueous electrolyte coin battery
US20060127757A1 (en) Alkaline cell and production method for same
JP6687344B2 (en) Method of manufacturing flat battery
JP2009043423A (en) Flat shape nonaqueous electrolytic liquid secondary battery
JP2010218709A (en) Button cell
JP2000113864A (en) Flat nonaqueous electrolyte battery
JP5091723B2 (en) Method for producing non-aqueous electrolyte battery
JP2005340116A (en) Manufacturing method of non-aqueous electrolytic solution battery
JP4543662B2 (en) battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110518

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5152886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250