JP2013036705A - Outside air processing device - Google Patents

Outside air processing device Download PDF

Info

Publication number
JP2013036705A
JP2013036705A JP2011174649A JP2011174649A JP2013036705A JP 2013036705 A JP2013036705 A JP 2013036705A JP 2011174649 A JP2011174649 A JP 2011174649A JP 2011174649 A JP2011174649 A JP 2011174649A JP 2013036705 A JP2013036705 A JP 2013036705A
Authority
JP
Japan
Prior art keywords
air
sensible heat
temperature
outside air
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011174649A
Other languages
Japanese (ja)
Inventor
Kazunari Kitazumi
和成 北隅
Yasuharu Nakano
康晴 中野
Yaroslava POLUTOVA
ヤロスラワ ポルトワ
Koji Nagae
公二 永江
Ryoichi Sekiya
遼一 関矢
Hisaki Yamawaki
久樹 山脇
Munehiro Cho
宗浩 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E'S Inc
Original Assignee
E'S Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E'S Inc filed Critical E'S Inc
Priority to JP2011174649A priority Critical patent/JP2013036705A/en
Priority to PCT/JP2012/068785 priority patent/WO2013021817A1/en
Publication of JP2013036705A publication Critical patent/JP2013036705A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • F24F2003/1446Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only by condensing
    • F24F2003/1452Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only by condensing heat extracted from the humid air for condensing is returned to the dried air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/1458Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification using regenerators
    • F24F2003/1464Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification using regenerators using rotating regenerators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Abstract

PROBLEM TO BE SOLVED: To provide an outside air processing device capable of supplying air at a lower temperature and lower humidity than those of the outside air to an indoor space with a simple configuration.SOLUTION: The outside air processing device includes: an air supply passage 13 that sucks the outside air and supplies the air to an indoor space; a desiccant rotor 25 that dehumidifies the air flowing in the air supply passage 13; a first sensible heat exchanger 27 that performs a sensible heat exchange between the dehumidified air and the outside air; a divider unit 31 that divides the air subjected to the sensible heat exchange into two streams; a humidifier 33 that humidifies air in one of the divided streams; and a second sensible heat exchanger 35 that cools air in the other divided stream by performing a sensible heat exchange between the humidified air and air in the other stream. The air cooled by the second sensible heat exchanger 35 is supplied to the indoor space.

Description

本発明は、外気を除湿、冷却処理して室内に供給する外気処理装置に関する。   The present invention relates to an outside air processing apparatus that dehumidifies and cools outside air and supplies it to the room.

一般に、事務所や病院などのビル設備には、室内冷房を補助するために外気を除湿、冷却処理して室内に供給する外気処理装置が設けられている。この種の外気処理装置として、従来、室外側吸込口と室内側吐出口を連通する給気通風路と、温度および湿度の交換が可能な全熱交換器と、空気中の水分を吸着及び脱着可能な吸湿剤を含浸または塗布した除湿ロータと、温度のみを交換可能な顕熱交換器と、水の蒸発潜熱等を利用して空気を冷却する給気側冷却器とを備え、給気通風路を流れる空気は、室外側吸込口から全熱交換器、除湿ロータ、顕熱交換器、及び、給気側冷却器を順次通過することにより、除湿、冷却されて室内に供給されるものが知られている(例えば、特許文献1参照)。   In general, building facilities such as offices and hospitals are provided with an outside air processing device that dehumidifies and cools outside air to supply it to the room in order to assist indoor cooling. Conventionally, as this type of outside air treatment device, an air supply passage that communicates between the outdoor suction port and the indoor discharge port, a total heat exchanger that can exchange temperature and humidity, and adsorption and desorption of moisture in the air A dehumidification rotor impregnated or coated with a possible hygroscopic agent, a sensible heat exchanger that can exchange only the temperature, and a supply side cooler that cools the air using the latent heat of water evaporation, etc. The air flowing through the passage passes through the total heat exchanger, the dehumidification rotor, the sensible heat exchanger, and the air supply side cooler sequentially from the outdoor suction port, and is dehumidified and cooled and supplied to the room. It is known (see, for example, Patent Document 1).

特開2000−111096号公報JP 2000-111096 A

しかし、従来の構成では、給気側冷却器は、顕熱交換器と室内側吐出口との間の給気通風路内に配置され、水の蒸発潜熱を利用して空気を冷却する噴霧式または気化式の加湿手段であるため、供給される空気の温度が低下する一方で絶対湿度が高くなり、夏場の空調には適さないといった問題がある。
本発明は、上述した事情に鑑みてなされたものであり、簡単な構成で、外気よりも低温、低湿度の空気を室内に供給することができる外気処理装置を提供することを目的とする。
However, in the conventional configuration, the air supply side cooler is disposed in the air supply ventilation path between the sensible heat exchanger and the indoor outlet, and is a spray type that cools the air by using the latent heat of evaporation of water. Or since it is a vaporization type humidification means, while the temperature of the supplied air falls, there exists a problem that absolute humidity becomes high and it is not suitable for the air conditioning of summer.
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an outside air processing apparatus that can supply air having a lower temperature and lower humidity than outside air into a room with a simple configuration.

上記目的を達成するために、本発明は、外気を吸入して室内に供給する給気経路と、この給気経路を流れる空気を除湿する除湿手段と、除湿された空気を外気もしくは室内空気と顕熱交換する第1顕熱交換手段と、顕熱交換された空気を2つに分配する分配手段と、分配された一方の空気を加湿する加湿手段と、加湿された空気と分配された他方の空気とを顕熱交換して当該他方の空気を冷却する第2顕熱交換手段とを備え、この第2顕熱交換手段で冷却された空気を前記室内に供給することを特徴とする。   In order to achieve the above object, the present invention provides an air supply path for sucking outside air and supplying it to the room, dehumidifying means for dehumidifying the air flowing through the air supply path, and dehumidified air as outside air or room air. First sensible heat exchange means for sensible heat exchange, distribution means for distributing sensible heat exchanged air into two, humidification means for humidifying one of the distributed air, and the other distributed with the humidified air Sensible heat exchange with the other air to cool the other air, and the air cooled by the second sensible heat exchange means is supplied into the room.

この構成において、前記分配手段は、前記給気経路の給気口と前記一方の空気を室外に排出する排気口との少なくとも一方に設けられた送風ファンと、前記第2顕熱交換器の各出口温度に基づいて、前記送風ファンの送風量を制御する制御手段とを備えても良い。   In this configuration, the distribution means includes a blower fan provided in at least one of an air supply port of the air supply path and an exhaust port for discharging the one air to the outside of the air supply path, and each of the second sensible heat exchangers. Control means for controlling the air flow rate of the blower fan based on the outlet temperature may be provided.

また、上記構成において、前記分配手段は、前記加湿手段の上流側で、前記一方の空気が流れる経路と前記給気経路とを連通する開口に配置された送風ファンと、前記第2顕熱交換器の各出口温度に基づいて、前記送風ファンの送風量を制御する制御手段とを備えても良い。   Further, in the above configuration, the distribution unit includes a blower fan disposed in an opening that communicates the path through which the one air flows and the air supply path upstream of the humidification unit, and the second sensible heat exchange. Control means for controlling the air flow rate of the blower fan based on each outlet temperature of the vessel.

また、上記構成において、前記分配手段は、前記加湿手段の上流側で、前記一方の空気が流れる経路と前記給気経路とにそれぞれ設けられたダンパーと、前記第2顕熱交換器の各出口温度に基づいて、前記ダンパーの開度をそれぞれ制御する制御手段とを備えても良い。また、前記分配手段は、前記一方の空気と前記他方の空気との分配量を略均等に設定しても良い。   Further, in the above configuration, the distribution unit includes a damper provided on each of the path through which the one air flows and the air supply path on the upstream side of the humidification unit, and each outlet of the second sensible heat exchanger. Control means for controlling the opening degree of the damper based on the temperature may be provided. The distribution means may set the distribution amount of the one air and the other air substantially equally.

本発明によれば、加湿された一方の空気と除湿された他方の空気とを顕熱交換して当該他方の空気を冷却する第2顕熱交換手段を備えるため、簡単な構成で、湿度を増やすことなく水の潜熱を利用して冷却された空気を室内に供給することができる。また、本発明によれば、除湿手段及び第1顕熱交換手段を通過して除湿された空気を2つに分配する分配手段を備え、この分配された一方の空気を加湿して他方の空気の冷却に使用している。この一方の空気は、十分に除湿されているため、加湿後の乾球温度及び湿球温度を、外気を加湿して使用するものに比べて低下させることができる。このため、乾球温度及び湿球温度の低い一方の空気と他方の空気とを顕熱交換させることにより、当該他方の空気の冷却効率を高めることができる。   According to the present invention, the second sensible heat exchange means for sensible heat exchange between one humidified air and the other dehumidified air to cool the other air is provided. Air that has been cooled by utilizing the latent heat of water can be supplied to the room without increasing. In addition, according to the present invention, there is provided distribution means for distributing the dehumidified air that has passed through the dehumidification means and the first sensible heat exchange means into two, and humidifies one of the distributed air to provide the other air Used for cooling. Since this one air is fully dehumidified, the dry bulb temperature and wet bulb temperature after humidification can be lowered compared to those used by humidifying the outside air. For this reason, the cooling efficiency of the other air can be increased by performing sensible heat exchange between the one air having a low dry bulb temperature and a low wet bulb temperature and the other air.

第一実施形態にかかる外気処理装置の概念図である。It is a conceptual diagram of the external air processing apparatus concerning 1st embodiment. 吸入された外気量に対する給気量の割合と冷却能力との関係との関係を示す図である。It is a figure which shows the relationship between the ratio of the supply air quantity with respect to the inhaled external air quantity, and the relationship between cooling capacity. 外気処理装置の空気が流通する経路上に設定した各点における空気の状態線図である。It is a state line diagram of the air in each point set on the path | route through which the air of an external air processing apparatus distribute | circulates. 第二実施形態にかかる外気処理装置の概念図である。It is a conceptual diagram of the external air processing apparatus concerning 2nd embodiment. 第三実施形態にかかる外気処理装置の概念図である。It is a conceptual diagram of the external air processing apparatus concerning 3rd embodiment. 第四実施形態にかかる外気処理装置の概念図である。It is a conceptual diagram of the external air processing apparatus concerning 4th embodiment.

以下、図面を参照して本発明の一実施の形態について説明する。
[第一実施形態]
図1は、第一実施形態にかかる外気処理装置1を示す概念図である。この外気処理装置1は、外気を除湿及び冷却処理をして室内に供給することで、別個に設置される空気調和装置の夏場の冷房負荷の低減を図るものである。外気処理装置1は、図1に示すように、箱状に形成された本体ボックス(筐体)10を備え、この本体ボックス10内は仕切板11により仕切られて空気が通流する複数の経路が形成されている。具体的には、本体ボックス10は、外気OAを吸い込んで室内に給気SAを供給する給気経路13と、外気OAを吸い込んで再び室外に排気EAを排出する第1排気経路15と、給気経路13の途中で分岐して給気経路13を流れる空気の一部を排気EAとして室外に排出する第2排気経路(一方の空気が流れる経路)17とを備えて構成される。
給気経路13の吸入口13Aには外気導入ファン21が設けられ、この外気導入ファン21の運転により、吸入口13Aを通じて給気経路13に吸入された外気OAの多くは吐出口(給気口)13Bを通じて室内に供給され、当該外気OAの残りは第2排気経路17の吐出口(排気口)17Aを通じて室外に排出される。また、第1排気経路15の吸入口15Aには再生用空気導入ファン23が設けられ、この再生用空気導入ファン23の運転により、吸入口15Aを通じて第1排気経路15に吸入された外気(再生用空気)OAは吐出口15Bを通じて室外に排出される。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[First embodiment]
FIG. 1 is a conceptual diagram showing an outside air processing device 1 according to the first embodiment. This outside air processing device 1 is intended to reduce the cooling load in the summer of a separately installed air conditioner by supplying outside air after dehumidifying and cooling the outside air. As shown in FIG. 1, the outside air processing apparatus 1 includes a main body box (housing) 10 formed in a box shape, and the main body box 10 is partitioned by a partition plate 11 and a plurality of paths through which air flows. Is formed. Specifically, the main body box 10 includes an air supply path 13 that sucks outside air OA and supplies the air supply SA into the room, a first exhaust path 15 that sucks outside air OA and discharges the exhaust EA to the outside again, A second exhaust path (a path through which one air flows) 17 is provided that discharges a part of the air that flows in the air path 13 and flows through the air supply path 13 to the outside as exhaust EA.
An outside air introduction fan 21 is provided at the suction port 13A of the air supply path 13, and most of the outside air OA sucked into the air supply path 13 through the suction port 13A by the operation of the outside air introduction fan 21 is a discharge port (air supply port). ) Is supplied to the room through 13B, and the remainder of the outside air OA is discharged to the outside through the discharge port (exhaust port) 17A of the second exhaust path 17. In addition, a regeneration air introduction fan 23 is provided at the suction port 15A of the first exhaust path 15, and by the operation of the regeneration air introduction fan 23, outside air (regeneration) that is sucked into the first exhaust path 15 through the suction port 15A. Air) OA is discharged to the outside through the discharge port 15B.

給気経路13と第1排気経路15とは、それぞれ空気が対向して流れるように構成され、これら給気経路13の吸入口13A及び第1排気経路15の吐出口15Bに近い方から順番に円盤状のデシカントロータ(除湿手段)25と第1顕熱交換器(第1顕熱交換手段)27とが給気経路13と第1排気経路15とに跨って配置されている。また、第1排気経路15には、デシカントロータ25と第1顕熱交換器27との間に、通流する空気を加熱するヒータ(加熱再生手段)29が配置されている。このヒータ29は、例えば温水コイルで形成されており、ガスや石油等の燃料を燃焼した際の排熱や、太陽熱または地熱のような自然エネルギーで得た熱で加熱された温水が供給されるようになっている。   The air supply path 13 and the first exhaust path 15 are configured such that air flows in opposition to each other, and the air supply path 13 and the first exhaust path 15 are arranged in order from the side closer to the suction port 13A of the air supply path 13 and the discharge port 15B of the first exhaust path 15. A disc-shaped desiccant rotor (dehumidifying means) 25 and a first sensible heat exchanger (first sensible heat exchange means) 27 are disposed across the air supply path 13 and the first exhaust path 15. In the first exhaust path 15, a heater (heating regeneration means) 29 that heats the flowing air is disposed between the desiccant rotor 25 and the first sensible heat exchanger 27. The heater 29 is formed of, for example, a hot water coil, and is supplied with hot water heated by heat obtained from natural energy such as exhaust heat when burning fuel such as gas or petroleum, or solar heat or geothermal heat. It is like that.

デシカントロータ25は、塩化リチウムやシリカゲル等の除湿剤を含浸させたハニカム状の不織布をロータ状に形成したものであり、回転軸25Aを中心に低速で回転駆動されるようになっている。デシカントロータ25は、給気経路13及び第1排気経路15の空気の流れと直交する向きに回転しながら、給気経路13及び第1排気経路15の間を移動する。そして、デシカントロータ25は、給気経路13では吸入口13Aから取り込まれた外気OAと接触して、この外気OAを除湿する一方、第1排気経路15ではヒータ29により加熱された外気(再生用空気)OAと接触して除湿剤の加熱再生が行われる。すなわち、デシカントロータ25は、給気経路13において外気OAを除湿する除湿領域25Bと、第1排気経路15において加熱された再生用空気と接触して加熱再生される再生領域25Cとを備える。   The desiccant rotor 25 is formed by forming a honeycomb-shaped nonwoven fabric impregnated with a dehumidifying agent such as lithium chloride or silica gel into a rotor shape, and is driven to rotate at a low speed around the rotation shaft 25A. The desiccant rotor 25 moves between the air supply path 13 and the first exhaust path 15 while rotating in a direction orthogonal to the air flow in the air supply path 13 and the first exhaust path 15. The desiccant rotor 25 contacts the outside air OA taken from the suction port 13A in the air supply path 13 and dehumidifies the outside air OA. On the other hand, in the first exhaust path 15, the outside air heated by the heater 29 (for regeneration) Air) Dehumidifying agent is heated and regenerated in contact with OA. That is, the desiccant rotor 25 includes a dehumidifying region 25B that dehumidifies the outside air OA in the air supply path 13, and a regeneration region 25C that is heated and regenerated in contact with the regeneration air heated in the first exhaust path 15.

第1顕熱交換器27は、デシカントロータ25で除湿された空気と第1排気経路15に吸入された外気とで顕熱交換をして当該除湿された空気を冷却するものである。第1顕熱交換器27は、図示は省略したが、波状に形成されたアルミ箔や合成樹脂フィルムと平面状のアルミ箔や合成樹脂フィルムを交互に、かつ、波の方向が交互になるように積層して構成されたものであり、互いに直交する2つの流路27A,27Bを有し、これら流路27A,27Bがそれぞれ給気経路13または第1排気経路15に連通している。第1顕熱交換器27は、2つの流路を通過する気体がそれぞれ混合することはなく、アルミ箔や合成樹脂フィルムを通じて顕熱の交換が行われる。   The first sensible heat exchanger 27 cools the dehumidified air by performing sensible heat exchange between the air dehumidified by the desiccant rotor 25 and the outside air sucked into the first exhaust passage 15. Although the first sensible heat exchanger 27 is not shown, the aluminum foil or the synthetic resin film formed in a wave shape and the flat aluminum foil or the synthetic resin film are alternately alternated, and the wave directions are alternated. The two flow paths 27A and 27B are orthogonal to each other, and the flow paths 27A and 27B communicate with the air supply path 13 or the first exhaust path 15, respectively. In the first sensible heat exchanger 27, gases passing through the two flow paths are not mixed, and sensible heat is exchanged through an aluminum foil or a synthetic resin film.

給気経路13は、第1顕熱交換器27の下流側で給気経路13を流れる空気を2つに分配する分配部(分配手段)31を備え、この分配部31に第2排気経路17が接続されている。この第2排気経路17には、分配部31から吐出口17Aに向かって順番に加湿器(加湿手段)33と第2顕熱交換器(第2顕熱交換手段)35とが配置されている。
加湿器33は、ハニカム状に形成された不織布に供給された水が含浸させたものであり、この不織布に空気を通過させることにより当該空気に水分を含ませて加湿する。
第2顕熱交換器35は、上記した分配部31で分配され、加湿器33で加湿された一方の空気と、分配された他方の空気とを顕熱交換して他方の空気を冷却するものである。第2顕熱交換器35は、第1顕熱交換器27と同様に互いに直交する2つの流路35A,35Bを有する。この他は第1顕熱交換器27と同一の構成であるため説明を省略する。
第2顕熱交換器35では、第2排気経路17を流れる加湿された空気と、給気経路13を流れる除湿された空気とが顕熱交換するため、この除湿された空気は、水の潜熱により冷却され、吐出口13Bを通じて室内に供給される。この場合、第2顕熱交換器35は、2つの流路を通過する気体がそれぞれ混合しないため、除湿された空気中に水分が移動することはなく、湿度の上昇を防止できる。
The air supply path 13 includes a distribution unit (distribution means) 31 that distributes the air flowing through the air supply path 13 to the downstream side of the first sensible heat exchanger 27, and the second exhaust path 17 is provided in the distribution unit 31. Is connected. In the second exhaust path 17, a humidifier (humidifying means) 33 and a second sensible heat exchanger (second sensible heat exchange means) 35 are arranged in this order from the distributor 31 toward the discharge port 17A. .
The humidifier 33 is impregnated with water supplied to a non-woven fabric formed in a honeycomb shape. The air is passed through the non-woven fabric to humidify the air by containing moisture.
The second sensible heat exchanger 35 cools the other air by sensible heat exchange between one of the air distributed by the distributor 31 and humidified by the humidifier 33 and the other distributed air. It is. Similarly to the first sensible heat exchanger 27, the second sensible heat exchanger 35 has two flow paths 35A and 35B that are orthogonal to each other. Since the other configuration is the same as that of the first sensible heat exchanger 27, the description thereof is omitted.
In the second sensible heat exchanger 35, since the humidified air flowing through the second exhaust path 17 and the dehumidified air flowing through the air supply path 13 exchange sensible heat, the dehumidified air has the latent heat of water. And is supplied into the room through the discharge port 13B. In this case, the second sensible heat exchanger 35 does not mix the gas passing through the two flow paths, so that moisture does not move into the dehumidified air and can prevent an increase in humidity.

また、本実施形態では、分配部31による分配比、すなわち、第2排気経路17(流路35A)を流れる一方の空気量と、給気経路13(流路35A)を流れる他方の空気量との比を制御するための構成を備える。具体的には、外気処理装置1は、第2顕熱交換器の各流路35A,35Bの出口に配置される空気温度を測定する温度センサ37A,37Bと、給気経路13の吐出口13Bに配置される送風ファン39と、この送風ファン39の回転数を設定するインバータ41と、このインバータ41を介して送風ファン39の回転数を制御するコントローラ(制御手段)43とを備える。これら送風ファン39及びコントローラ43は、分配部31を含めて分配手段を構成する。上記した温度センサ37A,37Bは、コントローラ43に接続されており、コントローラ43は、温度センサ37A,37Bの測定温度に基づいて送風ファン39の回転数を制御する。   Further, in the present embodiment, the distribution ratio by the distribution unit 31, that is, one air amount flowing through the second exhaust path 17 (flow path 35A) and the other air amount flowing through the air supply path 13 (flow path 35A). A configuration for controlling the ratio is provided. Specifically, the outside air processing apparatus 1 includes temperature sensors 37A and 37B that measure the air temperature disposed at the outlets of the flow paths 35A and 35B of the second sensible heat exchanger, and the discharge port 13B of the air supply path 13. The blower fan 39 is provided with an inverter 41 for setting the rotational speed of the blower fan 39, and a controller (control means) 43 for controlling the rotational speed of the blower fan 39 via the inverter 41. The blower fan 39 and the controller 43 constitute a distribution unit including the distribution unit 31. The temperature sensors 37A and 37B described above are connected to the controller 43, and the controller 43 controls the rotational speed of the blower fan 39 based on the measured temperatures of the temperature sensors 37A and 37B.

次に、吸入された外気OA量に対する給気SA量の割合と冷却能力との関係について説明する。図2は、吸入された外気OA量に対する給気SA量の割合と冷却能力との関係を示す図である。
この図2において、排気(EA)温度Tdは、第2排気経路17の吐出口17A(点F)での空気温度、給気(SA)温度Tsは、給気経路13の吐出口13B(点E)での空気温度、加湿後の空気温度は、加湿器33と第2顕熱交換器35との間の空気温度(点D)を、それぞれ、吸入された外気OA量に対する給気SA量の割合を10〜90%の間で変化させた際の値を計測したものである。ここで、排気温度Tdは温度センサ37Bにより測定され、給気温度Tsは温度センサ37Aにより測定されている。
また、冷却能力は、室内に供給される給気風量に外気温度と給気温度Tsとの温度差を乗じた値を算出したものである。
この図2によれば、給気温度Tsは、吸入された外気OA量に対する給気SA量の割合が50%までは25℃よりも低い値で横ばいに推移するが、50%を超えると急激に上昇することがわかる。一方で、吸入された外気OA量に対する給気SA量の割合を低く設定すると、給気SA量を確保するために大量の外気OAを吸入することになり、設備が大型化するとともに外気導入ファン21を運転するためのコストが上昇する。
このため、上記した構成にかかる外気処理装置1では、第2顕熱交換器35で給気を冷却する場合、吸入された外気OA量に対する給気SA量の割合を45〜50%、すなわち略均等に分配するのが望ましいと判明した。
Next, the relationship between the ratio of the supply air SA amount to the intake outside air OA amount and the cooling capacity will be described. FIG. 2 is a diagram showing the relationship between the ratio of the supply air SA amount to the sucked outside air OA amount and the cooling capacity.
In FIG. 2, the exhaust (EA) temperature Td is the air temperature at the discharge port 17A (point F) of the second exhaust passage 17, and the supply (SA) temperature Ts is the discharge port 13B (point) of the supply passage 13. The air temperature in E) and the air temperature after humidification are the air temperature (point D) between the humidifier 33 and the second sensible heat exchanger 35, respectively, and the amount of supplied SA relative to the amount of outside air OA sucked The value when the ratio is changed between 10% and 90% is measured. Here, the exhaust temperature Td is measured by the temperature sensor 37B, and the supply air temperature Ts is measured by the temperature sensor 37A.
The cooling capacity is a value obtained by multiplying the amount of supplied air supplied indoors by the temperature difference between the outside air temperature and the supplied air temperature Ts.
According to FIG. 2, the supply air temperature Ts remains unchanged at a value lower than 25 ° C. until the ratio of the supply air SA amount to the sucked outside air OA amount is 50%, but suddenly exceeds 50%. It can be seen that it rises. On the other hand, if the ratio of the supply air SA amount to the sucked outside air OA amount is set low, a large amount of the external air OA is sucked in order to secure the supply air SA amount. The cost for driving 21 increases.
For this reason, in the outside air processing apparatus 1 according to the above configuration, when the supply air is cooled by the second sensible heat exchanger 35, the ratio of the supply air SA amount to the intake outside air OA amount is 45 to 50%, that is, approximately. It turned out to be evenly distributed.

次に、図3に示す空気の状態線図を用いて給気経路13の吐出口13Bから室内供給される空気が除湿、冷却される作用を説明する。図3中に記した点A〜Jは、図1の各経路上に設定した点A〜Jに対応する。
デシカントロータ25は、空気中に水分を除湿剤に吸着させる動作及び除湿剤から湿度を放出させる動作もエンタルピー変化がない動作であり、放出後の相対湿度と吸着後の相対湿度は同一である特性を持っている。
また、第1顕熱交換器27及び第2顕熱交換器35は、高温流体と低温流体との温度差の90%までそれぞれの流体の温度が上昇または低下する。また、加湿器33は加湿効率が相対湿度90%までとする。
Next, the operation of dehumidifying and cooling the air supplied indoors from the discharge port 13B of the air supply path 13 will be described using the air state diagram shown in FIG. Points A to J shown in FIG. 3 correspond to the points A to J set on the respective paths in FIG.
The desiccant rotor 25 is an operation in which moisture is absorbed into the dehumidifying agent in the air and the operation in which the humidity is released from the dehumidifying agent has no enthalpy change, and the relative humidity after the release and the relative humidity after the adsorption are the same. have.
In the first sensible heat exchanger 27 and the second sensible heat exchanger 35, the temperature of each fluid rises or falls to 90% of the temperature difference between the high temperature fluid and the low temperature fluid. The humidifier 33 has a humidification efficiency of up to 90% relative humidity.

点A及び点Gにおいて吸入される外気は、空気調和装置におけるISO及びJISの定格冷房条件である乾球温度35℃、湿球温度24℃を一例として記載する。この点A,Gにおける相対湿度40.3%である。
この外気OAがデシカントロータ25の除湿領域25Bを通過して除湿されると、点Bに示す乾球温度44.3℃/湿球温度24.1℃/相対湿度18.3%となる。ここで乾球温度が上昇しているのはデシカントロータ25を通過する際に加熱されるためである。
次に、この除湿された空気を第1顕熱交換器27にて外気OAと顕熱交換すると、点Cに示すように、乾球温度35.9℃/湿球温度21.7℃/相対湿度28.6%となり、外気によって若干冷却される。
As for the outside air sucked at the points A and G, a dry bulb temperature of 35 ° C. and a wet bulb temperature of 24 ° C., which are ISO and JIS rated cooling conditions in the air conditioner, are described as an example. The relative humidity at points A and G is 40.3%.
When the outside air OA passes through the dehumidifying region 25B of the desiccant rotor 25 and is dehumidified, the dry bulb temperature indicated by point B is 44.3 ° C./wet bulb temperature 24.1 ° C./relative humidity 18.3%. Here, the dry-bulb temperature is rising because it is heated when passing through the desiccant rotor 25.
Next, when the dehumidified air is subjected to sensible heat exchange with the outside air OA in the first sensible heat exchanger 27, as indicated by a point C, the dry bulb temperature is 35.9 ° C./the wet bulb temperature is 21.7 ° C./relative. The humidity is 28.6%, and it is slightly cooled by the outside air.

続いて、第1顕熱交換器27を通過した空気を分配部31にて2つに分配する。本構成では、第2排気経路17を流れる一方の空気量と、給気経路13を流れる他方の空気量とを略均等(50%:50%)に分配する。この一方の空気が加湿器33を通過して加湿されると、点Dに示すように、乾球温度23.0℃/湿球温度21.7℃/相対湿度90.0%となる。
本構成では、デシカントロータ25及び第1顕熱交換器27を通過した乾燥空気を2つに分配し、この分配された一方の空気を加湿して他方の空気の冷却に使用している。ここで、加湿される一方の空気は、加湿される前に十分に除湿されているため、点A,Gにおける外気をそのまま加湿したもの(例えば、点K:乾球温度25.5℃/湿球温度24.0℃/相対湿度90.0%)に比べて、加湿後の乾球温度を2.5℃、湿球温度3.3℃低下させることができる。
Subsequently, the air that has passed through the first sensible heat exchanger 27 is distributed into two by the distributor 31. In this configuration, one air amount flowing through the second exhaust path 17 and the other air amount flowing through the air supply path 13 are distributed substantially evenly (50%: 50%). When this one air passes through the humidifier 33 and is humidified, as indicated by a point D, the dry bulb temperature is 23.0 ° C./the wet bulb temperature is 21.7 ° C./the relative humidity is 90.0%.
In this configuration, the dry air that has passed through the desiccant rotor 25 and the first sensible heat exchanger 27 is distributed into two, and the distributed air is humidified and used to cool the other air. Here, since one of the air to be humidified is sufficiently dehumidified before being humidified, the outside air at points A and G is humidified as it is (for example, point K: dry bulb temperature 25.5 ° C./humidity). (Bulb temperature 24.0 ° C./relative humidity 90.0%), the wet bulb temperature after humidification can be reduced by 2.5 ° C. and wet bulb temperature 3.3 ° C.

次に、この加湿された一方の空気と他方の空気とを第2顕熱交換器35にて顕熱交換すると、点Eに示すように、乾球温度24.3℃/湿球温度18.1℃/相対湿度55.6%となる。ここで、点Eの相対湿度は55.6%と、外気(点A)の相対湿度40.3%に比べて上昇しているように見えるが、点Aの絶対湿度は、0.01423kg/kg(DA)であるのに対して、点Eの絶対湿度は、0.01055kg/kg(DA)と減少しているので、外気よりも低温かつ低湿度の空気を室内に供給することができる。
上記したように、本構成では、デシカントロータ25及び第1顕熱交換器27を通過した乾燥空気を2つに分配し、この分配された一方の空気を加湿して他方の空気の冷却に使用しているため、乾球温度及び湿球温度の低い一方の空気と他方の空気とを第2顕熱交換器35にて顕熱交換させることにより、当該他方の空気の冷却効率を高めることができる。
一方、第2顕熱交換器35を通過した一方の空気は、点Fに示すように、乾球温度34.6℃/湿球温度24.9℃/相対湿度46.0%となり室外に排出される。
Next, when the humidified one air and the other air are subjected to sensible heat exchange in the second sensible heat exchanger 35, the dry bulb temperature 24.3 ° C./wet bulb temperature 18. 1 ° C./relative humidity 55.6%. Here, although the relative humidity at point E appears to be 55.6%, which is higher than the relative humidity at 40.3% of outside air (point A), the absolute humidity at point A is 0.01423 kg / Since the absolute humidity at point E is reduced to 0.01055 kg / kg (DA) while it is kg (DA), air having a lower temperature and lower humidity than the outside air can be supplied indoors. .
As described above, in this configuration, the dry air that has passed through the desiccant rotor 25 and the first sensible heat exchanger 27 is distributed into two, and this distributed air is humidified and used to cool the other air. Therefore, the cooling efficiency of the other air can be increased by causing the second sensible heat exchanger 35 to perform sensible heat exchange between the one air having a low dry bulb temperature and a low wet bulb temperature and the other air. it can.
On the other hand, as shown by the point F, one air passing through the second sensible heat exchanger 35 becomes dry bulb temperature 34.6 ° C./wet bulb temperature 24.9 ° C./relative humidity 46.0% and is discharged outside the room. Is done.

また、第1顕熱交換器27を通過した外気は、点Hに示すように、乾球温度43.4℃/湿球温度26.2℃/相対湿度25.6%に上昇し、さらに、ヒータ29により加熱されて、点Iに示す乾球温度50.0℃/湿球温度27.7℃/相対湿度18.4%になる。この加熱された空気は、デシカントロータ25の再生領域25Cを通過することにより、点Jに示すように、乾球温度41.0℃/湿球温度27.6℃/相対湿度36.6%となって室外に排出される。   The outside air that has passed through the first sensible heat exchanger 27 rises to a dry bulb temperature of 43.4 ° C./wet bulb temperature of 26.2 ° C./relative humidity of 25.6% as indicated by point H, Heated by the heater 29, the dry bulb temperature shown at point I is 50.0 ° C./wet bulb temperature 27.7 ° C./relative humidity 18.4%. The heated air passes through the regeneration region 25C of the desiccant rotor 25, and as indicated by point J, the dry bulb temperature is 41.0 ° C./the wet bulb temperature is 27.6 ° C./the relative humidity is 36.6%. It is discharged outside.

このように、本実施形態によれば、外気を吸入して室内に供給する給気経路13と、この給気経路13を流れる空気を除湿するデシカントロータ25と、除湿された空気を外気と顕熱交換する第1顕熱交換器27と、顕熱交換された空気を2つに分配する分配部31と、分配された一方の空気を加湿する加湿器33と、加湿された空気と分配された他方の空気とを顕熱交換して当該他方の空気を冷却する第2顕熱交換器35とを備えるといった簡単な構成で外気を除湿、冷却することができる。また、デシカントロータ25を再生するヒータ29を用いることにより外気を連続的に除湿、冷却処理することができる。さらに、上記ヒータ29の加熱源としてガスや石油等の燃料を燃焼した際の排熱や、太陽熱または地熱のような自然エネルギーで得た熱を利用することで、外気導入ファン21を動作させる動力と、加湿器33に供給される水さえあれば、外気より低温かつ低絶対湿度の空気を得ることができる。
また、第2顕熱交換器35では、室内に供給される側の他方の空気と加湿された一方の空気とが混入することはない。このため、加湿用の水に混在する雑菌が室内に供給される空気に混入されることはなく、清潔で安全な空気を室内に供給することができる。
As described above, according to the present embodiment, the air supply path 13 that sucks outside air and supplies the air into the room, the desiccant rotor 25 that dehumidifies the air flowing through the air supply path 13, and the dehumidified air as the outside air. The first sensible heat exchanger 27 that exchanges heat, the distribution unit 31 that distributes the sensible heat-exchanged air into two, the humidifier 33 that humidifies one of the distributed air, and the humidified air. The outside air can be dehumidified and cooled with a simple configuration including the second sensible heat exchanger 35 that performs sensible heat exchange with the other air and cools the other air. Further, by using the heater 29 that regenerates the desiccant rotor 25, the outside air can be continuously dehumidified and cooled. Furthermore, the power for operating the outside air introduction fan 21 by using exhaust heat generated by burning fuel such as gas or oil as a heating source of the heater 29 or heat obtained by natural energy such as solar heat or geothermal heat. As long as there is water supplied to the humidifier 33, air having a lower temperature and lower absolute humidity than the outside air can be obtained.
Further, in the second sensible heat exchanger 35, the other air supplied to the room and the humidified air are not mixed. For this reason, the germs mixed in the water for humidification are not mixed in the air supplied indoors, and clean and safe air can be supplied indoors.

上述したように、本構成にかかる外気処理装置1では、分配部31にて第2排気経路17を流れる一方の空気量と、給気経路13を流れる他方の空気量とを略均等(50%:50%)に分配することが重要である。
また、図2に示すように、給気温度Tsは、吸入された外気OA量に対する給気SA量の割合が50%までは25℃よりも低い値で横ばいに推移するが、50%を超えると急激に上昇する。一方、給気の冷却に寄与する加湿された一方の空気の排気温度Tdは、給気温度Tsとは反対に、吸入された外気OA量に対する給気SA量の割合が50%までは急激に上昇するものの、50%を超えると35℃近辺で横ばいに推移する。このため、本構成では、排気温度Tdと給気温度Tsとの排給気温度差ΔTが最大となる点が50%近辺となるため、この排給気温度差ΔTが最大となるように、第2排気経路17を流れる一方の空気量と、給気経路13を流れる他方の空気量とを分配している。
As described above, in the outside air processing device 1 according to the present configuration, the amount of one air flowing through the second exhaust path 17 and the other air amount flowing through the air supply path 13 in the distribution unit 31 are substantially equal (50%). : 50%) is important.
Further, as shown in FIG. 2, the supply air temperature Ts remains flat at a value lower than 25 ° C. until the ratio of the supply air SA amount to the sucked outside air OA amount is 50%, but exceeds 50%. And rises rapidly. On the other hand, the exhaust temperature Td of one of the humidified air that contributes to the cooling of the supply air, contrary to the supply air temperature Ts, rapidly increases until the ratio of the supply air SA amount to the sucked outside air OA amount is 50%. Although it rises, if it exceeds 50%, it will remain flat around 35 ° C. For this reason, in this configuration, the point at which the exhaust gas temperature difference ΔT between the exhaust gas temperature Td and the supply air temperature Ts becomes maximum is around 50%, so that the exhaust gas temperature difference ΔT is maximized. One amount of air flowing through the second exhaust path 17 and the other amount of air flowing through the air supply path 13 are distributed.

第一実施形態では、コントローラ43は、上記した傾向に基づいて、第2顕熱交換器35の各経路出口温度に基づいて、送風ファン39の回転数を制御している。
コントローラ43は、外気処理装置1の運転が開始された運転初期に、上記した排気温度Tdと給気温度Tsとの排給気温度差ΔTの最大温度差ΔTmaxを求める。
まず、コントローラ43は、外気導入ファン21が予め定められた回転数で動作している状態で、送風ファン39を基準回転数Rfで動作させ、温度センサ37Aにより給気温度Tsを測定するとともに、温度センサ37Bにより排気温度Tdを測定する。そして、この測定した排気温度Tdと給気温度Tsとの温度差ΔTを算出する。
次に、コントローラ43は、前回の測定から所定時間(本実施形態では5分)経過すると、送風ファン39を基準回転数Rfよりも予め定められた回転数ΔRだけ大きい所定回転数Rf+ΔRで動作させ、この時の給気温度Ts及び排気温度Tdをそれぞれ測定する。そして、コントローラ43は、この測定した排気温度Tdと給気温度Tsとの温度差ΔTを算出し、今回の温度差ΔTと前回の温度差ΔTとの差(ΔT−ΔT)がプラス、すなわち0より大きいか否かを判別する。
In the first embodiment, the controller 43 controls the number of revolutions of the blower fan 39 based on the temperature of each path outlet of the second sensible heat exchanger 35 based on the above-described tendency.
The controller 43 obtains the maximum temperature difference ΔTmax of the exhaust gas temperature difference ΔT between the exhaust gas temperature Td and the supply air temperature Ts in the initial operation when the operation of the outside air processing device 1 is started.
First, the controller 43, in a state where the outside air introduction fan 21 is operating at a rotational speed predetermined blower fan 39 is operated at the reference rotational speed Rf, with measures the supply air temperature Ts 1 by the temperature sensor 37A to measure the exhaust gas temperature Td 1 by the temperature sensor 37B. Then, a temperature difference ΔT 1 between the measured exhaust temperature Td 1 and the supply air temperature Ts 1 is calculated.
Next, when a predetermined time (5 minutes in the present embodiment) has elapsed since the previous measurement, the controller 43 causes the blower fan 39 to operate at a predetermined rotational speed Rf + ΔR that is larger than the reference rotational speed Rf by a predetermined rotational speed ΔR. Then, the supply air temperature Ts 2 and the exhaust gas temperature Td 2 at this time are measured. Then, the controller 43 calculates a temperature difference ΔT 2 between the measured exhaust gas temperature Td 2 and the supply air temperature Ts 2 , and a difference (ΔT 2 −ΔT) between the current temperature difference ΔT 2 and the previous temperature difference ΔT 1. It is determined whether 1 ) is positive, that is, greater than 0.

この判別において、今回の温度差ΔTと前回の温度差ΔTとの差が0より大きい場合は、当該温度差ΔTが最大温度差ΔTmaxに至っていないため、コントローラ43は、上述のように、前回の測定から所定時間経過後に、送風ファン39の回転数を更に回転数ΔRだけ大きい所定回転数Rf+nΔR(nは、2、3・・・n)で動作させ、この時の温度差ΔTと、その前回に算出された温度差ΔTn−1との差がマイナス、すなわち0より小さくなるまで継続して実行する。
一方、今回の温度差ΔTと、その前回に算出された温度差ΔTn−1との差がマイナス、すなわち0より小さくなった場合には、当該温度差ΔTが最大温度差ΔTmaxを経過して減少する傾向にあるため、この際の温度差ΔTを最大温度差ΔTmaxとして設定して、当該最大温度差の設定動作を終了する。
In this determination, when the difference between the current temperature difference ΔT 2 and the previous temperature difference ΔT 1 is greater than 0, the temperature difference ΔT has not reached the maximum temperature difference ΔTmax. After a predetermined time has elapsed since the previous measurement, the rotational speed of the blower fan 39 is operated at a predetermined rotational speed Rf + nΔR (n is 2, 3,... N) that is further increased by the rotational speed ΔR, and the temperature difference ΔT n at this time is The process is continued until the difference from the previously calculated temperature difference ΔT n−1 is minus, that is, smaller than 0.
On the other hand, when the difference between the current temperature difference ΔT n and the previously calculated temperature difference ΔT n−1 is negative, that is, smaller than 0, the temperature difference ΔT has passed the maximum temperature difference ΔTmax. Therefore, the temperature difference ΔT n at this time is set as the maximum temperature difference ΔTmax, and the setting operation for the maximum temperature difference is completed.

次に、設定された最大温度差ΔTmaxを用いて、送風ファン39の回転数を設定する。まず、コントローラ43は、外気導入ファン21が予め定められた回転数で動作している状態で、送風ファン39を基準回転数Rfで動作させ、温度センサ37Aにより給気温度Tsを測定するとともに、温度センサ37Bにより排気温度Tdを測定する。そして、この測定した排気温度Tdと給気温度Tsとの温度差ΔTを算出する。
そして、コントローラ43は、設定された最大温度差ΔTmaxと算出された温度差ΔTとの差(ΔTmax−ΔT)に所定係数Kを乗じて算出された加算回転数ΔRを算出し、この加算回転数ΔRを基準回転数Rfに加算した回転数Rf(Rf+ΔR)で送風ファン39を運転する。
続いて、前回の測定から所定時間(本実施形態では5分)経過すると、この時の給気温度Ts及び排気温度Tdをそれぞれ測定し、この測定した排気温度Tdと給気温度Tsとの温度差ΔTを算出する。
そして、コントローラ43は、設定された最大温度差ΔTmaxと算出された温度差ΔTとの差(ΔTmax−ΔT)に所定係数Kと、今回の温度差ΔTと前回の温度差ΔTとの差(ΔT−ΔT)の正負号とを乗じて算出された加算回転数ΔRを算出し、この加算回転数ΔRを前回の回転数Rfに加算した回転数Rf(Rf+ΔR)で送風ファン39を運転する。この場合、今回の温度差ΔTと前回の温度差ΔTn−1との差(ΔT−ΔTn−1)が負となれば、算出された加算回転数ΔRを前回の回転数Rfn−1から減算する。また、設定されたΔTmaxよりも算出されたΔTが大きい場合には、このΔTを新たな最大温度差ΔTmaxとして設定する。
このような制御を所定時間(5分)間隔で行うことにより、送風ファン39の回転数(送風量)の微調整をすることができ、第2排気経路17を流れる一方の空気量(排気EA)と、給気経路13を流れる他方の空気量(給気SA)との分配量を略均等(50%:50%)に保持することができ、ひいては、第2顕熱交換器35での冷却能力を最大限に発揮することができる。
Next, the rotation speed of the blower fan 39 is set using the set maximum temperature difference ΔTmax. First, the controller 43, in a state where the outside air introduction fan 21 is operating at a rotational speed predetermined blower fan 39 is operated at the reference rotational speed Rf, with measures the supply air temperature Ts 1 by the temperature sensor 37A to measure the exhaust gas temperature Td 1 by the temperature sensor 37B. Then, a temperature difference ΔT 1 between the measured exhaust temperature Td 1 and the supply air temperature Ts 1 is calculated.
Then, the controller 43 calculates an additional rotation number ΔR 1 calculated by multiplying the difference (ΔTmax−ΔT 1 ) between the set maximum temperature difference ΔTmax and the calculated temperature difference ΔT 1 by a predetermined coefficient K, The blower fan 39 is operated at a rotational speed Rf 1 (Rf + ΔR 1 ) obtained by adding the additional rotational speed ΔR 1 to the reference rotational speed Rf.
Subsequently, when a predetermined time (in this embodiment, 5 minutes) elapses from the previous measurement, the supply air temperature Ts 2 and the exhaust gas temperature Td 2 at this time are measured, and the measured exhaust gas temperature Td 2 and supply air temperature Ts are measured. calculating the temperature difference [Delta] T 2 and 2.
Then, the controller 43 adds a predetermined coefficient K to the difference (ΔTmax−ΔT 2 ) between the set maximum temperature difference ΔTmax and the calculated temperature difference ΔT 2 , the current temperature difference ΔT 2, and the previous temperature difference ΔT 1 . difference (ΔT 2 -ΔT 1) plus and minus signs and calculates the sum rotational speed [Delta] R 2 calculated by multiplying the number of revolutions Rf 2 obtained by adding the addition rotational speed [Delta] R 2 to the previous rotational speed Rf 1 (Rf 1 + ΔR 2 ), the blower fan 39 is operated. In this case, if the difference (ΔT n −ΔT n−1 ) between the current temperature difference ΔT n and the previous temperature difference ΔT n−1 is negative, the calculated additional rotational speed ΔR n is used as the previous rotational speed Rf. Subtract from n-1 . Also, when [Delta] T n calculated is larger than the .DELTA.Tmax that is set, it sets the [Delta] T n as a new maximum temperature difference .DELTA.Tmax.
By performing such control at predetermined time (5 minutes) intervals, the rotational speed (air flow rate) of the blower fan 39 can be finely adjusted, and the amount of one air flowing through the second exhaust path 17 (exhaust air EA). ) And the other amount of air flowing through the air supply path 13 (supply air SA) can be held substantially evenly (50%: 50%). As a result, in the second sensible heat exchanger 35, The cooling capacity can be maximized.

この第一実施形態によれば、給気経路13の吐出口13Bに設けられた送風ファン39と、第2顕熱交換器35の各出口温度である排気温度Tdと給気温度Tsに基づいて、送風ファン39の送風量を制御するコントローラ43とを備えるため、実際に室内に供給される空気量を測定しなくとも、第2顕熱交換器35の各経路に流れる空気の分配量を簡単に調整することができる。   According to the first embodiment, the blower fan 39 provided at the discharge port 13B of the air supply path 13 and the exhaust temperature Td and the supply air temperature Ts, which are outlet temperatures of the second sensible heat exchanger 35, are used. And the controller 43 that controls the amount of air blown by the blower fan 39, the distribution amount of air flowing through each path of the second sensible heat exchanger 35 can be simplified without actually measuring the amount of air supplied to the room. Can be adjusted.

また、この第一実施形態によれば、第2排気経路17を流れる一方の空気量と、給気経路13を流れる他方の空気量とを略均等に設定しているため、この他方の空気を第2顕熱交換器35で最大限に冷却することができる。   In addition, according to the first embodiment, since the amount of one air flowing through the second exhaust path 17 and the amount of the other air flowing through the air supply path 13 are set substantially evenly, the other air is The second sensible heat exchanger 35 can be cooled to the maximum.

[第二実施形態]
図4は、第二実施形態にかかる外気処理装置100の概要図である。上記した実施形態にかかる外気処理装置1と同一の構成については同一の符号を付して説明を省略する。
外気処理装置100は、分配部31による分配比、すなわち、第2排気経路17(流路35A)を流れる一方の空気量と、給気経路13(流路35A)を流れる他方の空気量との比を制御するための構成を備える。具体的には、外気処理装置100は、加湿器33の上流側で、第2排気経路17と給気経路13とを連通する開口110に配置された送風ファン113と、この送風ファン113の回転数を設定するインバータ141と、このインバータ141を介して送風ファン113の回転数を制御するコントローラ(制御手段)143とを備える。これら送風ファン113及びコントローラ143は、分配部31を含めて分配手段を構成する。また、この送風ファン113は、回転方向によって、第2排気経路17と給気経路13との間の送風方向を変更可能に構成されている。また、上記した温度センサ37A,37Bは、コントローラ143に接続されており、コントローラ143は、温度センサ37A,37Bの測定温度に基づいて送風ファン113の回転数を制御する。
[Second Embodiment]
FIG. 4 is a schematic diagram of the outside air processing apparatus 100 according to the second embodiment. The same components as those in the outside air processing device 1 according to the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.
The outside air processing device 100 has a distribution ratio by the distribution unit 31, that is, one air amount flowing through the second exhaust path 17 (flow path 35A) and the other air amount flowing through the air supply path 13 (flow path 35A). A configuration for controlling the ratio is provided. Specifically, the outside air processing apparatus 100 is arranged on the upstream side of the humidifier 33, and the blower fan 113 disposed in the opening 110 that communicates the second exhaust path 17 and the air supply path 13, and the rotation of the blower fan 113. An inverter 141 for setting the number and a controller (control means) 143 for controlling the rotation speed of the blower fan 113 via the inverter 141 are provided. The blower fan 113 and the controller 143 constitute a distribution unit including the distribution unit 31. Further, the blower fan 113 is configured to be able to change the blowing direction between the second exhaust path 17 and the air supply path 13 according to the rotation direction. The temperature sensors 37A and 37B described above are connected to the controller 143, and the controller 143 controls the rotational speed of the blower fan 113 based on the measured temperatures of the temperature sensors 37A and 37B.

次に、この実施形態における空気の分配制御動作について説明する。
この第二実施形態においても、コントローラ143は、外気処理装置100の運転が開始された運転初期に、上記した排気温度Tdと給気温度Tsとの排給気温度差ΔTの最大温度差ΔTmaxを求める。排給気温度差ΔTの最大温度差ΔTmaxの算出方法は、上記した第一実施形態と同一であるため、説明を省略する。
Next, the air distribution control operation in this embodiment will be described.
Also in the second embodiment, the controller 143 sets the maximum temperature difference ΔTmax of the exhaust gas temperature difference ΔT between the exhaust gas temperature Td and the supply air temperature Ts at the initial operation time when the operation of the outside air processing device 100 is started. Ask. Since the calculation method of the maximum temperature difference ΔTmax of the exhaust air temperature difference ΔT is the same as that in the first embodiment, the description thereof is omitted.

次に、設定された最大温度差ΔTmaxを用いて、送風ファン113の回転数を設定する。まず、コントローラ143は、外気導入ファン21が予め定められた回転数で動作している状態で、送風ファン113を基準回転数Rfで第2排気経路17から給気経路13へ空気が流入する方向に回転させ、温度センサ37Aにより給気温度Tsを測定するとともに、温度センサ37Bにより排気温度Tdを測定する。そして、この測定した排気温度Tdと給気温度Tsとの温度差ΔTを算出する。
そして、コントローラ143は、設定された最大温度差ΔTmaxと算出された温度差ΔTとの差(ΔTmax−ΔT)に所定係数Kを乗じて算出された加算回転数ΔRを算出し、この加算回転数ΔRを基準回転数Rfに加算した回転数Rf(Rf+ΔR)で送風ファン113を運転する。
続いて、前回の測定から所定時間(本実施形態では5分)経過すると、この時の給気温度Ts及び排気温度Tdをそれぞれ測定し、この測定した排気温度Tdと給気温度Tsとの温度差ΔTを算出する。
そして、コントローラ143は、設定された最大温度差ΔTmaxと算出された温度差ΔTとの差(ΔTmax−ΔT)に所定係数Kと、今回の温度差ΔTと前回の温度差ΔTとの差(ΔT−ΔT)の正負号とを乗じて算出された加算回転数ΔRを算出し、この加算回転数ΔRを前回の回転数Rfに加算した回転数Rf(Rf+ΔR)で送風ファン113を運転する。この場合、今回の温度差ΔTと前回の温度差ΔTn−1との差(ΔT−ΔTn−1)が負となれば、算出された加算回転数ΔRを前回の回転数Rfn−1から減算する。また、この制御の途中で、回転数Rfが0よりも小さくなった場合、コントローラ143は、空気が給気経路13から第2排気経路17へ流れるように送風ファン113の回転方向及び回転数を制御する。また、設定されたΔTmaxよりも算出されたΔTが大きい場合には、このΔTを新たな最大温度差ΔTmaxとして設定する。
このような制御を所定時間(5分)間隔で行うことにより、送風ファン113の回転方向及び回転数(送風量)の微調整をすることができ、第2排気経路17を流れる一方の空気量(排気EA)と、給気経路13を流れる他方の空気量(給気SA)との分配量を略均等(50%:50%)に保持することができ、ひいては、第2顕熱交換器35での冷却能力を最大限に発揮することができる。
Next, the rotation speed of the blower fan 113 is set using the set maximum temperature difference ΔTmax. First, the controller 143 causes the air to flow from the second exhaust path 17 to the air supply path 13 at the reference rotation speed Rf while the outside air introduction fan 21 is operating at a predetermined rotation speed. rotate the, with measures the supply air temperature Ts 1 by the temperature sensor 37A, which measures the exhaust gas temperature Td 1 by the temperature sensor 37B. Then, a temperature difference ΔT 1 between the measured exhaust temperature Td 1 and the supply air temperature Ts 1 is calculated.
Then, the controller 143 calculates an additional rotation number ΔR 1 calculated by multiplying a difference (ΔTmax−ΔT 1 ) between the set maximum temperature difference ΔTmax and the calculated temperature difference ΔT 1 by a predetermined coefficient K, The blower fan 113 is operated at a rotational speed Rf 1 (Rf + ΔR 1 ) obtained by adding the additional rotational speed ΔR 1 to the reference rotational speed Rf.
Subsequently, when a predetermined time (in this embodiment, 5 minutes) elapses from the previous measurement, the supply air temperature Ts 2 and the exhaust gas temperature Td 2 at this time are measured, and the measured exhaust gas temperature Td 2 and supply air temperature Ts are measured. calculating the temperature difference [Delta] T 2 and 2.
Then, the controller 143 adds a predetermined coefficient K to the difference (ΔTmax−ΔT 2 ) between the set maximum temperature difference ΔTmax and the calculated temperature difference ΔT 2 , the current temperature difference ΔT 2, and the previous temperature difference ΔT 1 . difference (ΔT 2 -ΔT 1) plus and minus signs and calculates the sum rotational speed [Delta] R 2 calculated by multiplying the number of revolutions Rf 2 obtained by adding the addition rotational speed [Delta] R 2 to the previous rotational speed Rf 1 (Rf 1 + ΔR 2 ), the blower fan 113 is operated. In this case, if the difference (ΔT n −ΔT n−1 ) between the current temperature difference ΔT n and the previous temperature difference ΔT n−1 is negative, the calculated additional rotational speed ΔR n is used as the previous rotational speed Rf. Subtract from n-1 . In the middle of this control, when the rotation speed Rf n becomes smaller than 0, the controller 143 rotates the rotation direction and the rotation speed of the blower fan 113 so that the air flows from the air supply path 13 to the second exhaust path 17. To control. Also, when [Delta] T n calculated is larger than the .DELTA.Tmax that is set, it sets the [Delta] T n as a new maximum temperature difference .DELTA.Tmax.
By performing such control at predetermined time (5 minutes) intervals, the rotational direction and the rotational speed (air flow rate) of the blower fan 113 can be finely adjusted, and the amount of one air flowing through the second exhaust path 17 The amount of distribution between the (exhaust air EA) and the other amount of air flowing through the air supply path 13 (supply air SA) can be kept substantially equal (50%: 50%), and thus the second sensible heat exchanger. The cooling capacity at 35 can be maximized.

この第二実施形態によれば、加湿器33の上流側で、第2排気経路17と給気経路13とを連通する開口110に配置された送風ファン113と、第2顕熱交換器35の各出口温度である排気温度Tdと給気温度Tsに基づいて、この送風ファン113の回転数を制御するコントローラ143とを備えるため、実際に室内に供給される空気量を測定しなくとも、第2顕熱交換器35の各経路に流れる空気の分配量を簡単に調整することができる。   According to the second embodiment, on the upstream side of the humidifier 33, the blower fan 113 disposed in the opening 110 communicating the second exhaust path 17 and the air supply path 13, and the second sensible heat exchanger 35 Since the controller 143 for controlling the rotational speed of the blower fan 113 is provided based on the exhaust temperature Td and the supply air temperature Ts, which are outlet temperatures, it is possible to perform the first measurement without measuring the amount of air actually supplied into the room. 2 The distribution amount of the air flowing through each path of the sensible heat exchanger 35 can be easily adjusted.

[第三実施形態]
図5は、第三実施形態にかかる外気処理装置200の概要図である。上記した実施形態にかかる外気処理装置1と同一の構成については同一の符号を付して説明を省略する。
外気処理装置200は、分配部31による分配比、すなわち、第2排気経路17(流路35A)を流れる一方の空気量と、給気経路13(流路35A)を流れる他方の空気量との比を制御するための構成を備える。具体的には、外気処理装置200は、第2排気経路17に設けられた排気用ダンパー210と、給気経路13に設けられた給気用ダンパー211と、これら排気用ダンパー210及び給気用ダンパー211を作動するダンパー作動モーター213と、このダンパー作動モーター213の回転数を設定するインバータ241と、このインバータ241を介してダンパー作動モーター213の回転数を制御するコントローラ(制御手段)243とを備える。
本実施形態では、排気用ダンパー210及び給気用ダンパー211は、単一のダンパー作動モーター213により作動され、これら排気用ダンパー210及び給気用ダンパー211が逆の動作をする。すなわち、排気用ダンパー210が開放される方向に作動する際には、給気用ダンパー211は閉塞する方向に作動し、第2排気経路17と給気経路13とを流れる空気の分配比が制御される。
[Third embodiment]
FIG. 5 is a schematic diagram of an outside air processing apparatus 200 according to the third embodiment. The same components as those in the outside air processing device 1 according to the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.
The outside air processing apparatus 200 has a distribution ratio by the distribution unit 31, that is, one air amount flowing through the second exhaust path 17 (flow path 35A) and the other air amount flowing through the air supply path 13 (flow path 35A). A configuration for controlling the ratio is provided. Specifically, the outside air processing apparatus 200 includes an exhaust damper 210 provided in the second exhaust path 17, an air supply damper 211 provided in the air supply path 13, the exhaust damper 210 and the air supply A damper operating motor 213 that operates the damper 211, an inverter 241 that sets the rotational speed of the damper operating motor 213, and a controller (control means) 243 that controls the rotational speed of the damper operating motor 213 via the inverter 241. Prepare.
In this embodiment, the exhaust damper 210 and the air supply damper 211 are operated by a single damper operating motor 213, and the exhaust damper 210 and the air supply damper 211 operate in reverse. That is, when the exhaust damper 210 operates in the opening direction, the air supply damper 211 operates in the closing direction, and the distribution ratio of the air flowing through the second exhaust path 17 and the air supply path 13 is controlled. Is done.

次に、この実施形態における空気の分配制御動作について説明する。
コントローラ243は、外気処理装置1の運転が開始された運転初期に、上記した排気温度Tdと給気温度Tsとの排給気温度差ΔTの最大温度差ΔTmaxを求める。
まず、コントローラ243は、外気導入ファン21が予め定められた回転数で動作している状態で、排気用ダンパー210及び給気用ダンパー211を基準開度位置Dvに設定し、温度センサ37Aにより給気温度Tsを測定するとともに、温度センサ37Bにより排気温度Tdを測定する。そして、この測定した排気温度Tdと給気温度Tsとの温度差ΔTを算出する。この場合、排気用ダンパー210及び給気用ダンパー211の基準開度位置Dvとは、第2排気経路17及び給気経路13の開口面積に対して70%の開度に設定された位置をいう。
次に、コントローラ243は、前回の測定から所定時間(本実施形態では5分)経過すると、ダンパー作動モーター213を作動させて給気用ダンパー211を基準開度位置Dvよりも所定開度(例えば5%)ΔDだけ開放された所定開度Dv+ΔDとするとともに、排気用ダンパー210を基準開度位置Dvよりも所定開度(5%)ΔDだけ閉塞された所定開度Dv−ΔDとし、この時の給気温度Ts及び排気温度Tdをそれぞれ測定する。そして、コントローラ243は、この測定した排気温度Tdと給気温度Tsとの温度差ΔTを算出し、今回の温度差ΔTと前回の温度差ΔTとの差(ΔT−ΔT)がプラス、すなわち0より大きいか否かを判別する。
Next, the air distribution control operation in this embodiment will be described.
The controller 243 obtains the maximum temperature difference ΔTmax of the exhaust gas supply temperature difference ΔT between the exhaust temperature Td and the supply air temperature Ts in the initial operation when the operation of the outside air processing device 1 is started.
First, the controller 243 sets the exhaust damper 210 and the air supply damper 211 to the reference opening position Dv while the outside air introduction fan 21 is operating at a predetermined rotational speed, and supplies the temperature by the temperature sensor 37A. with measuring the air temperature Ts 1, to measure the exhaust gas temperature Td 1 by the temperature sensor 37B. Then, a temperature difference ΔT 1 between the measured exhaust temperature Td 1 and the supply air temperature Ts 1 is calculated. In this case, the reference opening position Dv of the exhaust damper 210 and the air supply damper 211 refers to a position set to an opening of 70% with respect to the opening areas of the second exhaust path 17 and the air supply path 13. .
Next, when a predetermined time (5 minutes in the present embodiment) elapses from the previous measurement, the controller 243 operates the damper operating motor 213 so that the air supply damper 211 has a predetermined opening (for example, a reference opening position Dv). 5%) a predetermined opening Dv + ΔD opened by ΔD, and the exhaust damper 210 is set to a predetermined opening Dv−ΔD closed by a predetermined opening (5%) ΔD from the reference opening position Dv. The supply air temperature Ts 2 and the exhaust gas temperature Td 2 are respectively measured. Then, the controller 243 calculates a temperature difference ΔT 2 between the measured exhaust temperature Td 2 and the supply air temperature Ts 2 , and a difference (ΔT 2 −ΔT) between the current temperature difference ΔT 2 and the previous temperature difference ΔT 1. It is determined whether 1 ) is positive, that is, greater than 0.

この判別において、今回の温度差ΔTと前回の温度差ΔTとの差が0より大きい場合は、当該温度差ΔTが最大温度差ΔTmaxに至っていないため、コントローラ243は、上述のように、前回の測定から所定時間経過後に、給気用ダンパー211の開度を更に所定開度ΔDだけ開放された所定開度Dv+nΔD(nは、2、3・・・n)とするとともに、排気用ダンパー210の開度を更に所定開度ΔDだけ閉塞された所定開度Dv−nΔD(nは、2、3・・・n)とし、この時の温度差ΔTと、その前回に算出された温度差ΔTn−1との差がマイナス、すなわち0より小さくなるまで継続して実行する。
一方、今回の温度差ΔTと、その前回に算出された温度差ΔTn−1との差がマイナス、すなわち0より小さくなった場合には、当該温度差ΔTが最大温度差ΔTmaxを経過して減少する傾向にあるため、この際の温度差ΔTを最大温度差ΔTmaxとして設定して、当該最大温度差の設定動作を終了する。
In this determination, when the difference between the current temperature difference ΔT 2 and the previous temperature difference ΔT 1 is greater than 0, the temperature difference ΔT has not reached the maximum temperature difference ΔTmax. After a predetermined time has elapsed since the previous measurement, the opening degree of the air supply damper 211 is further set to a predetermined opening degree Dv + nΔD (n is 2, 3,... N) opened by a predetermined opening degree ΔD, and the exhaust damper The opening degree 210 is further set to a predetermined opening degree Dv−nΔD (n is 2, 3,... N) blocked by a predetermined opening degree ΔD, and the temperature difference ΔT n at this time and the temperature calculated the previous time Continue until the difference from the difference ΔT n−1 is negative, that is, less than 0.
On the other hand, when the difference between the current temperature difference ΔT n and the previously calculated temperature difference ΔT n−1 is negative, that is, smaller than 0, the temperature difference ΔT has passed the maximum temperature difference ΔTmax. Therefore, the temperature difference ΔT n at this time is set as the maximum temperature difference ΔTmax, and the setting operation for the maximum temperature difference is completed.

次に、設定された最大温度差ΔTmaxを用いて、給気用ダンパー211及び排気用ダンパー210の開度を設定する。ここでは、給気用ダンパー211の開度について説明する。
まず、コントローラ243は、外気導入ファン21が予め定められた回転数で動作している状態で、給気用ダンパー211を基準開度位置Dvに設定し、温度センサ37Aにより給気温度Tsを測定するとともに、温度センサ37Bにより排気温度Tdを測定する。そして、この測定した排気温度Tdと給気温度Tsとの温度差ΔTを算出する。
コントローラ243は、設定された最大温度差ΔTmaxと算出された温度差ΔTとの差(ΔTmax−ΔT)に所定係数Kを乗じて算出されたダンパー操作量ΔDを算出し、このダンパー操作量ΔDを給気用ダンパー211の基準開度位置Dvに加算した開度Dv(Dv+ΔD)とする。
続いて、前回の測定から所定時間(本実施形態では5分)経過すると、この時の給気温度Ts及び排気温度Tdをそれぞれ測定し、この測定した排気温度Tdと給気温度Tsとの温度差ΔTを算出する。
そして、コントローラ243は、設定された最大温度差ΔTmaxと算出された温度差ΔTとの差(ΔTmax−ΔT)に所定係数Kと、今回の温度差ΔTと前回の温度差ΔTとの差(ΔT−ΔT)の正負号とを乗じて算出されたダンパー操作量ΔDを算出し、このダンパー操作量ΔDを前回の開度Dvに加算した開度Dv(Dv+ΔD)となるようにダンパー作動モーター213を運転する。この場合、今回の温度差ΔTと前回の温度差ΔTn−1との差(ΔT−ΔTn−1)が負となれば、算出されたダンパー操作量ΔDを前回の開度Dvn−1から減算する。また、設定されたΔTmaxよりも算出されたΔTが大きい場合には、このΔTを新たな最大温度差ΔTmaxとして設定する。
このような制御を所定時間(5分)間隔で行うことにより、給気用ダンパー211及び排気用ダンパー210の開度(送風量)の微調整をすることができ、第2排気経路17を流れる一方の空気量(排気EA)と、給気経路13を流れる他方の空気量(給気SA)との分配量を略均等(50%:50%)に保持することができ、ひいては、第2顕熱交換器35での冷却能力を最大限に発揮することができる。
Next, the opening degree of the supply damper 211 and the exhaust damper 210 is set using the set maximum temperature difference ΔTmax. Here, the opening degree of the air supply damper 211 will be described.
First, the controller 243 sets the supply damper 211 to the reference opening position Dv while the outside air introduction fan 21 is operating at a predetermined rotation speed, and sets the supply air temperature Ts 1 by the temperature sensor 37A. In addition to the measurement, the exhaust gas temperature Td 1 is measured by the temperature sensor 37B. Then, a temperature difference ΔT 1 between the measured exhaust temperature Td 1 and the supply air temperature Ts 1 is calculated.
The controller 243 calculates a damper operation amount ΔD 1 calculated by multiplying a difference (ΔTmax−ΔT 1 ) between the set maximum temperature difference ΔTmax and the calculated temperature difference ΔT 1 by a predetermined coefficient K, and this damper operation. An amount Dv 1 (Dv + ΔD 1 ) is obtained by adding the amount ΔD 1 to the reference opening position Dv of the air supply damper 211.
Subsequently, when a predetermined time (in this embodiment, 5 minutes) elapses from the previous measurement, the supply air temperature Ts 2 and the exhaust gas temperature Td 2 at this time are measured, and the measured exhaust gas temperature Td 2 and supply air temperature Ts are measured. calculating the temperature difference [Delta] T 2 and 2.
Then, the controller 243 adds a predetermined coefficient K to the difference (ΔTmax−ΔT 2 ) between the set maximum temperature difference ΔTmax and the calculated temperature difference ΔT 2 , the current temperature difference ΔT 2, and the previous temperature difference ΔT 1 . A damper operation amount ΔD 2 calculated by multiplying the difference (ΔT 2 −ΔT 1 ) by a positive / negative sign is calculated, and the damper operation amount ΔD 2 is added to the previous opening Dv 1 to obtain an opening Dv 2 (Dv The damper operating motor 213 is operated so that 1 + ΔD 2 ). In this case, if the difference (ΔT n −ΔT n−1 ) between the current temperature difference ΔT n and the previous temperature difference ΔT n−1 is negative, the calculated damper operation amount ΔD n is used as the previous opening Dv. Subtract from n-1 . Also, when [Delta] T n calculated is larger than the .DELTA.Tmax that is set, it sets the [Delta] T n as a new maximum temperature difference .DELTA.Tmax.
By performing such control at predetermined time intervals (5 minutes), the opening degree (air flow rate) of the supply damper 211 and the exhaust damper 210 can be finely adjusted and flows through the second exhaust path 17. The distribution amount of one air amount (exhaust EA) and the other air amount (supply air SA) flowing through the air supply path 13 can be kept substantially equal (50%: 50%). The cooling capacity of the sensible heat exchanger 35 can be maximized.

この第三実施形態によれば、第2排気経路17に設けられた排気用ダンパー210と、給気経路13に設けられた給気用ダンパー211と、第2顕熱交換器35の各出口温度である排気温度Tdと給気温度Tsに基づいて、排気用ダンパー210及び給気用ダンパー211の開度をそれぞれ制御するコントローラ243を備えるため、実際に室内に供給される空気量を測定しなくとも、第2顕熱交換器35の各経路に流れる空気の分配量を簡単に調整することができる。   According to the third embodiment, the exhaust damper 210 provided in the second exhaust path 17, the supply damper 211 provided in the supply path 13, and the outlet temperatures of the second sensible heat exchanger 35. Since the controller 243 for controlling the opening degree of the exhaust damper 210 and the supply damper 211 is provided based on the exhaust temperature Td and the supply air temperature Ts, the amount of air actually supplied into the room is not measured. In both cases, the distribution amount of the air flowing through each path of the second sensible heat exchanger 35 can be easily adjusted.

[第四実施形態]
図6は、第四実施形態にかかる外気処理装置300の概要図である。上記した実施形態にかかる外気処理装置1と同一の構成については同一の符号を付して説明を省略する。
外気処理装置300は、分配部31による分配比、すなわち、第2排気経路17(流路35A)を流れる一方の空気量と、給気経路13(流路35A)を流れる他方の空気量との比を制御するための構成を備える。具体的には、外気処理装置300は、第2排気経路17及び給気経路13に設けられて当該経路を遮蔽する遮蔽板310を備え、この遮蔽板310には第2排気経路17に連通する排気側通過窓311と、給気経路13に連通する給気側通過窓313とが並設されている。これら各通過窓の開口面積は、事前に試験を行い、給気経路13に流れる空気量が吸入された外気量の45〜50%となる面積に設定されている。
この実施形態では、外気温度の変化に追従して通過窓の面積を変更することはできないが、簡単な構成で外気を除湿、冷却処理した空気を室内に供給することができる。
[Fourth embodiment]
FIG. 6 is a schematic diagram of an outside air processing device 300 according to the fourth embodiment. The same components as those in the outside air processing device 1 according to the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.
The outside air processing apparatus 300 has a distribution ratio by the distribution unit 31, that is, one air amount flowing through the second exhaust path 17 (flow path 35A) and the other air amount flowing through the air supply path 13 (flow path 35A). A configuration for controlling the ratio is provided. Specifically, the outside air processing apparatus 300 includes a shielding plate 310 that is provided in the second exhaust path 17 and the air supply path 13 and shields the paths, and the shielding plate 310 communicates with the second exhaust path 17. An exhaust side passage window 311 and an air supply side passage window 313 communicating with the air supply path 13 are provided in parallel. The opening area of each of these passage windows is set to an area in which the amount of air flowing through the air supply path 13 is 45 to 50% of the amount of outside air sucked through a test in advance.
In this embodiment, the area of the passage window cannot be changed following the change in the outside air temperature, but the air that has been dehumidified and cooled can be supplied indoors with a simple configuration.

以上、本発明の一実施の形態に基づいて本発明を説明したが、本発明はこれに限定されるものではない。例えば、上記した実施形態では、第1排気経路15には再生空気として外気を吸入する構成としているが、これに変えて室内空気を吸入する構成としても良い。 夏期においては、冷房された室内空気の温度は、外気温度よりも低くなっているため、第1顕熱交換器27にて室内空気と除湿された空気との顕熱交換を行うことにより、この除湿された空気の温度をより低下させることができ、結果として、給気温度の低下を実現できる。
また、上記した実施形態では、除湿手段としてデシカントロータを採用しているが、吸入された外気を除湿できるものであれば他の構成を採用しても良い。
また、上記した実施形態では、第1顕熱交換手段及び第2顕熱交換手段として、直交型の顕熱交換器を採用しているが、これに変えて顕熱ロータを採用しても良い。
また、上記した実施形態では、加熱手段として温水で加熱するヒータ29を用いているが、電気や蒸気等で加熱するものでも良い。
As mentioned above, although this invention was demonstrated based on one Embodiment of this invention, this invention is not limited to this. For example, in the above-described embodiment, the first exhaust path 15 is configured to suck outside air as regeneration air, but may be configured to suck indoor air instead. In summer, since the temperature of the cooled indoor air is lower than the outside air temperature, the first sensible heat exchanger 27 performs sensible heat exchange between the room air and the dehumidified air. The temperature of the dehumidified air can be further reduced, and as a result, the supply air temperature can be reduced.
In the above-described embodiment, the desiccant rotor is employed as the dehumidifying means, but other configurations may be employed as long as the sucked outside air can be dehumidified.
In the above-described embodiment, the orthogonal sensible heat exchanger is adopted as the first sensible heat exchange means and the second sensible heat exchange means, but a sensible heat rotor may be adopted instead. .
Further, in the above-described embodiment, the heater 29 that is heated with warm water is used as the heating means, but it may be heated with electricity, steam, or the like.

1、100、200、300 外気処理装置
13 給気経路
13A 吸入口
13B 吐出口(給気口)
15 第1排気経路
17 第2排気経路(一方の空気が流れる経路)
17A 吐出口(排気口)
21 外気導入ファン
23 再生用空気導入ファン
25 デシカントロータ(除湿手段)
27 第1顕熱交換器(第1顕熱交換手段)
29 ヒータ
31 分配部(分配手段)
33 加湿器(加湿手段)
35 第2顕熱交換器(第2顕熱交換手段)
37A 温度センサ
37B 温度センサ
39 送風ファン
41、141、241、341 インバータ
43、143、243、343 コントローラ(制御手段)
110 開口
113 送風ファン
210 排気用ダンパー
211 給気用ダンパー
213 ダンパー作動モーター
310 遮蔽板
311 排気側通過窓
313 給気側通過窓
1, 100, 200, 300 Outside air processing device 13 Air supply path 13A Suction port 13B Discharge port (air supply port)
15 First exhaust path 17 Second exhaust path (path through which one air flows)
17A Discharge port (exhaust port)
21 Outside air introduction fan 23 Regenerative air introduction fan 25 Desiccant rotor (dehumidification means)
27 1st sensible heat exchanger (1st sensible heat exchange means)
29 Heater 31 Distributor (Distributor)
33 Humidifier (humidifying means)
35 Second sensible heat exchanger (second sensible heat exchange means)
37A Temperature sensor 37B Temperature sensor 39 Blower fan 41, 141, 241, 341 Inverter 43, 143, 243, 343 Controller (control means)
DESCRIPTION OF SYMBOLS 110 Opening 113 Blower fan 210 Exhaust damper 211 Supply damper 213 Damper operating motor 310 Shielding plate 311 Exhaust side passage window 313 Supply side passage window

Claims (5)

外気を吸入して室内に供給する給気経路と、この給気経路を流れる空気を除湿する除湿手段と、除湿された空気を外気もしくは室内空気と顕熱交換する第1顕熱交換手段と、顕熱交換された空気を2つに分配する分配手段と、分配された一方の空気を加湿する加湿手段と、加湿された空気と分配された他方の空気とを顕熱交換して当該他方の空気を冷却する第2顕熱交換手段とを備え、この第2顕熱交換手段で冷却された空気を前記室内に供給することを特徴とする外気処理装置。   An air supply path for sucking outside air and supplying it into the room; dehumidifying means for dehumidifying the air flowing through the air supply path; first sensible heat exchange means for sensible heat exchange of the dehumidified air with the outside air or room air; Distributing means for distributing the sensible heat-exchanged air into two, humidifying means for humidifying one of the distributed air, and sensible heat exchange between the humidified air and the other distributed air And a second sensible heat exchange means for cooling the air, and the air cooled by the second sensible heat exchange means is supplied into the room. 前記分配手段は、前記給気経路の給気口と前記一方の空気を室外に排出する排気口との少なくとも一方に設けられた送風ファンと、前記第2顕熱交換器の各出口温度に基づいて、前記送風ファンの送風量を制御する制御手段とを備えることを特徴とする請求項1に記載の外気処理装置。   The distribution means is based on a blower fan provided in at least one of an air supply port of the air supply path and an exhaust port for discharging the one air to the outside, and each outlet temperature of the second sensible heat exchanger. The outside air processing apparatus according to claim 1, further comprising a control unit that controls an air blowing amount of the blower fan. 前記分配手段は、前記加湿手段の上流側で、前記一方の空気が流れる経路と前記給気経路とを連通する開口に配置された送風ファンと、前記第2顕熱交換器の各出口温度に基づいて、前記送風ファンの送風量を制御する制御手段とを備えることを特徴とする請求項1に記載の外気処理装置。   The distribution means is arranged at an upstream side of the humidification means, and a blower fan disposed in an opening that communicates the path through which the one air flows and the air supply path, and each outlet temperature of the second sensible heat exchanger. The outside air processing apparatus according to claim 1, further comprising: a control unit that controls a blowing amount of the blowing fan. 前記分配手段は、前記加湿手段の上流側で、前記一方の空気が流れる経路と前記給気経路とにそれぞれ設けられたダンパーと、前記第2顕熱交換器の各出口温度に基づいて、前記ダンパーの開度をそれぞれ制御する制御手段とを備えることを特徴とする請求項1に記載の外気処理装置。   The distribution means, on the upstream side of the humidification means, based on dampers respectively provided in the path through which the one air flows and the air supply path, and the outlet temperatures of the second sensible heat exchanger, The outside air processing apparatus according to claim 1, further comprising a control unit that controls the opening degree of the damper. 前記分配手段は、前記一方の空気と前記他方の空気との分配量を略均等に設定していることを特徴とする請求項1乃至4のいずれかに記載の外気処理装置。   The outside air processing apparatus according to any one of claims 1 to 4, wherein the distribution unit sets a distribution amount of the one air and the other air substantially equally.
JP2011174649A 2011-08-10 2011-08-10 Outside air processing device Pending JP2013036705A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011174649A JP2013036705A (en) 2011-08-10 2011-08-10 Outside air processing device
PCT/JP2012/068785 WO2013021817A1 (en) 2011-08-10 2012-07-25 Outside air processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011174649A JP2013036705A (en) 2011-08-10 2011-08-10 Outside air processing device

Publications (1)

Publication Number Publication Date
JP2013036705A true JP2013036705A (en) 2013-02-21

Family

ID=47668332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011174649A Pending JP2013036705A (en) 2011-08-10 2011-08-10 Outside air processing device

Country Status (2)

Country Link
JP (1) JP2013036705A (en)
WO (1) WO2013021817A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017514092A (en) * 2014-04-18 2017-06-01 キュンドン ナビエン カンパニー リミテッドKyungdong Navien Co.,Ltd. Dehumidifying and cooling device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3066896A1 (en) 2013-11-05 2016-09-14 Philips Lighting Holding B.V. Assembly and method of manufacturing an assembly
JP6576323B2 (en) 2016-12-14 2019-09-18 株式会社大気社 Painting drying equipment
CN107940621A (en) * 2017-12-22 2018-04-20 广东美的制冷设备有限公司 Dehumidifier
EP3936772A4 (en) * 2019-03-05 2022-03-23 Mitsubishi Electric Corporation Air treatment device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501730A (en) * 1986-02-17 1989-06-15 オデッスキ インゼネルノ−ストロイテルニ インスティテュト Methods of cooling substances
JP2002147794A (en) * 2000-09-04 2002-05-22 Seibu Giken Co Ltd Dehumidifying air conditioner
JP2002364879A (en) * 2001-06-08 2002-12-18 Earth Clean Tohoku:Kk Desiccant air conditioner having indirect type heat exchanger
JP2008506090A (en) * 2004-07-12 2008-02-28 オキシセル・ホールディング・ビーブイ Heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03147097A (en) * 1989-11-01 1991-06-24 Hitachi Ltd Goods information system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501730A (en) * 1986-02-17 1989-06-15 オデッスキ インゼネルノ−ストロイテルニ インスティテュト Methods of cooling substances
JP2002147794A (en) * 2000-09-04 2002-05-22 Seibu Giken Co Ltd Dehumidifying air conditioner
JP2002364879A (en) * 2001-06-08 2002-12-18 Earth Clean Tohoku:Kk Desiccant air conditioner having indirect type heat exchanger
JP2008506090A (en) * 2004-07-12 2008-02-28 オキシセル・ホールディング・ビーブイ Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017514092A (en) * 2014-04-18 2017-06-01 キュンドン ナビエン カンパニー リミテッドKyungdong Navien Co.,Ltd. Dehumidifying and cooling device

Also Published As

Publication number Publication date
WO2013021817A1 (en) 2013-02-14

Similar Documents

Publication Publication Date Title
US11525600B2 (en) Air conditioning system and control method thereof
KR101594422B1 (en) Solar energy dehumidifying and cooling air system
KR100675802B1 (en) An apparatus to remove or humidity moisture
JP5862266B2 (en) Ventilation system
JP2004257588A (en) Dehumidifying air-conditioner
JP5494811B2 (en) Air conditioning system
JP5576327B2 (en) Air conditioning system
JP6178174B2 (en) Desiccant air conditioner and desiccant air conditioner
JP5542701B2 (en) Low temperature regeneration desiccant air conditioner
WO2013021817A1 (en) Outside air processing device
JP4340756B2 (en) Dehumidifying air conditioner
JP4420463B2 (en) Desiccant ventilation system
JP4892271B2 (en) Air conditioning system
JP6018938B2 (en) Air conditioning system for outside air treatment
JP2002235933A (en) Air conditioner
WO2017183689A1 (en) Outside-air treatment system, and device and method for controlling outside-air treatment system
WO2012132478A1 (en) Humidity conditioning ventilation device
JP2007139333A (en) Ventilating device and building
JP3821031B2 (en) Desiccant air conditioning system
KR101420595B1 (en) Desiccant air conditioner
JP2011191036A (en) Desiccant air conditioner
JP6321212B2 (en) Dehumidifying and cooling device
JP2010078245A (en) Humidity control system
JP3408024B2 (en) Desiccant air conditioner
JPH0814600A (en) Desiccant type air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160112