JP2013036641A - Water supply system - Google Patents

Water supply system Download PDF

Info

Publication number
JP2013036641A
JP2013036641A JP2011171438A JP2011171438A JP2013036641A JP 2013036641 A JP2013036641 A JP 2013036641A JP 2011171438 A JP2011171438 A JP 2011171438A JP 2011171438 A JP2011171438 A JP 2011171438A JP 2013036641 A JP2013036641 A JP 2013036641A
Authority
JP
Japan
Prior art keywords
water
water supply
membrane
valve
supply tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011171438A
Other languages
Japanese (ja)
Inventor
Yusuke Okamoto
裕介 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2011171438A priority Critical patent/JP2013036641A/en
Publication of JP2013036641A publication Critical patent/JP2013036641A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow heat recovery from cooled fluid with simple structure while preventing breakage of a membrane, in a water supply system using a membrane type deaeration apparatus.SOLUTION: A first water supply path 14 is opened from the membrane type deaeration system 8 to a water supply tank 3. The first water supply passage 14 is not provided with a valve for cutting off a flow in a forward direction from a deaeration apparatus 8 to the water supply tank 3. A second water supply path 15 is branched from the first water supply passage 14 to supply water to the water supply tank 3 through a heat exchanger 18 with the cooled fluid. A water level sensor 13 monitors a water level of the water supply tank 3. When the water is supplied from the deaeration apparatus 8 to the water supply tank 3 based on a detection signal of the water level sensor 13, the water can be supplied through a second water supply path 15.

Description

本発明は、給水タンクへの給水で被冷却流体の冷却を図ると共に、被冷却流体の熱で給水タンクへの給水の加温を図る給水システムに関するものである。   The present invention relates to a water supply system that aims to cool a fluid to be cooled with water supplied to a water supply tank and to heat the water supplied to the water supply tank with heat from the fluid to be cooled.

下記特許文献1に開示されるように、ボイラの給水タンク(7)への給水を用いて、圧縮空気の冷却や圧縮機の潤滑油の冷却を図ると共に、それにより給水タンクへの給水の加温を図ることで圧縮熱を回収するシステムが知られている。具体的には、脱気装置(11)からの水は補給水タンク(21)へまずは溜められ、その水は、エアクーラ(32)とオイルクーラ(31)とを介して、ボイラの給水タンク(7)へ供給される。エアクーラ(32)では圧縮空気の冷却が図られる一方、オイルクーラ(31)では圧縮機の潤滑油の冷却が図られ、各クーラにおいて給水タンクへの給水が加温される。   As disclosed in Patent Document 1 below, water supplied to a boiler water supply tank (7) is used to cool compressed air and compressor lubricating oil, thereby adding water to the water supply tank. Systems for recovering compression heat by increasing the temperature are known. Specifically, water from the deaeration device (11) is first stored in a makeup water tank (21), and the water is supplied to a boiler water tank (31) via an air cooler (32) and an oil cooler (31). 7). The air cooler (32) cools the compressed air, while the oil cooler (31) cools the lubricating oil of the compressor, and the water supplied to the water supply tank is heated in each cooler.

特開2010−38385号公報(図1、段落番号0015−0016,0057)Japanese Patent Laying-Open No. 2010-38385 (FIG. 1, paragraph numbers 0015-0016, 0057)

脱気装置として膜式の脱気装置を用いる場合、脱気装置の二次側には、順方向の流れを遮断する弁(たとえばボールタップ・定水位弁)を設けないことが望ましい。なぜなら、その弁の閉鎖により、脱気装置の脱気膜に規定以上の背圧がかかり、脱気膜が損傷するおそれがあるからである。そこで、膜式の脱気装置を用いる場合には、前記特許文献1に記載の発明のように、脱気装置からの水を一旦、補給水タンクに開放して使用することが行われている。   When a membrane type deaerator is used as the deaerator, it is desirable not to provide a valve (for example, a ball tap / constant water level valve) for blocking forward flow on the secondary side of the deaerator. This is because closing the valve may apply a back pressure higher than the specified pressure on the deaeration membrane of the deaeration device, possibly damaging the deaeration membrane. Therefore, when using a membrane type deaeration device, the water from the deaeration device is once opened in a make-up water tank and used as in the invention described in Patent Document 1. .

しかしながら、このような構成では給水タンク以外に補給水タンクが別途必要となる。また、補給水タンクから給水タンクへの給水は、熱回収用のエアクーラやオイルクーラを介した給水だけでは不足するおそれがあるので、それに対応するための構成(第一給水路27)も必要となる。   However, such a configuration requires a supplementary water tank in addition to the water supply tank. In addition, water supply from the makeup water tank to the water supply tank may be insufficient only by water supply through the heat recovery air cooler or oil cooler, and a configuration (first water supply channel 27) is required to cope with this. Become.

ところで、脱気装置以外の水処理装置(たとえば軟水装置)にも、膜を用いたものがあり、そのような膜式の水処理装置を用いた給水システムでも、上述した膜式脱気装置と同様のことがいえる。   By the way, there are also water treatment devices other than the deaeration device (for example, soft water devices) using a membrane, and even in a water supply system using such a membrane type water treatment device, The same can be said.

そこで、本発明が解決しようとする課題は、膜式の水処理装置を用いた給水システムにおいて、膜の破損を防止しつつ、簡易な構成で被冷却流体からの熱回収を可能とすることにある。   Therefore, the problem to be solved by the present invention is to enable heat recovery from a fluid to be cooled with a simple configuration while preventing damage to the membrane in a water supply system using a membrane-type water treatment device. is there.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、膜式の水処理装置から給水タンクへ開放され、前記水処理装置から前記給水タンクへの順方向の流れを遮断する弁が設けられない第一給水路と、この第一給水路から分岐して設けられ、被冷却流体との熱交換器を介して前記給水タンクへ給水する第二給水路と、前記給水タンクの水位を監視する水位センサとを備え、前記水位センサの検出信号に基づき前記水処理装置から前記給水タンクへ給水する際、前記第二給水路を介して給水可能とされたことを特徴とする給水システムである。   The present invention has been made in order to solve the above-mentioned problems, and the invention according to claim 1 is directed to a forward direction from the water treatment device to the water supply tank that is opened from the membrane water treatment device to the water supply tank. A first water supply path that is not provided with a valve that shuts off the flow of water, and a second water supply path that is branched from the first water supply path and that supplies water to the water supply tank via a heat exchanger with a fluid to be cooled. A water level sensor for monitoring the water level of the water supply tank, and when water is supplied from the water treatment device to the water supply tank based on a detection signal of the water level sensor, water can be supplied through the second water supply channel. It is a water supply system characterized by.

請求項1に記載の発明によれば、膜式水処理装置から給水タンクへの第一給水路には、順方向の流れを遮断する弁が設けられない。これにより、水処理装置の膜に背圧がかかることがなく、膜の破損を防止することができる。また、第一給水路から分岐させて第二給水路を設け、その第二給水路の熱交換器において、被冷却流体の冷却と給水の加温とを図ることができる。   According to invention of Claim 1, the valve which interrupts | blocks a forward flow is not provided in the 1st water supply path from a membrane type water treatment apparatus to a water supply tank. Thereby, the back pressure is not applied to the membrane of the water treatment device, and the membrane can be prevented from being damaged. Further, a second water supply path is provided by branching from the first water supply path, and cooling of the fluid to be cooled and heating of the water supply can be achieved in the heat exchanger of the second water supply path.

請求項2に記載の発明は、前記水処理装置は膜式脱気装置であり、前記第二給水路には、通水ポンプおよび前記熱交換器が設けられ、前記水位センサの検出信号に基づき前記膜式脱気装置の給水弁を開いて前記給水タンクへ給水する際、前記通水ポンプを作動させて前記第二給水路に通水することを特徴とする請求項1に記載の給水システムである。   According to a second aspect of the present invention, the water treatment device is a membrane type deaeration device, and the second water supply path is provided with a water pump and the heat exchanger, and is based on a detection signal of the water level sensor. 2. The water supply system according to claim 1, wherein when the water supply valve of the membrane deaerator is opened to supply water to the water supply tank, the water supply pump is operated to supply water to the second water supply passage. It is.

請求項2に記載の発明によれば、膜式脱気装置の膜の保護を図ることができる。また、給水タンクへの給水時、通水ポンプを作動させて第二給水路に通水することにより、第二給水路の熱交換器において、被冷却流体の冷却と給水の加温とを図ることができる。   According to invention of Claim 2, protection of the film | membrane of a membrane type deaeration apparatus can be aimed at. In addition, when supplying water to the water supply tank, the water supply pump is operated to pass water through the second water supply channel, thereby cooling the cooled fluid and heating the water supply in the heat exchanger of the second water supply channel. be able to.

請求項3に記載の発明は、前記第二給水路には、前記熱交換器の出口側に温度センサが設けられ、この温度センサの検出温度に基づき、前記第二給水路の通水量が調整され、この通水量の調整は、前記通水ポンプの回転数をインバータで調整するか、前記第二給水路に通水弁を設けてその開度を調整して行うことを特徴とする請求項2に記載の給水システムである。   According to a third aspect of the present invention, the second water supply passage is provided with a temperature sensor on the outlet side of the heat exchanger, and the flow rate of the second water supply passage is adjusted based on the temperature detected by the temperature sensor. The adjustment of the water flow rate is performed by adjusting the rotation speed of the water flow pump with an inverter or by providing a water flow valve in the second water supply channel and adjusting the opening degree thereof. 2. The water supply system according to 2.

請求項3に記載の発明によれば、温度センサの検出温度に基づき熱交換器の通水量を調整して、所望温度の温水を得ることができる。   According to the third aspect of the present invention, hot water at a desired temperature can be obtained by adjusting the amount of water flow through the heat exchanger based on the temperature detected by the temperature sensor.

さらに、請求項4に記載の発明は、前記熱交換器は、圧縮機の潤滑油を冷却するオイルクーラと、圧縮機からの圧縮空気を冷却するエアクーラとの内、一方または双方であることを特徴とする請求項3に記載の給水システムである。   Further, the invention according to claim 4 is that the heat exchanger is one or both of an oil cooler for cooling the lubricating oil of the compressor and an air cooler for cooling the compressed air from the compressor. It is a water supply system of Claim 3 characterized by the above-mentioned.

請求項4に記載の発明によれば、給水タンクへの給水で圧縮機や圧縮空気の冷却を図る一方、圧縮熱により給水タンクへの給水を加温して、圧縮熱の回収を図ることができる。   According to the fourth aspect of the present invention, the compressor and the compressed air are cooled by supplying water to the water supply tank, while the water supplied to the water supply tank is heated by the compression heat to recover the compression heat. it can.

本発明によれば、膜式の水処理装置を用いた給水システムにおいて、膜の破損を防止しつつ、簡易な構成で被冷却流体からの熱回収が可能となる。   ADVANTAGE OF THE INVENTION According to this invention, in the water supply system using a membrane-type water treatment apparatus, heat recovery from a to-be-cooled fluid is attained with a simple structure, preventing damage to a membrane.

本発明の給水システムの一実施例を示す概略図である。It is the schematic which shows one Example of the water supply system of this invention.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の給水システムの一実施例を示す概略図である。本実施例の給水システム1は、ボイラ2の給水タンク3への給水(以下、この給水をボイラ給水という。)を用いて、圧縮空気の冷却と圧縮機4の潤滑油の冷却とを図ると共に、それによりボイラ給水の加温を図ることで圧縮熱を回収するシステムである。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view showing an embodiment of the water supply system of the present invention. The water supply system 1 of the present embodiment uses water supplied to the water supply tank 3 of the boiler 2 (hereinafter, this water supply is referred to as boiler water supply) to cool the compressed air and the lubricating oil of the compressor 4. This is a system for recovering the compression heat by heating the boiler feed water.

圧縮機4は、その構成を特に問わないが、本実施例では油潤滑式かつ水冷式の電動空気圧縮機である。この場合、圧縮機本体(図示省略)から吐出される圧縮空気は、オイルセパレータ(図示省略)へ送られ、オイルセパレータにおいて潤滑油の分離除去が図られる。そして、オイルセパレータで潤滑油を除去された圧縮空気は、エアクーラや所望によりドライヤ(図示省略)を介して、各種の圧縮空気利用機器(図示省略)へ送られる。一方、オイルセパレータで分離された潤滑油は、オイルクーラを介して圧縮機本体へ戻される。   The compressor 4 is not particularly limited in its configuration, but is an oil-lubricated and water-cooled electric air compressor in this embodiment. In this case, the compressed air discharged from the compressor body (not shown) is sent to an oil separator (not shown), and the lubricating oil is separated and removed in the oil separator. The compressed air from which the lubricating oil has been removed by the oil separator is sent to various types of compressed air using devices (not shown) via an air cooler or a dryer (not shown) if desired. On the other hand, the lubricating oil separated by the oil separator is returned to the compressor body through the oil cooler.

エアクーラは、圧縮空気とその冷却水との熱交換器である。一方、オイルクーラは、潤滑油とその冷却水との熱交換器である。通常、エアクーラおよびオイルクーラに通される冷却水は、クーリングタワーとの間で循環されるが、これでは圧縮熱を外部へ捨てることになる。そこで、本実施例では、クーリングタワーとの間で冷却水を循環する既存のエアクーラ(以下、第一エアクーラという。)およびオイルクーラ(以下、第一オイルクーラという。)はそのまま残しつつも、これら各クーラの上流側に、熱回収用の熱交換器を追加して、ボイラ給水で圧縮熱の回収を図る。   An air cooler is a heat exchanger between compressed air and its cooling water. On the other hand, the oil cooler is a heat exchanger for lubricating oil and its cooling water. Usually, the cooling water passed through the air cooler and the oil cooler is circulated between the cooling tower and the cooling water. Therefore, in this embodiment, the existing air cooler (hereinafter referred to as the first air cooler) and the oil cooler (hereinafter referred to as the first oil cooler) that circulates the cooling water with the cooling tower are left as they are. A heat exchanger for heat recovery is added upstream of the cooler, and the compression heat is recovered with boiler feed water.

すなわち、オイルセパレータから第一エアクーラ(図示省略)への送気路に、第二エアクーラ5を設け、この第二エアクーラ5において、圧縮空気とボイラ給水とを熱交換して、圧縮空気の冷却とボイラ給水の加温とを図る。同様に、オイルセパレータから第一オイルクーラ(図示省略)への送油路に、第二オイルクーラ6を設け、この第二オイルクーラ6において、潤滑油とボイラ給水とを熱交換して、潤滑油の冷却とボイラ給水の加温とを図る。   That is, the second air cooler 5 is provided in the air supply path from the oil separator to the first air cooler (not shown). In the second air cooler 5, the compressed air and the boiler feed water are heat-exchanged to cool the compressed air. The boiler water supply is heated. Similarly, a second oil cooler 6 is provided in the oil feed path from the oil separator to the first oil cooler (not shown). In this second oil cooler 6, the lubricating oil and boiler feed water are heat-exchanged to lubricate. Cooling oil and heating boiler feed water.

次に、ボイラ2の給水タンク3への給水系統について説明する。本実施例の給水システム1は、軟水装置7、脱気装置8および給水タンク3を備える。   Next, a water supply system to the water supply tank 3 of the boiler 2 will be described. The water supply system 1 of the present embodiment includes a soft water device 7, a deaeration device 8, and a water supply tank 3.

軟水装置7は、イオン交換樹脂などを用いて、原水中に含まれるカルシウムやマグネシウムなどの硬度分を除去する装置である。   The soft water device 7 is a device that removes hardness components such as calcium and magnesium contained in the raw water using an ion exchange resin or the like.

脱気装置8は、本実施例では膜式の脱気装置であり、より具体的には、中空糸膜などの脱気膜を用いて、水中の酸素を除去する装置である。脱気装置8は、入口側に給水弁9を備え、この給水弁9が開かれると、軟水装置7からの軟水が脱気膜10を通される。これにより、脱気装置8から、脱気された軟水を取り出すことができる。   The deaeration device 8 is a membrane type deaeration device in this embodiment, and more specifically, a device that removes oxygen in water using a deaeration membrane such as a hollow fiber membrane. The deaeration device 8 includes a water supply valve 9 on the inlet side, and when the water supply valve 9 is opened, the soft water from the soft water device 7 passes through the deaeration membrane 10. Thereby, the deaerated soft water can be taken out from the deaerator 8.

給水タンク3は、脱気装置8からの水を貯留する。給水タンク3内の水は、給水ポンプ11および逆止弁12を介して、適宜ボイラ2へ供給され、ボイラ2において加熱され蒸気化される。   The water supply tank 3 stores water from the deaeration device 8. The water in the water supply tank 3 is appropriately supplied to the boiler 2 through the water supply pump 11 and the check valve 12, and is heated and vaporized in the boiler 2.

給水タンク3には、水位センサ13が設けられている。水位センサ13は、その構成を特に問わず、たとえば、電極に電流が流れるか否かで所定水位の有無を把握する電極式の水位検出器の他、水位に比例した出力を得ることができる静電容量式の水位検出器などを用いることができる。いずれにしても、水位センサ13で給水タンク3内の水位を監視し、下限水位を下回ると給水弁9を開いて給水する一方、上限水位を上回ると給水弁9を閉じて給水を停止する。これにより、給水タンク3内の水位を所望範囲に維持することができる。   A water level sensor 13 is provided in the water supply tank 3. The water level sensor 13 is not particularly limited in its configuration. For example, the water level sensor 13 can obtain an output proportional to the water level in addition to an electrode-type water level detector that grasps the presence or absence of a predetermined water level depending on whether or not current flows through the electrode. A capacitance type water level detector or the like can be used. In any case, the water level sensor 13 monitors the water level in the water supply tank 3, and when the water level falls below the lower limit water level, the water supply valve 9 is opened to supply water, while when it exceeds the upper limit water level, the water supply valve 9 is closed to stop water supply. Thereby, the water level in the water supply tank 3 can be maintained in a desired range.

脱気装置8からの水は、第一給水路14を介して給水タンク3へ供給される。この第一給水路14は、脱気装置8から給水タンク3への順方向の流れを遮断する弁(たとえばボールタップ・定水位弁)などが中途に設けられておらず、先端部を給水タンク3へ開口する。仮に上述のような弁が第一給水路14に設けられていると、その弁の閉鎖により、脱気装置8の脱気膜10に規定以上の背圧がかかり、脱気膜10が損傷するおそれがある。ところが、本実施例のように、脱気装置8からの第一給水路14を給水タンク3へそのまま開放しておけば、脱気膜10に背圧がかかるおそれはなく、脱気膜10を確実に保護することができる。なお、第一給水路14には、給水タンク3の側からの逆流を防止する逆止弁は設けておいてもよい。   Water from the deaeration device 8 is supplied to the water supply tank 3 through the first water supply path 14. The first water supply path 14 is not provided with a valve (for example, a ball tap or a constant water level valve) that interrupts the forward flow from the deaerator 8 to the water supply tank 3. Open to. If the above-described valve is provided in the first water supply channel 14, the valve is closed, and a back pressure exceeding a specified value is applied to the deaeration membrane 10 of the deaeration device 8, and the deaeration membrane 10 is damaged. There is a fear. However, if the first water supply path 14 from the degassing device 8 is opened to the water supply tank 3 as it is as in the present embodiment, there is no possibility that back pressure is applied to the degassing film 10, and the degassing film 10 is It can be surely protected. The first water supply path 14 may be provided with a check valve for preventing a back flow from the water supply tank 3 side.

第一給水路14には、第二給水路15が分岐して設けられ、この第二給水路15を介しても、脱気装置8からの水を給水タンク3へ供給可能とされる。第二給水路15には、本実施例では、上流側から順に、通水ポンプ16、通水弁17、熱回収用熱交換器18が設けられている。   A second water supply path 15 is branched from the first water supply path 14, and water from the deaeration device 8 can be supplied to the water supply tank 3 through the second water supply path 15. In the present embodiment, the second water supply path 15 is provided with a water flow pump 16, a water flow valve 17, and a heat recovery heat exchanger 18 in order from the upstream side.

熱回収用熱交換器18は、本実施例では、前述した第二エアクーラ5および第二オイルクーラ6である。本実施例では、第二給水路15には第二エアクーラ5と第二オイルクーラ6とを順に設けたが、この設置順序は場合により逆にしてもよい。また、本実施例では、第二給水路15には第二エアクーラ5と第二オイルクーラ6とを直列に設けているが、場合により並列に設けてもよい。   In this embodiment, the heat recovery heat exchanger 18 is the second air cooler 5 and the second oil cooler 6 described above. In the present embodiment, the second water cooler 5 and the second oil cooler 6 are provided in this order in the second water supply passage 15, but the installation order may be reversed depending on the case. In the present embodiment, the second air cooler 5 and the second oil cooler 6 are provided in series in the second water supply path 15, but may be provided in parallel in some cases.

次に、本実施例の給水システム1の運転について説明する。水位センサ13が低水位を検出すると、その信号は、脱気装置8、通水ポンプ16および通水弁17に送られる。これにより、脱気装置8が起動しその給水弁9が開かれる一方、これと連動するように、通水ポンプ16が作動すると共に通水弁17が開かれる。但し、通水ポンプ16は、本実施例では圧縮機4からも制御信号を受けており、圧縮機4が運転中または運転開始の場合に作動する。つまり、結果として、第二給水路15への通水は、圧縮機4が運転中または運転開始時になされる。通水ポンプ16の作動時、脱気装置8からの水は、通水ポンプ16の吸引力により、第一給水路14よりも第二給水路15を通過することが優先される。   Next, operation | movement of the water supply system 1 of a present Example is demonstrated. When the water level sensor 13 detects a low water level, the signal is sent to the deaerator 8, the water pump 16 and the water valve 17. As a result, the deaeration device 8 is activated and the water supply valve 9 is opened. On the other hand, the water pump 16 is operated and the water valve 17 is opened in conjunction with this operation. However, the water pump 16 also receives a control signal from the compressor 4 in this embodiment, and operates when the compressor 4 is in operation or is in operation. That is, as a result, the water flow to the second water supply path 15 is performed while the compressor 4 is in operation or at the start of operation. When the water pump 16 is operated, the water from the deaeration device 8 is prioritized to pass through the second water supply path 15 rather than the first water supply path 14 due to the suction force of the water pump 16.

一方、水位センサ13が高水位を検出すると、脱気装置8を停止させその給水弁9を閉じる一方、これと連動するように、通水ポンプ16を停止すると共に通水弁17を閉じる。   On the other hand, when the water level sensor 13 detects a high water level, the deaeration device 8 is stopped and the water supply valve 9 is closed, while the water pump 16 is stopped and the water valve 17 is closed so as to be interlocked therewith.

ところで、第二給水路15には、熱回収用熱交換器18(第二エアクーラ5、第二オイルクーラ6)の出口側に温度センサ19を設けておき、この温度センサ19の検出温度に基づき通水弁17の開度を調整して、第二給水路15から給水タンク3へ供給する水温を所望に維持するよう制御してもよい。この場合、第二給水路15の通水量によっては、第二エアクーラ5および第二オイルクーラ6だけでは圧縮空気や潤滑油を所望に冷却できないおそれもあるが、圧縮機4に既存の第一エアクーラおよび第一オイルクーラがあるので、圧縮空気や潤滑油を所望に冷却することが可能となる。   By the way, a temperature sensor 19 is provided on the outlet side of the heat recovery heat exchanger 18 (second air cooler 5, second oil cooler 6) in the second water supply path 15, and based on the detected temperature of the temperature sensor 19. You may control by adjusting the opening degree of the water flow valve 17, and maintaining the water temperature supplied to the water supply tank 3 from the 2nd water supply path 15 as desired. In this case, depending on the amount of water flowing through the second water supply passage 15, there is a possibility that the compressed air and the lubricating oil cannot be cooled as desired by using only the second air cooler 5 and the second oil cooler 6. Since the first oil cooler is provided, the compressed air and the lubricating oil can be cooled as desired.

なお、温度センサ19の検出温度に基づき通水弁17の開度を調整することに代えて、温度センサ19の検出温度に基づきインバータで通水ポンプ16の回転数を制御することで、熱回収用熱交換器18への通水量を調整してもよい。この場合、通水弁17の設置を省略することもできる。   Instead of adjusting the opening of the water flow valve 17 based on the temperature detected by the temperature sensor 19, the heat recovery is achieved by controlling the rotation speed of the water flow pump 16 using an inverter based on the temperature detected by the temperature sensor 19. The amount of water flow to the heat exchanger 18 may be adjusted. In this case, the installation of the water flow valve 17 can be omitted.

また、圧縮機4の側が過冷却となるおそれはないため、第二給水路15を介して加温する温度を所定に保つという制約がない場合には、通水弁17を最大流量のみの調整としてもよい。   In addition, since there is no possibility that the compressor 4 side is overcooled, if there is no restriction that the temperature heated through the second water supply passage 15 is kept at a predetermined level, the water flow valve 17 is adjusted only for the maximum flow rate. It is good.

本発明の給水システム1は、前記実施例の構成に限らず適宜変更可能である。
たとえば、前記実施例では、圧縮機4の既存の冷却手段としての第一エアクーラおよび第一オイルクーラはそのまま残しつつ、熱回収用熱交換器18としての第二エアクーラ5および第二オイルクーラ6を第二給水路15に設置したが、第二エアクーラ5と第二オイルクーラ6との内、一方の設置を省略してもよい。つまり、第二給水路15に設ける熱回収用熱交換器18の数は適宜に変更可能である。また、第二エアクーラ5および/または第二オイルクーラ6の設置を省略して、第一エアクーラおよび/または第一オイルクーラを第二給水路15に設置して、第一エアクーラや第一オイルクーラの冷却水をボイラ給水としてもよい。
The water supply system 1 of the present invention is not limited to the configuration of the above embodiment, and can be changed as appropriate.
For example, in the above-described embodiment, the first air cooler and the first oil cooler as the existing cooling means of the compressor 4 are left as they are, and the second air cooler 5 and the second oil cooler 6 as the heat recovery heat exchanger 18 are left as they are. Although installed in the second water supply path 15, one of the second air cooler 5 and the second oil cooler 6 may be omitted. That is, the number of heat recovery heat exchangers 18 provided in the second water supply path 15 can be changed as appropriate. Further, the installation of the second air cooler 5 and / or the second oil cooler 6 is omitted, and the first air cooler and / or the first oil cooler is installed in the second water supply passage 15 so that the first air cooler and the first oil cooler are installed. The cooling water may be boiler feed water.

また、前記実施例では、圧縮機4は、モータで駆動されたが、蒸気エンジンで駆動されてもよい。さらに、前記実施例において、圧縮機4は、複数段であってもよいし、無潤滑式(オイルフリー式)であってもよい。いずれの場合も、圧縮空気や潤滑油を冷却するためのクーラ18を第二給水路15に設置して、ボイラ給水で圧縮熱を回収すればよい。   Moreover, in the said Example, although the compressor 4 was driven with the motor, you may drive with a steam engine. Furthermore, in the said Example, the compressor 4 may be a multistage and may be a non-lubricated type (oil-free type). In any case, a cooler 18 for cooling the compressed air or the lubricating oil may be installed in the second water supply passage 15 and the compression heat may be recovered by boiler supply water.

また、前記実施例では、第二給水路15に設置した熱交換器18で、圧縮機4の圧縮熱を回収するシステムとしたが、第二給水路15でボイラ給水を予熱する熱源は特に問わない。たとえば、第二給水路15に設置した熱交換器18において、各種装置からの排ガスと、ボイラ給水との熱交換を図ってもよい。   Moreover, in the said Example, it was set as the system which collect | recovers the compression heat of the compressor 4 with the heat exchanger 18 installed in the 2nd water supply path 15, However, The heat source which preheats boiler water supply in the 2nd water supply path 15 is especially ask | required. Absent. For example, in the heat exchanger 18 installed in the 2nd water supply path 15, you may aim at heat exchange with the waste gas from various apparatuses, and boiler feed water.

また、前記実施例では、膜式脱気装置8の脱気膜10にかかる背圧を防止する例について説明したが、膜式脱気装置8に限らず、背圧制限のある膜を用いるその他の水処理装置にも同様に適用可能である。たとえば、膜式軟水装置やRO逆浸透膜式浄水装置などであってもよい。その場合も、膜式水処理装置からの第一給水路14は、順方向の流れを遮断する弁を介することなく、給水タンク3へ開放されることで、膜へ背圧がかかることを防止しつつ、水位センサ13の検出信号に基づき、膜式水処理装置への給水弁9と、通水ポンプ16などを制御すればよい。   Moreover, in the said Example, although the example which prevents the back pressure concerning the deaeration membrane 10 of the membrane type deaeration apparatus 8 was demonstrated, not only the membrane type deaeration apparatus 8 but the other which uses the film | membrane with back pressure restriction | limiting It can be similarly applied to other water treatment apparatuses. For example, a membrane soft water device or a RO reverse osmosis membrane water purifier may be used. Even in that case, the first water supply path 14 from the membrane water treatment device is opened to the water supply tank 3 without using a valve for blocking the forward flow, thereby preventing back pressure from being applied to the membrane. However, based on the detection signal of the water level sensor 13, the water supply valve 9 to the membrane water treatment device, the water pump 16, and the like may be controlled.

また、前記実施例では、第二給水路15に通水弁17を設け、温度センサ19の検出温度に基づき通水弁17の開度を調整する例を説明したが、通水量を規定するフローセッタを設けて、通水弁17や温度センサ19の設置を省略してもよい。   In the above-described embodiment, the example in which the water supply valve 17 is provided in the second water supply path 15 and the opening degree of the water supply valve 17 is adjusted based on the temperature detected by the temperature sensor 19 has been described. A setter may be provided, and the installation of the water flow valve 17 and the temperature sensor 19 may be omitted.

さらに、前記実施例では、給水タンク3の水は、ボイラ2への給水として用いたが、空調機や食品機械など、ボイラ給水以外の用途にも適用可能である。   Furthermore, in the said Example, although the water of the water supply tank 3 was used as water supply to the boiler 2, it is applicable also to uses other than boiler water supply, such as an air conditioner and a food machine.

1 給水システム
2 ボイラ
3 給水タンク
4 圧縮機
5 第二エアクーラ
6 第二オイルクーラ
7 軟水装置
8 膜式脱気装置(膜式水処理装置)
9 給水弁
10 脱気膜
11 給水ポンプ
12 逆止弁
13 水位センサ
14 第一給水路
15 第二給水路
16 通水ポンプ
17 通水弁
18 熱交換器
19 温度センサ
DESCRIPTION OF SYMBOLS 1 Water supply system 2 Boiler 3 Water supply tank 4 Compressor 5 Second air cooler 6 Second oil cooler 7 Soft water device 8 Membrane type deaerator (membrane type water treatment device)
DESCRIPTION OF SYMBOLS 9 Water supply valve 10 Deaeration membrane 11 Water supply pump 12 Check valve 13 Water level sensor 14 1st water supply path 15 2nd water supply path 16 Water supply pump 17 Water supply valve 18 Heat exchanger 19 Temperature sensor

Claims (4)

膜式の水処理装置から給水タンクへ開放され、前記水処理装置から前記給水タンクへの順方向の流れを遮断する弁が設けられない第一給水路と、
この第一給水路から分岐して設けられ、被冷却流体との熱交換器を介して前記給水タンクへ給水する第二給水路と、
前記給水タンクの水位を監視する水位センサとを備え、
前記水位センサの検出信号に基づき前記水処理装置から前記給水タンクへ給水する際、前記第二給水路を介して給水可能とされた
ことを特徴とする給水システム。
A first water supply path that is opened from the membrane water treatment device to the water supply tank and is not provided with a valve for blocking a forward flow from the water treatment device to the water supply tank;
A second water supply path that is branched from the first water supply path and supplies water to the water supply tank via a heat exchanger with the fluid to be cooled;
A water level sensor for monitoring the water level of the water supply tank,
When supplying water from the water treatment device to the water supply tank based on a detection signal of the water level sensor, water supply is enabled through the second water supply channel.
前記水処理装置は膜式脱気装置であり、
前記第二給水路には、通水ポンプおよび前記熱交換器が設けられ、
前記水位センサの検出信号に基づき前記膜式脱気装置の給水弁を開いて前記給水タンクへ給水する際、前記通水ポンプを作動させて前記第二給水路に通水する
ことを特徴とする請求項1に記載の給水システム。
The water treatment device is a membrane deaeration device,
The second water supply path is provided with a water pump and the heat exchanger,
When the water supply valve of the membrane deaerator is opened to supply water to the water supply tank based on the detection signal of the water level sensor, the water supply pump is operated to supply water to the second water supply channel. The water supply system according to claim 1.
前記第二給水路には、前記熱交換器の出口側に温度センサが設けられ、
この温度センサの検出温度に基づき、前記第二給水路の通水量が調整され、
この通水量の調整は、前記通水ポンプの回転数をインバータで調整するか、前記第二給水路に通水弁を設けてその開度を調整して行う
ことを特徴とする請求項2に記載の給水システム。
In the second water supply channel, a temperature sensor is provided on the outlet side of the heat exchanger,
Based on the temperature detected by this temperature sensor, the water flow rate of the second water supply channel is adjusted,
The adjustment of the water flow rate is performed by adjusting the rotation speed of the water flow pump with an inverter or by providing a water flow valve in the second water supply path and adjusting the opening degree. The water supply system described.
前記熱交換器は、圧縮機の潤滑油を冷却するオイルクーラと、圧縮機からの圧縮空気を冷却するエアクーラとの内、一方または双方である
ことを特徴とする請求項3に記載の給水システム。
The water supply system according to claim 3, wherein the heat exchanger is one or both of an oil cooler that cools the lubricating oil of the compressor and an air cooler that cools the compressed air from the compressor. .
JP2011171438A 2011-08-05 2011-08-05 Water supply system Withdrawn JP2013036641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011171438A JP2013036641A (en) 2011-08-05 2011-08-05 Water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011171438A JP2013036641A (en) 2011-08-05 2011-08-05 Water supply system

Publications (1)

Publication Number Publication Date
JP2013036641A true JP2013036641A (en) 2013-02-21

Family

ID=47886413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011171438A Withdrawn JP2013036641A (en) 2011-08-05 2011-08-05 Water supply system

Country Status (1)

Country Link
JP (1) JP2013036641A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032224A (en) * 2015-08-03 2017-02-09 三浦工業株式会社 Heated water manufacturing system
JP7053929B1 (en) 2021-07-06 2022-04-12 株式会社Ihi汎用ボイラ Water supply device and water supply method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032224A (en) * 2015-08-03 2017-02-09 三浦工業株式会社 Heated water manufacturing system
JP7053929B1 (en) 2021-07-06 2022-04-12 株式会社Ihi汎用ボイラ Water supply device and water supply method
JP2023008637A (en) * 2021-07-06 2023-01-19 株式会社Ihi汎用ボイラ Water supply apparatus and method

Similar Documents

Publication Publication Date Title
KR101935274B1 (en) Heat recovery system
JP5821235B2 (en) Liquid cooling system
US9441638B2 (en) Oil-cooled gas compressor
KR102015689B1 (en) Thermal energy recovery device and control method
JP5454778B2 (en) Boiler water supply system
JP5915947B2 (en) Heat recovery system
JP2012112268A (en) Oil-cooling type compressor
CN107702336B (en) Heat recovery system
JP2013036641A (en) Water supply system
JP6705333B2 (en) Heat recovery system
JP4889552B2 (en) Operation method of power generation facilities
JP6741196B2 (en) Air compression system
JP2016056686A (en) Compression device
JP2010048450A (en) Leaked steam heat recovery structure from steam motor shaft seal part
JP2019100263A (en) Thermal energy recovery device
JP2017198365A (en) Heat recovery system
JP2018025346A (en) Heat recovery system
KR102279911B1 (en) Gas Compressor Systems
JP5361079B2 (en) Method for cooling hydrogen cooling device
JP2018062878A (en) Water addition type compressor system and heat recovery system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007