WO2016103590A1 - Coin-shaped battery - Google Patents

Coin-shaped battery Download PDF

Info

Publication number
WO2016103590A1
WO2016103590A1 PCT/JP2015/006025 JP2015006025W WO2016103590A1 WO 2016103590 A1 WO2016103590 A1 WO 2016103590A1 JP 2015006025 W JP2015006025 W JP 2015006025W WO 2016103590 A1 WO2016103590 A1 WO 2016103590A1
Authority
WO
WIPO (PCT)
Prior art keywords
coin
sealing plate
battery case
battery
water
Prior art date
Application number
PCT/JP2015/006025
Other languages
French (fr)
Japanese (ja)
Inventor
谷川 太志
忠義 高橋
孝男 宇山
大輔 住本
堂太 水田
祐介 河原
石田 努
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016103590A1 publication Critical patent/WO2016103590A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/141Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against humidity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a coin-type battery, and more particularly to a coin-type battery with improved safety against accidental ingestion.
  • Coin batteries are widely used as power sources for small devices and memory backup. Although the use of coin-type batteries is expanding, the importance of countermeasures against accidental swallowing of coin-type batteries is increasing. When a coin-type battery is taken into a living body, a positive and negative electrode is short-circuited by a body fluid, a current accompanied by electrolysis of water flows, and the living body is harmed. Further, when the battery is corroded in the living body and the battery is damaged, the power generation element comes into contact with the mucous membrane of the living body, and the harm is increased.
  • Patent Document 1 proposes to form a conductive film containing a bitter substance on the surface of the battery from the viewpoint of preventing accidental ingestion.
  • an object of the present invention is to provide a highly safe coin-shaped battery that can reduce harm to a living body due to accidental ingestion.
  • One aspect of the present invention is a battery case having a bottom surface portion and a side portion rising from the periphery of the bottom surface portion, a sealing plate having a top plate portion and a peripheral portion extending from the top plate portion to the inside of the side portion, a side portion and a peripheral edge. And a gasket that is compressed and interposed between the two portions. And a power generation element hermetically sealed by the battery case and the sealing plate, and a coating provided on the outer surface of at least one of the battery case and the sealing plate.
  • the coating includes a water-repellent material and is at least pressurized.
  • the present invention relates to a coin-type battery having conductivity in a state.
  • the coin-type battery includes a power generation element and an exterior body that hermetically houses the power generation element.
  • the exterior body includes a battery case, a sealing plate that closes the opening of the battery case, and a gasket that is interposed between an end portion (opening end portion) of the side portion of the battery case and a peripheral portion of the sealing plate.
  • the power generation element includes a first electrode, a second electrode, a separator interposed therebetween, and an electrolytic solution. After filling the power generation element in the space formed by the battery case and the sealing plate, the power generation element is placed inside the exterior body by crimping the opening end of the battery case to the peripheral edge of the sealing plate via a gasket. It is hermetically sealed.
  • the coin type battery includes not only a coin type but also a button type. That is, the shape and diameter of the coin-type battery are not particularly limited. For example, a button-type battery having a battery thickness larger than the diameter is included in the coin-type battery.
  • the battery case has a bottom portion and side portions that rise from the periphery of the bottom portion.
  • the bottom surface portion is usually circular, but may have a shape close to a circle (for example, an ellipse).
  • the sealing plate has a peripheral portion that forms a flange portion from an end portion of the top plate portion and the top plate portion and extends inward of the side portion of the battery case.
  • the top surface portion corresponds to the shape of the bottom surface portion, and is usually a circle having a smaller diameter than the bottom surface portion.
  • the thickness T of the coin-type battery is often smaller than the diameter D of the bottom surface portion (T ⁇ D), for example, 1.2 mm ⁇ T ⁇ 5.0 mm.
  • a gasket is compressed and interposed between the side of the battery case and the peripheral edge of the sealing plate.
  • a coating is provided on the outer surface of at least one of the battery case and the sealing plate.
  • the coating contains a water-repellent material and is conductive at least in a pressurized state.
  • the first electrode and the second electrode have different polarities. That is, when the first electrode is a positive electrode (or negative electrode), the second electrode is a negative electrode (or positive electrode).
  • the positive electrode is accommodated in the exterior body so as to face the bottom surface portion of the battery case, and the negative electrode is accommodated so as to face the top surface portion of the sealing plate.
  • the arrangement of the positive and negative electrodes is not limited to this.
  • the water repellent material has an action of suppressing contact between the battery case and / or the sealing plate and the body fluid when the coin-type battery is accidentally swallowed.
  • the coating is required to have conductivity at least when a coin-type battery is used.
  • the coin-type battery When using a coin-type battery, the coin-type battery is mounted between the positive and negative terminals of the device used. At this time, pressure is applied to the coin-type battery in the thickness direction.
  • a film In order to make the film conductive only when using a coin-type battery, for example, a film is formed of a composite of a water repellent material and conductive particles, and the conductive particles are repelled so that the conductive particles are in contact with each other only under pressure. What is necessary is just to adjust the content rate of an aqueous material. At this time, it is desirable that the water repellent material has elasticity.
  • the average distance between the conductive particles is large, and the conductivity is not expressed.
  • the coating is desirably provided on the outer surfaces of both the battery case and the sealing plate, but the coating may be provided only on one outer surface selected from the battery case and the sealing plate.
  • a coating may be provided only on the outer surface of the sealing plate without providing a coating on the outer surface of the battery case. Since the peripheral part of the sealing plate is disposed inside the side part of the battery case including its edge, it is not exposed to the outside. Therefore, the exposed area of the outer surface of the sealing plate is smaller than that of the battery case. Therefore, it is efficient to provide a coating only on the outer surface of the sealing plate. Moreover, the coating film formed on the sealing plate is difficult to peel off when crimped.
  • the coating When the coating is formed on the outer surface of the battery case, it is desirable to cover 50% or more of the outer surface of the battery case with the coating, and it is more desirable to cover 80% or more with the coating. At this time, it is desirable that at least the opening end of the battery case adjacent to the sealing plate via the gasket is covered with a coating.
  • the coating is formed on the outer surface of the sealing plate, it is desirable to cover 70% or more of the outer surface (exposed outer surface) of the sealing plate that is not covered with the gasket, and to cover 90% or more of the exposed outer surface with the coating. desirable. At this time, it is desirable that at least the outer surface area of the sealing plate exposed to the outside from the end portion of the top plate portion to the flange portion is covered with a coating. By covering the region where the distance from the battery case having the opposite polarity is short, the short circuit between the positive and negative electrodes can be more efficiently suppressed.
  • the water repellent material is not particularly limited, but a material containing fluorine is preferable, and it is preferable to use a fluororesin, fluorinated graphite or the like. Among these, a fluororesin is suitable as a coating component because it has high water repellency and is difficult to peel off.
  • a plating layer (hereinafter referred to as a water-repellent plating layer) containing a water-repellent material and a metal as a coating.
  • the coating is a water-repellent plating layer, the coating always has conductivity, not only when the coin-type battery is used.
  • the metal contained in the plating layer preferably contains nickel.
  • the water-repellent plating layer containing nickel also has a rust prevention effect.
  • the thickness of the water-repellent plating layer is preferably 0.5 to 8 ⁇ m, and more preferably 1 to 4 ⁇ m.
  • the water-repellent material is desirably dispersed in an island shape in the plated metal layer. It is desirable that the dispersion state be as uniform as possible. For example, it is preferable to disperse particles of a water repellent material having an average particle size of 10 to 300 nm in the metal layer. Thereby, the effect which reduces contact resistance and the effect which suppresses the short circuit by a bodily fluid are further heightened.
  • the coating is formed of a composite of a water-repellent material and conductive particles, it is preferable to use a fluororesin having high water repellency and excellent chemical stability as the water-repellent material.
  • a fluororesin having high water repellency and excellent chemical stability as the water-repellent material.
  • the conductive particles metal particles, carbon material particles and the like are preferable.
  • the metal particles are preferably nickel powder, gold, etc.
  • the carbon material particles are graphite, fluorinated graphite, carbon black, acetylene black, fibrous carbon, glassy carbon, graphitizable carbon material, non-graphitizable carbon material. Etc. can be used.
  • FIG. 1 is a cross-sectional view showing a configuration of a coin-type battery according to an embodiment of the present invention.
  • the coin-type battery 10 includes an exterior body composed of a battery case 1, a sealing plate 6, and a gasket 5.
  • the battery case 1 is a cylindrical and shallow battery can having a bottom surface portion 1a and side portions 1b rising from the periphery of the bottom surface portion 1a.
  • the sealing plate 6 has a top surface portion 6 a and a peripheral edge portion 6 b extending from the top surface portion 6 a to the inside of the side portion 1 b of the battery case 1.
  • the peripheral edge portion 6 b forms a flange portion 6 f from the end of the top surface portion 6 a and extends to the inside of the side portion 1 b of the battery case 1.
  • a part of the gasket 5 is interposed between the side portion 1 b of the battery case 1 and the peripheral portion 6 b of the sealing plate 6, thereby sealing a gap between the battery case 1 and the sealing plate 6.
  • the power generation element is housed inside the exterior body.
  • the power generation element includes a positive electrode 2, a negative electrode 3, a separator 4, and an electrolytic solution (not shown).
  • the positive electrode 2 is disposed so as to face the bottom surface portion 1 a of the battery case 1.
  • the battery case 1 functions as a positive electrode terminal.
  • the negative electrode 3 is disposed so as to face the top surface portion 6 a of the sealing plate 6.
  • the sealing plate 6 functions as a negative electrode terminal.
  • a metal plate having corrosion resistance at the positive electrode potential as the material of the battery case 1.
  • stainless steel for the battery case 1 of the lithium battery and stainless steel with a chromium content of 18% or more (SUS430, SUS444, SUS445, SUS447, SUS316, SUS317, SUS312, SUS329J, etc.) is particularly preferable. .
  • the material of the sealing plate 6 it is desirable to use a metal plate having excellent mechanical strength, and it is desirable to use stainless steel (SUS304, SUS316, etc.).
  • stainless steel SUS304, SUS316, etc.
  • an inexpensive metal plate such as ordinary steel or carbon steel can also be used.
  • Normal steel is steel such as SS material, SM material, and SPCC material specified by JIS.
  • Carbon steel is steel such as S10C, S20C, S30C, S45C, and S55C, and belongs to alloy steel for machine structure.
  • Water-repellent plating layers 7a and 7b are formed on the outer surfaces of the battery case 1 and the sealing plate 6 as water-repellent materials and conductive films at least in a pressurized state, respectively.
  • the contact resistance between the positive and negative terminals of the device used and the coin-type battery is reduced. Further, even when the coin battery is accidentally swallowed by the living body, contact between the living body fluid and the battery case and / or the sealing plate is suppressed, so that the short-circuit current between the positive and negative electrodes is reduced. Therefore, harm to the living body can be reduced.
  • the contact angle between the coating and water is desirably 90 degrees (°) or more, and 110 degrees or more. It is further desirable.
  • the content of the water-repellent material contained in the coating, particularly the water-repellent plating layer is preferably 5% by mass or more, for example, 5 to 30% by mass or 5 to 15% by mass. .
  • fluororesins include polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), modified PVDF, polyvinyl fluoride (PVF), and tetrafluoroethylene-perfluoroalkyl.
  • Vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), vinylidene fluoride -A hexafluoropropylene copolymer or the like can be used.
  • Silicone may also have water repellency, but it is desirable to use a fluororesin from the viewpoint of ensuring the mechanical strength of the coating. Further, the fluororesin is excellent in that it can be easily dispersed in the plating layer.
  • the water-repellent plating layers 7a and 7b may be formed by electrolytic plating or may be formed by electroless plating. In either case, a plating bath in which a water repellent material (preferably a fluororesin) is dispersed is used. Thereby, a metal and a water-repellent material can be eutectoid on the battery case 1 and / or the sealing plate 6 (or a metal plate which is a raw material thereof).
  • a water repellent material preferably a fluororesin
  • the content of the water repellent material in the plating bath may be, for example, 0.1 to 80 g / L, or 0.5 to 60 g / L.
  • an electroless nickel plating bath in which fluororesin particles are dispersed
  • the nickel and the fluororesin are placed on the surface of the battery case 1 and / or the sealing plate 6. It can be co-deposited.
  • the fluororesin is adsorbed on the surface of the battery case 1 and / or the sealing plate 6 together with nickel in the process of precipitation of nickel by the chemical reduction action. By repeating this phenomenon, a nickel plating layer containing a fluororesin is formed.
  • the battery case and / or the sealing plate is preferably heated at 200 to 350 ° C. Thereby, the strength of the water-repellent plating layer is improved and the adhesion between the metal and the water-repellent material is also improved.
  • the coin battery includes a step (i) of preparing a power generation element, a step (ii) of preparing a battery case 1, a step (iii) of preparing a sealing plate 6, and a step (iv) of preparing a gasket 5.
  • the opening of the battery case 1 is closed with the sealing plate 6, and the opening end of the battery case 1 is crimped to the peripheral portion of the sealing plate 6 via the gasket 5 ( v).
  • the thickness of the metal plate used for the battery case 1 and / or the sealing plate 6 is, for example, 0.1 to 0.4 mm.
  • the battery case 1 is manufactured by drawing a stainless steel plate and forming it into a cylindrical shape with a bottom.
  • a nickel plating layer is preferably formed on at least the surface of the stainless steel plate corresponding to the outer surface of the battery.
  • a sealing plate having a predetermined shape is formed by pressing a metal plate.
  • a nickel plating layer is preferably formed on at least the surface of the metal plate corresponding to the outer surface of the battery.
  • a water repellent material is included in at least one of the nickel plating layers formed on the battery case 1 and the sealing plate 6.
  • a gasket 5 having an annular groove to be fitted to the peripheral edge of the sealing plate 6 is prepared.
  • the gasket 5 may be attached to the peripheral edge of the sealing plate 6 in advance.
  • a material of the gasket 5 for example, polypropylene (PP), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), or the like can be used.
  • step (v) the power generation element is accommodated in the battery case 1 and the sealing plate 6 is disposed so as to close the opening of the battery case 1. Thereafter, the opening end portion (side end portion) of the battery case 1 is bent inward. Thereby, the gasket 5 is compressed, and the lower end portion of the gasket 5 is in close contact with the bottom surface portion of the battery case. Further, the upper end portion of the gasket 5 is in close contact with the peripheral portion of the sealing plate 6.
  • the positive electrode 2 is formed by press molding the positive electrode mixture into a coin shape.
  • the positive electrode mixture includes a positive electrode active material, a conductive additive, and a binder.
  • the type of the positive electrode active material is not particularly limited, but is an oxide (for example, manganese dioxide) or a composite containing at least one selected from the group consisting of transition metals such as manganese, cobalt, nickel, magnesium, copper, iron, and niobium.
  • An oxide can be used.
  • a composite oxide containing lithium and containing at least one selected from the group consisting of metals such as manganese, cobalt, nickel, magnesium, copper, iron, and niobium (for example, LiCoO 2 ) can also be used.
  • fluorinated graphite can be used.
  • a positive electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • carbon black such as acetylene black and ketjen black
  • graphite such as artificial graphite
  • a conductive support material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • binder examples include fluororesin, styrene butadiene rubber (SBR), modified acrylonitrile rubber, and ethylene-acrylic acid copolymer.
  • SBR styrene butadiene rubber
  • a binder may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the negative electrode 3 is, for example, lithium metal or lithium alloy formed into a coin shape.
  • the lithium alloy include a Li—Al alloy, a Li—Sn alloy, a Li—Si alloy, and a Li—Pb alloy.
  • the negative electrode 3 may be a negative electrode mixture containing a negative electrode active material and a binder that is pressure-molded into a coin shape.
  • the type of the negative electrode active material is not particularly limited, but carbon materials such as natural graphite, artificial graphite, and non-graphitizable carbon, and metal oxides such as silicon oxide, lithium titanate, niobium pentoxide, and molybdenum dioxide may be used. it can.
  • As a binder the material illustrated as a material which can be used for a positive electrode, for example can be used arbitrarily.
  • a conductive additive may be included in the negative electrode mixture.
  • the electrolytic solution includes a non-aqueous solvent and a solute (salt) dissolved in the non-aqueous solvent.
  • the solute concentration in the electrolytic solution is preferably 0.3 to 2.0 mol / L.
  • the non-aqueous solvent cyclic carbonate, chain carbonate, chain ether, cyclic ether and the like can be used. These may be used alone or in combination of two or more.
  • the solute LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 or the like is used.
  • the separator 4 may be any material that can prevent a short circuit between the positive electrode 2 and the negative electrode 3.
  • a woven fabric, a nonwoven fabric, a microporous film or the like formed of polyolefin, polyester, or the like can be given.
  • Example 1 Battery case A battery case in which a stainless steel plate (SUS430, thickness of 200 ⁇ m) having a nickel plating layer with a thickness of 3 ⁇ m formed on the surface is drawn to have a bottom surface diameter of 20 mm and a side portion 1b height of 2.8 mm. 1 was produced.
  • the nickel plating layer was formed by immersing the battery case in a first electroless nickel plating bath having the composition shown in Table 1. Therefore, the nickel plating layer does not contain a water repellent material.
  • Sealing plate SUS304 (thickness: 200 ⁇ m) having a water-repellent plating layer 7b with a thickness of 3 ⁇ m on the surface was pressed to prepare a sealing plate 6 with a top surface portion 6a having a diameter of 17 mm.
  • the water repellent plating layer 7b was formed by immersing the sealing plate 6 in a second electroless nickel plating bath having the composition shown in Table 2.
  • the content of PTFE contained in the water-repellent plating layer 7b was 10% by mass.
  • Power generation element 100 parts by mass of manganese dioxide as a positive electrode active material, 7 parts by mass of graphite as a conductive additive, and 5 parts by mass of polytetrafluoroethylene as a binder are mixed to obtain a positive electrode mixture.
  • the positive electrode mixture was formed into a coin shape having a diameter of 15 mm and a thickness of 2 mm to produce the positive electrode 2.
  • a metal lithium foil having a thickness of 0.6 mm was punched into a circle having a diameter of 16 mm to produce a negative electrode.
  • an organic electrolytic solution in which LiClO 4 was dissolved as a solute at a concentration of 1.0 mol / L in a nonaqueous solvent in which propylene carbonate and 1,2-dimethoxyethane were mixed at a volume ratio of 2: 1 was used. .
  • Comparative Example 1 A coin-type battery was completed in the same manner as in Example 1 except that the first nickel plating bath was used and a nickel plating layer not containing a water repellent material was also formed on the sealing plate.
  • Example 2 A coin-type battery was completed in the same manner as in Example 1 except that a second nickel plating bath was used and a nickel plating layer containing a water repellent material was also formed on the battery case.
  • Example 1 (Short-circuit current) Ten batteries of Example 1 were sandwiched between two pieces of raw chicken meat and left at 35 ° C. for 2 hours. Thereafter, the state of the raw chicken meat was visually observed. 10 batteries of Example 2 and Comparative Example 1 were similarly evaluated.
  • the water-repellent plating layer is formed.
  • the coating includes a water-repellent material and has conductivity, for example, a coating of a composite of fluororesin and conductive particles may be used as a sealing plate and / or Even when it is formed on the outer surface of the battery case, it is considered that the safety of the coin-type battery can be similarly improved.
  • the present invention can be applied to various batteries including a primary battery and a secondary battery such as a lithium battery, an alkaline battery, and an alkaline storage battery, but is particularly useful for a battery having a battery voltage exceeding 3.0 V (for example, a lithium battery).
  • a primary battery and a secondary battery such as a lithium battery, an alkaline battery, and an alkaline storage battery, but is particularly useful for a battery having a battery voltage exceeding 3.0 V (for example, a lithium battery).
  • battery case 1a bottom surface portion 1b: side portion 2: positive electrode 3: negative electrode 4: separator 5: gasket 6: sealing plate 6a: top surface portion 6b: peripheral edge portion 6f: flange portions 7a, 7b: water repellent plating layer 10: Coin battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

This coin-shaped battery comprises a battery case having a bottom portion and a side portion rising from the periphery of the bottom portion, a closing plate having a ceiling plate portion and a peripheral portion extending from the ceiling plate portion to the interior of the side portion, a gasket intercalated and compressed between the side portion and the peripheral portion, an electricity generating element sealed-in by the battery case and the closing plate, and a coating provided on the external surface of at least one among the battery case and the closing plate, wherein the coating contains a water-repelling material and is electrically conductive at least in a pressed state.

Description

コイン形電池Coin battery
 本発明は、コイン形電池に関し、さらに詳しくは、誤飲に対する安全性を高めたコイン形電池に関する。 The present invention relates to a coin-type battery, and more particularly to a coin-type battery with improved safety against accidental ingestion.
 コイン形電池は、小型機器やメモリバックアップなどの電源として広く用いられている。コイン形電池の用途は拡大の一途にあるが、これに伴い、コイン形電池の誤飲に対する対策の重要性が増している。コイン形電池が生体内に取り込まれると、体液により正負極間が短絡し、水の電気分解を伴う電流が流れ、生体に危害を及ぼす。更に、生体内で電池の腐食が進み、電池が破損すると、発電要素が生体の粘膜に接触するため、危害がおおきくなる。 Coin batteries are widely used as power sources for small devices and memory backup. Although the use of coin-type batteries is expanding, the importance of countermeasures against accidental swallowing of coin-type batteries is increasing. When a coin-type battery is taken into a living body, a positive and negative electrode is short-circuited by a body fluid, a current accompanied by electrolysis of water flows, and the living body is harmed. Further, when the battery is corroded in the living body and the battery is damaged, the power generation element comes into contact with the mucous membrane of the living body, and the harm is increased.
 そこで、特許文献1は、誤飲を防止する観点から、電池の表面に苦味物質を含有する導電性被膜を形成することを提案している。 Therefore, Patent Document 1 proposes to form a conductive film containing a bitter substance on the surface of the battery from the viewpoint of preventing accidental ingestion.
特開平4-312762号公報Japanese Patent Laid-Open No. 4-312762
 しかし、特許文献1の方法では、生体がコイン形電池を吐き出さずに飲み込んでしまった場合には、上記危害を避けることができない。 However, according to the method of Patent Document 1, the above-mentioned harm cannot be avoided if the living body swallows the coin-shaped battery without discharging it.
 上記に鑑み、本発明は、誤飲による生体への危害を低減することができる、安全性の高いコイン形電池を提供することを目的とする。 In view of the above, an object of the present invention is to provide a highly safe coin-shaped battery that can reduce harm to a living body due to accidental ingestion.
 本発明の一局面は、底面部および底面部の周縁から立ち上がる側部を有する電池ケースと、天板部および天板部から側部の内側へ延びる周縁部を有する封口板と、側部と周縁部との間に圧縮されて介在するガスケットとを有する。さらに、電池ケースと封口板により密閉された発電要素と、電池ケースおよび封口板の少なくとも一方の外面に設けられた被膜と、を具備し、被膜は、撥水性材料を含み、かつ、少なくとも加圧状態において導電性を有する、コイン形電池に関する。 One aspect of the present invention is a battery case having a bottom surface portion and a side portion rising from the periphery of the bottom surface portion, a sealing plate having a top plate portion and a peripheral portion extending from the top plate portion to the inside of the side portion, a side portion and a peripheral edge. And a gasket that is compressed and interposed between the two portions. And a power generation element hermetically sealed by the battery case and the sealing plate, and a coating provided on the outer surface of at least one of the battery case and the sealing plate. The coating includes a water-repellent material and is at least pressurized. The present invention relates to a coin-type battery having conductivity in a state.
 本発明によれば、コイン形電池の誤飲による生体への危害を低減することができる。 According to the present invention, it is possible to reduce harm to a living body due to accidental swallowing of a coin-type battery.
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本願の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。 While the novel features of the invention are set forth in the appended claims, the invention will be better understood by reference to the following detailed description, taken in conjunction with the other objects and features of the present application, both in terms of construction and content. Will be understood.
本発明の一実施形態に係るコイン形電池の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the coin-type battery which concerns on one Embodiment of this invention.
 本実施形態に係るコイン形電池は、発電要素と、発電要素を密閉収容する外装体とで構成されている。外装体は、電池ケースと、電池ケースの開口を塞ぐ封口板と、電池ケースの側部の端部(開口端部)と封口板の周縁部との間に介在するガスケットとを具備している。発電要素は、第一電極と、第二電極と、これらの間に介在するセパレータと、電解液とを具備する。電池ケースと封口板とで形成される空間に発電要素を充填した後、電池ケースの開口端部を、ガスケットを介して封口板の周縁部に加締めることで、発電要素が外装体の内部に密閉収容される。コイン形電池には、コイン型だけでなく、ボタン型も含まれる。すなわち、コイン形電池の形状や直径は特に限定されず、例えば電池厚さが直径より大きいボタン型電池もコイン形電池に包含されるものとする。 The coin-type battery according to this embodiment includes a power generation element and an exterior body that hermetically houses the power generation element. The exterior body includes a battery case, a sealing plate that closes the opening of the battery case, and a gasket that is interposed between an end portion (opening end portion) of the side portion of the battery case and a peripheral portion of the sealing plate. . The power generation element includes a first electrode, a second electrode, a separator interposed therebetween, and an electrolytic solution. After filling the power generation element in the space formed by the battery case and the sealing plate, the power generation element is placed inside the exterior body by crimping the opening end of the battery case to the peripheral edge of the sealing plate via a gasket. It is hermetically sealed. The coin type battery includes not only a coin type but also a button type. That is, the shape and diameter of the coin-type battery are not particularly limited. For example, a button-type battery having a battery thickness larger than the diameter is included in the coin-type battery.
 より詳細には、電池ケースは、底面部および底面部の周縁から立ち上がる側部を有する。底面部は、通常、円形であるが、円形に近い形状(例えば楕円形)でもよい。封口板は、天板部および天板部の端部からフランジ部を形成し電池ケースの側部の内側へ延びる周縁部を有する。天面部は、底面部の形状に対応しており、通常、底面部より直径の小さい円形である。コイン形電池の厚さTは、底面部の直径Dより小さい場合が多く(T<D)、例えば1.2mm≦T≦5.0mmである。電池ケースの側部と封口板の周縁部との間には、ガスケットが圧縮されて介在している。ここで、電池ケースおよび封口板の少なくとも一方の外面には、被膜が設けられている。被膜は、撥水性材料を含み、かつ、少なくとも加圧状態において導電性を有する。 More specifically, the battery case has a bottom portion and side portions that rise from the periphery of the bottom portion. The bottom surface portion is usually circular, but may have a shape close to a circle (for example, an ellipse). The sealing plate has a peripheral portion that forms a flange portion from an end portion of the top plate portion and the top plate portion and extends inward of the side portion of the battery case. The top surface portion corresponds to the shape of the bottom surface portion, and is usually a circle having a smaller diameter than the bottom surface portion. The thickness T of the coin-type battery is often smaller than the diameter D of the bottom surface portion (T <D), for example, 1.2 mm ≦ T ≦ 5.0 mm. A gasket is compressed and interposed between the side of the battery case and the peripheral edge of the sealing plate. Here, a coating is provided on the outer surface of at least one of the battery case and the sealing plate. The coating contains a water-repellent material and is conductive at least in a pressurized state.
 第一電極と第二電極とは、互いに異なる極性を有する。すなわち、第一電極が正極(または負極)である場合、第二電極は負極(または正極)である。コイン形電池がリチウム電池である場合、外装体内に、正極は、電池ケースの底面部に対向するように収容され、負極は、封口板の天面部に対向するように収容される。ただし、正負極の配置はこれに限定されない。 The first electrode and the second electrode have different polarities. That is, when the first electrode is a positive electrode (or negative electrode), the second electrode is a negative electrode (or positive electrode). When the coin-type battery is a lithium battery, the positive electrode is accommodated in the exterior body so as to face the bottom surface portion of the battery case, and the negative electrode is accommodated so as to face the top surface portion of the sealing plate. However, the arrangement of the positive and negative electrodes is not limited to this.
 撥水性材料は、コイン形電池が誤飲された際に、電池ケースおよび/または封口板と体液との接触を抑制する作用を有する。被膜は、少なくともコイン形電池の使用時には導電性を有することが必要である。 The water repellent material has an action of suppressing contact between the battery case and / or the sealing plate and the body fluid when the coin-type battery is accidentally swallowed. The coating is required to have conductivity at least when a coin-type battery is used.
 コイン形電池の使用時には、コイン形電池が使用機器の正負極端子間に装着される。このとき、コイン形電池には、その厚さ方向に圧力が印加される。コイン形電池の使用時にのみ被膜に導電性を持たせるには、例えば撥水性材料と導電性粒子との複合物で被膜を形成し、加圧状態でのみ導電性粒子同士が接触するように撥水性材料の含有割合を調整すればよい。このとき、撥水性材料は弾性を有することが望ましい。一方、コイン形電池が使用機器に装着されていない無負荷状態では、導電性粒子間の平均距離が大きくなり、導電性が発現しない。なお、接触抵抗を安定化させる観点からは、コイン形電池の使用時のみでなく、無負荷状態もしくは常時、被膜に導電性を持たせることが望ましい。 When using a coin-type battery, the coin-type battery is mounted between the positive and negative terminals of the device used. At this time, pressure is applied to the coin-type battery in the thickness direction. In order to make the film conductive only when using a coin-type battery, for example, a film is formed of a composite of a water repellent material and conductive particles, and the conductive particles are repelled so that the conductive particles are in contact with each other only under pressure. What is necessary is just to adjust the content rate of an aqueous material. At this time, it is desirable that the water repellent material has elasticity. On the other hand, in a no-load state where the coin-type battery is not attached to the device used, the average distance between the conductive particles is large, and the conductivity is not expressed. In addition, from the viewpoint of stabilizing the contact resistance, it is desirable not only when the coin-type battery is used but also to provide conductivity to the coating in an unloaded state or at all times.
 被膜は、電池ケースおよび封口板の両方の外面に設けることが望ましいが、電池ケースおよび封口板から選択される一方の外面に被膜を設けるだけでもよい。これにより、体液による正負極間の短絡を抑制することができる。例えば、電池ケースの外面には被膜を設けず、封口板の外面だけに被膜を設けてもよい。封口板の周縁部は、そのエッジも含めて電池ケースの側部の内側に配置されるため、外部に露出しない。よって、封口板の外面の露出面積は、電池ケースのそれよりも小さい。そのため、封口板の外面だけに被膜を設けることが効率的である。また、封口板に形成された被膜は、加締め封口の際に剥落しにくい。 The coating is desirably provided on the outer surfaces of both the battery case and the sealing plate, but the coating may be provided only on one outer surface selected from the battery case and the sealing plate. Thereby, the short circuit between positive and negative electrodes by a bodily fluid can be suppressed. For example, a coating may be provided only on the outer surface of the sealing plate without providing a coating on the outer surface of the battery case. Since the peripheral part of the sealing plate is disposed inside the side part of the battery case including its edge, it is not exposed to the outside. Therefore, the exposed area of the outer surface of the sealing plate is smaller than that of the battery case. Therefore, it is efficient to provide a coating only on the outer surface of the sealing plate. Moreover, the coating film formed on the sealing plate is difficult to peel off when crimped.
 被膜を電池ケースの外面に形成する場合、電池ケースの外面の50%以上を被膜で覆うことが望ましく、80%以上を被膜で覆うことが更に望ましい。このとき、少なくとも、ガスケットを介して封口板に隣接する電池ケースの開口端部は、被膜で覆うことが望ましい。 When the coating is formed on the outer surface of the battery case, it is desirable to cover 50% or more of the outer surface of the battery case with the coating, and it is more desirable to cover 80% or more with the coating. At this time, it is desirable that at least the opening end of the battery case adjacent to the sealing plate via the gasket is covered with a coating.
 被膜を封口板の外面に形成する場合、ガスケットで覆われていない封口板の外面(露出外面)の70%以上を被膜で覆うことが望ましく、露出外面の90%以上を被膜で覆うことが更に望ましい。このとき、少なくとも、天板部の端部からフランジ部において、外部に露出される封口板の外面領域は、被膜で覆うことが望ましい。逆の極性を持つ電池ケースとの距離が近い領域を被膜で覆うことで、より効率的に正負極間の短絡を抑制することができる。 When the coating is formed on the outer surface of the sealing plate, it is desirable to cover 70% or more of the outer surface (exposed outer surface) of the sealing plate that is not covered with the gasket, and to cover 90% or more of the exposed outer surface with the coating. desirable. At this time, it is desirable that at least the outer surface area of the sealing plate exposed to the outside from the end portion of the top plate portion to the flange portion is covered with a coating. By covering the region where the distance from the battery case having the opposite polarity is short, the short circuit between the positive and negative electrodes can be more efficiently suppressed.
 撥水性材料は、特に限定されないが、フッ素を含む材料が好ましく、フッ素樹脂、フッ化黒鉛などを用いることが好ましい。なかでもフッ素樹脂は、撥水性が高く、剥離しにくい点で、被膜成分として適している。 The water repellent material is not particularly limited, but a material containing fluorine is preferable, and it is preferable to use a fluororesin, fluorinated graphite or the like. Among these, a fluororesin is suitable as a coating component because it has high water repellency and is difficult to peel off.
 接触抵抗を安定化させるとともに低減する観点からは、被膜として、撥水性材料と金属とを含むめっき層(以下、撥水性めっき層)を形成することが好ましい。被膜が撥水性めっき層である場合、被膜は、コイン形電池の使用時のみでなく、常時、導電性を有する。めっき層に含まれる金属は、ニッケルを含むことが好ましい。ニッケルを含む撥水性めっき層には、防錆効果もある。 From the viewpoint of stabilizing and reducing contact resistance, it is preferable to form a plating layer (hereinafter referred to as a water-repellent plating layer) containing a water-repellent material and a metal as a coating. When the coating is a water-repellent plating layer, the coating always has conductivity, not only when the coin-type battery is used. The metal contained in the plating layer preferably contains nickel. The water-repellent plating layer containing nickel also has a rust prevention effect.
 撥水性めっき層の厚さは、0.5~8μmであることが好ましく、1~4μmであることが更に好ましい。これにより、接触抵抗を低減する効果と、体液による短絡を抑制する効果とをバランスよく得ることができる。また、防錆効果も良好となる。 The thickness of the water-repellent plating layer is preferably 0.5 to 8 μm, and more preferably 1 to 4 μm. Thereby, the effect which reduces contact resistance and the effect which suppresses the short circuit by a bodily fluid can be acquired with sufficient balance. Moreover, the rust prevention effect is also good.
 撥水性めっき層において、撥水性材料は、めっきされた金属層内に島状に分散させることが望ましい。分散状態は、できるだけ均一であることが望ましい。例えば、平均粒径10~300nmの撥水性材料の粒子を、金属層内に分散させることが好ましい。これにより、接触抵抗を低減する効果と、体液による短絡を抑制する効果とが、更に高められる。 In the water-repellent plating layer, the water-repellent material is desirably dispersed in an island shape in the plated metal layer. It is desirable that the dispersion state be as uniform as possible. For example, it is preferable to disperse particles of a water repellent material having an average particle size of 10 to 300 nm in the metal layer. Thereby, the effect which reduces contact resistance and the effect which suppresses the short circuit by a bodily fluid are further heightened.
 撥水性材料の粒子の平均粒径は、撥水性めっき層の電子顕微鏡写真から求めることができる。例えば、電子顕微鏡写真に目視できる撥水性材料の粒子を任意にN個(20≦N)以上選択し、それらの最大径の総和Sを求め、総和SをNで除することにより、平均粒径Davを求めることができる(Dav=S/N)。 The average particle diameter of the water repellent material particles can be determined from an electron micrograph of the water repellent plating layer. For example, by arbitrarily selecting N (20 ≦ N) or more water-repellent material particles that can be visually observed in an electron micrograph, obtaining the sum S of the maximum diameters, and dividing the sum S by N, the average particle size Dav can be obtained (Dav = S / N).
 被膜を撥水性材料と導電性粒子との複合物で形成する場合においても、撥水性材料としては、撥水性が高く、かつ化学的安定性に優れるフッ素樹脂を用いることが好ましい。また、導電性粒子としては、金属粒子、炭素材料粒子などが好ましい。金属粒子としては、ニッケル粉末、金などが好ましく、炭素材料粒子としては、黒鉛、フッ化黒鉛、カーボンブラック、アセチレンブラック、繊維状炭素、ガラス状炭素、易黒鉛化炭素材料、難黒鉛化炭素材料などを用いることができる。このとき、被膜に、常時、導電性を持たせるには、複合物に含まれる撥水性材料100体積部あたり、70体積部以上の導電性粒子を用いることが望ましい。導電性粒子の平均粒径、撥水性材料の形態などは、複合物の組成および所望の被膜物性に応じて制御すればよい。 Even when the coating is formed of a composite of a water-repellent material and conductive particles, it is preferable to use a fluororesin having high water repellency and excellent chemical stability as the water-repellent material. Further, as the conductive particles, metal particles, carbon material particles and the like are preferable. The metal particles are preferably nickel powder, gold, etc., and the carbon material particles are graphite, fluorinated graphite, carbon black, acetylene black, fibrous carbon, glassy carbon, graphitizable carbon material, non-graphitizable carbon material. Etc. can be used. At this time, it is desirable to use 70 parts by volume or more of conductive particles per 100 parts by volume of the water-repellent material contained in the composite in order to always give the film conductivity. What is necessary is just to control the average particle diameter of electroconductive particle, the form of a water-repellent material, etc. according to a composite composition and desired film physical property.
 以下、図面を参照して、本発明の一実施形態に係るコイン形電池について説明する。ただし、以下の実施形態は、本発明の技術的範囲を限定するものではない。 Hereinafter, a coin-type battery according to an embodiment of the present invention will be described with reference to the drawings. However, the following embodiments do not limit the technical scope of the present invention.
 図1は、本発明の一実施形態に係るコイン形電池の構成を示す断面図である。 FIG. 1 is a cross-sectional view showing a configuration of a coin-type battery according to an embodiment of the present invention.
 コイン形電池10は、電池ケース1と、封口板6と、ガスケット5とで構成される外装体を具備する。電池ケース1は、底面部1aおよび底面部1aの周縁から立ち上がる側部1bを有する円筒型で底浅の電池缶である。封口板6は、天面部6aおよび天面部6aから電池ケース1の側部1bの内側へと延びる周縁部6bを有する。周縁部6bは天面部6aの端部からフランジ部6fを形成し、電池ケース1の側部1bの内側へと延びている。ガスケット5の一部は、電池ケース1の側部1bと封口板6の周縁部6bとの間に介在することにより、電池ケース1と封口板6との隙間を封止している。 The coin-type battery 10 includes an exterior body composed of a battery case 1, a sealing plate 6, and a gasket 5. The battery case 1 is a cylindrical and shallow battery can having a bottom surface portion 1a and side portions 1b rising from the periphery of the bottom surface portion 1a. The sealing plate 6 has a top surface portion 6 a and a peripheral edge portion 6 b extending from the top surface portion 6 a to the inside of the side portion 1 b of the battery case 1. The peripheral edge portion 6 b forms a flange portion 6 f from the end of the top surface portion 6 a and extends to the inside of the side portion 1 b of the battery case 1. A part of the gasket 5 is interposed between the side portion 1 b of the battery case 1 and the peripheral portion 6 b of the sealing plate 6, thereby sealing a gap between the battery case 1 and the sealing plate 6.
 外装体の内部には発電要素が収容されている。発電要素は、正極2、負極3、セパレータ4および電解液(図示せず)を含む。図示例では、正極2は電池ケース1の底面部1aと対向するように配置されている。電池ケース1は正極端子として機能する。一方、負極3は封口板6の天面部6aと対向するように配置される。封口板6は負極端子として機能する。 The power generation element is housed inside the exterior body. The power generation element includes a positive electrode 2, a negative electrode 3, a separator 4, and an electrolytic solution (not shown). In the illustrated example, the positive electrode 2 is disposed so as to face the bottom surface portion 1 a of the battery case 1. The battery case 1 functions as a positive electrode terminal. On the other hand, the negative electrode 3 is disposed so as to face the top surface portion 6 a of the sealing plate 6. The sealing plate 6 functions as a negative electrode terminal.
 図示例では、電池ケース1の素材として、正極電位で耐腐食性を有する金属板を用いることが望ましい。例えば、リチウム電池の電池ケース1には、ステンレス鋼を用いることが望ましく、特にクロム含有量が18%以上のステンレス鋼(SUS430、SUS444、SUS445、SUS447、SUS316、SUS317、SUS312、SUS329Jなど)が好ましい。 In the illustrated example, it is desirable to use a metal plate having corrosion resistance at the positive electrode potential as the material of the battery case 1. For example, it is desirable to use stainless steel for the battery case 1 of the lithium battery, and stainless steel with a chromium content of 18% or more (SUS430, SUS444, SUS445, SUS447, SUS316, SUS317, SUS312, SUS329J, etc.) is particularly preferable. .
 封口板6の素材には、機械的強度に優れる金属板を用いることが望ましく、ステンレス鋼(SUS304、SUS316など)を用いることが望ましい。ただし、安価な普通鋼や炭素鋼などの金属板を使用することもできる。普通鋼とは、JISに規定されるSS材、SM材、SPCC材のような鋼である。炭素鋼は、S10C、S20C、S30C、S45C、S55Cのような鋼であり、機械構造用合金鋼に属する。 As the material of the sealing plate 6, it is desirable to use a metal plate having excellent mechanical strength, and it is desirable to use stainless steel (SUS304, SUS316, etc.). However, an inexpensive metal plate such as ordinary steel or carbon steel can also be used. Normal steel is steel such as SS material, SM material, and SPCC material specified by JIS. Carbon steel is steel such as S10C, S20C, S30C, S45C, and S55C, and belongs to alloy steel for machine structure.
 電池ケース1および封口板6の外面には、撥水性材料を含み、かつ、少なくとも加圧状態において導電性を有する被膜として、それぞれ撥水性めっき層7a、7bが形成されている。電池ケース1および封口板6に撥水性めっき層7a、7bを形成することで、使用機器の正負極端子とコイン形電池との接触抵抗が低減する。また、コイン形電池が生体に誤飲された場合でも、生体の体液と電池ケースおよび/または封口板との接触が抑制されるため、正負極間の短絡電流が低減される。よって、生体への危害を小さくすることができる。 Water- repellent plating layers 7a and 7b are formed on the outer surfaces of the battery case 1 and the sealing plate 6 as water-repellent materials and conductive films at least in a pressurized state, respectively. By forming the water- repellent plating layers 7 a and 7 b on the battery case 1 and the sealing plate 6, the contact resistance between the positive and negative terminals of the device used and the coin-type battery is reduced. Further, even when the coin battery is accidentally swallowed by the living body, contact between the living body fluid and the battery case and / or the sealing plate is suppressed, so that the short-circuit current between the positive and negative electrodes is reduced. Therefore, harm to the living body can be reduced.
 生体の体液と電池ケース1および/または封口板6との接触を十分に抑制する観点から、被膜と水との接触角は、90度(°)以上であることが望ましく、110度以上であることが更に望ましい。同様の観点から、被膜、特に撥水性めっき層に含まれる撥水性材料の含有量は、5質量%以上であることが好ましく、例えば5~30質量%もしくは5~15質量%であることが好ましい。 From the viewpoint of sufficiently suppressing the contact between the body fluid of the living body and the battery case 1 and / or the sealing plate 6, the contact angle between the coating and water is desirably 90 degrees (°) or more, and 110 degrees or more. It is further desirable. From the same viewpoint, the content of the water-repellent material contained in the coating, particularly the water-repellent plating layer is preferably 5% by mass or more, for example, 5 to 30% by mass or 5 to 15% by mass. .
 撥水性材料としては、フッ素樹脂を用いることが好ましい。フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、PVDFの変性体、ポリフッ化ビニル(PVF)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体などを用いることができる。なお、シリコーン(silicone)も撥水性を有する場合があるが、被膜の機械的強度を確保する観点からは、フッ素樹脂を用いることが望ましい。また、フッ素樹脂はめっき層に分散させやすい点でも優れている。 As the water repellent material, it is preferable to use a fluororesin. Examples of fluororesins include polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), modified PVDF, polyvinyl fluoride (PVF), and tetrafluoroethylene-perfluoroalkyl. Vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), vinylidene fluoride -A hexafluoropropylene copolymer or the like can be used. Silicone may also have water repellency, but it is desirable to use a fluororesin from the viewpoint of ensuring the mechanical strength of the coating. Further, the fluororesin is excellent in that it can be easily dispersed in the plating layer.
 撥水性めっき層7a、7bは、電解めっきにより形成してもよく、無電解めっきにより形成してもよい。いずれの場合も、撥水性材料(好ましくはフッ素樹脂)を分散させためっき浴を用いる。これにより、金属および撥水性材料を、電池ケース1および/または封口板6(またはそれらの原料である金属板)に共析させることができる。 The water- repellent plating layers 7a and 7b may be formed by electrolytic plating or may be formed by electroless plating. In either case, a plating bath in which a water repellent material (preferably a fluororesin) is dispersed is used. Thereby, a metal and a water-repellent material can be eutectoid on the battery case 1 and / or the sealing plate 6 (or a metal plate which is a raw material thereof).
 めっき浴における撥水性材料の含有量は、例えば0.1~80g/L、もしくは0.5~60g/Lであればよい。例えば、フッ素樹脂の粒子を分散させた無電解ニッケルめっき浴に、電池ケース1および/または封口板6を浸漬することにより、ニッケルとフッ素樹脂とを電池ケース1および/または封口板6の表面に共析させることができる。このとき、化学還元作用により、ニッケルが析出する過程で、フッ素樹脂がニッケルとともに電池ケース1および/または封口板6の表面に吸着する。この現象が繰り返されることにより、フッ素樹脂を含むニッケルめっき層が形成される。 The content of the water repellent material in the plating bath may be, for example, 0.1 to 80 g / L, or 0.5 to 60 g / L. For example, by immersing the battery case 1 and / or the sealing plate 6 in an electroless nickel plating bath in which fluororesin particles are dispersed, the nickel and the fluororesin are placed on the surface of the battery case 1 and / or the sealing plate 6. It can be co-deposited. At this time, the fluororesin is adsorbed on the surface of the battery case 1 and / or the sealing plate 6 together with nickel in the process of precipitation of nickel by the chemical reduction action. By repeating this phenomenon, a nickel plating layer containing a fluororesin is formed.
 撥水性めっき層を形成後、電池ケースおよび/または封口板を200~350℃で加熱することが好ましい。これにより、撥水性めっき層の強度が向上するとともに、金属と撥水性材料との密着性も高められる。 After forming the water-repellent plating layer, the battery case and / or the sealing plate is preferably heated at 200 to 350 ° C. Thereby, the strength of the water-repellent plating layer is improved and the adhesion between the metal and the water-repellent material is also improved.
 次に、リチウム電池を例にとって、コイン形電池の製造方法について説明する。 Next, taking a lithium battery as an example, a method for manufacturing a coin-type battery will be described.
 コイン形電池は、発電要素を準備する工程(i)と、電池ケース1を準備する工程(ii)と、封口板6を準備する工程(iii)と、ガスケット5を準備する工程(iv)と、電池ケース1に発電要素を収容した後、封口板6で電池ケース1の開口を塞ぎ、電池ケース1の開口端部を、ガスケット5を介して、封口板6の周縁部に加締める工程(v)とを具備する。電池ケース1および/または封口板6に用いる金属板の厚さは、例えば0.1~0.4mmである。 The coin battery includes a step (i) of preparing a power generation element, a step (ii) of preparing a battery case 1, a step (iii) of preparing a sealing plate 6, and a step (iv) of preparing a gasket 5. After the power generation element is accommodated in the battery case 1, the opening of the battery case 1 is closed with the sealing plate 6, and the opening end of the battery case 1 is crimped to the peripheral portion of the sealing plate 6 via the gasket 5 ( v). The thickness of the metal plate used for the battery case 1 and / or the sealing plate 6 is, for example, 0.1 to 0.4 mm.
 工程(ii)では、例えば、ステンレス鋼板を絞り加工して、有底の円筒状に成形することにより、電池ケース1が作製される。ステンレス鋼板の少なくとも電池の外面に対応する表面には、ニッケルめっき層が形成されていることが好ましい。 In step (ii), for example, the battery case 1 is manufactured by drawing a stainless steel plate and forming it into a cylindrical shape with a bottom. A nickel plating layer is preferably formed on at least the surface of the stainless steel plate corresponding to the outer surface of the battery.
 工程(iii)では、例えば、金属板をプレス加工することにより、所定形状の封口板が形成される。金属板の少なくとも電池の外面に対応する表面には、ニッケルめっき層が形成されていることが好ましい。 In step (iii), for example, a sealing plate having a predetermined shape is formed by pressing a metal plate. A nickel plating layer is preferably formed on at least the surface of the metal plate corresponding to the outer surface of the battery.
 ここでは、電池ケース1および封口板6に形成されるニッケルめっき層の少なくとも一方に、撥水性材料を含ませる。これにより、撥水性めっき層を具備する電池ケースおよび/または封口板を作製することができる。 Here, a water repellent material is included in at least one of the nickel plating layers formed on the battery case 1 and the sealing plate 6. Thereby, the battery case and / or sealing plate which comprise a water-repellent plating layer can be produced.
 工程(iv)では、封口板6の周縁部に勘合する環状の溝部を有するガスケット5が準備される。ガスケット5は、予め封口板6の周縁部に装着させてもよい。ガスケット5の材質としては、例えば、ポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)などを用いることができる。 In step (iv), a gasket 5 having an annular groove to be fitted to the peripheral edge of the sealing plate 6 is prepared. The gasket 5 may be attached to the peripheral edge of the sealing plate 6 in advance. As a material of the gasket 5, for example, polypropylene (PP), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), or the like can be used.
 工程(v)では、電池ケース1の内部に発電要素を収容し、電池ケース1の開口を塞ぐように封口板6を配置する。その後、電池ケース1の開口端部(側部の端部)を内側に折り曲げる。これにより、ガスケット5が圧縮され、ガスケット5の下端部は電池ケースの底面部に密着する。また、ガスケット5の上端部は、封口板6の周縁部に密着する。 In step (v), the power generation element is accommodated in the battery case 1 and the sealing plate 6 is disposed so as to close the opening of the battery case 1. Thereafter, the opening end portion (side end portion) of the battery case 1 is bent inward. Thereby, the gasket 5 is compressed, and the lower end portion of the gasket 5 is in close contact with the bottom surface portion of the battery case. Further, the upper end portion of the gasket 5 is in close contact with the peripheral portion of the sealing plate 6.
 次に、リチウム電池を例にとって、コイン形電池の発電要素について説明する。 Next, taking the lithium battery as an example, the power generation element of the coin-type battery will be described.
 正極2は、正極合剤をコイン形に加圧成形することにより形成される。正極合剤は、正極活物質、導電助剤およびバインダーを含む。正極活物質の種類は、特に限定されないが、マンガン、コバルト、ニッケル、マグネシウム、銅、鉄、ニオブなどの遷移金属よりなる群から選択される少なくとも1種を含む酸化物(例えば二酸化マンガン)または複合酸化物を用いることができる。リチウムを含み、マンガン、コバルト、ニッケル、マグネシウム、銅、鉄、ニオブなどの金属よりなる群から選択される少なくとも1種を含む複合酸化物(例えばLiCoO2)も用いることができる。また、フッ化黒鉛を用いることもできる。正極活物質は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The positive electrode 2 is formed by press molding the positive electrode mixture into a coin shape. The positive electrode mixture includes a positive electrode active material, a conductive additive, and a binder. The type of the positive electrode active material is not particularly limited, but is an oxide (for example, manganese dioxide) or a composite containing at least one selected from the group consisting of transition metals such as manganese, cobalt, nickel, magnesium, copper, iron, and niobium. An oxide can be used. A composite oxide containing lithium and containing at least one selected from the group consisting of metals such as manganese, cobalt, nickel, magnesium, copper, iron, and niobium (for example, LiCoO 2 ) can also be used. Alternatively, fluorinated graphite can be used. A positive electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
 導電助剤としては、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、人造黒鉛などの黒鉛類を使用できる。導電助材は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the conductive aid, carbon black such as acetylene black and ketjen black, and graphite such as artificial graphite can be used. A conductive support material may be used individually by 1 type, and may be used in combination of 2 or more type.
 バインダーとしては、例えば、フッ素樹脂、スチレンブタジエンゴム(SBR)、変性アクリロニトリルゴム、エチレン-アクリル酸共重合体などが挙げられる。結着剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the binder include fluororesin, styrene butadiene rubber (SBR), modified acrylonitrile rubber, and ethylene-acrylic acid copolymer. A binder may be used individually by 1 type, and may be used in combination of 2 or more type.
 負極3は、例えば、コイン形に成形されたリチウム金属またはリチウム合金である。リチウム合金としては、Li-Al合金、Li-Sn合金、Li-Si合金、Li-Pb合金などが挙げられる。負極3は、負極活物質およびバインダーを含む負極合剤をコイン形に加圧成形したものでもよい。負極活物質の種類は、特に限定されないが、天然黒鉛、人造黒鉛、難黒鉛化性炭素などの炭素材料、酸化珪素、チタン酸リチウム、五酸化ニオブ、二酸化モリブデンなどの金属酸化物を用いることができる。バインダーとしては、例えば、正極に用い得る材料として例示した材料を任意に用いることができる。負極合剤に導電助剤を含ませてもよい。 The negative electrode 3 is, for example, lithium metal or lithium alloy formed into a coin shape. Examples of the lithium alloy include a Li—Al alloy, a Li—Sn alloy, a Li—Si alloy, and a Li—Pb alloy. The negative electrode 3 may be a negative electrode mixture containing a negative electrode active material and a binder that is pressure-molded into a coin shape. The type of the negative electrode active material is not particularly limited, but carbon materials such as natural graphite, artificial graphite, and non-graphitizable carbon, and metal oxides such as silicon oxide, lithium titanate, niobium pentoxide, and molybdenum dioxide may be used. it can. As a binder, the material illustrated as a material which can be used for a positive electrode, for example can be used arbitrarily. A conductive additive may be included in the negative electrode mixture.
 電解液は、非水溶媒と、これに溶解する溶質(塩)とを含む。電解液中の溶質濃度は0.3~2.0mol/Lが好ましい。非水溶媒としては、環状炭酸エステル、鎖状炭酸エステル、鎖状エーテル、環状エーテルなどを用いることができる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。溶質としては、LiBF4、LiPF6、LiClO4、LiCF3SO3、LiC49SO3、LiN(CF3SO22、LiN(C25SO22などが用いられる。 The electrolytic solution includes a non-aqueous solvent and a solute (salt) dissolved in the non-aqueous solvent. The solute concentration in the electrolytic solution is preferably 0.3 to 2.0 mol / L. As the non-aqueous solvent, cyclic carbonate, chain carbonate, chain ether, cyclic ether and the like can be used. These may be used alone or in combination of two or more. As the solute, LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 or the like is used.
 セパレータ4は、正極2と負極3との短絡を防止できる材料であればよい。例えば、ポリオレフィン、ポリエステルなどで形成された織布、不織布、微多孔フィルムなどが挙げられる。 The separator 4 may be any material that can prevent a short circuit between the positive electrode 2 and the negative electrode 3. For example, a woven fabric, a nonwoven fabric, a microporous film or the like formed of polyolefin, polyester, or the like can be given.
 次に、本発明を実施例に基づいて具体的に説明する。ただし、以下の実施例は本発明を限定するものではない。なお、本実施例では、図1に示すような構造のコイン形電池を作製した。 Next, the present invention will be specifically described based on examples. However, the following examples do not limit the present invention. In this example, a coin-type battery having a structure as shown in FIG. 1 was produced.
 《実施例1》
 (i)電池ケース
 表面に厚み3μmのニッケルめっき層を形成したステンレス鋼板(SUS430、厚み200μm)を絞り加工して、底面部の直径が20mm、側部1bの高さが2.8mmの電池ケース1を作製した。ニッケルめっき層は、表1の組成の第一無電解ニッケルめっき浴に電池ケースを浸漬することにより形成した。よって、ニッケルめっき層は撥水性材料を含まない。
Example 1
(I) Battery case A battery case in which a stainless steel plate (SUS430, thickness of 200 μm) having a nickel plating layer with a thickness of 3 μm formed on the surface is drawn to have a bottom surface diameter of 20 mm and a side portion 1b height of 2.8 mm. 1 was produced. The nickel plating layer was formed by immersing the battery case in a first electroless nickel plating bath having the composition shown in Table 1. Therefore, the nickel plating layer does not contain a water repellent material.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (ii)封口板
 表面に厚み3μmの撥水性めっき層7bを有するSUS304(厚み200μm)をプレス加工して、天面部6aの直径が17mmの封口板6を作製した。撥水性めっき層7bは、表2の組成の第二無電解ニッケルめっき浴に封口板6を浸漬することにより形成した。撥水性めっき層7bに含まれるPTFEの含有量は10質量%であった。
(Ii) Sealing plate SUS304 (thickness: 200 μm) having a water-repellent plating layer 7b with a thickness of 3 μm on the surface was pressed to prepare a sealing plate 6 with a top surface portion 6a having a diameter of 17 mm. The water repellent plating layer 7b was formed by immersing the sealing plate 6 in a second electroless nickel plating bath having the composition shown in Table 2. The content of PTFE contained in the water-repellent plating layer 7b was 10% by mass.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (iii)発電要素
 正極活物質である二酸化マンガン100質量部と、導電助剤である黒鉛7質量部と、結着剤であるポリテトラフルオロエチレン5質量部とを混合して、正極合剤を調製した。正極合剤を直径15mm、厚さ2mmのコイン形に成形して正極2を作製した。一方、厚さ0.6mmの金属リチウム箔を直径16mmの円形に打ち抜いて負極を作製した。電解液には、プロピレンカーボネートと1,2-ジメトキシエタンとを体積比2:1で混合した非水溶媒に、溶質としてLiClO4を濃度1.0mol/Lで溶解させた有機電解液を用いた。
(Iii) Power generation element 100 parts by mass of manganese dioxide as a positive electrode active material, 7 parts by mass of graphite as a conductive additive, and 5 parts by mass of polytetrafluoroethylene as a binder are mixed to obtain a positive electrode mixture. Prepared. The positive electrode mixture was formed into a coin shape having a diameter of 15 mm and a thickness of 2 mm to produce the positive electrode 2. On the other hand, a metal lithium foil having a thickness of 0.6 mm was punched into a circle having a diameter of 16 mm to produce a negative electrode. As the electrolytic solution, an organic electrolytic solution in which LiClO 4 was dissolved as a solute at a concentration of 1.0 mol / L in a nonaqueous solvent in which propylene carbonate and 1,2-dimethoxyethane were mixed at a volume ratio of 2: 1 was used. .
 (iv)コイン形電池の組み立て
 電池ケース1の側部1bの内側に、ブロンアスファルトと鉱物油からなる封止剤を塗布したポリプロピレン製のガスケット5を配置するとともに、底面部1aにSUS430製の集電体を配置し、その上に、正極2を載置した。次に、正極2の上に、厚さ300μmのポリプロピレン製の不織布をセパレータ4として載置した。その後、有機電解液を電池ケース1内に注液した。負極3は、封口板6の天面部6aの内側に貼り付けた。次に、電池ケース1の開口を塞ぐように封口板6を配置し、電池ケース1の側部1bの端部を、ガスケット5を介して封口板6の周縁部に加締めた。
(Iv) Assembling the coin-shaped battery A polypropylene gasket 5 coated with a sealant made of bron asphalt and mineral oil is disposed inside the side portion 1b of the battery case 1, and a collection made of SUS430 is provided on the bottom surface portion 1a. An electric body was disposed, and the positive electrode 2 was placed thereon. Next, a polypropylene nonwoven fabric having a thickness of 300 μm was placed on the positive electrode 2 as the separator 4. Thereafter, the organic electrolyte was poured into the battery case 1. The negative electrode 3 was attached to the inside of the top surface portion 6 a of the sealing plate 6. Next, the sealing plate 6 was disposed so as to close the opening of the battery case 1, and the end portion of the side portion 1 b of the battery case 1 was crimped to the peripheral portion of the sealing plate 6 via the gasket 5.
 これにより、直径20mm、厚さ3.2mm、電気容量225mAhのコイン形電池を完成させた。 Thereby, a coin-type battery having a diameter of 20 mm, a thickness of 3.2 mm, and an electric capacity of 225 mAh was completed.
 《比較例1》
 第一ニッケルめっき浴を用い、封口板にも撥水性材料を含有しないニッケルめっき層を形成したこと以外、実施例1と同様に、コイン形電池を完成させた。
<< Comparative Example 1 >>
A coin-type battery was completed in the same manner as in Example 1 except that the first nickel plating bath was used and a nickel plating layer not containing a water repellent material was also formed on the sealing plate.
 《実施例2》
 第二ニッケルめっき浴を用い、電池ケースにも撥水性材料を含むニッケルめっき層を形成したこと以外、実施例1と同様に、コイン形電池を完成させた。
Example 2
A coin-type battery was completed in the same manner as in Example 1 except that a second nickel plating bath was used and a nickel plating layer containing a water repellent material was also formed on the battery case.
 [評価]
 実施例1、2および比較例1のコイン形電池を、それぞれ10個作製した。
[Evaluation]
Ten coin batteries of Examples 1 and 2 and Comparative Example 1 were produced.
 (封口板の撥水性)
 25℃の環境下にて、各電池の封口板の外面に水滴を10μL滴下し、3秒後、水滴と封口板との接触角を測定した。10個の電池について、接触角の平均値を求めた。結果を表3に示す。
(Water repellency of sealing plate)
Under an environment of 25 ° C., 10 μL of a water droplet was dropped on the outer surface of the sealing plate of each battery, and after 3 seconds, the contact angle between the water droplet and the sealing plate was measured. The average value of the contact angle was determined for 10 batteries. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (短絡電流)
 実施例1の電池10個を、2片の鶏の生肉で挟み込み、35℃で2時間放置した。その後、鶏の生肉の状態を目視で観察した。実施例2、比較例1の電池10個についても同様に評価した。
(Short-circuit current)
Ten batteries of Example 1 were sandwiched between two pieces of raw chicken meat and left at 35 ° C. for 2 hours. Thereafter, the state of the raw chicken meat was visually observed. 10 batteries of Example 2 and Comparative Example 1 were similarly evaluated.
 その結果、実施例1の電池を挟み込んだ生肉2片の20箇所に、いずれも僅かに変色が見られたが、その程度は軽度の火傷と同程度であると推察された。また、実施例2の電池を挟み込んだ生肉2片の20箇所には、ほとんど変色が見られなかった。一方、比較例1の電池を挟み込んだ生肉2片の20箇所には、激しい変色がみられた。 As a result, although 20 pieces of raw meat sandwiching the battery of Example 1 were slightly discolored, it was presumed that the degree was the same as that of mild burns. Further, almost no discoloration was observed in 20 places of the two pieces of raw meat sandwiching the battery of Example 2. On the other hand, severe discoloration was observed at 20 locations of the two pieces of raw meat sandwiching the battery of Comparative Example 1.
 以上より、封口板の外面に撥水性ニッケルめっき層を形成することにより、生体によるコイン形電池の誤飲が生じた場合でも、生体に対する危害を大きく低減できることが明らかとなった。 From the above, it has been clarified that by forming a water-repellent nickel plating layer on the outer surface of the sealing plate, the harm to the living body can be greatly reduced even if the coin-shaped battery is accidentally swallowed by the living body.
 上記実施例では、撥水性めっき層を形成したが、撥水性材料を含み、かつ、導電性を有する被膜であれば、例えばフッ素樹脂と導電性粒子との複合物の被膜を封口板および/または電池ケースの外面に形成する場合でも、コイン形電池の安全性を同様に高めることができるものと考えられる。ただし、接触抵抗を低減し、かつ安定化させる観点からは、撥水性めっき層を被膜として形成することが望ましい。 In the above embodiment, the water-repellent plating layer is formed. However, if the coating includes a water-repellent material and has conductivity, for example, a coating of a composite of fluororesin and conductive particles may be used as a sealing plate and / or Even when it is formed on the outer surface of the battery case, it is considered that the safety of the coin-type battery can be similarly improved. However, it is desirable to form the water-repellent plating layer as a film from the viewpoint of reducing and stabilizing the contact resistance.
 本発明は、リチウム電池、アルカリ電池、アルカリ蓄電池など、一次電池および二次電池を含む様々な電池に適用できるが、電池電圧が3.0Vを超える電池(例えばリチウム電池)において特に有用である。 The present invention can be applied to various batteries including a primary battery and a secondary battery such as a lithium battery, an alkaline battery, and an alkaline storage battery, but is particularly useful for a battery having a battery voltage exceeding 3.0 V (for example, a lithium battery).
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。 Although the present invention has been described in terms of the presently preferred embodiments, such disclosure should not be construed as limiting. Various changes and modifications will no doubt become apparent to those skilled in the art to which the present invention pertains after reading the above disclosure. Accordingly, the appended claims should be construed to include all variations and modifications without departing from the true spirit and scope of this invention.
1:電池ケース
1a:底面部
1b:側部
2:正極
3:負極
4:セパレータ
5:ガスケット
6:封口板
6a:天面部
6b:周縁部
6f:フランジ部
7a,7b:撥水性めっき層
10:コイン形電池
1: battery case 1a: bottom surface portion 1b: side portion 2: positive electrode 3: negative electrode 4: separator 5: gasket 6: sealing plate 6a: top surface portion 6b: peripheral edge portion 6f: flange portions 7a, 7b: water repellent plating layer 10: Coin battery

Claims (7)

  1.  底面部および前記底面部の周縁から立ち上がる側部を有する電池ケースと、
     天板部および前記天板部から前記側部の内側へ延びる周縁部を有する封口板と、
     前記側部と前記周縁部との間に圧縮されて介在するガスケットと、
     前記電池ケースと前記封口板により密閉された発電要素と、
     前記電池ケースおよび前記封口板の少なくとも一方の外面に設けられた被膜と、を具備し、
     前記被膜は、撥水性材料を含み、かつ、少なくとも加圧状態において導電性を有する、コイン形電池。
    A battery case having a bottom portion and side portions that rise from the periphery of the bottom portion;
    A sealing plate having a top plate portion and a peripheral portion extending from the top plate portion to the inside of the side portion;
    A gasket interposed between the side portion and the peripheral portion compressed and interposed,
    A power generation element sealed by the battery case and the sealing plate;
    A coating provided on the outer surface of at least one of the battery case and the sealing plate,
    The coin-type battery includes a water-repellent material and has electrical conductivity at least in a pressurized state.
  2.  少なくとも前記封口板の前記外面が、前記被膜を有する、請求項1記載のコイン形電池。 2. The coin-type battery according to claim 1, wherein at least the outer surface of the sealing plate has the coating.
  3.  前記封口板の前記周縁部は、前記天面部の端部からフランジ部を形成し、該フランジ部の少なくとも前記外面が、前記被膜を有する、請求項1記載のコイン形電池。 The coin-type battery according to claim 1, wherein the peripheral portion of the sealing plate forms a flange portion from an end portion of the top surface portion, and at least the outer surface of the flange portion has the coating film.
  4.  前記撥水性材料が、フッ素樹脂である、請求項1~3のいずれか1項に記載のコイン形電池。 The coin-type battery according to any one of claims 1 to 3, wherein the water-repellent material is a fluororesin.
  5.  前記被膜が、前記撥水性材料と金属とを含むめっき層である、請求項1~4のいずれか1項に記載のコイン形電池。 The coin-type battery according to any one of claims 1 to 4, wherein the coating is a plating layer containing the water-repellent material and a metal.
  6.  前記金属は、ニッケルを含む、請求項5に記載のコイン形電池。 The coin-type battery according to claim 5, wherein the metal includes nickel.
  7.  前記めっき層の厚さが、0.5~8μmである、請求項5~6のいずれか1項に記載のコイン形電池。 The coin-type battery according to any one of claims 5 to 6, wherein the plating layer has a thickness of 0.5 to 8 µm.
PCT/JP2015/006025 2014-12-24 2015-12-04 Coin-shaped battery WO2016103590A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014260923A JP2018028961A (en) 2014-12-24 2014-12-24 Coin cell
JP2014-260923 2014-12-24

Publications (1)

Publication Number Publication Date
WO2016103590A1 true WO2016103590A1 (en) 2016-06-30

Family

ID=56149661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006025 WO2016103590A1 (en) 2014-12-24 2015-12-04 Coin-shaped battery

Country Status (2)

Country Link
JP (1) JP2018028961A (en)
WO (1) WO2016103590A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122250A1 (en) * 2016-01-12 2017-07-20 パナソニックIpマネジメント株式会社 Coin-shaped battery
US10700362B2 (en) 2016-09-15 2020-06-30 Energizer Brands, Llc Coatings for mitigation of coin cell ingestion
CN111373575A (en) * 2017-11-09 2020-07-03 杜拉塞尔美国经营公司 Battery with safety mechanism
US11469465B2 (en) 2020-08-26 2022-10-11 Fenwood Labs Inc. Safely ingestible batteries that rapidly deactivate in biological environments and methods of making same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786647B (en) * 2017-11-10 2021-11-09 松栢投资有限公司 Cutting mechanism, rechargeable battery and method for manufacturing housing of rechargeable battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376323A (en) * 1976-12-17 1978-07-06 Sendai Seimitsu Zairiyou Kenki Alkaline battery
JPS5826451A (en) * 1981-08-11 1983-02-16 Matsushita Electric Ind Co Ltd Battery
JPS60189160A (en) * 1984-03-08 1985-09-26 Kawaguchiko Seimitsu Kk Flat battery
JPH04248249A (en) * 1991-01-23 1992-09-03 Seiko Electronic Components Ltd Coin type organic electrolyte cell and manufacture thereof
JP2008021566A (en) * 2006-07-14 2008-01-31 Hitachi Maxell Ltd Flat battery
US20080219487A1 (en) * 2007-03-05 2008-09-11 Siemens Audiologische Technik Gmbh Voltage source with a coated housing
JP2011187401A (en) * 2010-03-11 2011-09-22 Hitachi Maxell Energy Ltd Flat battery and tire pressure detecting device equipped with it
US20130143104A1 (en) * 2007-04-13 2013-06-06 Varta Microbattery Gmbh Button cell comprising a coated exterior

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376323A (en) * 1976-12-17 1978-07-06 Sendai Seimitsu Zairiyou Kenki Alkaline battery
JPS5826451A (en) * 1981-08-11 1983-02-16 Matsushita Electric Ind Co Ltd Battery
JPS60189160A (en) * 1984-03-08 1985-09-26 Kawaguchiko Seimitsu Kk Flat battery
JPH04248249A (en) * 1991-01-23 1992-09-03 Seiko Electronic Components Ltd Coin type organic electrolyte cell and manufacture thereof
JP2008021566A (en) * 2006-07-14 2008-01-31 Hitachi Maxell Ltd Flat battery
US20080219487A1 (en) * 2007-03-05 2008-09-11 Siemens Audiologische Technik Gmbh Voltage source with a coated housing
US20130143104A1 (en) * 2007-04-13 2013-06-06 Varta Microbattery Gmbh Button cell comprising a coated exterior
JP2011187401A (en) * 2010-03-11 2011-09-22 Hitachi Maxell Energy Ltd Flat battery and tire pressure detecting device equipped with it

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122250A1 (en) * 2016-01-12 2017-07-20 パナソニックIpマネジメント株式会社 Coin-shaped battery
JPWO2017122250A1 (en) * 2016-01-12 2018-04-12 パナソニックIpマネジメント株式会社 Coin type lithium battery
US10700362B2 (en) 2016-09-15 2020-06-30 Energizer Brands, Llc Coatings for mitigation of coin cell ingestion
CN111373575A (en) * 2017-11-09 2020-07-03 杜拉塞尔美国经营公司 Battery with safety mechanism
US11469465B2 (en) 2020-08-26 2022-10-11 Fenwood Labs Inc. Safely ingestible batteries that rapidly deactivate in biological environments and methods of making same

Also Published As

Publication number Publication date
JP2018028961A (en) 2018-02-22

Similar Documents

Publication Publication Date Title
JP6775164B2 (en) Coin type lithium battery
WO2016103590A1 (en) Coin-shaped battery
JP6318375B2 (en) Coin battery
WO2017119033A1 (en) Coin-shaped battery
US9515301B2 (en) Coin battery having a sealing plate which suppresses deformation
JP2017126420A (en) Coin-shaped battery
JP6484829B2 (en) Coin type lithium battery
JP6695047B2 (en) Coin cell battery
JP6706752B2 (en) Coin cell battery
US20180301672A1 (en) Sealing body for cylindrical batteries, and cylindrical battery using same
WO2017047653A1 (en) Non-aqueous secondary cell electrode, method for manufacturing same, and non-aqueous secondary cell
EP1687864B1 (en) Battery including aluminum components
JP2017126435A (en) Coin-shaped battery
JP6593659B2 (en) Nonaqueous electrolyte battery and nonaqueous electrolyte battery member
JP2007149378A (en) Nonaqueous electrolyte secondary battery
CN110800137B (en) Positive electrode for secondary battery and secondary battery
JP7170296B2 (en) Non-aqueous coin cell
US11211637B2 (en) Lithium battery
CN111164814B (en) Cylindrical secondary battery
JP2018101566A (en) Coin-shaped battery
JPH10189006A (en) Air cell
JP2011100689A (en) Nonaqueous electrolyte battery
WO2024203516A1 (en) Battery
JP6846860B2 (en) Non-aqueous electrolyte secondary battery
JP2007299695A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte battery using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15872167

Country of ref document: EP

Kind code of ref document: A1