JP2013035713A - Method for predicting molding difficulty of aspheric glass molded lens, and method for designing lens system including the aspheric glass molded lens - Google Patents

Method for predicting molding difficulty of aspheric glass molded lens, and method for designing lens system including the aspheric glass molded lens Download PDF

Info

Publication number
JP2013035713A
JP2013035713A JP2011172655A JP2011172655A JP2013035713A JP 2013035713 A JP2013035713 A JP 2013035713A JP 2011172655 A JP2011172655 A JP 2011172655A JP 2011172655 A JP2011172655 A JP 2011172655A JP 2013035713 A JP2013035713 A JP 2013035713A
Authority
JP
Japan
Prior art keywords
lens
molding
aspheric
glass mold
difficulty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011172655A
Other languages
Japanese (ja)
Other versions
JP5767893B2 (en
Inventor
Takashi Igari
隆 猪狩
kenya Yasuhiko
健也 安彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2011172655A priority Critical patent/JP5767893B2/en
Priority to TW101124404A priority patent/TWI579597B/en
Priority to KR1020120085577A priority patent/KR101625426B1/en
Priority to CN201210279795.5A priority patent/CN102928208B/en
Publication of JP2013035713A publication Critical patent/JP2013035713A/en
Application granted granted Critical
Publication of JP5767893B2 publication Critical patent/JP5767893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a method for predicting molding difficulty which predicts the molding difficulty of an aspheric MO lens (glass molded lens) for which the key is not present so far, and becomes the key to request the change of the design shape itself of the aspheric MO lens.SOLUTION: In the method for predicting the molding difficulty of an aspheric glass molded lens in which at least one of the R1 surface and R2 surface is a rotationally symmetric aspheric surface represented by an aspheric surface expression, inclinations of the R1 surface and R2 surface are calculated respectively by differentiating once the aspheric surface expressions of the R1 surface and R2 surface, and on the basis of an expression of an inclination ratio obtained by dividing any one of the inclination of the R1 surface and the inclination of the R2 surface by the other, the molding difficulty is determined.

Description

本発明は、非球面ガラスレンズをモールド成形する際の成形難易度を予測する方法及び非球面ガラスモールドレンズを含むレンズ系の設計方法に関する。   The present invention relates to a method for predicting the molding difficulty when molding an aspheric glass lens and a design method for a lens system including an aspheric glass mold lens.

従来、ガラスモールドレンズ(以下、MOレンズ)の成形性は、硝材・中心肉厚・レンズ径・ランドの有無・メニスカス形状であるかどうか等の経験的手法によって判断されてきた。例えば同硝材で同程度の中心肉厚の凸メニスカスレンズであれば、レンズ径が小さい方が良好な面形状が得られるとされてきた。   Conventionally, the moldability of a glass mold lens (hereinafter referred to as an MO lens) has been determined by an empirical method such as glass material, center thickness, lens diameter, presence / absence of lands, meniscus shape, and the like. For example, in the case of a convex meniscus lens having the same center thickness with the same glass material, it has been said that a better surface shape can be obtained with a smaller lens diameter.

特公昭61-32263号公報Japanese Examined Patent Publication No. 61-32263

しかし、プレス成形の現場では、経験則に当て嵌まらず、極めて歩留まりの悪い非球面MOレンズが頻発しているのが実情である。非球面MOレンズの製造工程は、発注者(例えばカメラ(レンズ)メーカー)が受注者(例えばモールドメーカー)に対して、レンズ設計に基いて形状を決定した非球面レンズの形状仕様(n(硝材)、r(曲率半径)、d(厚さ)及び回転対称非球面形状を含むデータ、n-r-d-非球面データ)を渡し、受注者がその形状仕様に忠実な形状の非球面MOレンズを成形するという関係にある。受注者がカメラメーカーの一部門である場合も同様である。このような関係において、仮に受注した非球面MOレンズの成形性が悪く歩留まりが悪かったとしても、各種のプレス機械を用いてモールドレンズを成形する受注者サイドでは、対応が全く(または殆ど)できない。つまり、成形が困難である(歩留まりが悪い)形状であるとしても、受注者側が発注者側に対して、非球面形状の変更を要求することも、その変更要求の根拠も存在しないのが実情であった。そして、成形が困難な非球面MOレンズを含むレンズ系は、結果として安定した高い光学性能を得ることが困難である。本発明者らによれば、最大の問題点は、従来は非球面MOレンズの成形性の善し悪しが何によって生じているかの手がかりが全く存在せず、経験的手法によってのみ判断されてきた点にある。   However, in the field of press molding, a reality is that aspherical MO lenses with extremely low yields that do not fit the rule of thumb frequently occur. The manufacturing process of the aspherical MO lens is the shape specification of the aspherical lens (n (glass material) determined by the orderer (for example, camera (lens) manufacturer) to the contractor (for example, mold manufacturer) based on the lens design). ), R (radius of curvature), d (thickness) and rotationally symmetric aspherical shape data, rnd-aspherical surface data), and the contractor has the shape of the aspherical MO faithful to the shape specification. It has a relationship of molding a lens. The same applies when the contractor is a division of a camera manufacturer. In such a relationship, even if the aspherical MO lens that has been ordered is inferior in moldability and yield is poor, the side of the contractor who molds the molded lens using various press machines cannot (or hardly) cope with it. . In other words, even if the shape is difficult to shape (low yield), the contractor does not request the orderer to change the aspherical shape, and there is no basis for the change request. Met. As a result, it is difficult for a lens system including an aspherical MO lens that is difficult to be molded to obtain stable and high optical performance. According to the present inventors, the biggest problem is that, conventionally, there is no clue as to what causes the molding quality of the aspherical MO lens, and it has been determined only by an empirical method. is there.

本発明は、従来手がかりが存在しなかった非球面MOレンズの成形難易度を予測し、非球面MOレンズの設計形状自体の変更を要求する手がかりとなる成形難易度の予測方法を得ることを目的とする。さらに本発明は、非球面レンズを含むレンズ系の設計において、成形が困難な非球面MOレンズが含まれている設計結果となったときには、成形の困難性を警告し、設計自体の変更を促すことができる設計方法(プログラム)を得ることを目的とする。   An object of the present invention is to predict a molding difficulty level of an aspherical MO lens, which has not had a clue in the past, and to obtain a molding difficulty level prediction method that is a key to request a change in the design shape of the aspherical MO lens itself. And Furthermore, the present invention warns the difficulty of molding and prompts a change in the design itself when the design result includes an aspherical MO lens that is difficult to mold in the design of a lens system including an aspherical lens. The purpose is to obtain a design method (program) that can be used.

本発明者らは、成形時にガラスに印加される変形応力は面形状の影響を受けること、その変形応力は凝集・発散に分類可能であること、変形応力が凝集であれば成形は容易であるのに対し、発散では成形困難であること、従って変形応力の凝集・発散を予測できれば、非球面形状の成形の難易度予測が可能となる、との仮定の元に、回転対称非球面形状の指標である、非球面式から面形状の成形難易度予測を試み、本発明を完成した。   The present inventors have found that deformation stress applied to glass at the time of molding is affected by the surface shape, that the deformation stress can be classified into agglomeration / divergence, and molding is easy if the deformation stress is agglomerated. On the other hand, with the assumption that it is difficult to form by diverging, and therefore it is possible to predict the difficulty of forming an aspherical shape if the aggregation and divergence of deformation stress can be predicted, the rotationally symmetric aspherical shape can be predicted. The present invention was completed by trying to predict the molding difficulty of the surface shape from the aspherical surface as an index.

本発明は、R1面とR2面の少なくとも一方を下記非球面式(1)で表現される回転対称非球面とした非球面ガラスモールドレンズの成形難易度を予測する方法の態様では、R1面とR2面の上記回転対称非球面データを含むレンズデータを入力する段階と;R1面とR2面の非球面式(1)を1回微分することでR1面とR2面の傾きをそれぞれ算出する段階と;R1面の傾きとR2面の傾きのいずれか一方を他方で除算して、成形難易度の指標となる傾き比の式を得る段階と;を含むことを特徴としている。

Figure 2013035713
The present invention provides a method for predicting the molding difficulty of an aspheric glass mold lens in which at least one of the R1 surface and the R2 surface is a rotationally symmetric aspheric surface expressed by the following aspherical expression (1): Inputting lens data including the rotationally symmetric aspheric data of the R2 surface; calculating the slopes of the R1 surface and the R2 surface by differentiating the aspherical expression (1) of the R1 surface and the R2 surface once. And dividing one of the inclination of the R1 surface and the inclination of the R2 surface by the other to obtain an equation of an inclination ratio that is an index of the molding difficulty.
Figure 2013035713

本発明の非球面ガラスモールドレンズの成形難易度予測方法は、さらに、上記R1面とR2面の傾き比の式をさらに1回以上微分し、その微分式を成形難易度の指標とすることができる。   In the method for predicting the molding difficulty of the aspherical glass mold lens of the present invention, the equation of the slope ratio between the R1 surface and the R2 surface is further differentiated once or more, and the differential equation is used as an index of the molding difficulty. it can.

より具体的には、R1面とR2面の傾き比、または同傾き比の式をさらに1回以上微分した式に変曲点が含まれているか否かを成形難易度の指標とし、変曲点がある場合は成形困難、変曲点がない場合を成形容易と予測することができる。   More specifically, the inflection point is used as an index of the inflection point whether or not an inflection point is included in an inclination ratio between the R1 surface and the R2 surface, or an expression obtained by further differentiating the expression of the inclination ratio at least once. When there is a point, it can be predicted that molding is difficult, and when there is no inflection point, molding is easy.

本発明は、R1面とR2面の少なくとも一方を下記非球面式(1)で表現される回転対称非球面とした非球面ガラスモールドレンズを含むレンズ系の設計方法の態様では、設計途中において、R1面とR2面の上記回転対称非球面データを含むレンズデータを入力する段階と;R1面とR2面の非球面式(1)を1回微分することでR1面とR2面の傾きをそれぞれ算出する段階と;R1面の傾きとR2面の傾きのいずれか一方を他方で除算してその傾き比の式を得る段階と;傾き比の式を上記非球面ガラスモールドレンズの成形難易度の指標とする段階と;を含むことを特徴としている。

Figure 2013035713
In the aspect of the design method of a lens system including an aspheric glass mold lens in which at least one of the R1 surface and the R2 surface is a rotationally symmetric aspheric surface expressed by the following aspherical expression (1), Inputting lens data including the rotationally symmetric aspheric surface data for the R1 surface and the R2 surface; and by differentiating the aspherical expression (1) of the R1 surface and the R2 surface once, the inclinations of the R1 surface and the R2 surface are respectively determined. A step of calculating; a step of dividing one of the inclination of the R1 surface and the inclination of the R2 surface by the other to obtain an equation of the inclination ratio; and the equation of the inclination ratio of the molding difficulty of the aspheric glass mold lens. It is characterized by including a stage as an index.
Figure 2013035713

本発明の非球面ガラスモールドレンズを含むレンズ系の設計方法は、R1面とR2面の傾き比の式をさらに1回以上微分し、その微分式を成形難易度の指標とすることができる。   In the design method of the lens system including the aspheric glass mold lens of the present invention, the expression of the slope ratio between the R1 surface and the R2 surface can be further differentiated once or more, and the differential expression can be used as an index of the molding difficulty.

成形難易度を判断する段階では、R1面とR2面の傾き比、または同傾き比の式をさらに1回以上微分した式に変曲点が含まれているか否かを成形難易度の指標とし、変曲点がある場合は成形困難、変曲点がない場合を成形容易と予測することができる。   At the stage of determining the molding difficulty level, the R1 plane and R2 plane slope ratio, or the formula of the same slope ratio further differentiated one or more times is used as an index of the molding difficulty level. When there is an inflection point, it can be predicted that molding is difficult, and when there is no inflection point, molding is easy.

成形難易度を判断する段階で成形が困難であると判断したときに警告する段階をさらに含ませることができる。   A step of giving a warning when it is determined that molding is difficult in the step of determining the molding difficulty can be further included.

本発明の非球面ガラスモールドレンズを含むレンズ系の設計方法では、成形難易度を判断する段階でR1面とR2面の傾き比、または同傾き比の式をさらに1回以上微分した式に変曲点が含まれているとき、非球面データの再設計をして、再設計の解が存在する限り、R1面とR2面の傾き比、または同傾き比の式をさらに1回以上微分した式に変曲点がなくなるまで設計を継続することができる。   In the design method of the lens system including the aspheric glass mold lens according to the present invention, the slope ratio of the R1 surface and the R2 surface, or the formula of the slope ratio is further changed to a formula obtained by differentiating at least once at the stage of determining the molding difficulty. When the inflection point is included, the aspherical data is redesigned, and as long as there is a redesigned solution, the slope ratio of the R1 and R2 planes, or the formula of the slope ratio is further differentiated one or more times. The design can continue until there are no inflection points in the equation.

そして、非球面データの再設計をしても再設計の解が存在しないときは、ヌルレンズの作製、多段プレスの採用、プレス型へのサイド当てスリーブの適用、成形レンズの修正研磨のいずれか1以上の手法の採用を決定することができる。   If there is no redesign solution even after redesigning the aspherical data, any one of the production of a null lens, the use of a multi-stage press, the application of a side contact sleeve to a press die, and the modified polishing of a molded lens 1 The adoption of the above method can be determined.

本発明によれば、非球面MOレンズの成形難易度を回転対称非球面式を含むレンズデータから容易に予測することができる。このため、その成形困難性の予測をレンズ設計部門にフィードバックして非球面形状の変更を促し、成形が容易な非球面MOレンズに代えることができる。また、レンズ設計の段階で、非球面MOレンズの成形困難性を警告し、あるいは非球面式に再設計解が存在する限り再設計を継続すれば、成形現場からのフィードバックを待つことなく、成形が容易な非球面MOレンズ(を含む)レンズ系の設計が可能となり、結果として安定した高い光学性能のレンズ系を安価に得ることができる。   According to the present invention, the molding difficulty level of an aspherical MO lens can be easily predicted from lens data including a rotationally symmetric aspherical expression. For this reason, the prediction of the difficulty of molding can be fed back to the lens design department to promote the change of the aspherical shape, and the aspherical MO lens that can be easily molded can be replaced. Also, at the lens design stage, warn of the difficulty of molding an aspherical MO lens, or continue redesigning as long as there is a redesigned solution in the aspherical form, without waiting for feedback from the molding site. Therefore, it is possible to design an aspherical MO lens (including) lens system that is easy to achieve, and as a result, a stable and high-performance lens system can be obtained at low cost.

ガラス球体を上下の成形型でプレスし、コバ付き両凸レンズに成形するときのイメージ断面図である。It is image sectional drawing when pressing a glass sphere with an upper and lower shaping | molding die, and shape | molding into a biconvex lens with an edge. (A)(B)はレンズ形状の設計状態とプレス状態の座標系を示すグラフ図である。(A) (B) is a graph which shows the coordinate system of the design state of a lens shape, and a press state. レンズの入射面(R1面)と出射面(R2面)の傾き分布の例を示すグラフ図である。It is a graph which shows the example of inclination distribution of the entrance plane (R1 surface) and exit surface (R2 surface) of a lens. レンズのR1面とR2面の傾き比dR1/2の分布形状と成形性を分類した図である。It is the figure which classified the distribution shape and moldability of inclination ratio dR1 / 2 of the R1 surface and R2 surface of a lens. (A)(B)はサンプルレンズ1とサンプルレンズ2のレンズ形状例を示す断面図である。(A) and (B) are sectional views showing examples of lens shapes of the sample lens 1 and the sample lens 2. 同サンプルレンズ1とサンプルレンズ2の傾き比dR1/2の分布形状、成形性予測、及び実際のR1面の成形結果を示す比較図である。It is a comparison figure which shows the distribution shape of the inclination ratio dR1 / 2 of the sample lens 1 and the sample lens 2, prediction of moldability, and the actual molding result of the R1 surface. 同サンプルレンズ1とサンプルレンズ3の傾き比dR1/2の分布形状、成形性予測、及び実際のR1面の成形結果を示す比較図である。It is a comparison figure which shows the distribution shape of the inclination ratio dR1 / 2 of the sample lens 1 and the sample lens 3, a moldability prediction, and the actual molding result of the R1 surface. 傾き比dR1/2の式をさらに微分したd’R1/2の形状例を示すグラフ図である。It is a graph which shows the example of a shape of d'R1 / 2 which further differentiated the formula of inclination ratio dR1 / 2 . 別のd’R1/2の形状例を示すグラフ図である。It is a graph which shows the example of another d'R1 / 2 shape. 同サンプルレンズ4、サンプルレンズ5及びサンプルレンズ6のR1面とR2面の傾き比dR1/2を微分したd’R1/2の分布形状、成形性予測、及び実際のR1面の成形結果を示す比較図である。The distribution shape of d′ R 1/2 obtained by differentiating the slope ratio dR 1/2 between the R1 surface and the R2 surface of the sample lens 4, the sample lens 5, and the sample lens 6, the moldability prediction, and the actual molding result of the R1 surface FIG. 両面非球面の両凸MOレンズについての具体的な実施例を示す比較図である。It is a comparison figure which shows the specific Example about the double convex MO lens of a double-sided aspherical surface. 両面非球面の両凹MOレンズについての具体的な実施例を示す比較図である。It is a comparison figure which shows the specific Example about the double concave MO lens of a double-sided aspherical surface. 両面非球面の凸メニスカスMOレンズについての具体的な実施例を示す比較図である。It is a comparison figure which shows the specific Example about the double-sided aspherical convex meniscus MO lens. 両面非球面の凹メニスカスMOレンズについての具体的な実施例を示す比較図である。It is a comparison figure which shows the specific Example about the concave meniscus MO lens of a double-sided aspherical surface. 片面非球面の両凸MOレンズについての具体的な実施例を示す比較図である。It is a comparison figure which shows the specific Example about a single-sided aspherical biconvex MO lens. 片面非球面の両凹MOレンズについての具体的な実施例を示す比較図である。It is a comparison figure which shows the specific Example about a single-sided aspherical biconcave MO lens. 片面非球面の凸メニスカスMOレンズについての具体的な実施例を示す比較図である。It is a comparison figure which shows the specific Example about a single-sided aspherical convex meniscus MO lens. 片面非球面の凹メニスカスMOレンズについての具体的な実施例を示す比較図である。It is a comparison figure which shows the specific Example about the concave meniscus MO lens of a single-sided aspherical surface. 本発明によるレンズ系の設計方法の一実施形態を示すフローチャートである。3 is a flowchart illustrating an embodiment of a lens system design method according to the present invention.

図1は、ガラス球体Gを上下の成形型M1、M2でプレスし、コバ付き両凸レンズに成形するときのイメージ図である。成形型M1、M2でガラス球体Gに変形応力を与えると、ガラスは横方向(径方向)に移動する。このとき、成形型M1、M2間の空間(円筒状、角筒状)側部が開放されていれば応力は発散するのでコバ付き両凸レンズにはならない(図1右上)。これに対し、成形型M1、M2間の空間側部に円筒状の胴型Wがあれば、ガラスに生じる変形応力は胴型Wと成形型M1、M2の空間内に閉じ込められるので、コバ付き両凸レンズになる(図1右下)。本実施形態は、図1右下のように変形応力が閉じ込められる非球面MOレンズの回転対称非球面形状の指標について提案するものである。   FIG. 1 is an image view when a glass sphere G is pressed with upper and lower molding dies M1 and M2 to form a biconvex lens with a flange. When a deformation stress is applied to the glass sphere G with the molds M1 and M2, the glass moves in the lateral direction (radial direction). At this time, if the space (cylindrical shape, rectangular tube shape) side portion between the molds M1 and M2 is open, the stress is dissipated, so that it does not become a biconvex lens with an edge (upper right in FIG. 1). On the other hand, if there is a cylindrical body W in the space between the molds M1 and M2, the deformation stress generated in the glass is confined in the space between the body mold W and the molds M1 and M2. It becomes a biconvex lens (lower right of FIG. 1). This embodiment proposes a rotationally symmetric aspheric shape index of an aspheric MO lens in which deformation stress is confined as shown in the lower right of FIG.

本実施形態による非球面MOレンズの成形難易度予測方法は、対象とするMOレンズがその表裏の少なくとも1面(R1面とR2面の少なくとも一方)に下記(1)式で表される回転対称非球面を有することを前提とする。

Figure 2013035713

(1)式で、R,K,a,b,c,d・・・は定数であり、y,xはそれぞれレンズの半径、変位量である。
また、任意の点yiに於けるxの値をxiとすると、(1)式は下記(1')式に変形される。
Figure 2013035713

さらにyiに対し、微小δ分異なる点をyi+δ とすると、(1')は下記(1")式になる。
Figure 2013035713
The method of predicting the molding difficulty level of an aspheric MO lens according to the present embodiment is such that the target MO lens is rotationally symmetric represented by the following formula (1) on at least one surface (at least one of the R1 surface and the R2 surface). It is assumed that it has an aspherical surface.
Figure 2013035713

In Equation (1), R, K, a, b, c, d,... Are constants, and y, x are the lens radius and displacement, respectively.
If the value of x at an arbitrary point y i is x i , the equation (1) is transformed into the following equation (1 ′).
Figure 2013035713

Further, if y i + δ is a point different from y i by minute δ, (1 ′) becomes the following equation (1 ″).
Figure 2013035713

本実施形態では、成形対象とする非球面MOレンズの非球面データの提供を受け、入力することを前提としている。データの提供は、発注者(レンズメーカー)から受注者(モールドメーカー)に対して行われ、そのデータがレンズ設計プログラム/装置に送られる。   In the present embodiment, it is assumed that aspherical data of an aspherical MO lens to be molded is received and input. The data is provided from the orderer (lens manufacturer) to the contractor (mold manufacturer), and the data is sent to the lens design program / device.

図2Aは、以上のレンズ形状を示す座標系である。ここで凸(メニスカス)レンズのプレス成形は、凸面を下型にて成形するので、便宜上x,yはそのままに図2Aを図2Bのように書き換える。   FIG. 2A is a coordinate system showing the above lens shape. Here, in the press molding of the convex (meniscus) lens, the convex surface is molded by the lower mold, so that FIG. 2A is rewritten as shown in FIG.

図2Bより、レンズ形状の傾き分布dRは、(1")式を1回微分して、次の(2)式で与えられる。

Figure 2013035713
従って、R1面(第1面、入射面)の傾き分布dR1と、R2面(第2面、出射面)の傾き分布dR2は、次の(2’)式及び(2")式で示される。
Figure 2013035713
Figure 2013035713
これらの傾き分布dR1とdR2をy、即ち凸メニスカスレンズの半径に対してプロットした例が図3である。 From FIG. 2B, the inclination distribution dR of the lens shape is given by the following equation (2) after differentiating the equation (1 ") once.
Figure 2013035713
Thus, R1 surface (first surface, the incident surface) and tilt distribution dR 1 of, R2 surface (second surface, exit surface) gradient distribution dR 2 of the following (2 ') and (2') below in Indicated.
Figure 2013035713
Figure 2013035713
FIG. 3 shows an example in which these inclination distributions dR 1 and dR 2 are plotted against y, that is, the radius of the convex meniscus lens.

本実施形態は、非球面MOレンズの成形困難性を予測するのに、R1面の傾きをR2面の傾きで規格化した傾き比dR1/2を用いる。すなわち、傾き比dR1/2 を(2')式を(2")式で除した次の(3)式で定義する。

Figure 2013035713

(3)式において、yi及びδをR1面、R2面で同じ値を用いれば、(3)式は(4)式となる。
Figure 2013035713
In the present embodiment, in order to predict the difficulty in forming an aspherical MO lens, an inclination ratio dR 1/2 obtained by normalizing the inclination of the R1 surface with the inclination of the R2 surface is used. That is, the slope ratio dR 1/2 is defined by the following equation (3) obtained by dividing the equation (2 ′) by the equation (2 ″).
Figure 2013035713

In equation (3), if y i and δ are the same values on the R1 and R2 surfaces, equation (3) becomes equation (4).
Figure 2013035713

(4)式で得られる傾き比dR1/2は、R1面の傾きをR2面の傾きで規格化した値であるから、プレス成形時に生じる変形応力或いは保持応力の凝集・発散の指標となることが分かる。すなわち、yiに対し、外径方向に微小δ分異なる点yi+δの傾き比dR1/2は、変形応力或いは保持応力との間に以下の関係を有し、結果としてR1面の形状安定性(成形容易性、成形困難性)に影響を及ぼすと予測される。
a) 傾き比dR1/2が単調増加=相対的にR1面の傾きが外周方向に向けて大きくなる=応力の凝集
→R1面形状は安定傾向
b) 傾き比dR1/2が単調減少=相対的にR1面の傾きが外周方向に向けて小さくなる=応力の発散
→R1面形状は不安定傾向
c) 傾き比dR1/2が変曲点を有する=応力の凝集・発散の変曲点を有する
→R1面形状は不安定傾向
このように、同じ凸メニスカスレンズであっても傾き比dR1/2が単調増加する非球面形状であれば、安定したレンズ形状が得られ、単調減少及び変曲点を有する場合はレンズ形状が不安定になることが予測される。図4は、以上の関係を一覧にしたものである。
Since the slope ratio dR 1/2 obtained by the equation (4) is a value obtained by normalizing the slope of the R1 plane by the slope of the R2 plane, it becomes an index of the agglomeration / divergence of deformation stress or holding stress generated during press molding. I understand that. That is, for y i, the slope ratio dR 1/2 of the outer diameter direction micro [delta] min different y i + [delta] has the following relation between the deformation stress or coercive stress, the shape of the resulting surface R1 It is expected to affect stability (moldability, moldability).
a) The slope ratio dR 1/2 increases monotonously = The slope of the R1 surface increases relatively toward the outer circumference = Aggregation of stress → The shape of the R1 surface tends to be stable
b) The slope ratio dR 1/2 decreases monotonously = the slope of the R1 surface becomes relatively smaller toward the outer periphery = stress divergence → R1 surface shape tends to be unstable
c) Inclination ratio dR 1/2 has an inflection point = Stress inflection / divergence inflection point → R1 surface shape tends to be unstable. Thus, even with the same convex meniscus lens, the inclination ratio dR 1 If / 2 is an aspherical shape that monotonously increases, a stable lens shape can be obtained, and if it has a monotonous decrease and an inflection point, the lens shape is predicted to be unstable. FIG. 4 is a list of the above relationships.

図5は、サンプル1とサンプル2の凸メニスカスレンズの断面形状例を示し、図6は、同サンプル1とサンプル2の傾き比dR1/2の分布形状と、成形性予測、及び実際の成形結果の一例を示している。傾き比dR1/2が単調増加するサンプル1は、R1面の実際の成形結果も良好であったのに対し、傾き比dR1/2に変曲点があるサンプル2では、R1面の実際の成形結果が不安定で品質が低かったことが確認された。図6(及び以下の同様の図)において、成形結果は、同一の成形型で多数のサンプルレンズを成形してその形状を調べたグラフを重ね書きしたものであり、実際の成形結果のグラフ図にバラツキが少ないものは成形安定性がよく(レンズ形状品質が高く)、バラツキが多いものは成形安定性が悪い(レンズ形状品質が悪い)ことを示している。 FIG. 5 shows an example of the cross-sectional shape of the convex meniscus lens of Sample 1 and Sample 2, and FIG. 6 shows the distribution shape of the slope ratio dR 1/2 of Sample 1 and Sample 2, prediction of formability, and actual molding. An example of the result is shown. Sample 1 in which the slope ratio dR 1/2 monotonously increases the actual molding result of the R1 surface, while sample 2 with an inflection point in the slope ratio dR 1/2 actually shows the R1 surface. It was confirmed that the molding result was unstable and the quality was low. In FIG. 6 (and similar figures below), the molding result is a graph in which a large number of sample lenses are molded with the same mold and the shape is examined, and is a graph of the actual molding result. In the case where the variation is small, the molding stability is good (the lens shape quality is high), and in the case where the variation is large, the molding stability is poor (the lens shape quality is poor).

次に図7は、図6のサンプル2と、同サンプル2においてR1面の形状は変化させることなくR2面の形状をサンプル1のR2面形状に置き換えることで傾き比dR1/2の形状を単調増加に変化させたサンプル3について、それぞれの傾き比dR1/2の形状と、成形性予測、及び実際の成形結果の例を示している。R1面の成形結果を問題としているのに、R2面の形状を変化させる(dR1/2の形状を変化させる)ことで、成形性が向上することが確認されている。つまり、R1面の成形性にR2面形状が密接に関与している。 Next, FIG. 7 shows the shape of the slope ratio dR 1/2 by replacing the shape of the R2 surface in the sample 2 of FIG. 6 with the R2 surface shape of the sample 1 without changing the shape of the R1 surface. For the sample 3 changed to monotonously increase, an example of the shape of each slope ratio dR 1/2 , formability prediction, and actual molding result is shown. Although the molding result of the R1 surface is a problem, it has been confirmed that the moldability is improved by changing the shape of the R2 surface (changing the shape of dR1 / 2 ). That is, the R2 surface shape is closely related to the moldability of the R1 surface.

以上のように、非球面MOレンズのR1面の回転対称非球面式を1回微分した式と、R2面の回転対称非球面式を1回微分した式と比をとった傾き比dR1/2の形状を検討すると、成形性の判断ができることが明らかになった。一方、傾き比dR1/2の分布形状は、複雑なものが存在し、傾き比dR1/2の形状だけでは十分な成形性の判断ができないケースがあることも判明した。図8はそのような傾き比dR1/2の形状例を示している。 As described above, the slope ratio dR 1 / which is a ratio of the expression obtained by differentiating the rotationally symmetric aspheric expression of the R1 surface of the aspherical MO lens once and the expression obtained by differentiating the rotationally symmetric aspheric expression of the R2 surface once. Examination of the shape of 2 revealed that formability can be judged. On the other hand, it has also been found that there are cases where the distribution shape of the slope ratio dR 1/2 is complicated, and there is a case where sufficient formability cannot be judged only by the shape of the slope ratio dR 1/2 . FIG. 8 shows a shape example of such a slope ratio dR 1/2 .

このようなケースでは、前述の式(4)の傾き比dR1/2をさらに微分((1")式を2回微分)して次の(5)式のd'R1/2を得てその形状を判断することで、成形性の予測をすることができる。

Figure 2013035713
In such a case, the slope ratio dR 1/2 in the above equation (4) is further differentiated (the equation (1 ") is differentiated twice) to obtain d'R 1/2 in the following equation (5). The moldability can be predicted by determining the shape of the lever.
Figure 2013035713

図9は、図8の傾き比dR1/2 の式を再微分したd'R1/2の形状例を示している。このd'R1/2は明確な変曲点が存在していて成形安定性が低いことが予想され、実際に成形してみると、予想の通りであった。 FIG. 9 shows an example of the shape of d′ R 1/2 obtained by redifferentiating the equation of the slope ratio dR 1/2 of FIG. This d′ R 1/2 was expected to have a clear inflection point and low molding stability, and as expected when actually molded.

図10は、d'R1/2の形状と、成形性予測、及び実際の成形結果の一例を示している。d'R1/2が単調増加するサンプル5(先のサンプル1と同じ)は、R1面の実際の成形結果も良好であったのに対し、dR1/2に変曲点があるサンプル4(先のサンプル2と同じ)及びサンプル6では、R1面の実際の成形結果が不安定で歩留まりが悪かったことが確認された。 FIG. 10 shows an example of the shape of d′ R 1/2 , the moldability prediction, and the actual molding result. Sample 5 in which d′ R 1/2 monotonously increases (same as the previous sample 1) has a good actual molding result on the R1 surface, whereas sample 4 having an inflection point on dR 1/2 In Sample 6 (same as Sample 2 above) and Sample 6, it was confirmed that the actual molding result of the R1 surface was unstable and the yield was poor.

以上の非球面凸メニスカスMOレンズを例としての議論は、両凸、両凹、凸メニスカス、凹メニスカスを問わず成立することが確認された。また両面非球面MOレンズのみならず、片面非球面MOレンズについても成立する。さらに、硝材、中心肉厚、レンズ径、ランドの有無、コートの有無、その材質の如何、プレス機の種類にもよらない。   It has been confirmed that the above discussion using the aspherical convex meniscus MO lens as an example holds true regardless of biconvex, biconcave, convex meniscus, or concave meniscus. This is true not only for double-sided aspherical MO lenses but also for single-sided aspherical MO lenses. Furthermore, it does not depend on the type of press machine, whether it is glass material, center thickness, lens diameter, presence / absence of lands, presence / absence of coating, or material.

以下、具体的な非球面形状式を含む両面非球面、片面非球面MOレンズについて、レンズ断面、dR1/2の形状、d'R1/2の形状、及び成形性予測の例を説明する。図11から図18において、「E±a」は「×10±a」を意味する。 Hereinafter, for a double-sided aspherical surface and a single-sided aspherical MO lens including a specific aspherical shape formula, an example of lens cross section, dR1 / 2 shape, d'R1 / 2 shape, and moldability prediction will be described. . 11 to 18, “E ± a” means “× 10 ± a ”.

図11、図12、図13及び図14は、両面非球面MOレンズであって、両凸レンズ、両凹レンズ、凸メニスカスレンズ及び凹メニスカスレンズについての具体的な実施例である。
図11には、3つの両面非球面両凸MOレンズの非球面データが記載されている。R1面における非球面の各パラメータ(R,k,a,b,c,d)を同じ値とし、R2面における非球面の各パラメータ(R,k,a,b,c,d)が図11に示されるように設計されている。
図11中、左側の実施例はdR1/2、d'R1/2ともに変曲点はなく、一次微分、二次微分において成形容易と予測された実施例である。また、同図中、真ん中の実施例は、dR1/2において変曲点はなく、成形容易と予測され、d'R1/2において初めて変曲点が確認され、成形困難と予測された実施例である。また、同図中、右側の実施例は、dR1/2において変曲点が確認されたため、成形困難と予測したが、d'R1/2についても評価し、変曲点を確認したものである。
FIGS. 11, 12, 13, and 14 are specific examples of a double-sided aspherical MO lens that is a biconvex lens, a biconcave lens, a convex meniscus lens, and a concave meniscus lens.
FIG. 11 shows aspherical data of three double-sided aspherical biconvex MO lenses. Each parameter (R, k, a, b, c, d) of the aspheric surface on the R1 surface is set to the same value, and each parameter (R, k, a, b, c, d) of the aspheric surface on the R2 surface is shown in FIG. Designed as shown in
In FIG. 11, the example on the left side has no inflection points in both dR 1/2 and d′ R 1/2 , and is an example that is predicted to be easily molded in the first and second derivatives. In addition, in the figure, the middle example was predicted to be easy to form without an inflection point at dR 1/2 , and the inflection point was confirmed for the first time at d'R 1/2 , and it was predicted to be difficult to form. This is an example. In addition, in the example on the right side, the inflection point was confirmed at dR 1/2 , so it was predicted that molding was difficult, but d'R 1/2 was also evaluated and the inflection point was confirmed. It is.

図12には、3つの両面非球面両凹MOレンズの非球面データが記載されている。R1面における非球面の各パラメータ(R,k,a,b,c,d)を同じ値とし、R2面における非球面の各パラメータ(R,k,a,b,c,d)が図12に示されるように設計されている。
図12中、左側の実施例はdR1/2、d'R1/2ともに変曲点はなく、一次微分、二次微分において成形容易と予測された実施例である。また、同図中、真ん中の実施例は、dR1/2において変曲点はなく、成形容易と予測され、d'R1/2において初めて変曲点が確認され、成形困難と予測された実施例である。また、同図中、右側の実施例は、dR1/2において変曲点が確認されたため、成形困難と予測したが、d'R1/2についても評価し、変曲点を確認したものである。
FIG. 12 shows aspherical data of three double-sided aspherical biconcave MO lenses. Each parameter (R, k, a, b, c, d) of the aspheric surface on the R1 surface is set to the same value, and each parameter (R, k, a, b, c, d) of the aspheric surface on the R2 surface is shown in FIG. Designed as shown in
In FIG. 12, the example on the left side has no inflection points in both dR 1/2 and d′ R 1/2 , and is an example that is predicted to be easily molded in the first and second derivatives. In addition, in the figure, the middle example was predicted to be easy to form without an inflection point at dR 1/2 , and the inflection point was confirmed for the first time at d'R 1/2 , and it was predicted to be difficult to form. This is an example. In addition, in the example on the right side, the inflection point was confirmed at dR 1/2 , so it was predicted that molding was difficult, but d'R 1/2 was also evaluated and the inflection point was confirmed. It is.

図13には、3つの両面非球面凸メニスカスMOレンズの非球面データが記載されている。R1面における非球面の各パラメータ(R,k,a,b,c,d)を同じ値とし、R2面における非球面の各パラメータ(R,k,a,b,c,d)が図13に示されるように設計されている。
図13中、左側の実施例はdR1/2、d'R1/2ともに変曲点はなく、一次微分、二次微分において成形容易と予測された実施例である。また、同図中、真ん中の実施例は、dR1/2において変曲点はなく、成形容易と予測され、d'R1/2において初めて変曲点が確認され、成形困難と予測された実施例である。また、同図中、右側の実施例は、dR1/2において変曲点が確認されたため、成形困難と予測したが、d'R1/2についても評価し、変曲点を確認したものである。
FIG. 13 shows aspherical data of three double-sided aspherical convex meniscus MO lenses. Each parameter (R, k, a, b, c, d) of the aspheric surface on the R1 surface is set to the same value, and each parameter (R, k, a, b, c, d) of the aspheric surface on the R2 surface is shown in FIG. Designed as shown in
In FIG. 13, the example on the left side has no inflection points in both dR 1/2 and d′ R 1/2 , and is an example that is predicted to be easily molded in the first and second derivatives. In addition, in the figure, the middle example was predicted to be easy to form without an inflection point at dR 1/2 , and the inflection point was confirmed for the first time at d'R 1/2 , and it was predicted to be difficult to form. This is an example. In addition, in the example on the right side, the inflection point was confirmed at dR 1/2 , so it was predicted that molding was difficult, but d'R 1/2 was also evaluated and the inflection point was confirmed. It is.

図14には、3つの両面非球面凹メニスカスMOレンズの非球面データが記載されている。R1面における非球面の各パラメータ(R,k,a,b,c,d)を同じ値とし、R2面における非球面の各パラメータ(R,k,a,b,c,d)が図14に示されるように設計されている。
図14中、左側の実施例はdR1/2、d'R1/2ともに変曲点はなく、一次微分、二次微分において成形容易と予測された実施例である。また、同図中、真ん中の実施例は、dR1/2において変曲点はなく、成形容易と予測され、d'R1/2において初めて変曲点が確認され、成形困難と予測された実施例である。また、同図中、右側の実施例は、dR1/2において変曲点が確認されたため、成形困難と予測したが、d'R1/2についても評価し、変曲点を確認したものである。
FIG. 14 shows aspheric data of three double-sided aspheric concave meniscus MO lenses. Each parameter (R, k, a, b, c, d) of the aspheric surface on the R1 surface is set to the same value, and each parameter (R, k, a, b, c, d) of the aspheric surface on the R2 surface is shown in FIG. Designed as shown in
In FIG. 14, the example on the left side has no inflection points in both dR 1/2 and d′ R 1/2 , and is an example that is predicted to be easily molded in the first and second derivatives. In addition, in the figure, the middle example was predicted to be easy to form without an inflection point at dR 1/2 , and the inflection point was confirmed for the first time at d'R 1/2 , and it was predicted to be difficult to form. This is an example. In addition, in the example on the right side, the inflection point was confirmed at dR 1/2 , so it was predicted that molding was difficult, but d'R 1/2 was also evaluated and the inflection point was confirmed. It is.

図15、図16、図17及び図18は、片面非球面MOレンズであって、両凸レンズ、両凹レンズ、凸メニスカスレンズ及び凹メニスカスレンズについての具体的な実施例である。
図15には、3つの片面非球面両凸MOレンズの非球面データが記載されている。R2面が一定の曲率を有する球面に形成されると共に、R1面における非球面の各パラメータ(R,k,a,b,c,d)が図15に示されるように設計されている。
図15中、左側の実施例はdR1/2、d'R1/2ともに変曲点はなく、一次微分、二次微分において成形容易と予測された実施例である。また、図15中、真ん中の実施例は、dR1/2において変曲点はなく、成形容易と予測され、d'R1/2において初めて変曲点が確認され、成形困難と予測された実施例である。また、図15中、右側の実施例は、dR1/2において変曲点が確認されたため、成形困難と予測したが、d'R1/2についても評価し、変曲点を確認したものである。
FIGS. 15, 16, 17 and 18 are specific examples of single-sided aspherical MO lenses, which are biconvex lenses, biconcave lenses, convex meniscus lenses and concave meniscus lenses.
FIG. 15 shows aspherical data of three single-sided aspherical biconvex MO lenses. The R2 surface is formed into a spherical surface having a certain curvature, and the parameters (R, k, a, b, c, d) of the aspheric surface on the R1 surface are designed as shown in FIG.
In FIG. 15, the example on the left side has no inflection points in both dR 1/2 and d′ R 1/2 , and is an example that is predicted to be easy to form in the first and second derivatives. Further, in FIG. 15, the middle example was predicted to have no inflection point at dR 1/2 and easy to form, and the inflection point was confirmed for the first time at d'R 1/2 and predicted to be difficult to form. This is an example. In addition, in the example on the right side in FIG. 15, since the inflection point was confirmed at dR 1/2 , it was predicted that molding was difficult, but d'R 1/2 was also evaluated and the inflection point was confirmed. It is.

図16には、3つの片面非球面両凹MOレンズの非球面データが記載されている。R2面が一定の曲率を有する球面に形成されると共に、R1面における非球面の各パラメータ(R,k,a,b,c,d)が図16に示されるように設計されている。
図16中、左側の実施例はdR1/2、d'R1/2ともに変曲点はなく、一次微分、二次微分において成形容易と予測された実施例である。また、図16中、真ん中の実施例は、dR1/2において変曲点はなく、成形容易と予測され、d'R1/2において初めて変曲点が確認され、成形困難と予測された実施例である。また、図16中、右側の実施例は、dR1/2において変曲点が確認されたため、成形困難と予測したが、d'R1/2についても評価し、変曲点を確認したものである。
FIG. 16 shows aspherical data of three single-sided aspherical biconcave MO lenses. The R2 surface is formed into a spherical surface having a certain curvature, and the parameters (R, k, a, b, c, d) of the aspheric surface on the R1 surface are designed as shown in FIG.
In FIG. 16, the example on the left side has no inflection points in both dR 1/2 and d′ R 1/2 , and is an example that is predicted to be easily molded in the first and second derivatives. Further, in FIG. 16, the middle example was predicted to be easy to form without an inflection point at dR 1/2 , and the inflection point was confirmed for the first time at d'R 1/2 , and it was predicted to be difficult to form. This is an example. Further, in the example on the right side in FIG. 16, the inflection point was confirmed at dR 1/2 , and thus it was predicted that molding was difficult, but d'R 1/2 was also evaluated and the inflection point was confirmed. It is.

図17には、3つの片面非球面凸メニスカスMOレンズの非球面データが記載されている。R2面が一定の曲率を有する球面に形成されると共に、R1面における非球面の各パラメータ(R,k,a,b,c,d)が図17に示されるように設計されている。
図17中、左側の実施例はdR1/2、d'R1/2ともに変曲点はなく、一次微分、二次微分において成形容易と予測された実施例である。また、図17中、真ん中の実施例は、dR1/2において変曲点はなく、成形容易と予測され、d'R1/2において初めて変曲点が確認され、成形困難と予測された実施例である。また、図17中、右側の実施例は、dR1/2において変曲点が確認されたため、成形困難と予測したが、d'R1/2についても評価し、変曲点を確認したものである。
FIG. 17 shows aspherical data of three single-sided aspherical convex meniscus MO lenses. The R2 surface is formed into a spherical surface having a certain curvature, and the parameters (R, k, a, b, c, d) of the aspheric surface on the R1 surface are designed as shown in FIG.
In FIG. 17, the example on the left side has no inflection points in both dR 1/2 and d′ R 1/2 , and is an example that is predicted to be easy to form in the first and second derivatives. In FIG. 17, in the middle example, it was predicted that there was no inflection point at dR 1/2 and that molding was easy, and the inflection point was confirmed for the first time at d'R 1/2 , and it was predicted that molding was difficult. This is an example. In addition, in the example on the right side in FIG. 17, since the inflection point was confirmed at dR 1/2 , it was predicted that molding was difficult, but d'R 1/2 was also evaluated and the inflection point was confirmed. It is.

図18には、3つの片面非球面凹メニスカスMOレンズの非球面データが記載されている。R2面が一定の曲率を有する球面に形成されると共に、R1面における非球面の各パラメータ(R,k,a,b,c,d)が図18に示されるように設計されている。
図18中、左側の実施例はdR1/2、d'R1/2ともに変曲点はなく、一次微分、二次微分において成形容易と予測された実施例である。また、図18中、真ん中の実施例は、dR1/2において変曲点はなく、成形容易と予測され、d'R1/2において初めて変曲点が確認され、成形困難と予測された実施例である。また、図18中、右側の実施例は、dR1/2において変曲点が確認されたため、成形困難と予測したが、d'R1/2についても評価し、変曲点を確認したものである。
FIG. 18 shows aspheric data of three single-sided aspheric concave meniscus MO lenses. The R2 surface is formed into a spherical surface having a certain curvature, and the aspherical parameters (R, k, a, b, c, d) on the R1 surface are designed as shown in FIG.
In FIG. 18, the example on the left side has no inflection points in both dR 1/2 and d′ R 1/2 , and is an example that is predicted to be easily molded in the first and second derivatives. Further, in FIG. 18, the middle example was predicted to be easy to form without an inflection point at dR 1/2 , and the inflection point was confirmed for the first time at d′ R 1/2 , and it was predicted to be difficult to form. This is an example. In addition, in the example on the right side in FIG. 18, since the inflection point was confirmed at dR 1/2 , it was predicted that molding was difficult. However, d'R 1/2 was also evaluated and the inflection point was confirmed. It is.

図11から図18の実施例では、dR1/2、d'R1/2ともに、「変曲点があるかないか」を唯一の判断基準としている。これらの実施例から、dR1/2に変曲点があるか否かだけでも成形性の1次的な判断が可能であるが、d'R1/2に変曲点があるか否かも加えて判断材料とすることで、より正確な成形性予測ができる。特に、2回微分の式の変曲点の有無は、レンズ形状を問わずに成形性の善し悪しを判断できる普遍性があることが確認された。さらに、2回微分の式で変曲点の有無が明瞭でない場合、3回以上の微分の式での変曲点の有無を調べてもよい。 In the embodiments of FIGS. 11 to 18, “whether there is an inflection point” is the only criterion for both dR 1/2 and d′ R 1/2 . From these examples, it is possible to formability of primary judgment alone whether there is an inflection point dR 1/2, to d'R 1/2 be whether there is an inflection point In addition, more accurate moldability can be predicted by using the judgment material. In particular, it was confirmed that the presence or absence of an inflection point in the two-derivative equation has universality that can determine whether the moldability is good or bad regardless of the lens shape. Furthermore, if the presence or absence of an inflection point is not clear in the two-fold differential equation, the presence or absence of an inflection point in the three or more differential equations may be examined.

本実施形態による成形難易度の予測方法によれば、その予測結果(成形が困難であるとの予測結果)に基いて、製造現場から設計部門に対して非球面形状の変更の要請を根拠を持って提案できる他、品質保証部門は、成形したレンズの選別方法の検討やヌルレンズ等の事前手配に資することができ、また営業部門は、低歩留まりや選別コストを鑑みた売価交渉に資することができる。これらの結果、歩留まりの高い生産、適正価格での納品、混乱や納期遅延等が無い生産が可能になる。   According to the method of predicting the molding difficulty level according to the present embodiment, based on the prediction result (prediction result that molding is difficult), the basis of the request from the manufacturing site to the design department to change the aspherical shape. In addition to making proposals, the quality assurance department can contribute to the examination of molded lens sorting methods and advance arrangements for null lenses, etc., and the sales department can contribute to sales price negotiations in view of low yield and sorting costs. it can. As a result, production with high yield, delivery at an appropriate price, and production without confusion or delay in delivery are possible.

レンズ設計プログラム中に、本発明による成形難易度の予測方法を取り入れることも可能である。一般的に自動設計プログラムで行われるレンズ設計では、自動設計を始める前に、設計者が焦点距離、レンズ枚数、許容収差、非球面の導入の可否、その箇所数等を入力している。その自動設計の結果、生じた非球面MOレンズについて、その表裏の非球面データを用いて、傾き比dR1/2及びd'R1/2を演算し、成形の難易を予測して表示すれば、設計者に対して、成形性に難点がある旨の警告を発することができ、設計者は、その警告に基いて設計を変更することができる。あるいは、自動設計プログラム中に、好ましくない傾き比dR1/2及びd'R1/2が生じないように(好ましい傾き比dR1/2及びd'R1/2の組み合わせとなるように)非球面形状を決定するサブルーチンを含ませることもできる。 It is also possible to incorporate the molding difficulty prediction method according to the present invention into the lens design program. In lens design generally performed by an automatic design program, the designer inputs the focal length, the number of lenses, the allowable aberration, whether or not an aspheric surface can be introduced, the number of locations, etc. before starting the automatic design. As a result of the automatic design, the slope ratio dR 1/2 and d'R 1/2 are calculated using the aspheric data on the front and back of the resulting aspheric MO lens, and the molding difficulty is predicted and displayed. For example, a warning that there is a difficulty in formability can be issued to the designer, and the designer can change the design based on the warning. Alternatively, undesired slope ratios dR 1/2 and d'R 1/2 do not occur in the automatic design program (so that the preferred slope ratios dR 1/2 and d'R 1/2 are combined). A subroutine for determining the aspheric shape can also be included.

図19は、本発明によるレンズ設計方法の一例を示すフローチャートである。
まず、レンズ系の設計途中において、R1面とR2面の回転対称非球面データを含むレンズデータを入力する(ステップS11)。
次いで、入力したR1面とR2面の非球面データを1回微分することでR1面とR2面の傾きをそれぞれ算出し、このR1面の傾きとR2面の傾きのいずれか一方を他方で除算してその傾き比の式dR1/2を得る(ステップS12)。
次いで、ステップS12で得た傾き比の式dR1/2をさらに1回微分して傾き式d'R1/2を得る(ステップS13)。
ステップS12で得た傾き比の式dR1/2とステップS13で得た傾き式d'R1/2のいずれにも変曲点が存在しないときは(ステップS14:NO、ステップS15:NO)、非球面レンズの成形難易度が低い(成形容易)と判定して(ステップS16)、処理を終了する。
一方、ステップS12で得た傾き比の式dR1/2とステップS13で得た傾き式d'R1/2のいずれかに変曲点が存在するときは(ステップS14:YES、ステップS15:YES)、非球面レンズの成形難易度が高い旨の警告を発し(ステップS17)、非球面データを再設計する(ステップS18)。
ステップS18で再設計した非球面データに設計解があるときは(ステップS19:YES)、既に入力されている非球面データを再設計した非球面データに置換して、ステップS12ないしステップS19の処理を繰り返す。つまり、再設計した非球面データに設計解が存在する限り(ステップS19:YES)、傾き比dR1/2及びd'R1/2に変曲点がない非球面データが得られるまで(ステップS14:NO、ステップS15:NO)、成形難易度が低い(成形容易な)非球面レンズを含むレンズ系のレンズ設計を繰り返す。
ステップS18で再設計した非球面データに設計解がない(傾き比dR1/2及びd'R1/2に変曲点がない設計解が存在しない)ときは(ステップS19:NO)、ヌルレンズの作製、多段プレスの採用、プレス型へのサイド当てスリーブの適用あるいは成形レンズの修正研磨のいずれかの1つ以上の手法を決定して(ステップS20)、処理を終了する。
FIG. 19 is a flowchart showing an example of a lens design method according to the present invention.
First, in the course of designing the lens system, lens data including rotationally symmetric aspheric data of the R1 and R2 surfaces is input (step S11).
Next, the slope of the R1 surface and the R2 surface is calculated by differentiating the input aspheric data of the R1 surface and the R2 surface once, and either one of the slope of the R1 surface or the slope of the R2 surface is divided by the other. Then, an equation dR 1/2 of the slope ratio is obtained (step S12).
Next, the slope ratio formula dR 1/2 obtained in step S12 is further differentiated once to obtain a slope formula d′ R 1/2 (step S13).
When there is no inflection point in either the slope ratio equation dR 1/2 obtained in step S12 or the slope equation d′ R 1/2 obtained in step S13 (step S14: NO, step S15: NO) Then, it is determined that the molding difficulty level of the aspherical lens is low (easy molding) (step S16), and the process is terminated.
On the other hand, if there is an inflection point in either the slope ratio formula dR 1/2 obtained in step S12 or the slope formula d′ R 1/2 obtained in step S13 (step S14: YES, step S15: YES), a warning that the degree of difficulty in molding the aspherical lens is high is issued (step S17), and the aspherical data is redesigned (step S18).
If there is a design solution in the aspheric data redesigned in step S18 (step S19: YES), the aspheric data already input is replaced with the redesigned aspheric data, and the processing from step S12 to step S19 is performed. repeat. In other words, as long as there is a design solution in the redesigned aspheric data (step S19: YES), until aspheric data without inflection points in the slope ratios dR 1/2 and d′ R 1/2 is obtained (step S19). S14: NO, step S15: NO), the lens system of the lens system including the aspherical lens having a low molding difficulty (easily molded) is repeated.
If there is no design solution in the aspherical data redesigned in step S18 (no design solution having no inflection points in the slope ratios dR 1/2 and d′ R 1/2 ) (step S19: NO), the null lens One or more of the following methods are determined (step S20), and the process is terminated.

なお以上の実施形態では、R1面の傾きをR2面の傾きで除した傾き比dR1/2を用いたが、R2面の傾きをR1面の傾きで除した傾き比を用いても、同様の判断ができる。また、図11〜図14の各実施例において、R1面の値を3つの実施例について統一し、R2面の値を変えた例を示したが、これに限定されるものではない。また、上述の実施例ではdR1/2が増加する例を示し、成形容易と予測したが、これに限られるものではなく、減少する場合においても本発明が適用できる。 In the above embodiment, the slope ratio dR 1/2 obtained by dividing the slope of the R1 plane by the slope of the R2 plane is used. Can be judged. Moreover, in each Example of FIGS. 11-14, although the value of R1 surface was unified about three Examples and the example which changed the value of R2 surface was shown, it is not limited to this. Further, in the above-described embodiment, an example in which dR 1/2 is increased and it is predicted that molding is easy, but is not limited thereto, and the present invention can be applied even when it is decreased.

以上の実施形態では、回転対称非球面データの提供は、レンズメーカーからモールドメーカーに対して行われるとしたが、カメラメーカーの設計部門から製造部門に対して行われることもある。また、非球面データがレンズ設計プログラム/装置内で移動する場合もデータの提供に含む。   In the above embodiment, the rotationally symmetric aspheric surface data is provided from the lens maker to the mold maker, but may be provided from the camera manufacturer's design department to the manufacturing department. In addition, the provision of data includes the case where aspherical data moves within the lens design program / device.

なお、上述の実施形態に記載したガラスレンズを成形するために使用したガラス素材は、ガラスの原料を所定の割合で調合し、熔解、均質、清澄工程を得て、熔融ガラスを成形型に供給し冷却することにより、型上に供給した熔融ガラスを所定形状(球プリフォームや扁平状のゴブ、得ようとする非球面レンズの形状に近似させた近似形状プリフォーム)に成形してガラス素材を得た。
そして、精密加工を施した成形面を有するプレス成形型によってガラス素材を精密プレス成形することにより、成形面の面形状を成形素材に転写し、レンズを製造した。この時、ガラス素材が106〜1012dPa・s程度の粘度を示す温度に加熱して精密プレス成形を行い、1012dPa・s以上の粘度を示す温度にまで冷却してから精密プレス成形品をプレス成形型から取り出した。
The glass material used to mold the glass lens described in the above embodiment is prepared by mixing glass raw materials at a predetermined ratio, obtaining a melting, homogenous, clarification process, and supplying molten glass to a mold. By cooling and cooling, the molten glass supplied on the mold is molded into a predetermined shape (spherical preform, flat gob, approximate shape preform approximated to the shape of the aspheric lens to be obtained), and a glass material Got.
Then, a glass material was precision press-molded with a press mold having a precision-molded molding surface, whereby the surface shape of the molding surface was transferred to the molding material to produce a lens. At this time, precision press molding is performed by heating the glass material to a temperature exhibiting a viscosity of about 10 6 to 10 12 dPa · s, cooling to a temperature exhibiting a viscosity of 10 12 dPa · s or more, and then precision press molding. The product was removed from the press mold.

Claims (10)

R1面とR2面の少なくとも一方を下記非球面式(1)で表現される回転対称非球面とした非球面ガラスモールドレンズの成形難易度を予測する方法であって、
R1面とR2面の上記回転対称非球面データを含むレンズデータを入力する段階と;
R1面とR2面の非球面式(1)を1回微分することでR1面とR2面の傾きをそれぞれ算出する段階と;
上記R1面の傾きとR2面の傾きのいずれか一方を他方で除算して、成形難易度の指標となる傾き比の式を得る段階と;
を含むことを特徴とする非球面ガラスモールドレンズの成形難易度予測方法。
Figure 2013035713
A method for predicting the molding difficulty of an aspheric glass mold lens in which at least one of the R1 surface and the R2 surface is a rotationally symmetric aspheric surface expressed by the following aspheric expression (1):
Inputting lens data including the rotationally symmetric aspheric data of the R1 and R2 surfaces;
Calculating the slopes of the R1 and R2 surfaces by differentiating the aspherical expression (1) of the R1 and R2 surfaces once;
Dividing either one of the inclination of the R1 surface and the inclination of the R2 surface by the other to obtain an expression of an inclination ratio that is an index of molding difficulty;
A method for predicting the difficulty of molding an aspheric glass mold lens, comprising:
Figure 2013035713
請求項1記載の非球面ガラスモールドレンズの成形難易度予測方法において、上記R1面とR2面の傾き比の式に変曲点が含まれているか否かを成形難易度の指標とし、変曲点がある場合を成形困難、変曲点がない場合を成形容易と予測する非球面ガラスモールドレンズの成形難易度予測方法。 2. The method for predicting the difficulty of molding an aspheric glass mold lens according to claim 1, wherein whether or not an inflection point is included in the equation of the inclination ratio of the R1 surface and the R2 surface is an index of the difficulty of molding. A method for predicting the degree of difficulty of molding an aspheric glass mold lens that predicts that molding is difficult when there is a point and that molding is easy when there is no inflection point. 請求項1記載の非球面ガラスモールドレンズの成形難易度予測方法において、さらに、上記R1面とR2面の傾き比の式をさらに1回以上微分し、その微分式を成形難易度の指標とする非球面ガラスモールドレンズの成形難易度予測方法。 2. The method for predicting the molding difficulty level of an aspheric glass mold lens according to claim 1, further comprising differentiating the formula of the slope ratio between the R1 surface and the R2 surface one or more times, and using the differential formula as an index of the molding difficulty level. A method for predicting the difficulty of molding an aspheric glass mold lens. 請求項3記載の非球面ガラスモールドレンズの成形難易度予測方法において、R1面とR2面の傾き比の式をさらに1回以上微分した式に変曲点が含まれているか否かを成形難易度の指標とし、変曲点がある場合を成形困難、変曲点がない場合を成形容易と予測する非球面ガラスモールドレンズの成形難易度予測方法。 4. The method of predicting the difficulty of molding an aspheric glass mold lens according to claim 3, wherein it is difficult to mold whether or not an inflection point is included in an expression obtained by further differentiating the expression of the slope ratio of the R1 surface and the R2 surface at least once. A method of predicting the degree of difficulty of molding an aspheric glass mold lens, which uses the degree of degree as an index, and predicts that molding is difficult when there is an inflection point and molding is easy when there is no inflection point. R1面とR2面の少なくとも一方を下記非球面式(1)で表現される回転対称非球面とした非球面ガラスモールドレンズを含むレンズ系の設計方法であって、
設計途中において、R1面とR2面の上記回転対称非球面データを含むレンズデータを入力する段階と;
R1面とR2面の非球面式(1)を1回微分することでR1面とR2面の傾きをそれぞれ算出する段階と;
上記R1面の傾きとR2面の傾きのいずれか一方を他方で除算してその傾き比の式を得る段階と;
上記傾き比の式を上記非球面ガラスモールドレンズの成形難易度の指標とする段階と;
を含むことを特徴とする非球面ガラスモールドレンズを含むレンズ系の設計方法。
Figure 2013035713
A design method of a lens system including an aspheric glass mold lens in which at least one of the R1 surface and the R2 surface is a rotationally symmetric aspheric surface expressed by the following aspheric expression (1):
Inputting lens data including the rotationally symmetric aspheric surface data of the R1 and R2 surfaces in the middle of the design;
Calculating the slopes of the R1 and R2 surfaces by differentiating the aspherical expression (1) of the R1 and R2 surfaces once;
Dividing one of the inclination of the R1 surface and the inclination of the R2 surface by the other to obtain an equation of the inclination ratio;
Using the slope ratio equation as an index of the difficulty of molding the aspheric glass mold lens;
A design method for a lens system including an aspheric glass mold lens.
Figure 2013035713
請求項5記載の非球面ガラスモールドレンズを含むレンズ系の設計方法において、上記R1面とR2面の傾き比の式に変曲点が含まれているか否かを成形難易度の指標とし、変曲点がある場合を成形困難、変曲点がない場合を成形容易と予測する非球面ガラスモールドレンズを含むレンズ系の設計方法。 6. The method of designing a lens system including an aspherical glass mold lens according to claim 5, wherein whether or not an inflection point is included in the equation of the inclination ratio between the R1 surface and the R2 surface is used as an index of the molding difficulty. A lens system design method including an aspheric glass mold lens that predicts that molding is difficult when there is a bending point and molding is easy when there is no inflection point. 請求項5記載の非球面ガラスモールドレンズを含むレンズ系の設計方法において、さらに、上記R1面とR2面の傾き比の式をさらに1回以上微分し、その微分式を成形難易度の指標し、変曲点がある場合を成形困難、変曲点がない場合を成形容易と予測する非球面ガラスモールドレンズを含むレンズ系の設計方法。 6. The method of designing a lens system including an aspheric glass mold lens according to claim 5, further comprising differentiating the slope ratio equation of the R1 surface and the R2 surface one or more times, and using the differential equation as an index of molding difficulty. A method for designing a lens system including an aspheric glass mold lens that predicts that molding is difficult when there is an inflection point and molding is easy when there is no inflection point. 請求項5ないし7のいずれか1項記載の非球面ガラスモールドレンズを含むレンズ系の設計方法において、成形難易度を判断する段階で成形が困難であると判断したときに警告する段階をさらに含んでいる非球面ガラスモールドレンズを含むレンズ系の設計方法。 The method for designing a lens system including an aspherical glass mold lens according to any one of claims 5 to 7, further comprising a step of giving a warning when it is determined that molding is difficult in the step of determining the molding difficulty. A lens system design method including an aspheric glass mold lens. 請求項5ないし8のいずれか1項記載の非球面ガラスモールドレンズを含むレンズ系の設計方法において、上記成形難易度を判断する段階でR1面とR2面の傾き比、または同傾き比の式をさらに1回以上微分した式に変曲点が含まれているとき、非球面データの再設計をして、再設計の解が存在する限り、R1面とR2面の傾き比、または同傾き比の式をさらに1回以上微分した式に変曲点がなくなるまで設計を継続する非球面ガラスモールドレンズを含むレンズ系の設計方法。 9. A method of designing a lens system including an aspheric glass mold lens according to claim 5, wherein an inclination ratio of the R1 surface and the R2 surface or an equation of the inclination ratio is determined at the stage of determining the molding difficulty level. If the inflection point is included in the expression that is further differentiated one or more times, the slope ratio of the R1 surface and the R2 surface, or the same slope, as long as there is a redesign solution by redesigning the aspheric data A design method for a lens system including an aspherical glass mold lens in which the design is continued until the inflection point is eliminated by further differentiating the ratio formula once more. 請求項9記載の非球面ガラスモールドレンズを含むレンズ系の設計方法において、非球面データの再設計をしても再設計の解が存在しないときは、ヌルレンズの作製、多段プレスの採用、プレス型へのサイド当てスリーブの適用、成形レンズの修正研磨のいずれか1以上の手法の採用を決定する非球面ガラスモールドレンズを含むレンズ系の設計方法。 10. The method of designing a lens system including an aspheric glass mold lens according to claim 9, wherein if there is no redesign solution even if the aspheric data is redesigned, a null lens is produced, a multistage press is employed, a press die A design method of a lens system including an aspherical glass mold lens, which decides to adopt one or more methods of application of a side contact sleeve to a lens and modified polishing of a molded lens.
JP2011172655A 2011-08-08 2011-08-08 Method for predicting molding difficulty of aspheric glass mold lens and design method of lens system including aspheric glass mold lens Active JP5767893B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011172655A JP5767893B2 (en) 2011-08-08 2011-08-08 Method for predicting molding difficulty of aspheric glass mold lens and design method of lens system including aspheric glass mold lens
TW101124404A TWI579597B (en) 2011-08-08 2012-07-06 Method for predicating difficulty in formation of aspherical glass molded lens and method for designing lens system containing aspherical glass molded lens
KR1020120085577A KR101625426B1 (en) 2011-08-08 2012-08-06 Method for estimating the degree of molding difficulty of aspherical glass mold lens and method for designing lens system including aspherical glass mold lens
CN201210279795.5A CN102928208B (en) 2011-08-08 2012-08-07 Method for estimating the degree of molding difficulty of aspherical glass mold lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011172655A JP5767893B2 (en) 2011-08-08 2011-08-08 Method for predicting molding difficulty of aspheric glass mold lens and design method of lens system including aspheric glass mold lens

Publications (2)

Publication Number Publication Date
JP2013035713A true JP2013035713A (en) 2013-02-21
JP5767893B2 JP5767893B2 (en) 2015-08-26

Family

ID=47643061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011172655A Active JP5767893B2 (en) 2011-08-08 2011-08-08 Method for predicting molding difficulty of aspheric glass mold lens and design method of lens system including aspheric glass mold lens

Country Status (4)

Country Link
JP (1) JP5767893B2 (en)
KR (1) KR101625426B1 (en)
CN (1) CN102928208B (en)
TW (1) TWI579597B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108507510A (en) * 2018-04-02 2018-09-07 广东劲胜智能集团股份有限公司 A kind of method and apparatus measuring different amorphous precision part molding difficulty differences

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110440A (en) * 1995-10-13 1997-04-28 Nikon Corp Method for designing optical element forming die and system for supporting designing of optical element forming die
JP2002096344A (en) * 2000-09-25 2002-04-02 Sony Corp Method for designing mold for molding lens, and molded lens
WO2005115712A1 (en) * 2004-05-31 2005-12-08 Hoya Corporation Mold designing method, mold, and molded piece

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR860001491B1 (en) * 1981-10-30 1986-09-27 코오닝 그라아스 와아크스 Process for molding glass shapes of high precision
JP3793833B2 (en) * 1995-02-13 2006-07-05 株式会社大一商会 Pachinko machine
JP2000189585A (en) * 1998-12-28 2000-07-11 Daiichi Shokai Co Ltd Display driving circuit for game machine
JP4128828B2 (en) 2002-08-23 2008-07-30 Hoya株式会社 Lens manufacturing method
US20050011227A1 (en) * 2003-03-26 2005-01-20 Hoya Corporation Method of preparation of lens
JP4319482B2 (en) * 2003-08-21 2009-08-26 株式会社ニューギン Game machine
CN101648421B (en) * 2004-06-08 2014-10-15 Hoya株式会社 Method of manufacturing plastic lens, gasket for molding plastic lens, casting mold for molding plastic lens, casting jig for plastic lens starting material liquid, holding member for plastic lens cas
JP2008026501A (en) * 2006-07-20 2008-02-07 Fujinon Corp Molded lens
JP2008237524A (en) * 2007-03-27 2008-10-09 Daiman:Kk Game machine
CN101271195B (en) * 2008-04-25 2010-10-27 深圳市世纪人无线通讯设备有限公司 Non-spherical lens design method and non-spherical lens
CN101975990B (en) * 2010-09-02 2012-02-08 北京理工大学 Method for designing partially compensatory lens by taking slope as optimization objective

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110440A (en) * 1995-10-13 1997-04-28 Nikon Corp Method for designing optical element forming die and system for supporting designing of optical element forming die
JP2002096344A (en) * 2000-09-25 2002-04-02 Sony Corp Method for designing mold for molding lens, and molded lens
WO2005115712A1 (en) * 2004-05-31 2005-12-08 Hoya Corporation Mold designing method, mold, and molded piece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108507510A (en) * 2018-04-02 2018-09-07 广东劲胜智能集团股份有限公司 A kind of method and apparatus measuring different amorphous precision part molding difficulty differences

Also Published As

Publication number Publication date
TWI579597B (en) 2017-04-21
TW201307902A (en) 2013-02-16
CN102928208B (en) 2017-04-12
CN102928208A (en) 2013-02-13
KR101625426B1 (en) 2016-05-30
JP5767893B2 (en) 2015-08-26
KR20130018590A (en) 2013-02-25

Similar Documents

Publication Publication Date Title
US20120288661A1 (en) Solid structure glass and method for making the same
JP2008221720A (en) Glass mold for eyeglass lens, its manufacturing process, and manufacturing process of eyeglass lens
JP5767893B2 (en) Method for predicting molding difficulty of aspheric glass mold lens and design method of lens system including aspheric glass mold lens
US10207946B2 (en) Optical element molding mold set and optical element manufacturing method
Katsuki Transferability of glass lens molding
JP5263163B2 (en) Method for producing glass molded body
Staasmeyer et al. Precision glass molding: cost efficient production of glass-optics with spectral range from 180nm ultraviolet to 13µm thermal infrared
Symmons et al. Design for manufacturability and optical performance trade-offs using precision glass molded aspheric lenses
CN1305788C (en) Method for mfg optical elements
JP2002326232A (en) Mold for molding optical surface, optical element, lens and master mold
Kreilkamp et al. Analysis of form deviation in non-isothermal glass molding
JP4508804B2 (en) Optical element molding method
JP4414896B2 (en) Optical element molding method
JP2009173464A (en) Method for producing glass molded body
JP2661449B2 (en) Manufacturing method of aspherical molded lens
WO2018025844A1 (en) Press-forming glass material and optical element production method using same
US11285681B2 (en) Method and apparatus for forming a lens
JP2010076402A (en) Manufacturing method for mold for lens, and manufacturing method for lens
TWI334856B (en)
JP6707435B2 (en) Optical element manufacturing equipment
JP2005097099A (en) Method of manufacturing optical device
JP2005022917A (en) Molding method of optical element and manufacturing method of shaping die
Nelson RECENT DEVELOPMENTS IN PRECISION GLASS MOLDING
JP2000000828A (en) Production of glass mold for glasses
JP2661450B2 (en) Aspheric lens mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140728

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

R150 Certificate of patent or registration of utility model

Ref document number: 5767893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250