JP2013036114A - Method of manufacturing metal nanoparticle - Google Patents
Method of manufacturing metal nanoparticle Download PDFInfo
- Publication number
- JP2013036114A JP2013036114A JP2011175685A JP2011175685A JP2013036114A JP 2013036114 A JP2013036114 A JP 2013036114A JP 2011175685 A JP2011175685 A JP 2011175685A JP 2011175685 A JP2011175685 A JP 2011175685A JP 2013036114 A JP2013036114 A JP 2013036114A
- Authority
- JP
- Japan
- Prior art keywords
- metal nanoparticles
- water
- metal
- metal salt
- functional water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002082 metal nanoparticle Substances 0.000 title claims abstract description 62
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 45
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- 239000002184 metal Substances 0.000 claims abstract description 26
- 239000012266 salt solution Substances 0.000 claims abstract description 13
- 150000003839 salts Chemical class 0.000 claims abstract description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 19
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 239000010931 gold Substances 0.000 claims description 16
- 229910052697 platinum Inorganic materials 0.000 claims description 15
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 14
- 229910052737 gold Inorganic materials 0.000 claims description 14
- 238000002156 mixing Methods 0.000 claims description 11
- 230000001678 irradiating effect Effects 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 5
- 229910000510 noble metal Inorganic materials 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 239000002245 particle Substances 0.000 abstract description 28
- 238000000034 method Methods 0.000 abstract description 14
- 239000002105 nanoparticle Substances 0.000 abstract description 12
- 239000000243 solution Substances 0.000 abstract description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052786 argon Inorganic materials 0.000 abstract description 2
- 238000006467 substitution reaction Methods 0.000 abstract 1
- 229910052739 hydrogen Inorganic materials 0.000 description 24
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 18
- 229910052763 palladium Inorganic materials 0.000 description 11
- 230000002776 aggregation Effects 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000004220 aggregation Methods 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 229910016467 AlCl 4 Inorganic materials 0.000 description 5
- 239000003223 protective agent Substances 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 238000004611 spectroscopical analysis Methods 0.000 description 4
- 101710134784 Agnoprotein Proteins 0.000 description 3
- 229910003771 Gold(I) chloride Inorganic materials 0.000 description 3
- 229910017976 MgO 4 Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- FDWREHZXQUYJFJ-UHFFFAOYSA-M gold monochloride Chemical compound [Cl-].[Au+] FDWREHZXQUYJFJ-UHFFFAOYSA-M 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910005543 GaSe Inorganic materials 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910017073 AlLi Inorganic materials 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 229910004573 CdF 2 Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910016509 CuF 2 Inorganic materials 0.000 description 1
- 229910002531 CuTe Inorganic materials 0.000 description 1
- 238000013313 FeNO test Methods 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910017916 MgMn Inorganic materials 0.000 description 1
- 101150003085 Pdcl gene Proteins 0.000 description 1
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- XOYLJNJLGBYDTH-UHFFFAOYSA-M chlorogallium Chemical compound [Ga]Cl XOYLJNJLGBYDTH-UHFFFAOYSA-M 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- DOBRDRYODQBAMW-UHFFFAOYSA-N copper(i) cyanide Chemical compound [Cu+].N#[C-] DOBRDRYODQBAMW-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- AHLBNYSZXLDEJQ-FWEHEUNISA-N orlistat Chemical compound CCCCCCCCCCC[C@H](OC(=O)[C@H](CC(C)C)NC=O)C[C@@H]1OC(=O)[C@H]1CCCCCC AHLBNYSZXLDEJQ-FWEHEUNISA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 1
- LFAGQMCIGQNPJG-UHFFFAOYSA-N silver cyanide Chemical compound [Ag+].N#[C-] LFAGQMCIGQNPJG-UHFFFAOYSA-N 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
本発明は、産業への適用が容易な、有機物を含まない金属ナノ粒子の製造方法に関する。 The present invention relates to a method for producing metal nanoparticles that do not contain organic substances and that can be easily applied to industries.
金属ナノ粒子(粒径が数nmから数十nm程度の金属の微粒子)は、粒径がミクロンおよびサブミクロンオーダーの粒子には無い、特有の性質を示すことから、様々な分野への応用が期待されている。例として、大きな比表面積を利用して有機合成触媒への適用や、量子サイズ効果を利用しての光デバイスへの適用が挙げられる。また、微粒子が磁性体微粒子である場合には、単磁区構造を利用しての高密度記録媒体への適用が期待されている。さらに、金属ナノ粒子は、同じ組成のミクロンおよびサブミクロン粒子と比較して、著しく低い融点を示すことが認められているため、これを利用して、低温焼成が可能な導電性材料としての適用が研究されている。 Metal nanoparticles (metal fine particles with a particle size of several nanometers to several tens of nanometers) have unique properties that are not found in particles with a particle size of the order of microns and submicrons, so they can be applied in various fields. Expected. Examples include application to an organic synthesis catalyst using a large specific surface area and application to an optical device using a quantum size effect. In addition, when the fine particles are magnetic fine particles, application to a high-density recording medium using a single magnetic domain structure is expected. In addition, metal nanoparticles have been found to exhibit a significantly lower melting point compared to micron and submicron particles of the same composition, which can be used as a conductive material that can be fired at low temperatures. Has been studied.
一般的な金属ナノ粒子の製造方法としては、金属塩水溶液と、還元補助剤とを混合して、金属塩水溶液を還元することによって金属ナノ粒子を得る方法が提案されている(特許文献1、2、3等)。また、生成した金属ナノ粒子の凝集を防ぐため、各粒子の保護剤を添加する方法も一般的である(特許文献4、5等)。この際、使用される還元補助剤や保護剤は、有機成分を含む化合物が用いられる場合があるため、産業への適用が好適な高純度な金属ナノ粒子を得るためには、その製造工程において、これらの不純物を除去する必要がある(特許文献6、7、8等)。 As a general method for producing metal nanoparticles, there has been proposed a method of obtaining metal nanoparticles by mixing a metal salt aqueous solution and a reducing aid and reducing the metal salt aqueous solution (Patent Document 1,). 2, 3 etc.). Moreover, in order to prevent aggregation of the produced metal nanoparticles, a method of adding a protective agent for each particle is also common (Patent Documents 4, 5, etc.). At this time, since the compound containing an organic component may be used as the reducing auxiliary agent and protective agent used, in order to obtain high-purity metal nanoparticles suitable for industrial application, in the production process These impurities need to be removed (Patent Documents 6, 7, 8, etc.).
上記問題に対応するため、還元補助剤などの不純物を含まない物理的作用を利用した方法として、金属の溶液または気相状態の金属に対して高出力のプラズマを発生させて、金属ナノ粒子を得る方法が報告されている(特許文献9、10等)。また、金属塩溶液に対して高出力の超音波を照射することで金属ナノ粒子を製造する方法についても多数報告がある(特許文献11、12等)。
上記超音波を照射することによる金属ナノ粒子の製造方法は、水溶液に超音波が照射されることによって生じるソノケミカル反応を利用したものである(非特許文献1)。具体的には、液体へ超音波を照射することで、その間に生じる急激な撹拌効果や気泡の圧縮、膨張によるキャビテーションの反応を利用した方法が報告されている(特許文献13)。
In order to cope with the above problem, as a method using a physical action that does not include impurities such as a reducing aid, a high-power plasma is generated for a metal solution or a metal in a gas phase, and metal nanoparticles are produced. The obtaining method has been reported (Patent Documents 9, 10, etc.). There are also many reports on methods for producing metal nanoparticles by irradiating a metal salt solution with high-power ultrasonic waves (Patent Documents 11, 12, etc.).
The manufacturing method of the metal nanoparticle by irradiating the said ultrasonic wave utilizes the sonochemical reaction produced when an ultrasonic wave is irradiated to aqueous solution (nonpatent literature 1). Specifically, there has been reported a method using a rapid stirring effect generated during irradiation of ultrasonic waves to a liquid and a cavitation reaction due to bubble compression and expansion (Patent Document 13).
しかし、上記の方法では、高出力のプラズマや超音波を発生させる必要があるため、その実施には大きなエネルギーとコストを要するという課題があった。また、これらのプラズマや超音波による反応は、プラズマや超音波が照射されている部分のみで起こるのに対し、これらの発生装置は均一な強度で広範囲に適用するのが困難であり、このため、工場等において、一定以上の規模に適用するのが困難であるという課題があった。
また、上記方法では、溶液中で粒子を分散させるための分散剤や保護剤を用いていないため、製造の温度条件等によっては、溶液中で生成された粒子が安定せず凝集、融合することで大きくなり、十分にサイズの小さい金属ナノ粒子を得ることが困難となるという課題があった。
本発明は、上記課題に対応するためなされたものであり、構成が簡易で、工場等への適用が容易な方法で、かつ温度条件によらず均一で十分粒径の小さな金属ナノ粒子を得ることが可能な金属ナノ粒子の製造方法を提供することを目的とする。
However, in the above method, since it is necessary to generate high-power plasma and ultrasonic waves, there is a problem that the implementation requires large energy and cost. In addition, these plasma and ultrasonic reactions occur only in the part irradiated with plasma and ultrasonic waves, whereas these generators are difficult to apply in a wide range with uniform intensity. In a factory or the like, there is a problem that it is difficult to apply to a certain scale or more.
In addition, since the above method does not use a dispersant or a protective agent for dispersing the particles in the solution, depending on the temperature conditions of the production, the particles generated in the solution may aggregate and coalesce without being stabilized. There is a problem that it becomes difficult to obtain metal nanoparticles having a sufficiently small size.
The present invention has been made to cope with the above-mentioned problems, and obtains metal nanoparticles that are simple in structure, easy to apply to factories and the like, and uniform and sufficiently small in particle diameter regardless of temperature conditions. It is an object of the present invention to provide a method for producing metal nanoparticles that can be used.
本発明に係る金属ナノ粒子の製造方法は、金属塩の還元を利用した金属ナノ粒子の製造方法であって、水に超音波を照射して、機能水を得る調製工程と、前記機能水と金属塩溶液とを混合する混合工程と、を備えることを特徴とする。
また、前記調製工程において、前記水がアルゴン置換水であることを特徴とする。
また、前記混合工程において、混合の際の反応温度が30℃から60℃であることを特徴とする。
また、前記金属ナノ粒子が、金、銀、白金を含む貴金属であることを特徴とする。
The method for producing metal nanoparticles according to the present invention is a method for producing metal nanoparticles using reduction of a metal salt, wherein the functional water is obtained by irradiating water with ultrasonic waves to obtain functional water. A mixing step of mixing the metal salt solution.
In the preparation step, the water is argon-substituted water.
In the mixing step, the reaction temperature during mixing is 30 ° C. to 60 ° C.
The metal nanoparticles are noble metals including gold, silver and platinum.
本発明に係る金属ナノ粒子の製造方法は、超音波を照射することにより生成された機能水が有する新規な成分、性質を用いて、金属塩溶液を還元して金属ナノ粒子を生成し、かつ生成された金属ナノ粒子を凝集せずに安定させるものである。水に超音波を作用させた際に生じると考えられる水素ラジカルの寿命は数ナノ秒から、長くても数ミリ秒であるから、ここでいう成分、性質は、水素ラジカルではないことが明らかであり、本発明に係る金属ナノ粒子の製造方法は、従来考えられてきたような、水素ラジカルを還元種として、金属ナノ粒子を生成しているものではない点で新規である。 The method for producing metal nanoparticles according to the present invention uses the novel components and properties of functional water generated by irradiating ultrasonic waves to reduce metal salt solution to produce metal nanoparticles, and It stabilizes the generated metal nanoparticles without agglomeration. The lifetime of hydrogen radicals, which are considered to be generated when ultrasonic waves are applied to water, is from a few nanoseconds to several milliseconds at the longest, so it is clear that the components and properties here are not hydrogen radicals. In addition, the method for producing metal nanoparticles according to the present invention is novel in that metal nanoparticles are not generated using a hydrogen radical as a reducing species, as conventionally considered.
また、この成分、性質は、水のソノケミカル反応の副生成物である過酸化水素や硝酸でもないと考えられる。このため、この新規な成分、性質を有する機能水に関しては、本発明の新たな構成として、または新たな発明として抽出することも可能である。
本発明に係る金属ナノ粒子の製造方法において、機能水の生成に用いる水の種類は特に制限がないが、水に溶け込んだ、空気中の酸素や窒素による影響を排除して、純粋な水による作用を利用して金属ナノ粒子を生成するにはアルゴン置換水を利用すればよい。アルゴン置換水を利用することによって、金属ナノ粒子の生成を確実にコントロールすることができる。
Moreover, this component and property are considered not to be hydrogen peroxide and nitric acid, which are by-products of the sonochemical reaction of water. For this reason, it is also possible to extract the functional water having this new component and property as a new configuration of the present invention or as a new invention.
In the method for producing metal nanoparticles according to the present invention, the type of water used for the production of functional water is not particularly limited, but the effect of oxygen and nitrogen in the air dissolved in water is eliminated, and pure water is used. In order to generate metal nanoparticles using the action, argon-substituted water may be used. By using argon-substituted water, the production of metal nanoparticles can be reliably controlled.
また、本発明に係る金属ナノ粒子の製造方法において、機能水の生成に用いる超音波の周波数は、特に制限はないが、200KHzから1000KHzの範囲であると好適であり、900KHzから1000KHzの範囲であるとさらに好ましい。
また、本発明に係る金属ナノ粒子の製造方法において、金属塩溶液に用いる金属塩は、特に制限はないが、金、銀、白金やパラジウムなどの貴金属の金属塩であると好適である。例えば金属塩としては、銅、鉄、コバルト、ニッケル、亜鉛、クロミウム、マンガン、マグネシウム、カドミウム、アルミニウム、錫、タングステンなどを含む金属塩、溶液中でイオン(例えば、Ag+,Ag(CN)2 -,AlCl4 -,Au3+,AuCl4 -,AuBr4 -,PtCl6 2-,Mg2+,Mn2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+,Fe3+,Al3+,Pd2+,PdCl4 2-,Sn2+,SnO3 2-,Ga3+,WO4 2-)なりうる金属塩、AgAsF6,AgBF4,AgBr,AgCl,AgClO3,AgClO4,AgF,AgF2,AgF6P,AgF6Sb,AgI,AgIO3,AgMnO4,AgNO2,AgNO3,AgO3V,AgO4Re,Ag2CrO4,Ag2O,Ag2O3S,Ag2O4S,Ag2S,Ag2Se,Ag2Te,Ag3AsO4,Ag3AsO4,Ag3AsO4,Ag3O4P,Ag8O16W4,KAg(CN)2,CH3CO2Ag,AgCN,AgCNO,AgCNS,Ag2CO3、AlCl3O12,AlCl4Cs,AlCl4K,AlCl4Li,AlCl4Na,AlC12Ti3,AlCsO4Si,AlCsO6Si2,AlCsO8S2,AlF4K,AlF6Na3,AlKO8S2,AlLiO2,AlN3O9,AlO4P,AlO9P3,Al2BaO4,Al2MgO4,Al2O5Ti,Al3O12S3,Al6Bi2O12,Al6O13Si2,H4AlLi,H4AlNO8S2,AuBr3,KAuBr4,NaAuBr4,AuCl3,KAuCl4,NaAuCl4,HAuCl4,AuI3,Au2S3,HAuCl4N,AuCN、CoF2,CoF3,CoI2,CoLiO2,CoN2O6,CoN6Na3O12,CoO,CoO4S,CoSe,Co3O4,Co3O8P2,Co5Sm,Co7Sm2,H8CoN2O8S2,H12CoN9O9,H15Cl3CoN5,CoCO3、CdCl2,CdCl2O8,CdF2,CdI2,CdMoO4,CdN2O6,CdO3Zr,CdO4S,CdO4W,CuF2,CuI,CuMoO4,CuN2O6,CuNb2O6,CuO,CuO3Se,CuO4S,CuO4W,CuS,CuSe,CuTe,Cu2HgI4,Cu2O,Cu2O7P2,Cu2S,Cu2Se,Cu2Te,H8Cl4CuN2,H12CuN4O4S,CuCN,CuCNS、MgMn2O8,MgMoO4,MgN2O6,MgO3S2,MgO3Ti,MgO3Zr,MgO4S,MgO4W,Mg2O7P2,Mg3O8P2,H4MgNO4P,MnMoO4,MnN2O6,MnNoO4,MnO4S,H4MnO4P2,NiO,NiO3Ti,NiO4S,H4N2NiO6S2,H2PtCl6,H6Cl2N2Pt,H6Cl4N2Pt,H6N4O4Pt,H6Na2O6Pt,H8Br6N2Pt,H8Cl4N2Pt,H8Cl6N2Pt,H8O6Pt,H12Cl2N4Pt,H12Cl4N4Pt2,H12N6O6Pt,H14N4O2Pt,C2N2Pt,H6Br2N2Pd,H6Cl2N2Pd,H6I2N2Pd,H6N4O4Pd,H8Cl4N2Pd,H8Cl6N2Pd,H12Br2N4Pd,H12Cl2N4Pd,H12Cl4N4Pd2,H12N6O6Pd,C2N2Pd,Pd(OAc)2,Pd(NO3)2,H4FeNO8S2,H8FeN2O8S2,FeCl3,C2N2Zn,H2SnO3,Na2SnO3,SnCl22H2O,SnO,SnSO4,SnO2,GaBr3,GaCl3,GaI3,Ga(NO3)3xH2O,Ga(SO4)3xH2O,Ga2(SO4)3,GaAs,GaN,GaP,GaS,Ga2S3,GaSe,GaSe,Ga2Se3,GaTe,Ga2Te3,GaO2H,H2WO4などが好適である。これらのうち、AgNO3,KAuCl4,NaAuCl4,HAuCl4,H2PtCl6,Pd(OAc)2,Pd(NO3)2,Ga(NO3)3xH2Oなどが特に好ましい。
なお、この際、金属塩溶液の濃度には特に制限はないが、10mM以下であると好適であり、0.1mM以下であると好ましい。また、0.05mM以下であると、粒子が生成した後の分散性に優れるため、さらに好ましい。
Further, in the method for producing metal nanoparticles according to the present invention, the frequency of the ultrasonic wave used for the generation of functional water is not particularly limited, but is preferably in the range of 200 KHz to 1000 KHz, and in the range of 900 KHz to 1000 KHz. More preferably.
In the method for producing metal nanoparticles according to the present invention, the metal salt used in the metal salt solution is not particularly limited, but is preferably a metal salt of a noble metal such as gold, silver, platinum or palladium. For example, as the metal salt, metal salt containing copper, iron, cobalt, nickel, zinc, chromium, manganese, magnesium, cadmium, aluminum, tin, tungsten, etc., ions in the solution (for example, Ag + , Ag (CN) 2 -, AlCl 4 -, Au 3+ , AuCl 4 -, AuBr 4 -, PtCl 6 2-, Mg 2+, Mn 2+, Co 2+, Ni 2+, Cu 2+, Zn 2+, Cd 2+ , Fe 3+ , Al 3+ , Pd 2+ , PdCl 4 2− , Sn 2+ , SnO 3 2− , Ga 3+ , WO 4 2− ), possible metal salts, AgAsF 6 , AgBF 4 , AgBr, AgCl , AgClO 3 , AgClO 4 , AgF, AgF 2 , AgF 6 P, AgF 6 Sb, AgI, AgIO 3 , AgMnO 4 , AgNO 2 , AgNO 3 , AgO 3 V, AgO 4 Re, Ag 2 CrO 4 , Ag 2 O , Ag 2 O 3 S, Ag 2 O 4 S, Ag 2 S, Ag 2 Se, Ag 2 Te, Ag 3 AsO 4 , Ag 3 AsO 4 , Ag 3 AsO 4 , Ag 3 O 4 P, Ag 8 O 16 W 4 , KAg (CN) 2 , CH 3 CO 2 Ag, AgCN, AgCNO, AgCNS, Ag 2 CO 3 , AlCl 3 O 12 , AlCl 4 Cs, AlCl 4 K, AlCl 4 Li, AlCl 4 Na, AlC 12 Ti 3 , AlCsO 4 Si, AlCsO 6 Si 2 , AlCsO 8 S 2 , AlF 4 K, AlF 6 Na 3 , AlKO 8 S 2 , AlLiO 2 , AlN 3 O 9 , AlO 4 P, AlO 9 P 3 , Al 2 BaO 4 , Al 2 MgO 4 , Al 2 O 5 Ti, Al 3 O 12 S 3 , Al 6 Bi 2 O 12 , Al 6 O 13 Si 2 , H 4 AlLi, H 4 AlNO 8 S 2 , AuBr 3 , KAuBr 4 , NaAuBr 4 , AuCl 3 , KAuCl 4 , NaA uCl 4 , HAuCl 4 , AuI 3 , Au 2 S 3 , HAuCl 4 N, AuCN, CoF 2 , CoF 3 , CoI 2 , CoLiO 2 , CoN 2 O 6 , CoN 6 Na 3 O 12 , CoO, CoO 4 S, CoSe, Co 3 O 4 , Co 3 O 8 P 2 , Co 5 Sm, Co 7 Sm 2 , H 8 CoN 2 O 8 S 2 , H 12 CoN 9 O 9 , H 15 Cl 3 CoN 5 , CoCO 3 , CdCl 2 , CdCl 2 O 8 , CdF 2 , CdI 2 , CdMoO 4 , CdN 2 O 6 , CdO 3 Zr, CdO 4 S, CdO 4 W, CuF 2 , CuI, CuMoO 4 , CuN 2 O 6 , CuNb 2 O 6 , CuO, CuO 3 Se, CuO 4 S, CuO 4 W, CuS, CuSe, CuTe, Cu 2 HgI 4 , Cu 2 O, Cu 2 O 7 P 2 , Cu 2 S, Cu 2 Se, Cu 2 Te, H 8 Cl 4 CuN 2 , H 12 CuN 4 O 4 S, CuCN, CuCNS, MgMn 2 O 8 , MgMoO 4 , MgN 2 O 6 , MgO 3 S 2 , MgO 3 Ti, MgO 3 Zr, MgO 4 S, MgO 4 W, Mg 2 O 7 P 2 , Mg 3 O 8 P 2 , H 4 MgNO 4 P, MnMoO 4 , MnN 2 O 6 , MnNoO 4 , MnO 4 S, H 4 MnO 4 P 2 , NiO, NiO 3 Ti, NiO 4 S, H 4 N 2 NiO 6 S 2, H 2 PtCl 6, H 6 Cl 2 N 2 Pt, H 6 Cl 4 N 2 Pt, H 6 N 4 O 4 Pt, H 6 Na 2 O 6 Pt, H 8 Br 6 N 2 Pt, H 8 Cl 4 N 2 Pt, H 8 Cl 6 N 2 Pt, H 8 O 6 Pt, H 12 Cl 2 N 4 Pt, H 12 Cl 4 N 4 Pt 2 , H 12 N 6 O 6 Pt, H 14 N 4 O 2 Pt, C 2 N 2 Pt, H 6 Br 2 N 2 Pd, H 6 Cl 2 N 2 Pd, H 6 I 2 N 2 Pd, H 6 N 4 O 4 Pd, H 8 Cl 4 N 2 Pd, H 8 Cl 6 N 2 Pd, H 12 Br 2 N 4 Pd, H 12 Cl 2 N 4 Pd, H 12 Cl 4 N 4 Pd 2 , H 12 N 6 O 6 Pd, C 2 N 2 Pd , Pd (OAc) 2 , Pd (NO 3 ) 2 , H 4 FeNO 8 S 2 , H 8 FeN 2 O 8 S 2 , FeCl 3 , C 2 N 2 Zn, H 2 SnO 3 , Na 2 SnO 3 , SnCl 2 2H 2 O, SnO, SnSO 4, SnO 2, GaBr 3, GaCl 3, GaI 3, Ga (NO 3) 3 xH 2 O, Ga (SO 4) 3 xH 2 O, Ga 2 (SO 4) 3, GaAs, GaN, GaP, GaS, Ga 2 S 3, GaSe, GaSe, Ga 2 Se 3, GaTe, Ga 2 Te 3, GaO 2 H, such as H 2 WO 4 is preferred. Of these, AgNO 3 , KAuCl 4 , NaAuCl 4 , HAuCl 4 , H 2 PtCl 6 , Pd (OAc) 2 , Pd (NO 3 ) 2 , Ga (NO 3 ) 3 xH 2 O and the like are particularly preferable.
In this case, the concentration of the metal salt solution is not particularly limited, but is preferably 10 mM or less, and preferably 0.1 mM or less. Moreover, since it is excellent in the dispersibility after particle | grains generate | occur | produce as it is 0.05 mM or less, it is further more preferable.
また、本発明に係る金属ナノ粒子の製造方法において、金属塩溶液と機能水とを混合し、反応させる際の温度については、特に制限はない。ただし、高温である方がより反応を促進するため、一定温度以上であることが好ましい。具体的には、30℃から60℃の範囲であると好適である。なお、この温度範囲は、反応時に超音波照射を行う方法で金属ナノ粒子を製造した場合に、粒子の凝集が認められる温度範囲であるが、本発明に係る金属ナノ粒子の製造方法によれば、粒子を凝集させることなく、均一な粒径の金属ナノ粒子を得ることが可能である。 Moreover, in the manufacturing method of the metal nanoparticle which concerns on this invention, there is no restriction | limiting in particular about the temperature at the time of mixing and making a metal salt solution and functional water react. However, since the reaction is promoted at higher temperatures, the temperature is preferably higher than a certain temperature. Specifically, the temperature is preferably in the range of 30 ° C to 60 ° C. Note that this temperature range is a temperature range in which aggregation of particles is observed when metal nanoparticles are produced by a method of performing ultrasonic irradiation during the reaction, but according to the method for producing metal nanoparticles according to the present invention, It is possible to obtain metal nanoparticles having a uniform particle size without agglomerating the particles.
本発明に係る金属ナノ粒子の製造方法によれば、還元補助剤や保護剤を用いることなく、金属ナノ粒子を製造することが可能であるため、純粋な金属ナノ粒子を提供することが可能になる。ただし、このことは水に超音波を照射して得られる機能水を用いて、金属ナノ粒子を得る際に、還元補助剤や分散剤、保護剤を使用することを妨げるものではなく、本発明は実施の際に、これらの添加物を使用することも可能である。また、これらの添加物の使用は、追加の除去工程が必要になるものの、試料溶液中の金属粒子の生成効率を上げるのに寄与すると考えられる。 According to the method for producing metal nanoparticles according to the present invention, it is possible to produce metal nanoparticles without using a reducing aid or a protective agent, and therefore it is possible to provide pure metal nanoparticles. Become. However, this does not prevent the use of a reducing aid, a dispersant, or a protective agent when obtaining metal nanoparticles using functional water obtained by irradiating water with ultrasonic waves. It is also possible to use these additives in the practice. The use of these additives is thought to contribute to increasing the production efficiency of metal particles in the sample solution, although an additional removal step is required.
また、本発明に係る金属ナノ粒子の製造方法によれば、反応時に超音波を照射させ続ける必要がなく、また、水に超音波を照射させる設備や条件に関する制限がないため、超音波を発生させる設備を用意できる環境であれば、自由に規模を変更することが可能になり、工場等への適用が容易である。 In addition, according to the method for producing metal nanoparticles according to the present invention, it is not necessary to continue to irradiate ultrasonic waves during the reaction, and since there is no restriction on the equipment and conditions for irradiating water with ultrasonic waves, ultrasonic waves are generated If the environment can provide the equipment to be prepared, the scale can be freely changed, and the application to a factory or the like is easy.
本発明に係る金属ナノ粒子の製造方法によれば、簡易な設備で、粒径の均一な金属ナノ粒子を提供することが可能になる。 According to the method for producing metal nanoparticles according to the present invention, it is possible to provide metal nanoparticles having a uniform particle diameter with simple equipment.
<実施例1>
以下に本発明に係る金属ナノ粒子の製造方法を実施するための形態について説明する。
(機能水の調製)
はじめに機能水の調製を行う。本実施例では、水50mlの入ったビーカーを、超音波照射器(三井電気精機株式会社製SD−32CP−950K)が取り付けられたウォーターバス中に沈積して、300W、950KHzの超音波を8分間照射した。なお、材料として使用した水には、超音波照射によるラジカル生成や、窒素等の反応による硝酸の生成等を抑制するため、あらかじめアルゴンガスをパージして、酸素や窒素を置換した水を使用した。
<Example 1>
Below, the form for implementing the manufacturing method of the metal nanoparticle which concerns on this invention is demonstrated.
(Preparation of functional water)
First, functional water is prepared. In this example, a beaker containing 50 ml of water is deposited in a water bath to which an ultrasonic irradiator (SD-32CP-950K manufactured by Mitsui Electric Seiki Co., Ltd.) is attached, and 300 W, 950 KHz ultrasonic waves are applied to the beaker. Irradiated for 1 minute. The water used as the material was water purged with argon gas in advance and substituted with oxygen or nitrogen in order to suppress radical generation due to ultrasonic irradiation and generation of nitric acid due to reactions such as nitrogen. .
(機能水と金属塩溶液との混合)
次に、調製した機能水50mlと、金属塩溶液250μlとをビーカー内で攪拌混合し、所定の温度を保ちながら、約120分静置する。本実施例では、金属塩溶液として、塩化金酸(HAuCl4)水溶液を使用しており、反応開始時に濃度が0.1mMのAuCl4 −が還元されることにより、金ナノ粒子を生成する。この際、温度は、5℃から60℃の範囲での7段階について実験を行った。
(Mixing of functional water and metal salt solution)
Next, 50 ml of the prepared functional water and 250 μl of the metal salt solution are stirred and mixed in a beaker and allowed to stand for about 120 minutes while maintaining a predetermined temperature. In this example, a chloroauric acid (HAuCl 4 ) aqueous solution is used as the metal salt solution, and gold nanoparticles are generated by reducing 0.1 mM of AuCl 4 − at the start of the reaction. At this time, the experiment was conducted for seven stages of temperatures ranging from 5 ° C to 60 ° C.
(電子顕微鏡による評価)
図1は、本実施例で製造された金属ナノ粒子を透過型電子顕微鏡(日本電子社製JEM−2010)で観察した図を示す。図から、全ての温度条件において、金属ナノ粒子が生成されていることが認められる。また、温度が40℃または50℃の試料では、他の温度の試料に比べ、粒径の小さな粒子が生成していることが認められ、温度が60℃の試料では、各粒子の凝集が認められる。
(Evaluation by electron microscope)
FIG. 1: shows the figure which observed the metal nanoparticle manufactured by the present Example with the transmission electron microscope (JEM-2010 by JEOL Co., Ltd.). From the figure, it is recognized that metal nanoparticles are generated under all temperature conditions. In addition, it is recognized that particles having a small particle diameter are formed in the sample at a temperature of 40 ° C. or 50 ° C. compared to the sample at other temperatures, and the aggregation of each particle is recognized in the sample at a temperature of 60 ° C. It is done.
(紫外可視分光分析による評価)
本実施例で金属ナノ粒子が製造されていることを確認するため、実験を行った試料について、紫外可視分光分析を行った。貴金属は、粒径がナノメートルの粒子になると、表面プラズモン共鳴により、特定波長の光を吸収することが知られている。これを利用して、金属ナノ粒子の生成の確認、および生成された粒子の分散安定性を確認することが可能になる。本実施例で製造された金ナノ粒子の場合は、最大吸収波長が530nm付近に特徴的なピークが現れる。なお、このピークは、粒子の形状によって変化し、粒子が板状である場合には、700nm付近の光がよく吸収されるようになる。また、ピーク強度や半値幅の変化は分散安定性を反映する。
(Evaluation by UV-visible spectroscopy)
In order to confirm that the metal nanoparticles were produced in this example, ultraviolet-visible spectroscopic analysis was performed on the sample subjected to the experiment. It is known that noble metals absorb light of a specific wavelength by surface plasmon resonance when the particle diameter is nanometer. By utilizing this, it becomes possible to confirm the generation of metal nanoparticles and the dispersion stability of the generated particles. In the case of the gold nanoparticles produced in this example, a characteristic peak appears around the maximum absorption wavelength of 530 nm. This peak changes depending on the shape of the particle, and when the particle is plate-like, light near 700 nm is well absorbed. In addition, changes in peak intensity and half-value width reflect dispersion stability.
図2は、本実施例で製造された金ナノ粒子のうち、20℃の条件で製造した金ナノ粒子を、紫外可視分光分析装置(日立ハイテクノロジーズ社製U−1900)を用いて吸光度を測定した結果のスペクトルを示す。図から、時間の経過に伴って、金ナノ粒子の表面プラズモン共鳴に由来する吸収強度である530nm付近のピークが増加していることが認められる。これにより、本実施例に係る製造方法によって、金ナノ粒子が生成され、かつそれが機能水中で分散していると認められる。 FIG. 2 shows the measurement of the absorbance of gold nanoparticles produced in this example under the condition of 20 ° C. using an ultraviolet-visible spectrophotometer (U-1900 manufactured by Hitachi High-Technologies Corporation). The resulting spectrum is shown. From the figure, it is recognized that the peak near 530 nm, which is the absorption intensity derived from the surface plasmon resonance of the gold nanoparticle, increases with the passage of time. Thereby, it is recognized by the manufacturing method which concerns on a present Example that the gold nanoparticle is produced | generated and it is disperse | distributing in functional water.
図3は、本実施例で製造された金ナノ粒子の紫外可視分光分析結果のうち、吸収波長が530nm付近のピーク強度の時間変化を示す。図から、反応温度が5℃から10℃の試料については、反応開始から120分経過するまで、ピーク強度が増加し続けていることが認められる。また、20℃から60℃の範囲では、反応開始後急激にピーク強度が増加するが、その後減少傾向に転じていることが認められる。これにより、本実施例に係る製造方法では、反応時の温度条件によって、反応速度に違いが現れることが認められる。 FIG. 3 shows the time change of the peak intensity when the absorption wavelength is around 530 nm among the results of the ultraviolet-visible spectroscopic analysis of the gold nanoparticles produced in this example. From the figure, it can be seen that for samples with a reaction temperature of 5 ° C. to 10 ° C., the peak intensity continues to increase until 120 minutes have elapsed from the start of the reaction. Further, in the range of 20 ° C. to 60 ° C., the peak intensity rapidly increases after the start of the reaction, but thereafter it is recognized that the tendency has been decreasing. Thereby, in the manufacturing method which concerns on a present Example, it is recognized that a difference appears in reaction rate by the temperature conditions at the time of reaction.
<比較例1>
(超音波還元法による金ナノ粒子の製造実験)
従来の製造方法に対する、本発明に係る金属ナノ粒子の製造方法の優位性を確認するために、従来の超音波還元法により金ナノ粒子の製造実験を行った。実験に使用した金属塩溶液は、濃度、量ともに上記実施例1と同様である。この金属塩溶液と、アルゴン置換した水とを混合し、その後、300W、950KHzの超音波を8分間照射した。この際、超音波照射に使用した機器は、上記実施例1と同様のものである。また、実験を行った際の温度条件は上記実施例1と同様である。
<Comparative Example 1>
(Production experiment of gold nanoparticles by ultrasonic reduction method)
In order to confirm the superiority of the method for producing metal nanoparticles according to the present invention over the conventional production method, an experiment for producing gold nanoparticles was conducted by a conventional ultrasonic reduction method. The metal salt solution used in the experiment is the same as in Example 1 in both concentration and amount. This metal salt solution was mixed with argon-substituted water, and then irradiated with 300 W, 950 KHz ultrasonic waves for 8 minutes. At this time, the equipment used for ultrasonic irradiation is the same as that of the first embodiment. Further, the temperature conditions when the experiment was performed are the same as those in Example 1.
(電子顕微鏡による評価)
図4は、比較例1により製造された金属ナノ粒子を透過型電子顕微鏡観察した図を示す。観察に使用した電子顕微鏡は、上記実施例1と同様である。図から、5℃から30℃の温度条件において、金ナノ粒子が生成されていることが認められる。また、30℃から粒子の凝集が認められ、そこから温度の上昇に伴って、生成された粒子の凝集、および融合が進んでいることが認められる。上記実施例1に係る製造方法で製造された金属ナノ粒子では、30℃を超えた温度範囲であっても安定しており、各粒子が凝集せずに分散していることが認められたため、この点で本比較例に対して優位であることが認められる。
(Evaluation by electron microscope)
FIG. 4 shows a view obtained by observing the metal nanoparticles produced in Comparative Example 1 with a transmission electron microscope. The electron microscope used for the observation is the same as in Example 1. From the figure, it is recognized that gold nanoparticles are generated under the temperature condition of 5 ° C. to 30 ° C. In addition, aggregation of particles is observed from 30 ° C., and it is recognized that aggregation and fusion of the generated particles are progressing as the temperature increases. In the metal nanoparticles produced by the production method according to Example 1 above, it was confirmed that the particles were stable even in a temperature range exceeding 30 ° C., and each particle was dispersed without being aggregated. In this respect, it is recognized that this is superior to the comparative example.
上記実施例の結果から、本発明に係る金属ナノ粒子の製造方法で用いた機能水には、溶液中の物質を還元させる新規な機能が認められる。これは、機能水に含まれる新規なイオンなどの成分によるものと考えられる。また、上記機能水には、生成した金属ナノ粒子について、溶液中で分散させておく機能も認められる。これについても、溶液中の微粒子を分散させるイオンの存在を示唆している。 From the result of the said Example, the novel function which reduces the substance in a solution is recognized by the functional water used with the manufacturing method of the metal nanoparticle which concerns on this invention. This is considered to be due to components such as novel ions contained in the functional water. The functional water also has a function of dispersing the produced metal nanoparticles in a solution. This also suggests the presence of ions that disperse the fine particles in the solution.
上記実施例において、反応温度が30℃以上であるときに、生成された金ナノ粒子の凝集、融合が確認されているが、これは、金ナノ粒子の融点がこの付近であることに起因するものと考えられる。 In the above examples, when the reaction temperature is 30 ° C. or higher, aggregation and fusion of the produced gold nanoparticles have been confirmed. This is because the melting point of the gold nanoparticles is in this vicinity. It is considered a thing.
本発明に係る金属ナノ粒子の製造方法では、機能水の調製に300W、950KHzの超音波を用いて、5℃から60℃の温度条件で各実験を行っているが、これらを任意の値に変更することによって、生成される粒子の形状、粒径などをコントロールすることが可能である。
本発明に係る金属ナノ粒子の製造方法では、水に超音波を照射した機能水を金属ナノ粒子の生成に適用したが、この機能水の使用方法は他用途への適用も可能である。
In the method for producing metal nanoparticles according to the present invention, each experiment is performed under a temperature condition of 5 ° C. to 60 ° C. using 300 W, 950 KHz ultrasonic waves for the preparation of functional water. By changing, it is possible to control the shape, particle size, etc. of the generated particles.
In the method for producing metal nanoparticles according to the present invention, functional water obtained by irradiating water with ultrasonic waves is applied to the production of metal nanoparticles, but this method of using functional water can also be applied to other uses.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011175685A JP5822265B2 (en) | 2011-08-11 | 2011-08-11 | Method for producing metal nanoparticles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011175685A JP5822265B2 (en) | 2011-08-11 | 2011-08-11 | Method for producing metal nanoparticles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013036114A true JP2013036114A (en) | 2013-02-21 |
JP5822265B2 JP5822265B2 (en) | 2015-11-24 |
Family
ID=47885979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011175685A Active JP5822265B2 (en) | 2011-08-11 | 2011-08-11 | Method for producing metal nanoparticles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5822265B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015129327A (en) * | 2014-01-08 | 2015-07-16 | 国立大学法人東北大学 | Method for forming functional sintered dense film, functional sintered dense film, method for synthesizing nanoparticle, and nanoparticle |
CN105598469A (en) * | 2016-03-18 | 2016-05-25 | 西北师范大学 | Preparation method of transition metal alloy material of ordered controllable three-dimensional grading structure |
CN105642913A (en) * | 2016-03-25 | 2016-06-08 | 北京理工大学 | Method for preparing polymorphic gold nano-structure by using laser-inducing material through reduction |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05245470A (en) * | 1992-03-06 | 1993-09-24 | Rikagaku Kenkyusho | Method for forming hydrated electron |
JP2005290478A (en) * | 2004-03-31 | 2005-10-20 | Tamura Kaken Co Ltd | Method for producing nano-particle of gold |
JP2007531822A (en) * | 2004-04-01 | 2007-11-08 | トクセン ユー.エス.エー.、インコーポレイテッド | Synthesis of nano-sized metal particles |
JP2009057594A (en) * | 2007-08-31 | 2009-03-19 | Shinko Kagaku Kogyosho:Kk | Method for manufacturing fine metal particle |
JP2009221140A (en) * | 2008-03-14 | 2009-10-01 | National Institute Of Advanced Industrial & Technology | Colored nanoparticles for cosmetic and its manufacturing method |
-
2011
- 2011-08-11 JP JP2011175685A patent/JP5822265B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05245470A (en) * | 1992-03-06 | 1993-09-24 | Rikagaku Kenkyusho | Method for forming hydrated electron |
JP2005290478A (en) * | 2004-03-31 | 2005-10-20 | Tamura Kaken Co Ltd | Method for producing nano-particle of gold |
JP2007531822A (en) * | 2004-04-01 | 2007-11-08 | トクセン ユー.エス.エー.、インコーポレイテッド | Synthesis of nano-sized metal particles |
JP2009057594A (en) * | 2007-08-31 | 2009-03-19 | Shinko Kagaku Kogyosho:Kk | Method for manufacturing fine metal particle |
JP2009221140A (en) * | 2008-03-14 | 2009-10-01 | National Institute Of Advanced Industrial & Technology | Colored nanoparticles for cosmetic and its manufacturing method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015129327A (en) * | 2014-01-08 | 2015-07-16 | 国立大学法人東北大学 | Method for forming functional sintered dense film, functional sintered dense film, method for synthesizing nanoparticle, and nanoparticle |
CN105598469A (en) * | 2016-03-18 | 2016-05-25 | 西北师范大学 | Preparation method of transition metal alloy material of ordered controllable three-dimensional grading structure |
CN105642913A (en) * | 2016-03-25 | 2016-06-08 | 北京理工大学 | Method for preparing polymorphic gold nano-structure by using laser-inducing material through reduction |
CN105642913B (en) * | 2016-03-25 | 2017-09-22 | 北京理工大学 | A kind of method that laser-induced material reproducibility prepares polymorphic gold nano structure |
Also Published As
Publication number | Publication date |
---|---|
JP5822265B2 (en) | 2015-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ng et al. | Shape evolution of Cu2O nanostructures via kinetic and thermodynamic controlled growth | |
Ledwith et al. | A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles | |
JP5062721B2 (en) | Manufacturing method of nano-sized wire | |
JP4490201B2 (en) | Fine alloy particle powder having irregular surface and method for producing the same | |
Peng et al. | Morphology control of nanoscale PbS particles in a polyol process | |
Kumar-Krishnan et al. | A general seed-mediated approach to the synthesis of AgM (M= Au, Pt, and Pd) core–shell nanoplates and their SERS properties | |
Wu et al. | Ammonium bicarbonate reduction route to uniform gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering | |
Liu et al. | Understanding the solvent molecules induced spontaneous growth of uncapped tellurium nanoparticles | |
TWI499466B (en) | Metal particle and fabricating method thereof, and metal particle dispersion solution and fabricating method thereof | |
Zou et al. | Controlled growth of silver nanoparticles in a hydrothermal process | |
Abdelsayed et al. | Laser synthesis of bimetallic nanoalloys in the vapor and liquid phases and the magnetic properties of PdM and PtM nanoparticles (M= Fe, Co and Ni) | |
JP5822265B2 (en) | Method for producing metal nanoparticles | |
Chng et al. | Rapid Synthesis of Highly Monodisperse Au x Ag1− x Alloy Nanoparticles via a Half-Seeding Approach | |
Pang et al. | Solvents-dependent selective fabrication of face-centered cubic and hexagonal close-packed structured ruthenium nanoparticles during liquid-phase laser ablation | |
Zhang et al. | Laser ablation in liquids for nanomaterial synthesis and applications | |
Gu et al. | Effect of aqueous ammonia addition on the morphology and size of silver particles reduced by ascorbic acid | |
KR101368404B1 (en) | Metal nanoparticles and method for preparing the same | |
Vatanparast et al. | Sonochemical approach for synthesis and characterization of PbTe nanostructure | |
JP2009057594A (en) | Method for manufacturing fine metal particle | |
WO2011013542A1 (en) | Metal nanoparticles, dispersion containing same, and process for production of same | |
JP2011089156A (en) | Metal fine particle, and method for producing the same | |
Zhang et al. | Size-and shape-tunable silver nanoparticles created through facile aqueous synthesis | |
Kundu et al. | Photochemical synthesis of shape-selective palladium nanocubes in aqueous solution | |
KR20130132890A (en) | Nanowire preparation methods, compositions, and articles | |
Zhang et al. | Size control and its mechanism of SnAg nanoparticles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140730 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150609 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150727 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150925 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150930 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5822265 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |