JP2013036744A - Power supply voltage detection circuit - Google Patents

Power supply voltage detection circuit Download PDF

Info

Publication number
JP2013036744A
JP2013036744A JP2011170255A JP2011170255A JP2013036744A JP 2013036744 A JP2013036744 A JP 2013036744A JP 2011170255 A JP2011170255 A JP 2011170255A JP 2011170255 A JP2011170255 A JP 2011170255A JP 2013036744 A JP2013036744 A JP 2013036744A
Authority
JP
Japan
Prior art keywords
power supply
circuit
supply voltage
voltage
reference voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011170255A
Other languages
Japanese (ja)
Other versions
JP5817306B2 (en
Inventor
Satoshi Sugawara
聡 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011170255A priority Critical patent/JP5817306B2/en
Publication of JP2013036744A publication Critical patent/JP2013036744A/en
Application granted granted Critical
Publication of JP5817306B2 publication Critical patent/JP5817306B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Electronic Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power supply voltage detection circuit avoiding malfunction during low power supply voltage, regarding the power supply voltage detection circuit detecting a low voltage state, performing a notification to a system or stopping the system.SOLUTION: A pull-up circuit 250 is provided for an output of a circuit 200 for generating reference voltage Vref, and the circuit 200 for generating the reference voltage Vref is pulled up to power supply voltage VE(100). A switch S1(347) is provided in series with a detection resistance comprising R1(341) and R2(342), and the switch S1(347) is turned on/off by the circuit 200 for generating the reference voltage Vref. In the configuration, the reference voltage Vref(225) is pulled up to the power supply voltage VE(100) by the pull-up circuit 250 during low power supply voltage, the switch S1(347) is turned off and a partial voltage value VI(345) is forcibly lowered to hold a state of Vref>VI and avoid an output of an erroneous signal from a comparator 330.

Description

本発明は、電源電圧検出回路に関し、特に低電源電圧時の誤動作を回避する電源電圧検出回路に関する。   The present invention relates to a power supply voltage detection circuit, and more particularly to a power supply voltage detection circuit that avoids a malfunction at a low power supply voltage.

電子回路分野では、電源電圧が不足した場合の誤動作を回避するために、電源電圧検出回路を設け、電源電圧が所定値よりも低下した場合に、電源電圧検出回路が低電圧状態を検出し、システムへの通知やシステムの停止等を行っている。   In the electronic circuit field, in order to avoid malfunction when the power supply voltage is insufficient, a power supply voltage detection circuit is provided, and when the power supply voltage drops below a predetermined value, the power supply voltage detection circuit detects a low voltage state, Notification to the system, system shutdown, etc. are performed.

図7は、従来構成の電源電圧検出回路の一例を示す図である。図7において従来構成の電源電圧検出回路は、第1の検出抵抗R1(41),第2の検出抵抗R2(42)、基準電圧Vrefを生成する回路20、および、上記第1及び第2の検出抵抗R1,R2による電源電圧VE(10)の分圧値VI(45)と基準電圧Vref(25)を比較するための比較器30から構成されている。   FIG. 7 is a diagram illustrating an example of a power supply voltage detection circuit having a conventional configuration. In FIG. 7, a power supply voltage detection circuit having a conventional configuration includes a first detection resistor R1 (41), a second detection resistor R2 (42), a circuit 20 for generating a reference voltage Vref, and the first and second resistors. The comparator 30 is configured to compare the divided value VI (45) of the power supply voltage VE (10) by the detection resistors R1 and R2 with the reference voltage Vref (25).

図8は、図7に示した従来構成の電源電圧検出回路における誤動作の発生を説明する図である。図7に示す電源電圧VE(10)が増加すると、第1の検出抵抗R1(41)及び第2の検出抵抗R2(42)によって分圧された電源電圧VE(10)の分圧値VI(45)も図8に示すように電源電圧VE(10)に比例して増加する。そして電源電圧VE(10)がVI=Vrefとなる電源電圧VE2以上になると、図7に示す比較器30の出力VOが反転し、電源電圧VE(10)が所望の値以上になったことを比較器30の出力VOによって知らせる。ここで図8中では比較器30の出力VOがLレベルからHレベルに変化したのを検出する例を示しているが、論理を反転させてHレベルからLレベルに変化するのを検出する構成としても良い。   FIG. 8 is a diagram for explaining the occurrence of malfunction in the power supply voltage detection circuit of the conventional configuration shown in FIG. When the power supply voltage VE (10) shown in FIG. 7 increases, the divided value VI () of the power supply voltage VE (10) divided by the first detection resistor R1 (41) and the second detection resistor R2 (42). 45) also increases in proportion to the power supply voltage VE (10) as shown in FIG. Then, when the power supply voltage VE (10) becomes equal to or higher than the power supply voltage VE2 where VI = Vref, the output VO of the comparator 30 shown in FIG. 7 is inverted, and the power supply voltage VE (10) exceeds the desired value. This is notified by the output VO of the comparator 30. FIG. 8 shows an example in which the output VO of the comparator 30 is detected to change from the L level to the H level. However, the configuration in which the logic is inverted to detect the change from the H level to the L level is shown. It is also good.

また図7および図8に示すように、電源電圧VE(10)が低下して基準電圧Vrefを生成する回路20の電源電圧が不足すると、基準電圧Vref(25)が低下する。図8の上部に示すようにVE<VE1では、分圧値VI(45)と基準電圧Vref(25)の大小関係が逆転してしまい、比較器30の出力VOが反転し、図8の下左部に示すように誤信号を出力することになる。   As shown in FIGS. 7 and 8, when the power supply voltage VE (10) decreases and the power supply voltage of the circuit 20 that generates the reference voltage Vref becomes insufficient, the reference voltage Vref (25) decreases. As shown in the upper part of FIG. 8, when VE <VE1, the magnitude relationship between the divided voltage value VI (45) and the reference voltage Vref (25) is reversed, the output VO of the comparator 30 is reversed, and the lower part of FIG. As shown in the left part, an error signal is output.

下記特許文献1には、電源電圧の起動時において、電源電圧が急峻に立ち上がるのに比べて基準電圧の起動が遅く立ち上がる場合には低電源電圧未検出を出力できないという問題に対処するために、電源電圧検出点と比較器入力との間にスイッチを挿入し、かつ該比較器入力とグランド間に容量を接続し、さらに基準電圧の出力電圧を前記比較器の他方の入力に接続すると共にしきい値素子を介して前記スイッチの制御端子に接続するように構成することで急峻な電源電圧の立ち上がりに対しても確実に電源未検出信号を検出できるようにした電源検出回路が開示されている。   In Patent Document 1 below, in order to cope with the problem that the low power supply voltage cannot be detected when the reference voltage starts up more slowly than when the power supply voltage starts up sharply at the time of starting up the power supply voltage, Insert a switch between the power supply voltage detection point and the comparator input, connect a capacitor between the comparator input and the ground, and connect the output voltage of the reference voltage to the other input of the comparator. A power supply detection circuit is disclosed that is configured to be connected to the control terminal of the switch via a threshold element so that a power supply non-detection signal can be reliably detected even when the power supply voltage suddenly rises. .

また下記特許文献2には、電源電圧が低く、基準電圧が充分出力されていない場合に、比較器の反転入力端子に電圧を印加せず、比較器出力をハイレベルに維持する電源電圧検出回路が開示されている。   Patent Document 2 below discloses a power supply voltage detection circuit that maintains a comparator output at a high level without applying a voltage to the inverting input terminal of the comparator when the power supply voltage is low and the reference voltage is not sufficiently output. Is disclosed.

特開2004−317414号公報JP 2004-317414 A 特開2005−278056号公報JP 2005-278056 A

上記特許文献1の方法では、電源電圧の停止後に、比較器の入力端子に接続されているコンデンサが放電される前に電源電圧を再起動すると、比較器が誤信号を出力する恐れがあるという問題がある。   According to the method disclosed in Patent Document 1, if the power supply voltage is restarted after the power supply voltage is stopped and before the capacitor connected to the input terminal of the comparator is discharged, the comparator may output an error signal. There's a problem.

また上記特許文献2の方法では、電源電圧が低く、基準電圧が充分出力されていない場合に、比較器の反転入力端子に電圧を印加せず、比較器出力をハイレベルに維持しているものの、比較器入力の非反転入力端子を反転入力端子よりも高電位に維持できないため比較器から誤信号を出力する恐れがあるという問題がある。   In the method of Patent Document 2, when the power supply voltage is low and the reference voltage is not sufficiently output, no voltage is applied to the inverting input terminal of the comparator, and the comparator output is maintained at a high level. However, since the non-inverting input terminal of the comparator input cannot be maintained at a higher potential than the inverting input terminal, there is a problem that an erroneous signal may be output from the comparator.

そこで本発明の目的は、低電圧状態を検出し、システムへの通知やシステムの停止等を行う電源電圧検出回路において低電源電圧時の誤動作を回避する電源電圧検出回路を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a power supply voltage detection circuit that detects a low voltage state and avoids a malfunction at the time of a low power supply voltage in a power supply voltage detection circuit that notifies a system, stops the system, and the like.

上記課題を解決するために本発明の一態様は、低電源電位側を基準として基準電圧を生成する回路と電源電圧検出用分圧抵抗と比較器で構成される電源電圧検出回路において、前記基準電圧を生成する回路の出力を高電位電源電圧にプルアップするプルアップ回路と、前記分圧抵抗の高電位側に直列にスイッチを設け、低電源電圧時に前記プルアップ回路で基準電圧をプルアップし、基準電圧電位によって、前記スイッチをオフし、分圧抵抗による分圧値を低電源電位側にプルダウンすることを特徴とする。   In order to solve the above problems, one embodiment of the present invention is a power supply voltage detection circuit including a circuit that generates a reference voltage with a low power supply potential side as a reference, a power supply voltage detection voltage dividing resistor, and a comparator. A pull-up circuit that pulls up the output of the circuit that generates the voltage to the high-potential power supply voltage, and a switch in series on the high-potential side of the voltage dividing resistor, pulls up the reference voltage with the pull-up circuit when the power supply voltage is low Then, the switch is turned off by a reference voltage potential, and the divided value by the voltage dividing resistor is pulled down to the low power supply potential side.

上記において前記プルアップ回路が、基準電圧を生成する回路の出力段にNチャネルMOSトランジスタのドレインとソースを直列接続し、ゲートを高電源電位に接続した構成であり、前記スイッチがPチャネルMOSトランジスタであり、ゲートが基準電圧を生成する回路の出力に接続された構成であることを特徴とする。   In the above configuration, the pull-up circuit has a configuration in which a drain and a source of an N-channel MOS transistor are connected in series to an output stage of a circuit for generating a reference voltage, and a gate is connected to a high power supply potential, and the switch is a P-channel MOS transistor The gate is connected to the output of the circuit that generates the reference voltage.

上記課題を解決するために本発明の別の態様は、高電源電位側を基準として基準電圧を生成する回路と電源電圧検出用分圧抵抗と比較器で構成される電源電圧検出回路において、前記基準電圧を生成する回路の出力を低電位電源電圧にプルダウンするプルダウン回路と、前記分圧抵抗の低電位側に直列にスイッチを設け、低電源電圧時に前記プルダウン回路で基準電圧をプルダウンし、基準電圧電位によって、前記スイッチをオフし、分圧抵抗による分圧値を高電源電位側にプルアップすることを特徴とする。   In order to solve the above problem, another aspect of the present invention provides a circuit for generating a reference voltage with a high power supply potential side as a reference, a power supply voltage detecting voltage dividing resistor, and a comparator. A pull-down circuit that pulls down the output of a circuit that generates a reference voltage to a low-potential power supply voltage, and a switch in series on the low-potential side of the voltage dividing resistor. When the power supply voltage is low, the pull-down circuit pulls down the reference voltage. The switch is turned off according to the voltage potential, and the divided value by the voltage dividing resistor is pulled up to the high power supply potential side.

上記において前記プルダウン回路が、基準電圧を生成する回路の出力段にPチャネルMOSトランジスタのドレインとソースを直列接続し、ゲートを低電源電位に接続した構成であり、前記スイッチがNチャネルMOSトランジスタであり、ゲートが基準電圧を生成する回路の出力に接続された構成であることを特徴とする。   In the above, the pull-down circuit has a configuration in which a drain and a source of a P-channel MOS transistor are connected in series to an output stage of a circuit that generates a reference voltage, and a gate is connected to a low power supply potential, and the switch is an N-channel MOS transistor. And a gate is connected to an output of a circuit for generating a reference voltage.

本発明によれば、低電圧状態を検出し、システムへの通知やシステムの停止等を行う電源電圧検出回路において、低電源電圧時の基準電圧が低下した場合の誤動作を回避することができ、低電源電圧時の誤動作の抑制が可能となる。   According to the present invention, in the power supply voltage detection circuit that detects a low voltage state and performs notification to the system, stop of the system, etc., it is possible to avoid malfunction when the reference voltage at the time of the low power supply voltage is reduced, It is possible to suppress malfunction at low power supply voltage.

本発明の実施形態に係る電源電圧検出回路の基本的構成を示す図である。It is a figure which shows the basic composition of the power supply voltage detection circuit which concerns on embodiment of this invention. 本発明の実施形態に係る電源電圧検出回路の具体例を示す図である。It is a figure which shows the specific example of the power supply voltage detection circuit which concerns on embodiment of this invention. 図2に示した本発明の実施形態に係る電源電圧検出回路の具体例の動作概要を説明する図である。It is a figure explaining the operation | movement outline | summary of the specific example of the power supply voltage detection circuit which concerns on embodiment of this invention shown in FIG. 図3に示す動作グラフにおいて図1中のプルアップ回路を用いない場合の動作比較例を示す図である。FIG. 4 is a diagram showing an operation comparison example when the pull-up circuit in FIG. 1 is not used in the operation graph shown in FIG. 3. 図2中のMOSトランジスタM1のしきい値電圧Vt1が低い場合の動作概要を示す図である。FIG. 3 is a diagram showing an outline of operation when a threshold voltage Vt1 of a MOS transistor M1 in FIG. 2 is low. 図5に示す動作グラフにおいて図1中のプルアップ回路を用いない場合の動作比較例を示す図である。FIG. 6 is a diagram showing an operation comparison example when the pull-up circuit in FIG. 1 is not used in the operation graph shown in FIG. 5. 従来構成の電源電圧検出回路の一例を示す図である。It is a figure which shows an example of the power supply voltage detection circuit of a conventional structure. 図7に示した従来構成の電源電圧検出回路における誤動作の発生を説明する図である。FIG. 8 is a diagram for explaining the occurrence of malfunction in the power supply voltage detection circuit of the conventional configuration shown in FIG. 7.

以下、本発明の実施の形態について、詳細に説明する。
図1は、本発明の実施形態に係る電源電圧検出回路の基本的構成を示す図である。図1において本発明の実施形態に係る電源電圧検出回路は、基準電圧Vrefを生成する回路200の出力にプルアップ回路250を設け、基準電圧Vrefを電源電圧VE(100)までプルアップする。さらに、電源電圧VE(100)の分圧値VI(345)を検出するためのR1(341),R2(342)から成る検出抵抗に直列にスイッチS1(347)を設け、基準電圧Vrefを生成する回路200の出力によって、上記スイッチS1(347)をオン/オフする。そうしておいて低電源電圧時に上記プルアップ回路250により基準電圧Vrefを生成する回路200の出力Vref(225)を上記電源電圧VE(100)までプルアップさせると共に、上記スイッチS1(347)をオフして分圧値VI(345)を強制的に零レベルに低下させることで、Vref(225)>VI(345)の状態を保持し、比較器330からの誤信号出力を回避する。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a diagram showing a basic configuration of a power supply voltage detection circuit according to an embodiment of the present invention. In FIG. 1, the power supply voltage detection circuit according to the embodiment of the present invention includes a pull-up circuit 250 at the output of the circuit 200 that generates the reference voltage Vref, and pulls up the reference voltage Vref to the power supply voltage VE (100). In addition, a switch S1 (347) is provided in series with the detection resistor consisting of R1 (341) and R2 (342) to detect the divided voltage value VI (345) of the power supply voltage VE (100) to generate the reference voltage Vref. The switch S1 (347) is turned on / off according to the output of the circuit 200. Then, when the power supply voltage is low, the pull-up circuit 250 generates the reference voltage Vref and the output Vref (225) of the circuit 200 is pulled up to the power supply voltage VE (100), and the switch S1 (347) is turned on. By turning off and forcibly reducing the divided voltage value VI (345) to zero level, the state of Vref (225)> VI (345) is maintained, and an erroneous signal output from the comparator 330 is avoided.

図2は、本発明の実施形態に係る電源電圧検出回路の具体例を示す図である。図2では、基準電圧Vrefを生成する回路200として一般的なバンドギャップ基準電圧生成回路200を用いた例を示しているが、他の構成の基準電圧生成回路を用いても良い。また図1中のスイッチS1(347)としてPチャネルMOSトランジスタM1(347)を低電圧検出回路300中において使用する例を示している。さらに、図1中のプルアップ回路250として、バンドギャップ基準電圧生成回路200の出力段における抵抗R4(208)の一端とバイポーラPNPトランジスタQ3(209)のエミッタの間にNチャネルMOSトランジスタM2(250)を設けている。その場合、抵抗R4(208)の一端は、NチャネルMOSトランジスタM2(250)のドレインに接続され、NチャネルMOSトランジスタM2(250)のソースはバイポーラPNPトランジスタQ3(209)のエミッタに接続される。バイポーラPNPトランジスタQ3(209)のベースはアースに接続される。またNチャネルMOSトランジスタM2(250)のゲートは、電源電圧VE(100)に接続される。なおバンドギャップ基準電圧生成回路200の出力段は、抵抗R4(208)の他端と電源電圧VE(100)との間に直列にPチャネルMOSトランジスタM7(207)を接続する。そしてPチャネルMOSトランジスタM7(207)は、バンドギャップ基準電圧生成回路200におけるPチャネルMOSトランジスタM5(205)とPチャネルMOSトランジスタM6(206)のゲートに共通接続される。その際、PチャネルMOSトランジスタM6(206)のゲートをそのドレインに接続するようにしてミラー回路を構成する。   FIG. 2 is a diagram showing a specific example of the power supply voltage detection circuit according to the embodiment of the present invention. Although FIG. 2 shows an example in which a general bandgap reference voltage generation circuit 200 is used as the circuit 200 for generating the reference voltage Vref, a reference voltage generation circuit having another configuration may be used. Further, an example in which a P-channel MOS transistor M1 (347) is used in the low voltage detection circuit 300 as the switch S1 (347) in FIG. Further, as the pull-up circuit 250 in FIG. 1, an N-channel MOS transistor M2 (250) is provided between one end of the resistor R4 (208) and the emitter of the bipolar PNP transistor Q3 (209) in the output stage of the bandgap reference voltage generation circuit 200. ). In that case, one end of the resistor R4 (208) is connected to the drain of the N-channel MOS transistor M2 (250), and the source of the N-channel MOS transistor M2 (250) is connected to the emitter of the bipolar PNP transistor Q3 (209). . The base of bipolar PNP transistor Q3 (209) is connected to ground. The gate of N channel MOS transistor M2 (250) is connected to power supply voltage VE (100). In the output stage of the bandgap reference voltage generation circuit 200, a P-channel MOS transistor M7 (207) is connected in series between the other end of the resistor R4 (208) and the power supply voltage VE (100). The P channel MOS transistor M7 (207) is connected in common to the gates of the P channel MOS transistor M5 (205) and the P channel MOS transistor M6 (206) in the band gap reference voltage generation circuit 200. At this time, a mirror circuit is configured by connecting the gate of the P-channel MOS transistor M6 (206) to the drain thereof.

またバンドギャップ基準電圧生成回路200におけるNチャネルMOSトランジスタM3(203)とNチャネルMOSトランジスタM4(204)のゲートは共通接続され、NチャネルMOSトランジスタM3(203)とNチャネルMOSトランジスタM4(204)のドレインは、上記PチャネルMOSトランジスタM5(205)とPチャネルMOSトランジスタM6(206)のドレインにそれぞれ接続される。そしてNチャネルMOSトランジスタM3(203)のゲートをそのドレインに接続するようにしてミラー回路を構成する。NチャネルMOSトランジスタM3(203)のソースはバイポーラPNPトランジスタQ1(201)のエミッタに接続され、バイポーラPNPトランジスタQ1(201)のコレクタはアースに接続される。またNチャネルMOSトランジスタM4(204)のソースは抵抗R3(210)の一端に接続され、抵抗R3(210)の他端は、バイポーラPNPトランジスタQ2(202)のエミッタに接続され、バイポーラPNPトランジスタQ2(202)のコレクタはアースに接続される。バイポーラPNPトランジスタQ1(201)およびバイポーラPNPトランジスタQ2(202)のベースはアースに接続される。なおバンドギャップ基準電圧生成回路200におけるバンドギャップとしては、当業者によく知られているように上記PNPトランジスタQ1(201),Q2(202),Q3(209)の各ベース−エミッタ間電圧が利用される。   The gates of the N-channel MOS transistor M3 (203) and the N-channel MOS transistor M4 (204) in the band gap reference voltage generation circuit 200 are connected in common, and the N-channel MOS transistor M3 (203) and the N-channel MOS transistor M4 (204) Are connected to the drains of the P-channel MOS transistor M5 (205) and the P-channel MOS transistor M6 (206), respectively. Then, a mirror circuit is configured such that the gate of the N-channel MOS transistor M3 (203) is connected to its drain. The source of N channel MOS transistor M3 (203) is connected to the emitter of bipolar PNP transistor Q1 (201), and the collector of bipolar PNP transistor Q1 (201) is connected to ground. The source of the N-channel MOS transistor M4 (204) is connected to one end of the resistor R3 (210), and the other end of the resistor R3 (210) is connected to the emitter of the bipolar PNP transistor Q2 (202), and the bipolar PNP transistor Q2 The collector of (202) is connected to ground. The bases of bipolar PNP transistor Q1 (201) and bipolar PNP transistor Q2 (202) are connected to ground. As the band gap in the band gap reference voltage generation circuit 200, the base-emitter voltages of the PNP transistors Q1 (201), Q2 (202), and Q3 (209) are used as is well known to those skilled in the art. Is done.

図3は、図2に示した本発明の実施形態に係る電源電圧検出回路の具体例の動作概要を説明する図である。図3中のVgsm1,Vgsm2は各々MOSトランジスタM1(347)とM2(250)のゲート・ソース間電圧の変化を示している。Vt1,Vt2は各々MOSトランジスタM1(347)とM2(250)のしきい値電圧である。図3に示すように電源電圧VEの増加と共に、ゲート・ソース間電圧Vgsm1,Vgsm2は増加傾向を示す。電源電圧VEがVE<VE3では、Vgsm2<Vt2であるため、MOSトランジスタM2(250)はオフとなる。このため基準電圧Vref(225)は電源電圧VE(100)にプルアップされている。さらに、ゲート・ソース間電圧Vgsm1=VE-Vref=0Vとなり、MOSトランジスタM1(347)もオフとなる。よって、分圧値VI(345)は零までプルダウンされる。これにより、比較器330からの誤信号出力が回避される。   FIG. 3 is a diagram for explaining an outline of the operation of a specific example of the power supply voltage detection circuit according to the embodiment of the present invention shown in FIG. Vgsm1 and Vgsm2 in FIG. 3 indicate changes in the gate-source voltages of the MOS transistors M1 (347) and M2 (250), respectively. Vt1 and Vt2 are the threshold voltages of the MOS transistors M1 (347) and M2 (250), respectively. As shown in FIG. 3, as the power supply voltage VE increases, the gate-source voltages Vgsm1, Vgsm2 show an increasing tendency. When the power supply voltage VE is VE <VE3, since Vgsm2 <Vt2, the MOS transistor M2 (250) is turned off. For this reason, the reference voltage Vref (225) is pulled up to the power supply voltage VE (100). Further, the gate-source voltage Vgsm1 = VE−Vref = 0V, and the MOS transistor M1 (347) is also turned off. Therefore, the partial pressure value VI (345) is pulled down to zero. Thereby, an erroneous signal output from the comparator 330 is avoided.

図3に示すように電源電圧VEがVE>VE3では、Vgsm2>Vt2となるためMOSトランジスタM2(250)はオンし、基準電圧Vref(225)は上昇する。さらにゲート・ソース間電圧Vgsm1も上昇するが、Vgsm1<Vt1であるためMOSトランジスタM1(347)はオフ状態が保持され、分圧値VI(345)は零までプルダウンされる。電源電圧VEがVE>VE4では、Vgsm1>Vt1となるためMOSトランジスタM1(347)はオンし、分圧値VI(345)は電源電圧VE(100)に比例して増加する。電源電圧VEがVE>VE2になると、VI(345)>Vref(225)となり、比較器330の出力VOが反転し、電源電圧VEが上昇したことを通知する。   As shown in FIG. 3, when the power supply voltage VE is VE> VE3, Vgsm2> Vt2, the MOS transistor M2 (250) is turned on and the reference voltage Vref (225) is increased. Further, the gate-source voltage Vgsm1 also rises, but since Vgsm1 <Vt1, the MOS transistor M1 (347) is maintained in the off state, and the divided voltage value VI (345) is pulled down to zero. When the power supply voltage VE is VE> VE4, Vgsm1> Vt1, so that the MOS transistor M1 (347) is turned on, and the divided voltage VI (345) increases in proportion to the power supply voltage VE (100). When the power supply voltage VE becomes VE> VE2, VI (345)> Vref (225) is established, and the output VO of the comparator 330 is inverted to notify that the power supply voltage VE has increased.

図4は、図3に示す動作グラフにおいて図1中のプルアップ回路250(図2中のM2)を用いない場合の動作比較例を示す図である。プルアップ回路250が無い場合、図4中のVE<VE5では、基準電圧Vrefと分圧値VIのいずれも0Vとなるため、図4に示すように比較器330が誤信号を出力する恐れがある。それを抑制するために図1に示すようにプルアップ回路250を設けることで、この誤動作を回避している。   4 is a diagram showing an operation comparison example when the pull-up circuit 250 in FIG. 1 (M2 in FIG. 2) is not used in the operation graph shown in FIG. When there is no pull-up circuit 250, when VE <VE5 in FIG. 4, both the reference voltage Vref and the divided voltage VI are 0V, so that the comparator 330 may output an error signal as shown in FIG. is there. In order to suppress this, this malfunction is avoided by providing a pull-up circuit 250 as shown in FIG.

図5は、図2に示した本発明の実施形態に係る電源電圧検出回路の具体例において、図2中のMOSトランジスタM1のしきい値電圧Vt1が低い( Vt1 < VE3−Vref(at VE=VE3) )場合の動作概要を示す図である。図5に示すように電源電圧VEの増加と共に、ゲート・ソース間電圧Vgsm1とVgsm2は増加傾向を示す。電源電圧VEがVE<VE3では、Vgsm2<Vt2であるため、MOSトランジスタM2(250)はオフとなる。このため基準電圧Vref(225)は電源電圧VE(100)にプルアップされている。さらに、ゲート・ソース間電圧Vgsm1=VE-Vref=0Vとなり、MOSトランジスタM1(347)もオフとなる。よって、分圧値VI(345)は零までプルダウンされる。これにより、比較器330からの誤信号出力が回避される。   FIG. 5 shows a specific example of the power supply voltage detection circuit according to the embodiment of the present invention shown in FIG. 2, in which the threshold voltage Vt1 of the MOS transistor M1 in FIG. 2 is low (Vt1 <VE3−Vref (at VE = It is a figure which shows the operation | movement outline | summary in the case of VE3)). As shown in FIG. 5, the gate-source voltages Vgsm1 and Vgsm2 show an increasing tendency as the power supply voltage VE increases. When the power supply voltage VE is VE <VE3, since Vgsm2 <Vt2, the MOS transistor M2 (250) is turned off. For this reason, the reference voltage Vref (225) is pulled up to the power supply voltage VE (100). Further, the gate-source voltage Vgsm1 = VE−Vref = 0V, and the MOS transistor M1 (347) is also turned off. Therefore, the partial pressure value VI (345) is pulled down to zero. Thereby, an erroneous signal output from the comparator 330 is avoided.

図5に示すように電源電圧VEがVE>VE3では、Vgsm2>Vt2となるためMOSトランジスタM2(250)はオンし、基準電圧Vref(225)は上昇する。さらにゲート・ソース間電圧Vgsm1も上昇し、Vgsm1>Vt1となるためMOSトランジスタM1(347)はオンし、分圧値VI(345)は電源電圧VE(100)に比例して増加する。電源電圧VEがVE>VE2になると、VI(345)>Vref(225)となり、比較器330の出力VOが反転し、電源電圧VEが上昇したことを通知する。この場合、VE=VE3においてVI(345)<Vref(225)になるように基準電圧Vref(225)の値、第1及び第2の検出抵抗R1(341),R2(342)の値、並びにプルアップ回路250またはスイッチS1(347)のしきい値を調整する。その場合、プルアップ回路250のしきい値調整は、抵抗や電流源等で電源電圧VE(100)を分圧し、その電圧をMOSトランジスタM2(250)のゲート電圧に使用することで可能である。またスイッチS1(347)のしきい値調整は、抵抗や電流源等で基準電圧Vref(225)を分圧し、その電圧をMOSトランジスタM1(347)のゲート電圧に使用することで可能である。またはR4(208)を複数個の抵抗を直列接続して構成し、抵抗と抵抗の接続点の電圧をMOSトランジスタM1(347)のゲート電圧に使用しても良い。   As shown in FIG. 5, when the power supply voltage VE is VE> VE3, Vgsm2> Vt2, the MOS transistor M2 (250) is turned on and the reference voltage Vref (225) is increased. Further, the gate-source voltage Vgsm1 also rises and Vgsm1> Vt1, so that the MOS transistor M1 (347) is turned on, and the divided value VI (345) increases in proportion to the power supply voltage VE (100). When the power supply voltage VE becomes VE> VE2, VI (345)> Vref (225) is established, and the output VO of the comparator 330 is inverted to notify that the power supply voltage VE has increased. In this case, the value of the reference voltage Vref (225), the values of the first and second detection resistors R1 (341) and R2 (342) so that VI (345) <Vref (225) at VE = VE3, and The threshold value of the pull-up circuit 250 or the switch S1 (347) is adjusted. In that case, the threshold value of the pull-up circuit 250 can be adjusted by dividing the power supply voltage VE (100) with a resistor, a current source, etc., and using that voltage as the gate voltage of the MOS transistor M2 (250). . The threshold value of the switch S1 (347) can be adjusted by dividing the reference voltage Vref (225) with a resistor, a current source, or the like, and using that voltage as the gate voltage of the MOS transistor M1 (347). Alternatively, R4 (208) may be configured by connecting a plurality of resistors in series, and the voltage at the connection point of the resistors may be used as the gate voltage of the MOS transistor M1 (347).

図6は、図5に示す動作グラフにおいて図1中のプルアップ回路250(図2中のM2)を用いない場合の動作比較例を示す図である。プルアップ回路250が無い場合、図6中のVE=VE6〜VE1の間では、分圧値VI(345)と基準電圧Vref(225)の大小関係が逆転してしまい、比較器330の出力VOが反転し、誤信号を出力することになる。また電源電圧VEがVE<VE6では基準電圧Vref(225)と分圧値VI(345)のいずれも0Vとなるため、図6に示すように比較器330が誤信号を出力する恐れがある。それを抑制するために図1に示すようにプルアップ回路250を設けることで、この誤動作を回避している。   6 is a diagram showing an operation comparison example when the pull-up circuit 250 in FIG. 1 (M2 in FIG. 2) is not used in the operation graph shown in FIG. Without the pull-up circuit 250, the magnitude relationship between the divided voltage VI (345) and the reference voltage Vref (225) is reversed between VE = VE6 and VE1 in FIG. Is inverted and an error signal is output. Further, when the power supply voltage VE is VE <VE6, both the reference voltage Vref (225) and the divided voltage value VI (345) are 0 V, so that the comparator 330 may output an error signal as shown in FIG. In order to suppress this, this malfunction is avoided by providing a pull-up circuit 250 as shown in FIG.

以上は、構成回路が低電源電位を基準に動作する場合について説明したが、高電源電位を基準に動作する場合においても、VEの極性を反転し、NチャネルMOSトランジスタとPチャネルMOSトランジスタを交換すること、また、バイポーラで構成されるPNPトランジスタとNPNトランジスタを交換することで、同様に説明できる。   The above describes the case where the configuration circuit operates based on the low power supply potential. However, even when the configuration circuit operates based on the high power supply potential, the polarity of VE is reversed and the N-channel MOS transistor and the P-channel MOS transistor are exchanged. This can also be explained in the same manner by exchanging the PNP transistor and the NPN transistor configured by bipolar.

上記においてVEの極性の反転、並びに使用する半導体デバイスの置換は当該技術分野の技術者であれば格別の創作力を発揮せずとも実現できるので、敢えて回路の提示を省略することにする。   In the above, reversal of the polarity of VE and replacement of a semiconductor device to be used can be realized by an engineer in the technical field without exhibiting exceptional creativity.

100 電源電圧VE
200 基準電圧Vrefを生成する回路
250 プルアップ回路(スイッチ(M2))
300 低電圧検出回路
330 比較器
341 検出抵抗(R1)
342 検出抵抗(R2)
347 スイッチ(M1)
M1,M5,M6,M7 PチャネルMOSトランジスタ
M2,M3,M4 NチャネルMOSトランジスタ
Q1〜Q3 バイポーラトランジスタ
VE 電源電圧
VI 分圧値
VO 比較器出力
Vref 基準電圧
100 Power supply voltage VE
200 Circuit that generates reference voltage Vref
250 Pull-up circuit (Switch (M2))
300 Low voltage detection circuit
330 Comparator
341 Sense resistor (R1)
342 Sense resistor (R2)
347 switch (M1)
M1, M5, M6, M7 P-channel MOS transistors
M2, M3, M4 N channel MOS transistor
Q1-Q3 Bipolar transistor
VE supply voltage
VI partial pressure value
VO comparator output
Vref reference voltage

Claims (4)

低電源電位側を基準として基準電圧を生成する回路と電源電圧検出用分圧抵抗と比較器で構成される電源電圧検出回路において、前記基準電圧を生成する回路の出力を高電位電源電圧にプルアップするプルアップ回路と、前記分圧抵抗の高電位側に直列にスイッチを設け、低電源電圧時に前記プルアップ回路で基準電圧をプルアップし、基準電圧電位によって、前記スイッチをオフし、分圧抵抗による分圧値を低電源電位側にプルダウンすることを特徴とする電源電圧検出回路。   In a power supply voltage detection circuit composed of a circuit for generating a reference voltage with the low power supply potential side as a reference, a voltage dividing resistor for power supply voltage detection, and a comparator, the output of the circuit for generating the reference voltage is pulled to the high potential power supply voltage. A pull-up circuit to be connected to the high-potential side of the voltage-dividing resistor, a switch is provided in series, the reference voltage is pulled up by the pull-up circuit when the power supply voltage is low, and the switch is turned off by the reference voltage potential. A power supply voltage detection circuit characterized by pulling down a voltage-divided value by a voltage resistor to a low power supply potential side. 前記プルアップ回路が、基準電圧を生成する回路の出力段にNチャネルMOSトランジスタのドレインとソースを直列接続し、ゲートを高電源電位に接続した構成であり、前記スイッチがPチャネルMOSトランジスタであり、ゲートが基準電圧を生成する回路の出力に接続された構成の請求項1記載の電源電圧検出回路。   The pull-up circuit has a configuration in which a drain and a source of an N-channel MOS transistor are connected in series to an output stage of a circuit that generates a reference voltage, and a gate is connected to a high power supply potential, and the switch is a P-channel MOS transistor 2. The power supply voltage detection circuit according to claim 1, wherein the gate is connected to an output of a circuit for generating a reference voltage. 高電源電位側を基準として基準電圧を生成する回路と電源電圧検出用分圧抵抗と比較器で構成される電源電圧検出回路において、前記基準電圧を生成する回路の出力を低電位電源電圧にプルダウンするプルダウン回路と、前記分圧抵抗の低電位側に直列にスイッチを設け、低電源電圧時に前記プルダウン回路で基準電圧をプルダウンし、基準電圧電位によって、前記スイッチをオフし、分圧抵抗による分圧値を高電源電位側にプルアップすることを特徴とする電源電圧検出回路。   In a power supply voltage detection circuit composed of a circuit for generating a reference voltage with the high power supply potential side as a reference, a voltage dividing resistor for power supply voltage detection, and a comparator, the output of the circuit for generating the reference voltage is pulled down to the low potential power supply voltage A pull-down circuit, and a switch in series on the low potential side of the voltage dividing resistor, pulling down the reference voltage with the pull-down circuit when the power supply voltage is low, turning off the switch with the reference voltage potential, and dividing by the voltage dividing resistor A power supply voltage detection circuit which pulls up a pressure value to a high power supply potential side. 前記プルダウン回路が、基準電圧を生成する回路の出力段にPチャネルMOSトランジスタのドレインとソースを直列接続し、ゲートを低電源電位に接続した構成であり、前記スイッチがNチャネルMOSトランジスタであり、ゲートが基準電圧を生成する回路の出力に接続された構成の請求項3記載の電源電圧検出回路。   The pull-down circuit has a configuration in which a drain and a source of a P-channel MOS transistor are connected in series to an output stage of a circuit that generates a reference voltage, and a gate is connected to a low power supply potential, and the switch is an N-channel MOS transistor, 4. The power supply voltage detection circuit according to claim 3, wherein the gate is connected to the output of the circuit that generates the reference voltage.
JP2011170255A 2011-08-03 2011-08-03 Power supply voltage detection circuit Active JP5817306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011170255A JP5817306B2 (en) 2011-08-03 2011-08-03 Power supply voltage detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011170255A JP5817306B2 (en) 2011-08-03 2011-08-03 Power supply voltage detection circuit

Publications (2)

Publication Number Publication Date
JP2013036744A true JP2013036744A (en) 2013-02-21
JP5817306B2 JP5817306B2 (en) 2015-11-18

Family

ID=47886506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011170255A Active JP5817306B2 (en) 2011-08-03 2011-08-03 Power supply voltage detection circuit

Country Status (1)

Country Link
JP (1) JP5817306B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063597A1 (en) * 2014-10-24 2016-04-28 ソニー株式会社 Power-on reset circuit and high-frequency communication device
CN113311211A (en) * 2020-02-26 2021-08-27 圣邦微电子(北京)股份有限公司 Layout connection method for improving power supply voltage detection precision

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792205A (en) * 1993-09-27 1995-04-07 Matsushita Electric Works Ltd Source voltage detector
JP2002228690A (en) * 2001-02-01 2002-08-14 Matsushita Electric Ind Co Ltd Power source detection circuit
JP2005278056A (en) * 2004-03-26 2005-10-06 Matsushita Electric Ind Co Ltd Circuit for detecting power supply voltage drop
JP2009277122A (en) * 2008-05-16 2009-11-26 Nec Electronics Corp Power source voltage monitoring circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792205A (en) * 1993-09-27 1995-04-07 Matsushita Electric Works Ltd Source voltage detector
JP2002228690A (en) * 2001-02-01 2002-08-14 Matsushita Electric Ind Co Ltd Power source detection circuit
JP2005278056A (en) * 2004-03-26 2005-10-06 Matsushita Electric Ind Co Ltd Circuit for detecting power supply voltage drop
JP2009277122A (en) * 2008-05-16 2009-11-26 Nec Electronics Corp Power source voltage monitoring circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063597A1 (en) * 2014-10-24 2016-04-28 ソニー株式会社 Power-on reset circuit and high-frequency communication device
US10374598B2 (en) 2014-10-24 2019-08-06 Sony Semiconductor Solutions Corporation Power on reset circuit and high frequency communication device
CN113311211A (en) * 2020-02-26 2021-08-27 圣邦微电子(北京)股份有限公司 Layout connection method for improving power supply voltage detection precision
CN113311211B (en) * 2020-02-26 2023-05-30 圣邦微电子(北京)股份有限公司 Layout connection method for improving power supply voltage detection accuracy

Also Published As

Publication number Publication date
JP5817306B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
JP6344956B2 (en) Power circuit
CN103095226B (en) Integrated circuit
CN102386895B (en) Hysteresis comparator
JP2007121088A (en) Low voltage detection circuit
US20120139583A1 (en) Driving circuit with zero current shutdown and a driving method thereof
JP5817306B2 (en) Power supply voltage detection circuit
CN112653431B (en) Low-voltage latch circuit
KR20150105809A (en) control circuit including load switch, electronic apparatus including the load switch and controlling method thereof
JP6476049B2 (en) Temperature sensor circuit
JP5767855B2 (en) Regulator circuit
JP5353490B2 (en) Semiconductor device
JP4323274B2 (en) Semiconductor circuit device
JP5820291B2 (en) Overcurrent protection circuit
JP5948798B2 (en) Start-up circuit
CN114200190B (en) Voltage difference detection circuit
JP2015018417A (en) Power supply circuit
JP5759787B2 (en) Temperature detection circuit
CN110739944B (en) Low-voltage reset circuit
CN113759270B (en) Power supply detection circuit and integrated circuit chip
CN210835774U (en) High voltage stabilizing circuit
JP2018508782A (en) Accurate detection of low current threshold
JP2009230588A (en) Overcurrent detection circuit and electronic device
JP2006261143A (en) Thermal protection circuit and semiconductor integrated circuit device provided therewith
JP5763970B2 (en) Voltage detection circuit
CN116225115A (en) Undervoltage protection circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150914

R150 Certificate of patent or registration of utility model

Ref document number: 5817306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250