JP2013036114A - Method of manufacturing metal nanoparticle - Google Patents

Method of manufacturing metal nanoparticle Download PDF

Info

Publication number
JP2013036114A
JP2013036114A JP2011175685A JP2011175685A JP2013036114A JP 2013036114 A JP2013036114 A JP 2013036114A JP 2011175685 A JP2011175685 A JP 2011175685A JP 2011175685 A JP2011175685 A JP 2011175685A JP 2013036114 A JP2013036114 A JP 2013036114A
Authority
JP
Japan
Prior art keywords
metal nanoparticles
water
metal
metal salt
functional water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011175685A
Other languages
Japanese (ja)
Other versions
JP5822265B2 (en
Inventor
Toshiro Sakai
俊郎 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2011175685A priority Critical patent/JP5822265B2/en
Publication of JP2013036114A publication Critical patent/JP2013036114A/en
Application granted granted Critical
Publication of JP5822265B2 publication Critical patent/JP5822265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing nanoparticles, which is applicable even at various temperature conditions and can make particle size uniform even though the device is handy and inexpensive.SOLUTION: The method uses inherent property of functional water obtained by applying high-output ultrasonic wave to argon substitution water or function included in components thereof. The functional water is mixed with a metal salt solution, and they are left for a fixed time, thereby reducing metal salt in high efficiency, stably dispersing them in a solution and obtaining the metal nanoparticles having uniform particle size.

Description

本発明は、産業への適用が容易な、有機物を含まない金属ナノ粒子の製造方法に関する。   The present invention relates to a method for producing metal nanoparticles that do not contain organic substances and that can be easily applied to industries.

金属ナノ粒子(粒径が数nmから数十nm程度の金属の微粒子)は、粒径がミクロンおよびサブミクロンオーダーの粒子には無い、特有の性質を示すことから、様々な分野への応用が期待されている。例として、大きな比表面積を利用して有機合成触媒への適用や、量子サイズ効果を利用しての光デバイスへの適用が挙げられる。また、微粒子が磁性体微粒子である場合には、単磁区構造を利用しての高密度記録媒体への適用が期待されている。さらに、金属ナノ粒子は、同じ組成のミクロンおよびサブミクロン粒子と比較して、著しく低い融点を示すことが認められているため、これを利用して、低温焼成が可能な導電性材料としての適用が研究されている。   Metal nanoparticles (metal fine particles with a particle size of several nanometers to several tens of nanometers) have unique properties that are not found in particles with a particle size of the order of microns and submicrons, so they can be applied in various fields. Expected. Examples include application to an organic synthesis catalyst using a large specific surface area and application to an optical device using a quantum size effect. In addition, when the fine particles are magnetic fine particles, application to a high-density recording medium using a single magnetic domain structure is expected. In addition, metal nanoparticles have been found to exhibit a significantly lower melting point compared to micron and submicron particles of the same composition, which can be used as a conductive material that can be fired at low temperatures. Has been studied.

一般的な金属ナノ粒子の製造方法としては、金属塩水溶液と、還元補助剤とを混合して、金属塩水溶液を還元することによって金属ナノ粒子を得る方法が提案されている(特許文献1、2、3等)。また、生成した金属ナノ粒子の凝集を防ぐため、各粒子の保護剤を添加する方法も一般的である(特許文献4、5等)。この際、使用される還元補助剤や保護剤は、有機成分を含む化合物が用いられる場合があるため、産業への適用が好適な高純度な金属ナノ粒子を得るためには、その製造工程において、これらの不純物を除去する必要がある(特許文献6、7、8等)。   As a general method for producing metal nanoparticles, there has been proposed a method of obtaining metal nanoparticles by mixing a metal salt aqueous solution and a reducing aid and reducing the metal salt aqueous solution (Patent Document 1,). 2, 3 etc.). Moreover, in order to prevent aggregation of the produced metal nanoparticles, a method of adding a protective agent for each particle is also common (Patent Documents 4, 5, etc.). At this time, since the compound containing an organic component may be used as the reducing auxiliary agent and protective agent used, in order to obtain high-purity metal nanoparticles suitable for industrial application, in the production process These impurities need to be removed (Patent Documents 6, 7, 8, etc.).

上記問題に対応するため、還元補助剤などの不純物を含まない物理的作用を利用した方法として、金属の溶液または気相状態の金属に対して高出力のプラズマを発生させて、金属ナノ粒子を得る方法が報告されている(特許文献9、10等)。また、金属塩溶液に対して高出力の超音波を照射することで金属ナノ粒子を製造する方法についても多数報告がある(特許文献11、12等)。
上記超音波を照射することによる金属ナノ粒子の製造方法は、水溶液に超音波が照射されることによって生じるソノケミカル反応を利用したものである(非特許文献1)。具体的には、液体へ超音波を照射することで、その間に生じる急激な撹拌効果や気泡の圧縮、膨張によるキャビテーションの反応を利用した方法が報告されている(特許文献13)。
In order to cope with the above problem, as a method using a physical action that does not include impurities such as a reducing aid, a high-power plasma is generated for a metal solution or a metal in a gas phase, and metal nanoparticles are produced. The obtaining method has been reported (Patent Documents 9, 10, etc.). There are also many reports on methods for producing metal nanoparticles by irradiating a metal salt solution with high-power ultrasonic waves (Patent Documents 11, 12, etc.).
The manufacturing method of the metal nanoparticle by irradiating the said ultrasonic wave utilizes the sonochemical reaction produced when an ultrasonic wave is irradiated to aqueous solution (nonpatent literature 1). Specifically, there has been reported a method using a rapid stirring effect generated during irradiation of ultrasonic waves to a liquid and a cavitation reaction due to bubble compression and expansion (Patent Document 13).

特開2009−221598号公報JP 2009-221598 A 特開2010−116626号公報JP 2010-116626 A 特開2011−132581号公報JP 2011-132581 A 特開2003−253311号公報JP 2003253331 A 特開2010−209366号公報JP 2010-209366 A 特開2008−150701号公報JP 2008-150701 A 特開2009−155674号公報JP 2009-155664 A 国際公開第2005/089986号パンフレットInternational Publication No. 2005/089986 Pamphlet 特開2009−024246号公報JP 2009-024246 A 特開2010−077458号公報JP 2010-077458 A 特開2007−031799号公報JP 2007-031799 A 特開2008−106315号公報JP 2008-106315 A 特開2008−221121号公報JP 2008-221121 A 特開2009−057594号公報JP 2009-057594 A

K. S. Suslick, G. J. Price, Annu. Rev. Mater. Sci., 29 (1999) 295K. S. Suslick, G. J. Price, Annu. Rev. Mater. Sci., 29 (1999) 295

しかし、上記の方法では、高出力のプラズマや超音波を発生させる必要があるため、その実施には大きなエネルギーとコストを要するという課題があった。また、これらのプラズマや超音波による反応は、プラズマや超音波が照射されている部分のみで起こるのに対し、これらの発生装置は均一な強度で広範囲に適用するのが困難であり、このため、工場等において、一定以上の規模に適用するのが困難であるという課題があった。
また、上記方法では、溶液中で粒子を分散させるための分散剤や保護剤を用いていないため、製造の温度条件等によっては、溶液中で生成された粒子が安定せず凝集、融合することで大きくなり、十分にサイズの小さい金属ナノ粒子を得ることが困難となるという課題があった。
本発明は、上記課題に対応するためなされたものであり、構成が簡易で、工場等への適用が容易な方法で、かつ温度条件によらず均一で十分粒径の小さな金属ナノ粒子を得ることが可能な金属ナノ粒子の製造方法を提供することを目的とする。
However, in the above method, since it is necessary to generate high-power plasma and ultrasonic waves, there is a problem that the implementation requires large energy and cost. In addition, these plasma and ultrasonic reactions occur only in the part irradiated with plasma and ultrasonic waves, whereas these generators are difficult to apply in a wide range with uniform intensity. In a factory or the like, there is a problem that it is difficult to apply to a certain scale or more.
In addition, since the above method does not use a dispersant or a protective agent for dispersing the particles in the solution, depending on the temperature conditions of the production, the particles generated in the solution may aggregate and coalesce without being stabilized. There is a problem that it becomes difficult to obtain metal nanoparticles having a sufficiently small size.
The present invention has been made to cope with the above-mentioned problems, and obtains metal nanoparticles that are simple in structure, easy to apply to factories and the like, and uniform and sufficiently small in particle diameter regardless of temperature conditions. It is an object of the present invention to provide a method for producing metal nanoparticles that can be used.

本発明に係る金属ナノ粒子の製造方法は、金属塩の還元を利用した金属ナノ粒子の製造方法であって、水に超音波を照射して、機能水を得る調製工程と、前記機能水と金属塩溶液とを混合する混合工程と、を備えることを特徴とする。
また、前記調製工程において、前記水がアルゴン置換水であることを特徴とする。
また、前記混合工程において、混合の際の反応温度が30℃から60℃であることを特徴とする。
また、前記金属ナノ粒子が、金、銀、白金を含む貴金属であることを特徴とする。
The method for producing metal nanoparticles according to the present invention is a method for producing metal nanoparticles using reduction of a metal salt, wherein the functional water is obtained by irradiating water with ultrasonic waves to obtain functional water. A mixing step of mixing the metal salt solution.
In the preparation step, the water is argon-substituted water.
In the mixing step, the reaction temperature during mixing is 30 ° C. to 60 ° C.
The metal nanoparticles are noble metals including gold, silver and platinum.

本発明に係る金属ナノ粒子の製造方法は、超音波を照射することにより生成された機能水が有する新規な成分、性質を用いて、金属塩溶液を還元して金属ナノ粒子を生成し、かつ生成された金属ナノ粒子を凝集せずに安定させるものである。水に超音波を作用させた際に生じると考えられる水素ラジカルの寿命は数ナノ秒から、長くても数ミリ秒であるから、ここでいう成分、性質は、水素ラジカルではないことが明らかであり、本発明に係る金属ナノ粒子の製造方法は、従来考えられてきたような、水素ラジカルを還元種として、金属ナノ粒子を生成しているものではない点で新規である。   The method for producing metal nanoparticles according to the present invention uses the novel components and properties of functional water generated by irradiating ultrasonic waves to reduce metal salt solution to produce metal nanoparticles, and It stabilizes the generated metal nanoparticles without agglomeration. The lifetime of hydrogen radicals, which are considered to be generated when ultrasonic waves are applied to water, is from a few nanoseconds to several milliseconds at the longest, so it is clear that the components and properties here are not hydrogen radicals. In addition, the method for producing metal nanoparticles according to the present invention is novel in that metal nanoparticles are not generated using a hydrogen radical as a reducing species, as conventionally considered.

また、この成分、性質は、水のソノケミカル反応の副生成物である過酸化水素や硝酸でもないと考えられる。このため、この新規な成分、性質を有する機能水に関しては、本発明の新たな構成として、または新たな発明として抽出することも可能である。
本発明に係る金属ナノ粒子の製造方法において、機能水の生成に用いる水の種類は特に制限がないが、水に溶け込んだ、空気中の酸素や窒素による影響を排除して、純粋な水による作用を利用して金属ナノ粒子を生成するにはアルゴン置換水を利用すればよい。アルゴン置換水を利用することによって、金属ナノ粒子の生成を確実にコントロールすることができる。
Moreover, this component and property are considered not to be hydrogen peroxide and nitric acid, which are by-products of the sonochemical reaction of water. For this reason, it is also possible to extract the functional water having this new component and property as a new configuration of the present invention or as a new invention.
In the method for producing metal nanoparticles according to the present invention, the type of water used for the production of functional water is not particularly limited, but the effect of oxygen and nitrogen in the air dissolved in water is eliminated, and pure water is used. In order to generate metal nanoparticles using the action, argon-substituted water may be used. By using argon-substituted water, the production of metal nanoparticles can be reliably controlled.

また、本発明に係る金属ナノ粒子の製造方法において、機能水の生成に用いる超音波の周波数は、特に制限はないが、200KHzから1000KHzの範囲であると好適であり、900KHzから1000KHzの範囲であるとさらに好ましい。
また、本発明に係る金属ナノ粒子の製造方法において、金属塩溶液に用いる金属塩は、特に制限はないが、金、銀、白金やパラジウムなどの貴金属の金属塩であると好適である。例えば金属塩としては、銅、鉄、コバルト、ニッケル、亜鉛、クロミウム、マンガン、マグネシウム、カドミウム、アルミニウム、錫、タングステンなどを含む金属塩、溶液中でイオン(例えば、Ag+,Ag(CN)2 -,AlCl4 -,Au3+,AuCl4 -,AuBr4 -,PtCl6 2-,Mg2+,Mn2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+,Fe3+,Al3+,Pd2+,PdCl4 2-,Sn2+,SnO3 2-,Ga3+,WO4 2-)なりうる金属塩、AgAsF6,AgBF4,AgBr,AgCl,AgClO3,AgClO4,AgF,AgF2,AgF6P,AgF6Sb,AgI,AgIO3,AgMnO4,AgNO2,AgNO3,AgO3V,AgO4Re,Ag2CrO4,Ag2O,Ag23S,Ag24S,Ag2S,Ag2Se,Ag2Te,Ag3AsO4,Ag3AsO4,Ag3AsO4,Ag34P,Ag8164,KAg(CN)2,CH3CO2Ag,AgCN,AgCNO,AgCNS,Ag2CO3、AlCl312,AlCl4Cs,AlCl4K,AlCl4Li,AlCl4Na,AlC12Ti3,AlCsO4Si,AlCsO6Si2,AlCsO82,AlF4K,AlF6Na3,AlKO82,AlLiO2,AlN39,AlO4P,AlO93,Al2BaO4,Al2MgO4,Al25Ti,Al3123,Al6Bi212,Al613Si2,H4AlLi,H4AlNO82,AuBr3,KAuBr4,NaAuBr4,AuCl3,KAuCl4,NaAuCl4,HAuCl4,AuI3,Au23,HAuCl4N,AuCN、CoF2,CoF3,CoI2,CoLiO2,CoN26,CoN6Na312,CoO,CoO4S,CoSe,Co34,Co382,Co5Sm,Co7Sm2,H8CoN282,H12CoN99,H15Cl3CoN5,CoCO3、CdCl2,CdCl28,CdF2,CdI2,CdMoO4,CdN26,CdO3Zr,CdO4S,CdO4W,CuF2,CuI,CuMoO4,CuN26,CuNb26,CuO,CuO3Se,CuO4S,CuO4W,CuS,CuSe,CuTe,Cu2HgI4,Cu2O,Cu272,Cu2S,Cu2Se,Cu2Te,H8Cl4CuN2,H12CuN44S,CuCN,CuCNS、MgMn28,MgMoO4,MgN26,MgO32,MgO3Ti,MgO3Zr,MgO4S,MgO4W,Mg272,Mg382,H4MgNO4P,MnMoO4,MnN26,MnNoO4,MnO4S,H4MnO42,NiO,NiO3Ti,NiO4S,H42NiO62,H2PtCl6,H6Cl22Pt,H6Cl42Pt,H644Pt,H6Na26Pt,H8Br62Pt,H8Cl42Pt,H8Cl62Pt,H86Pt,H12Cl24Pt,H12Cl44Pt2,H1266Pt,H1442Pt,C22Pt,H6Br22Pd,H6Cl22Pd,H622Pd,H644Pd,H8Cl42Pd,H8Cl62Pd,H12Br24Pd,H12Cl24Pd,H12Cl44Pd2,H1266Pd,C22Pd,Pd(OAc)2,Pd(NO32,H4FeNO82,H8FeN282,FeCl3,C22Zn,H2SnO3,Na2SnO3,SnCl22H2O,SnO,SnSO4,SnO2,GaBr3,GaCl3,GaI3,Ga(NO33xH2O,Ga(SO43xH2O,Ga2(SO43,GaAs,GaN,GaP,GaS,Ga23,GaSe,GaSe,Ga2Se3,GaTe,Ga2Te3,GaO2H,H2WO4などが好適である。これらのうち、AgNO3,KAuCl4,NaAuCl4,HAuCl4,H2PtCl6,Pd(OAc)2,Pd(NO32,Ga(NO33xH2Oなどが特に好ましい。
なお、この際、金属塩溶液の濃度には特に制限はないが、10mM以下であると好適であり、0.1mM以下であると好ましい。また、0.05mM以下であると、粒子が生成した後の分散性に優れるため、さらに好ましい。
Further, in the method for producing metal nanoparticles according to the present invention, the frequency of the ultrasonic wave used for the generation of functional water is not particularly limited, but is preferably in the range of 200 KHz to 1000 KHz, and in the range of 900 KHz to 1000 KHz. More preferably.
In the method for producing metal nanoparticles according to the present invention, the metal salt used in the metal salt solution is not particularly limited, but is preferably a metal salt of a noble metal such as gold, silver, platinum or palladium. For example, as the metal salt, metal salt containing copper, iron, cobalt, nickel, zinc, chromium, manganese, magnesium, cadmium, aluminum, tin, tungsten, etc., ions in the solution (for example, Ag + , Ag (CN) 2 -, AlCl 4 -, Au 3+ , AuCl 4 -, AuBr 4 -, PtCl 6 2-, Mg 2+, Mn 2+, Co 2+, Ni 2+, Cu 2+, Zn 2+, Cd 2+ , Fe 3+ , Al 3+ , Pd 2+ , PdCl 4 2− , Sn 2+ , SnO 3 2− , Ga 3+ , WO 4 2− ), possible metal salts, AgAsF 6 , AgBF 4 , AgBr, AgCl , AgClO 3 , AgClO 4 , AgF, AgF 2 , AgF 6 P, AgF 6 Sb, AgI, AgIO 3 , AgMnO 4 , AgNO 2 , AgNO 3 , AgO 3 V, AgO 4 Re, Ag 2 CrO 4 , Ag 2 O , Ag 2 O 3 S, Ag 2 O 4 S, Ag 2 S, Ag 2 Se, Ag 2 Te, Ag 3 AsO 4 , Ag 3 AsO 4 , Ag 3 AsO 4 , Ag 3 O 4 P, Ag 8 O 16 W 4 , KAg (CN) 2 , CH 3 CO 2 Ag, AgCN, AgCNO, AgCNS, Ag 2 CO 3 , AlCl 3 O 12 , AlCl 4 Cs, AlCl 4 K, AlCl 4 Li, AlCl 4 Na, AlC 12 Ti 3 , AlCsO 4 Si, AlCsO 6 Si 2 , AlCsO 8 S 2 , AlF 4 K, AlF 6 Na 3 , AlKO 8 S 2 , AlLiO 2 , AlN 3 O 9 , AlO 4 P, AlO 9 P 3 , Al 2 BaO 4 , Al 2 MgO 4 , Al 2 O 5 Ti, Al 3 O 12 S 3 , Al 6 Bi 2 O 12 , Al 6 O 13 Si 2 , H 4 AlLi, H 4 AlNO 8 S 2 , AuBr 3 , KAuBr 4 , NaAuBr 4 , AuCl 3 , KAuCl 4 , NaA uCl 4 , HAuCl 4 , AuI 3 , Au 2 S 3 , HAuCl 4 N, AuCN, CoF 2 , CoF 3 , CoI 2 , CoLiO 2 , CoN 2 O 6 , CoN 6 Na 3 O 12 , CoO, CoO 4 S, CoSe, Co 3 O 4 , Co 3 O 8 P 2 , Co 5 Sm, Co 7 Sm 2 , H 8 CoN 2 O 8 S 2 , H 12 CoN 9 O 9 , H 15 Cl 3 CoN 5 , CoCO 3 , CdCl 2 , CdCl 2 O 8 , CdF 2 , CdI 2 , CdMoO 4 , CdN 2 O 6 , CdO 3 Zr, CdO 4 S, CdO 4 W, CuF 2 , CuI, CuMoO 4 , CuN 2 O 6 , CuNb 2 O 6 , CuO, CuO 3 Se, CuO 4 S, CuO 4 W, CuS, CuSe, CuTe, Cu 2 HgI 4 , Cu 2 O, Cu 2 O 7 P 2 , Cu 2 S, Cu 2 Se, Cu 2 Te, H 8 Cl 4 CuN 2 , H 12 CuN 4 O 4 S, CuCN, CuCNS, MgMn 2 O 8 , MgMoO 4 , MgN 2 O 6 , MgO 3 S 2 , MgO 3 Ti, MgO 3 Zr, MgO 4 S, MgO 4 W, Mg 2 O 7 P 2 , Mg 3 O 8 P 2 , H 4 MgNO 4 P, MnMoO 4 , MnN 2 O 6 , MnNoO 4 , MnO 4 S, H 4 MnO 4 P 2 , NiO, NiO 3 Ti, NiO 4 S, H 4 N 2 NiO 6 S 2, H 2 PtCl 6, H 6 Cl 2 N 2 Pt, H 6 Cl 4 N 2 Pt, H 6 N 4 O 4 Pt, H 6 Na 2 O 6 Pt, H 8 Br 6 N 2 Pt, H 8 Cl 4 N 2 Pt, H 8 Cl 6 N 2 Pt, H 8 O 6 Pt, H 12 Cl 2 N 4 Pt, H 12 Cl 4 N 4 Pt 2 , H 12 N 6 O 6 Pt, H 14 N 4 O 2 Pt, C 2 N 2 Pt, H 6 Br 2 N 2 Pd, H 6 Cl 2 N 2 Pd, H 6 I 2 N 2 Pd, H 6 N 4 O 4 Pd, H 8 Cl 4 N 2 Pd, H 8 Cl 6 N 2 Pd, H 12 Br 2 N 4 Pd, H 12 Cl 2 N 4 Pd, H 12 Cl 4 N 4 Pd 2 , H 12 N 6 O 6 Pd, C 2 N 2 Pd , Pd (OAc) 2 , Pd (NO 3 ) 2 , H 4 FeNO 8 S 2 , H 8 FeN 2 O 8 S 2 , FeCl 3 , C 2 N 2 Zn, H 2 SnO 3 , Na 2 SnO 3 , SnCl 2 2H 2 O, SnO, SnSO 4, SnO 2, GaBr 3, GaCl 3, GaI 3, Ga (NO 3) 3 xH 2 O, Ga (SO 4) 3 xH 2 O, Ga 2 (SO 4) 3, GaAs, GaN, GaP, GaS, Ga 2 S 3, GaSe, GaSe, Ga 2 Se 3, GaTe, Ga 2 Te 3, GaO 2 H, such as H 2 WO 4 is preferred. Of these, AgNO 3 , KAuCl 4 , NaAuCl 4 , HAuCl 4 , H 2 PtCl 6 , Pd (OAc) 2 , Pd (NO 3 ) 2 , Ga (NO 3 ) 3 xH 2 O and the like are particularly preferable.
In this case, the concentration of the metal salt solution is not particularly limited, but is preferably 10 mM or less, and preferably 0.1 mM or less. Moreover, since it is excellent in the dispersibility after particle | grains generate | occur | produce as it is 0.05 mM or less, it is further more preferable.

また、本発明に係る金属ナノ粒子の製造方法において、金属塩溶液と機能水とを混合し、反応させる際の温度については、特に制限はない。ただし、高温である方がより反応を促進するため、一定温度以上であることが好ましい。具体的には、30℃から60℃の範囲であると好適である。なお、この温度範囲は、反応時に超音波照射を行う方法で金属ナノ粒子を製造した場合に、粒子の凝集が認められる温度範囲であるが、本発明に係る金属ナノ粒子の製造方法によれば、粒子を凝集させることなく、均一な粒径の金属ナノ粒子を得ることが可能である。   Moreover, in the manufacturing method of the metal nanoparticle which concerns on this invention, there is no restriction | limiting in particular about the temperature at the time of mixing and making a metal salt solution and functional water react. However, since the reaction is promoted at higher temperatures, the temperature is preferably higher than a certain temperature. Specifically, the temperature is preferably in the range of 30 ° C to 60 ° C. Note that this temperature range is a temperature range in which aggregation of particles is observed when metal nanoparticles are produced by a method of performing ultrasonic irradiation during the reaction, but according to the method for producing metal nanoparticles according to the present invention, It is possible to obtain metal nanoparticles having a uniform particle size without agglomerating the particles.

本発明に係る金属ナノ粒子の製造方法によれば、還元補助剤や保護剤を用いることなく、金属ナノ粒子を製造することが可能であるため、純粋な金属ナノ粒子を提供することが可能になる。ただし、このことは水に超音波を照射して得られる機能水を用いて、金属ナノ粒子を得る際に、還元補助剤や分散剤、保護剤を使用することを妨げるものではなく、本発明は実施の際に、これらの添加物を使用することも可能である。また、これらの添加物の使用は、追加の除去工程が必要になるものの、試料溶液中の金属粒子の生成効率を上げるのに寄与すると考えられる。   According to the method for producing metal nanoparticles according to the present invention, it is possible to produce metal nanoparticles without using a reducing aid or a protective agent, and therefore it is possible to provide pure metal nanoparticles. Become. However, this does not prevent the use of a reducing aid, a dispersant, or a protective agent when obtaining metal nanoparticles using functional water obtained by irradiating water with ultrasonic waves. It is also possible to use these additives in the practice. The use of these additives is thought to contribute to increasing the production efficiency of metal particles in the sample solution, although an additional removal step is required.

また、本発明に係る金属ナノ粒子の製造方法によれば、反応時に超音波を照射させ続ける必要がなく、また、水に超音波を照射させる設備や条件に関する制限がないため、超音波を発生させる設備を用意できる環境であれば、自由に規模を変更することが可能になり、工場等への適用が容易である。   In addition, according to the method for producing metal nanoparticles according to the present invention, it is not necessary to continue to irradiate ultrasonic waves during the reaction, and since there is no restriction on the equipment and conditions for irradiating water with ultrasonic waves, ultrasonic waves are generated If the environment can provide the equipment to be prepared, the scale can be freely changed, and the application to a factory or the like is easy.

本発明に係る金属ナノ粒子の製造方法によれば、簡易な設備で、粒径の均一な金属ナノ粒子を提供することが可能になる。   According to the method for producing metal nanoparticles according to the present invention, it is possible to provide metal nanoparticles having a uniform particle diameter with simple equipment.

本発明により製造された金属ナノ粒子のTEM像である。It is a TEM image of the metal nanoparticle manufactured by this invention. 本発明により20℃で製造された金属ナノ粒子の反応時間ごとの紫外可視分光分析の結果のスペクトルである。It is a spectrum of the result of the ultraviolet visible spectroscopic analysis for every reaction time of the metal nanoparticle manufactured at 20 degreeC by this invention. 本発明により製造された金属ナノ粒子のうち、5−60℃で反応した試料についての530nm付近の吸収ピーク強度について時間変化を示すグラフである。It is a graph which shows a time change about the absorption peak intensity of 530 nm vicinity about the sample which reacted at 5-60 degreeC among the metal nanoparticles manufactured by this invention. 超音波還元法により製造された金属ナノ粒子のTEM像である。It is a TEM image of the metal nanoparticle manufactured by the ultrasonic reduction method.

<実施例1>
以下に本発明に係る金属ナノ粒子の製造方法を実施するための形態について説明する。
(機能水の調製)
はじめに機能水の調製を行う。本実施例では、水50mlの入ったビーカーを、超音波照射器(三井電気精機株式会社製SD−32CP−950K)が取り付けられたウォーターバス中に沈積して、300W、950KHzの超音波を8分間照射した。なお、材料として使用した水には、超音波照射によるラジカル生成や、窒素等の反応による硝酸の生成等を抑制するため、あらかじめアルゴンガスをパージして、酸素や窒素を置換した水を使用した。
<Example 1>
Below, the form for implementing the manufacturing method of the metal nanoparticle which concerns on this invention is demonstrated.
(Preparation of functional water)
First, functional water is prepared. In this example, a beaker containing 50 ml of water is deposited in a water bath to which an ultrasonic irradiator (SD-32CP-950K manufactured by Mitsui Electric Seiki Co., Ltd.) is attached, and 300 W, 950 KHz ultrasonic waves are applied to the beaker. Irradiated for 1 minute. The water used as the material was water purged with argon gas in advance and substituted with oxygen or nitrogen in order to suppress radical generation due to ultrasonic irradiation and generation of nitric acid due to reactions such as nitrogen. .

(機能水と金属塩溶液との混合)
次に、調製した機能水50mlと、金属塩溶液250μlとをビーカー内で攪拌混合し、所定の温度を保ちながら、約120分静置する。本実施例では、金属塩溶液として、塩化金酸(HAuCl)水溶液を使用しており、反応開始時に濃度が0.1mMのAuCl が還元されることにより、金ナノ粒子を生成する。この際、温度は、5℃から60℃の範囲での7段階について実験を行った。
(Mixing of functional water and metal salt solution)
Next, 50 ml of the prepared functional water and 250 μl of the metal salt solution are stirred and mixed in a beaker and allowed to stand for about 120 minutes while maintaining a predetermined temperature. In this example, a chloroauric acid (HAuCl 4 ) aqueous solution is used as the metal salt solution, and gold nanoparticles are generated by reducing 0.1 mM of AuCl 4 at the start of the reaction. At this time, the experiment was conducted for seven stages of temperatures ranging from 5 ° C to 60 ° C.

(電子顕微鏡による評価)
図1は、本実施例で製造された金属ナノ粒子を透過型電子顕微鏡(日本電子社製JEM−2010)で観察した図を示す。図から、全ての温度条件において、金属ナノ粒子が生成されていることが認められる。また、温度が40℃または50℃の試料では、他の温度の試料に比べ、粒径の小さな粒子が生成していることが認められ、温度が60℃の試料では、各粒子の凝集が認められる。
(Evaluation by electron microscope)
FIG. 1: shows the figure which observed the metal nanoparticle manufactured by the present Example with the transmission electron microscope (JEM-2010 by JEOL Co., Ltd.). From the figure, it is recognized that metal nanoparticles are generated under all temperature conditions. In addition, it is recognized that particles having a small particle diameter are formed in the sample at a temperature of 40 ° C. or 50 ° C. compared to the sample at other temperatures, and the aggregation of each particle is recognized in the sample at a temperature of 60 ° C. It is done.

(紫外可視分光分析による評価)
本実施例で金属ナノ粒子が製造されていることを確認するため、実験を行った試料について、紫外可視分光分析を行った。貴金属は、粒径がナノメートルの粒子になると、表面プラズモン共鳴により、特定波長の光を吸収することが知られている。これを利用して、金属ナノ粒子の生成の確認、および生成された粒子の分散安定性を確認することが可能になる。本実施例で製造された金ナノ粒子の場合は、最大吸収波長が530nm付近に特徴的なピークが現れる。なお、このピークは、粒子の形状によって変化し、粒子が板状である場合には、700nm付近の光がよく吸収されるようになる。また、ピーク強度や半値幅の変化は分散安定性を反映する。
(Evaluation by UV-visible spectroscopy)
In order to confirm that the metal nanoparticles were produced in this example, ultraviolet-visible spectroscopic analysis was performed on the sample subjected to the experiment. It is known that noble metals absorb light of a specific wavelength by surface plasmon resonance when the particle diameter is nanometer. By utilizing this, it becomes possible to confirm the generation of metal nanoparticles and the dispersion stability of the generated particles. In the case of the gold nanoparticles produced in this example, a characteristic peak appears around the maximum absorption wavelength of 530 nm. This peak changes depending on the shape of the particle, and when the particle is plate-like, light near 700 nm is well absorbed. In addition, changes in peak intensity and half-value width reflect dispersion stability.

図2は、本実施例で製造された金ナノ粒子のうち、20℃の条件で製造した金ナノ粒子を、紫外可視分光分析装置(日立ハイテクノロジーズ社製U−1900)を用いて吸光度を測定した結果のスペクトルを示す。図から、時間の経過に伴って、金ナノ粒子の表面プラズモン共鳴に由来する吸収強度である530nm付近のピークが増加していることが認められる。これにより、本実施例に係る製造方法によって、金ナノ粒子が生成され、かつそれが機能水中で分散していると認められる。   FIG. 2 shows the measurement of the absorbance of gold nanoparticles produced in this example under the condition of 20 ° C. using an ultraviolet-visible spectrophotometer (U-1900 manufactured by Hitachi High-Technologies Corporation). The resulting spectrum is shown. From the figure, it is recognized that the peak near 530 nm, which is the absorption intensity derived from the surface plasmon resonance of the gold nanoparticle, increases with the passage of time. Thereby, it is recognized by the manufacturing method which concerns on a present Example that the gold nanoparticle is produced | generated and it is disperse | distributing in functional water.

図3は、本実施例で製造された金ナノ粒子の紫外可視分光分析結果のうち、吸収波長が530nm付近のピーク強度の時間変化を示す。図から、反応温度が5℃から10℃の試料については、反応開始から120分経過するまで、ピーク強度が増加し続けていることが認められる。また、20℃から60℃の範囲では、反応開始後急激にピーク強度が増加するが、その後減少傾向に転じていることが認められる。これにより、本実施例に係る製造方法では、反応時の温度条件によって、反応速度に違いが現れることが認められる。   FIG. 3 shows the time change of the peak intensity when the absorption wavelength is around 530 nm among the results of the ultraviolet-visible spectroscopic analysis of the gold nanoparticles produced in this example. From the figure, it can be seen that for samples with a reaction temperature of 5 ° C. to 10 ° C., the peak intensity continues to increase until 120 minutes have elapsed from the start of the reaction. Further, in the range of 20 ° C. to 60 ° C., the peak intensity rapidly increases after the start of the reaction, but thereafter it is recognized that the tendency has been decreasing. Thereby, in the manufacturing method which concerns on a present Example, it is recognized that a difference appears in reaction rate by the temperature conditions at the time of reaction.

<比較例1>
(超音波還元法による金ナノ粒子の製造実験)
従来の製造方法に対する、本発明に係る金属ナノ粒子の製造方法の優位性を確認するために、従来の超音波還元法により金ナノ粒子の製造実験を行った。実験に使用した金属塩溶液は、濃度、量ともに上記実施例1と同様である。この金属塩溶液と、アルゴン置換した水とを混合し、その後、300W、950KHzの超音波を8分間照射した。この際、超音波照射に使用した機器は、上記実施例1と同様のものである。また、実験を行った際の温度条件は上記実施例1と同様である。
<Comparative Example 1>
(Production experiment of gold nanoparticles by ultrasonic reduction method)
In order to confirm the superiority of the method for producing metal nanoparticles according to the present invention over the conventional production method, an experiment for producing gold nanoparticles was conducted by a conventional ultrasonic reduction method. The metal salt solution used in the experiment is the same as in Example 1 in both concentration and amount. This metal salt solution was mixed with argon-substituted water, and then irradiated with 300 W, 950 KHz ultrasonic waves for 8 minutes. At this time, the equipment used for ultrasonic irradiation is the same as that of the first embodiment. Further, the temperature conditions when the experiment was performed are the same as those in Example 1.

(電子顕微鏡による評価)
図4は、比較例1により製造された金属ナノ粒子を透過型電子顕微鏡観察した図を示す。観察に使用した電子顕微鏡は、上記実施例1と同様である。図から、5℃から30℃の温度条件において、金ナノ粒子が生成されていることが認められる。また、30℃から粒子の凝集が認められ、そこから温度の上昇に伴って、生成された粒子の凝集、および融合が進んでいることが認められる。上記実施例1に係る製造方法で製造された金属ナノ粒子では、30℃を超えた温度範囲であっても安定しており、各粒子が凝集せずに分散していることが認められたため、この点で本比較例に対して優位であることが認められる。
(Evaluation by electron microscope)
FIG. 4 shows a view obtained by observing the metal nanoparticles produced in Comparative Example 1 with a transmission electron microscope. The electron microscope used for the observation is the same as in Example 1. From the figure, it is recognized that gold nanoparticles are generated under the temperature condition of 5 ° C. to 30 ° C. In addition, aggregation of particles is observed from 30 ° C., and it is recognized that aggregation and fusion of the generated particles are progressing as the temperature increases. In the metal nanoparticles produced by the production method according to Example 1 above, it was confirmed that the particles were stable even in a temperature range exceeding 30 ° C., and each particle was dispersed without being aggregated. In this respect, it is recognized that this is superior to the comparative example.

上記実施例の結果から、本発明に係る金属ナノ粒子の製造方法で用いた機能水には、溶液中の物質を還元させる新規な機能が認められる。これは、機能水に含まれる新規なイオンなどの成分によるものと考えられる。また、上記機能水には、生成した金属ナノ粒子について、溶液中で分散させておく機能も認められる。これについても、溶液中の微粒子を分散させるイオンの存在を示唆している。   From the result of the said Example, the novel function which reduces the substance in a solution is recognized by the functional water used with the manufacturing method of the metal nanoparticle which concerns on this invention. This is considered to be due to components such as novel ions contained in the functional water. The functional water also has a function of dispersing the produced metal nanoparticles in a solution. This also suggests the presence of ions that disperse the fine particles in the solution.

上記実施例において、反応温度が30℃以上であるときに、生成された金ナノ粒子の凝集、融合が確認されているが、これは、金ナノ粒子の融点がこの付近であることに起因するものと考えられる。   In the above examples, when the reaction temperature is 30 ° C. or higher, aggregation and fusion of the produced gold nanoparticles have been confirmed. This is because the melting point of the gold nanoparticles is in this vicinity. It is considered a thing.

本発明に係る金属ナノ粒子の製造方法では、機能水の調製に300W、950KHzの超音波を用いて、5℃から60℃の温度条件で各実験を行っているが、これらを任意の値に変更することによって、生成される粒子の形状、粒径などをコントロールすることが可能である。
本発明に係る金属ナノ粒子の製造方法では、水に超音波を照射した機能水を金属ナノ粒子の生成に適用したが、この機能水の使用方法は他用途への適用も可能である。
In the method for producing metal nanoparticles according to the present invention, each experiment is performed under a temperature condition of 5 ° C. to 60 ° C. using 300 W, 950 KHz ultrasonic waves for the preparation of functional water. By changing, it is possible to control the shape, particle size, etc. of the generated particles.
In the method for producing metal nanoparticles according to the present invention, functional water obtained by irradiating water with ultrasonic waves is applied to the production of metal nanoparticles, but this method of using functional water can also be applied to other uses.

Claims (4)

金属塩の還元を利用した金属ナノ粒子の製造方法であって、水に超音波を照射して、機能水を得る調製工程と、前記機能水と金属塩溶液とを混合する混合工程と、を備えることを特徴とする金属ナノ粒子の製造方法。   A method for producing metal nanoparticles using reduction of a metal salt, comprising: a preparation step of irradiating water with ultrasonic waves to obtain functional water; and a mixing step of mixing the functional water and the metal salt solution. The manufacturing method of the metal nanoparticle characterized by the above-mentioned. 前記調製工程において、前記水がアルゴン置換水であることを特徴とする請求項1に記載の金属ナノ粒子の製造方法。   The method for producing metal nanoparticles according to claim 1, wherein in the preparation step, the water is argon-substituted water. 前記混合工程において、混合の際の反応温度が30℃から60℃であることを特徴とする請求項1または2記載の金属ナノ粒子の製造方法。   The method for producing metal nanoparticles according to claim 1 or 2, wherein, in the mixing step, a reaction temperature at the time of mixing is 30 ° C to 60 ° C. 前記金属ナノ粒子が、金、銀、白金を含む貴金属であることを特徴とする請求項1から請求項3のいずれか1項記載の金属ナノ粒子の製造方法。   The method for producing metal nanoparticles according to any one of claims 1 to 3, wherein the metal nanoparticles are noble metals including gold, silver, and platinum.
JP2011175685A 2011-08-11 2011-08-11 Method for producing metal nanoparticles Active JP5822265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011175685A JP5822265B2 (en) 2011-08-11 2011-08-11 Method for producing metal nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011175685A JP5822265B2 (en) 2011-08-11 2011-08-11 Method for producing metal nanoparticles

Publications (2)

Publication Number Publication Date
JP2013036114A true JP2013036114A (en) 2013-02-21
JP5822265B2 JP5822265B2 (en) 2015-11-24

Family

ID=47885979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011175685A Active JP5822265B2 (en) 2011-08-11 2011-08-11 Method for producing metal nanoparticles

Country Status (1)

Country Link
JP (1) JP5822265B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129327A (en) * 2014-01-08 2015-07-16 国立大学法人東北大学 Method for forming functional sintered dense film, functional sintered dense film, method for synthesizing nanoparticle, and nanoparticle
CN105598469A (en) * 2016-03-18 2016-05-25 西北师范大学 Preparation method of transition metal alloy material of ordered controllable three-dimensional grading structure
CN105642913A (en) * 2016-03-25 2016-06-08 北京理工大学 Method for preparing polymorphic gold nano-structure by using laser-inducing material through reduction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245470A (en) * 1992-03-06 1993-09-24 Rikagaku Kenkyusho Method for forming hydrated electron
JP2005290478A (en) * 2004-03-31 2005-10-20 Tamura Kaken Co Ltd Method for producing nano-particle of gold
JP2007531822A (en) * 2004-04-01 2007-11-08 トクセン ユー.エス.エー.、インコーポレイテッド Synthesis of nano-sized metal particles
JP2009057594A (en) * 2007-08-31 2009-03-19 Shinko Kagaku Kogyosho:Kk Method for manufacturing fine metal particle
JP2009221140A (en) * 2008-03-14 2009-10-01 National Institute Of Advanced Industrial & Technology Colored nanoparticles for cosmetic and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245470A (en) * 1992-03-06 1993-09-24 Rikagaku Kenkyusho Method for forming hydrated electron
JP2005290478A (en) * 2004-03-31 2005-10-20 Tamura Kaken Co Ltd Method for producing nano-particle of gold
JP2007531822A (en) * 2004-04-01 2007-11-08 トクセン ユー.エス.エー.、インコーポレイテッド Synthesis of nano-sized metal particles
JP2009057594A (en) * 2007-08-31 2009-03-19 Shinko Kagaku Kogyosho:Kk Method for manufacturing fine metal particle
JP2009221140A (en) * 2008-03-14 2009-10-01 National Institute Of Advanced Industrial & Technology Colored nanoparticles for cosmetic and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129327A (en) * 2014-01-08 2015-07-16 国立大学法人東北大学 Method for forming functional sintered dense film, functional sintered dense film, method for synthesizing nanoparticle, and nanoparticle
CN105598469A (en) * 2016-03-18 2016-05-25 西北师范大学 Preparation method of transition metal alloy material of ordered controllable three-dimensional grading structure
CN105642913A (en) * 2016-03-25 2016-06-08 北京理工大学 Method for preparing polymorphic gold nano-structure by using laser-inducing material through reduction
CN105642913B (en) * 2016-03-25 2017-09-22 北京理工大学 A kind of method that laser-induced material reproducibility prepares polymorphic gold nano structure

Also Published As

Publication number Publication date
JP5822265B2 (en) 2015-11-24

Similar Documents

Publication Publication Date Title
Ng et al. Shape evolution of Cu2O nanostructures via kinetic and thermodynamic controlled growth
Ledwith et al. A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles
JP5062721B2 (en) Manufacturing method of nano-sized wire
JP4490201B2 (en) Fine alloy particle powder having irregular surface and method for producing the same
Peng et al. Morphology control of nanoscale PbS particles in a polyol process
Kumar-Krishnan et al. A general seed-mediated approach to the synthesis of AgM (M= Au, Pt, and Pd) core–shell nanoplates and their SERS properties
Wu et al. Ammonium bicarbonate reduction route to uniform gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering
Liu et al. Understanding the solvent molecules induced spontaneous growth of uncapped tellurium nanoparticles
TWI499466B (en) Metal particle and fabricating method thereof, and metal particle dispersion solution and fabricating method thereof
Zou et al. Controlled growth of silver nanoparticles in a hydrothermal process
Abdelsayed et al. Laser synthesis of bimetallic nanoalloys in the vapor and liquid phases and the magnetic properties of PdM and PtM nanoparticles (M= Fe, Co and Ni)
JP5822265B2 (en) Method for producing metal nanoparticles
Chng et al. Rapid Synthesis of Highly Monodisperse Au x Ag1− x Alloy Nanoparticles via a Half-Seeding Approach
Pang et al. Solvents-dependent selective fabrication of face-centered cubic and hexagonal close-packed structured ruthenium nanoparticles during liquid-phase laser ablation
Zhang et al. Laser ablation in liquids for nanomaterial synthesis and applications
Gu et al. Effect of aqueous ammonia addition on the morphology and size of silver particles reduced by ascorbic acid
KR101368404B1 (en) Metal nanoparticles and method for preparing the same
Vatanparast et al. Sonochemical approach for synthesis and characterization of PbTe nanostructure
JP2009057594A (en) Method for manufacturing fine metal particle
WO2011013542A1 (en) Metal nanoparticles, dispersion containing same, and process for production of same
JP2011089156A (en) Metal fine particle, and method for producing the same
Zhang et al. Size-and shape-tunable silver nanoparticles created through facile aqueous synthesis
Kundu et al. Photochemical synthesis of shape-selective palladium nanocubes in aqueous solution
KR20130132890A (en) Nanowire preparation methods, compositions, and articles
Zhang et al. Size control and its mechanism of SnAg nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150930

R150 Certificate of patent or registration of utility model

Ref document number: 5822265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250