JP2008221720A - Glass mold for eyeglass lens, its manufacturing process, and manufacturing process of eyeglass lens - Google Patents

Glass mold for eyeglass lens, its manufacturing process, and manufacturing process of eyeglass lens Download PDF

Info

Publication number
JP2008221720A
JP2008221720A JP2007065543A JP2007065543A JP2008221720A JP 2008221720 A JP2008221720 A JP 2008221720A JP 2007065543 A JP2007065543 A JP 2007065543A JP 2007065543 A JP2007065543 A JP 2007065543A JP 2008221720 A JP2008221720 A JP 2008221720A
Authority
JP
Japan
Prior art keywords
mold
lens
curved plate
convex surface
aspheric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007065543A
Other languages
Japanese (ja)
Other versions
JP4969277B2 (en
Inventor
Kazuo Makino
和雄 牧野
Naoyuki Hase
尚幸 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Itoh Optical Industrial Co Ltd
Original Assignee
Itoh Optical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itoh Optical Industrial Co Ltd filed Critical Itoh Optical Industrial Co Ltd
Priority to JP2007065543A priority Critical patent/JP4969277B2/en
Publication of JP2008221720A publication Critical patent/JP2008221720A/en
Application granted granted Critical
Publication of JP4969277B2 publication Critical patent/JP4969277B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/0026Re-forming shaped glass by gravity, e.g. sagging
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/04Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a continuous way
    • C03B29/06Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a continuous way with horizontal displacement of the products

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing process of molds for casting back-surface aspheric or bi-aspheric eyeglass lenses with a high precision in a manner suitable for mass production. <P>SOLUTION: Glass mold 16 is obtained by placing glass curved plate 13 on convex surface 11 of transfer mold 12 having an aspheric convex surface 11 with convex surface 14 of curved plate 13 facing upward, softening curved plate 13 by heating to transfer the aspheric shape of convex surface 11 of transfer mold 12 onto curved plate 13 so that convex surface 14 of curved plate 13 is made aspheric. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、眼鏡用プラスチックレンズの製造に使用される、非球面形状を有する硝子製モールド、及び、該モールドを使用して作製された非球面形状を有する眼鏡用プラスチックレンズに関する。   The present invention relates to a glass mold having an aspheric shape used for manufacturing a plastic lens for spectacles, and a plastic lens for spectacles having an aspheric shape manufactured using the mold.

プラスチック製非球面レンズを得る方法としては、(I)直接プラスチックレンズを非球面に直接切削、研磨する方法と、(II)非球面モールドを作製して、キャスト成形する方法とがある。   As a method for obtaining a plastic aspheric lens, there are (I) a method in which a plastic lens is directly cut and polished into an aspheric surface, and (II) a method in which an aspheric mold is produced and cast.

(I)の直接切削、研磨する方法では、図1に示すように、凸面を予め創成した半製品レンズ(セミフィニッシュトレンズ)1を切削・研磨加工して、非球面を創成し、非球面レンズ2とする(研磨品レンズ)。なお、図1(a)中2点鎖線の右側が切削・研磨部分である。この方法については、下記特許文献1〜7に記載されている。   In the method (I) of direct cutting and polishing, as shown in FIG. 1, a semi-finished lens (semi-finished lens) 1 having a convex surface created in advance is cut and polished to create an aspherical surface. 2 (polished lens). In FIG. 1A, the right side of the two-dot chain line is the cutting / polishing portion. This method is described in Patent Documents 1 to 7 below.

(II)のキャスト成形する方法では、図2に示すように、硝子製の外面モールド(下型)3及び硝子製の内面モールド(上型)4と、軟質プラスチック製のガスケット又はプラスチック製テープ5とにより囲まれた空間に、重合開始剤などを添加した液状プラスチックモノマー(単量体乃至プレポリマー)を満たして、加熱硬化または光照射による常温硬化により硬化させてレンズ6を得る(キャスト品レンズ)。内面モールド4の付形面(レンズに付形するための面)である凸面41を非球面としておけば、内面非球面レンズ6が得られ、外面モールド3の付形面である凹面31及び内面モールド4の凸面41を非球面としておけば、両面非球面レンズ6が得られる。キャスト成形については、下記特許文献8に記載されている。   In the method of casting (II), as shown in FIG. 2, a glass outer mold (lower mold) 3 and a glass inner mold (upper mold) 4 and a soft plastic gasket or plastic tape 5 are used. The space surrounded by is filled with a liquid plastic monomer (monomer or prepolymer) to which a polymerization initiator or the like is added, and cured by heat curing or room temperature curing by light irradiation to obtain a lens 6 (cast product lens) ). If the convex surface 41 which is the shaping surface of the inner surface mold 4 (surface for shaping the lens) is aspherical, the inner surface aspherical lens 6 is obtained, and the concave surface 31 and the inner surface which are the shaping surface of the outer surface mold 3 are obtained. If the convex surface 41 of the mold 4 is aspherical, a double-sided aspherical lens 6 is obtained. The cast molding is described in Patent Document 8 below.

(II)のキャスト成形用の非球面モールドの製造方法には、(i)金型プレス法、(ii)直接切削、研磨法、(iii)スランプ法がある。   As the method for producing an aspheric mold for casting (II), there are (i) a die pressing method, (ii) a direct cutting and polishing method, and (iii) a slump method.

(i)の金型プレス法とは、非球面形状を有する金型で硝子材料を加熱プレスすることにより、硝子製モールドを得る方法であり、下記特許文献9、10に記載されている。   The die pressing method (i) is a method of obtaining a glass mold by heating and pressing a glass material with a die having an aspherical shape, and is described in Patent Documents 9 and 10 below.

(ii)の直接切削、研磨法は、硝子製部材を直接切削、研磨することにより、硝子製モールドを得る方法であり、下記特許文献11〜13に記載されている。   The direct cutting and polishing method (ii) is a method of obtaining a glass mold by directly cutting and polishing a glass member, and is described in Patent Documents 11 to 13 below.

(iii)のスランプ法とは、回転対称非球面や自由曲面を加熱により硝子面上に創成する方法である。この方法では、まず、機械加工が可能なセラミック(マシナブルセラミック)をNC旋盤やNCフライスなどにより切削して、非球面形状や自由曲面をなす形状面を有したセラミックス製転写型を作製する。そして、厚みの均一な(すなわち、裏面と表面とが平行面とされた)硝子製の曲面板を、オーブン内で転写型の上に置いて、徐冷工程を含んだ数時間の加熱により軟化させて、転写型の非球面形状や自由曲面を曲面板に転写する。なお、転写型の形状面を鏡面研磨して、曲面板の転写型に接触する面に非球面形状や自由曲面を直接転写する直接法もあるが、通常は、転写型に接触していない面に転写された非球面形状や自由曲面を、レンズを成形する際の付形面として利用する間接法が採用されている。転写後、曲面板の接触面を鏡面研磨して硝子モールドとして使用する。   The slump method (iii) is a method of creating a rotationally symmetric aspherical surface or free-form surface on the glass surface by heating. In this method, first, a ceramic transfer mold having an aspherical shape or a free-form surface is manufactured by cutting a machinable ceramic (machineable ceramic) with an NC lathe or NC milling machine. Then, a glass curved plate with a uniform thickness (that is, the back surface and the front surface are parallel surfaces) is placed on a transfer mold in an oven and softened by heating for several hours including a slow cooling process. Then, the transfer type aspherical shape or free-form surface is transferred to the curved plate. There is also a direct method in which the shape surface of the transfer mold is mirror-polished and the aspherical shape or free-form surface is directly transferred to the surface of the curved plate that contacts the transfer mold, but usually the surface that is not in contact with the transfer mold An indirect method is used in which the aspherical surface or free-form surface transferred to the lens is used as a shaping surface for molding a lens. After transfer, the contact surface of the curved plate is mirror-polished and used as a glass mold.

従来、スランプ法では、レンズ外面に非球面形状を与えるモールドは作製されていても、レンズ内面に非球面形状を与えるモールドは、作製されていなかった。これは、生産数が少ない場合、上記(ii)の直接切削、研磨法の方が、モールドの生産時間が短くて済むからであると考えられる。下記特許文献14の段落0031及び特許文献15には、スランプ法が記載されているが、これらの文献に記載されたモールドも、レンズ外面に非球面形状を与えるものである。
特開2000−117604号公報 特開2003−275949号公報 特開2003−266287号公報 特開2003−300144号公報 特開2004−82324号公報 特開2004−106117号公報 特開2004−114244号公報 特開平6−254879号公報 特開平10−309723号公報 特開2000−828号公報 特開平9−66453号公報 特開平9−66532号公報 特開平8−192348号公報 特開平11−64805号公報 特開平6−130333号公報
Conventionally, in the slump method, a mold that gives an aspheric shape to the outer surface of the lens has been manufactured, but a mold that gives an aspheric shape to the inner surface of the lens has not been manufactured. This is considered to be because when the production number is small, the direct cutting and polishing method (ii) requires a shorter production time of the mold. The slump method is described in paragraph 0031 and patent document 15 of Patent Document 14 below, but the mold described in these documents also gives an aspheric shape to the lens outer surface.
JP 2000-117604 A JP 2003-275949 A JP 2003-266287 A JP 2003-300144 A JP 2004-82324 A JP 2004-106117 A JP 2004-114244 A JP-A-6-254879 Japanese Patent Laid-Open No. 10-309723 Japanese Unexamined Patent Publication No. 2000-828 JP-A-9-66453 JP-A-9-66532 JP-A-8-192348 JP-A-11-64805 JP-A-6-130333

上記(I)の直接切削、研磨してレンズを得る方法では、使用されるNC切削加工機や自由曲面研磨機において、非球面形状を研磨する研磨治工具が、空気圧でコントロールされたドーム状の可撓性シートに貼付された研磨パッドにより構成されており、ドーム状シートの曲率は、空気圧のコントロールに依存し、非常に不安定なものであるため、加工精度に問題があった。また、レンズを一枚ずつ切削・研磨加工するものであるため、受注生産方式には向いているが、大量生産を行う場合には設備負担が大きく、コスト的にも問題があり、さらに、切削・研磨加工で廃棄されるプラスチック材料の量は非常に多く、その廃棄物は、燃料や他の資材に転用は出来ても、リサイクルやリユースは不可能であるため、資源の無駄使いとなっていた。   In the above-mentioned method (I) of directly cutting and polishing to obtain a lens, in the NC cutting machine or free-form surface polishing machine used, the polishing jig for polishing the aspherical surface is a dome shape controlled by air pressure. Since it is composed of a polishing pad attached to a flexible sheet, the curvature of the dome-shaped sheet depends on the control of the air pressure and is very unstable. In addition, the lens is cut and polished one by one, so it is suitable for a build-to-order production method. However, when mass production is performed, the equipment burden is large and there is a problem in terms of cost. -The amount of plastic materials discarded by polishing is extremely large, and even though the waste can be diverted to fuel and other materials, it cannot be recycled or reused, so it is a waste of resources. It was.

一方、上記(II)のキャスト成形によりレンズを得る方法では、使用プラスチック材料の消費量が少なくて済み、量産性に優れているが、モールドへの投資額が大きいため、モールドを如何に精度良く量産可能とするかが重要課題である。モールドの製造方法には、上述したように、(i)金型プレス法、(ii)直接切削、研磨法、(iii)スランプ法がある。   On the other hand, in the method of obtaining the lens by the cast molding of (II) above, the consumption of the plastic material used is small and excellent in mass productivity, but because the investment in the mold is large, how accurately the mold is made Making mass production possible is an important issue. As described above, the mold manufacturing method includes (i) a die pressing method, (ii) a direct cutting and polishing method, and (iii) a slump method.

しかし、(i)の金型プレス法は、成形可能な外径が小さいので眼鏡レンズ用途には不十分なこと、寸法精度の安定性や残留歪みの問題などがあることから、眼鏡レンズ業界では未だ殆ど採用されていない。   However, the mold pressing method (i) is not suitable for spectacle lens applications because the moldable outer diameter is small, and there are problems such as dimensional accuracy stability and residual distortion. Almost not yet adopted.

また、(ii)の直接切削、研磨法では、上記特許文献11、12に記載されているように、直接非球面の設計値から切削・研磨するのではなく、倣い部材から間接的に非球面形状を加工するため、モールドの加工精度が低いという問題があった。更に、乱視度数範囲も含んだ非球面形状に対応するには、倣い部材が数多く必要となり、コスト高となる。なお、上記特許文献13には、加工精度を向上させた例が述べられているが、加工できる外径が小さいこと、加工設備が加工精度に比例してコスト高となることから、眼鏡レンズ用途には不向きである。また、モールドを一枚ずつ切削、研磨するものであるため、モールドの生産数が多くなると、多数のモールドを同時に成形可能なスランプ法よりも生産時間がかかるようになり、量産性に欠ける。   In the direct cutting and polishing method (ii), as described in Patent Documents 11 and 12, the aspherical surface is not indirectly cut and polished from the design value of the aspherical surface but indirectly from the copying member. In order to process a shape, there existed a problem that the processing precision of a mold was low. Furthermore, in order to cope with an aspherical shape including an astigmatic power range, a large number of copying members are required, resulting in an increase in cost. In addition, although the example which improved processing accuracy is described in the said patent document 13, since the outer diameter which can be processed is small and processing equipment becomes high in proportion to processing accuracy, it is used for spectacle lenses. Not suitable for. In addition, since the molds are cut and polished one by one, if the number of molds produced increases, it takes more time than the slump method in which a large number of molds can be formed simultaneously, resulting in lack of mass productivity.

本発明は、上述した問題を解決するものであり、内面又は両面非球面の眼鏡レンズをキャスト形成するためのモールドを、低コストで精度良く製造可能であるとともに量産に適したモールドの製造方法を提供することを目的とする。   The present invention solves the above-described problems, and provides a mold manufacturing method that can manufacture a mold for casting an inner surface or double-sided aspheric spectacle lens with high accuracy at low cost and is suitable for mass production. The purpose is to provide.

また、本発明の他の目的は、乱視屈折力を内面に有する内面又は両面非球面の眼鏡レンズをキャスト成形するためのモールドを、低コストで容易に製造可能なモールドの製造方法を提供することである。   Another object of the present invention is to provide a mold manufacturing method capable of easily manufacturing a mold for casting an inner surface or double-sided aspheric spectacle lens having astigmatic refractive power on the inner surface at low cost. It is.

なお、内面非球面とは、レンズの内面(後面)と外面(前面)のうちの内面のみが非球面の場合、両面非球面とはレンズの内面と外面のいずれもが非球面の場合をいう。   The inner aspheric surface means that only the inner surface of the inner surface (rear surface) and the outer surface (front surface) of the lens is an aspheric surface, and the double aspheric surface means that both the inner surface and the outer surface of the lens are aspheric surfaces. .

本発明の硝子製モールドの製造方法は、プラスチック製眼鏡レンズのキャスト成形に使用されてレンズの内面に非球面形状を与える硝子製モールドの製造方法であって、非球面形状の凸面を有する耐熱性転写型の当該凸面上に、硝子製曲面板を、当該曲面板の凸面が上方を向くように載置し、加熱により当該曲面板を軟化させて、当該曲面板に前記転写型の凸面の非球面形状を転写することにより、当該曲面板の凸面を非球面形状に形成して、当該曲面板を硝子製モールドとすることを特徴とする。   The method for producing a glass mold of the present invention is a method for producing a glass mold that is used for cast molding of a plastic spectacle lens to give an aspherical shape to the inner surface of the lens, and has a heat resistance having an aspherical convex surface. A glass curved plate is placed on the convex surface of the transfer mold so that the convex surface of the curved plate faces upward, and the curved plate is softened by heating, so that the convex surface of the transfer mold is not applied to the curved plate. By transferring the spherical shape, the convex surface of the curved plate is formed into an aspherical shape, and the curved plate is used as a glass mold.

また、前記転写型の凸面が回転対称非球面形状であり、前記曲面板の凸面を予め乱視面に形成しておいてから、前記曲面板に前記転写型の凸面の回転対称非球面形状を転写することにより、前記曲面板の凸面を、乱視屈折力を有する非球面形状に形成することを特徴とする。   Further, the convex surface of the transfer mold has a rotationally symmetric aspherical shape, and the convex surface of the curved plate is formed in an astigmatic surface in advance, and then the rotationally symmetric aspherical shape of the convex surface of the transfer mold is transferred to the curved plate. Thus, the convex surface of the curved plate is formed into an aspherical shape having astigmatic refractive power.

本発明の硝子製モールドは、プラスチック製眼鏡レンズのキャスト成形に使用されてレンズの内面に非球面形状を与える硝子製モールドであって、レンズの内面に非球面形状を与える凸面が、回転対称非球面形状の転写面と乱視面形状の切削面とが合成された合成面であることを特徴とする。   The glass mold of the present invention is a glass mold that is used for cast molding of plastic spectacle lenses to give an aspheric shape to the inner surface of the lens, and the convex surface that gives the aspheric shape to the inner surface of the lens It is a composite surface in which a spherical transfer surface and an astigmatic cutting surface are combined.

本発明の内面又は両面非球面のプラスチック製眼鏡レンズの製造方法は、上記本発明の硝子製モールドを、レンズの内面側の付形モールド(すなわち、内面モールド)として用い、キャスト成形により内面又は両面非球面のプラスチック製眼鏡レンズを製造することを特徴とする。   The method for producing an inner surface or double-sided aspherical plastic spectacle lens of the present invention uses the glass mold of the present invention as a shaping mold on the inner surface side of the lens (that is, an inner surface mold) and casts the inner surface or both surfaces by casting. An aspheric plastic spectacle lens is manufactured.

本発明の硝子製モールドの製造方法は、セラミック製転写型から非球面形状を転写する所謂スランプ法により、非球面形状の凸面を有する硝子製モールド(すなわち、レンズ内面に非球面形状を与える硝子製モールド)を製造するので、内面又は両面非球面の眼鏡レンズをキャスト形成するためのモールドを、低コストで精度良く製造することができるとともに、多数個のモールドを同時に加工可能であるので、モールドの量産に適している。   The glass mold manufacturing method of the present invention is a glass mold having an aspherical convex surface (that is, a glass product that gives an aspherical shape to the lens inner surface) by a so-called slump method for transferring an aspherical shape from a ceramic transfer mold. Mold), a mold for casting an inner surface or double-sided aspheric spectacle lens can be manufactured at low cost with high accuracy, and a large number of molds can be processed simultaneously. Suitable for mass production.

また、硝子製モールドの基となる硝子製曲面板の凸面を予め乱視面に形成しておいてから、転写型の凸面の回転対称非球面形状を転写することにより、曲面板の凸面を乱視屈折力を有する非球面形状に形成することとすれば、転写型は球面屈折力に応じた種類を用意しておくだけでよいので、転写型の種類を削減でき、乱視屈折力を内面に有する内面又は両面非球面の眼鏡レンズをキャスト成形するための硝子製モールドを、低コストで製造可能である。また、転写型を回転対称非球面形状に切削することは容易であるとともに、曲面板を乱視面形状に切削することは容易であるため、モールドの製造が容易である。   In addition, the convex surface of the curved curved plate, which is the basis of the glass mold, is formed in advance on the astigmatic surface, and then the rotationally symmetric aspherical shape of the transfer-type convex surface is transferred so that the convex surface of the curved plate is astigmatically refracted. If it is formed into an aspherical shape having a force, it is only necessary to prepare a transfer mold according to the spherical refractive power, so the type of transfer mold can be reduced, and the inner surface has astigmatic refractive power on the inner surface. Alternatively, a glass mold for casting a double-sided aspheric spectacle lens can be manufactured at low cost. In addition, it is easy to cut the transfer mold into a rotationally symmetric aspherical shape, and it is easy to cut the curved plate into an astigmatic surface shape, so that the mold can be easily manufactured.

以下、本発明の実施形態について、図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

実施形態に係る硝子製モールド16(図6参照)は、スランプ法で製造する。詳しくは、まず、マシナブルセラミック製ブロックの円形状をなす上面を、NC旋盤を使用して切削することにより、図3に示すように、次式(数1)で表される回転対称非球面形状の凸面11を有する耐熱性のセラミック製転写型12を、作製する。回転対称非球面形状を切削により形成することは容易である。   The glass mold 16 (see FIG. 6) according to the embodiment is manufactured by a slump method. Specifically, by first cutting the circular upper surface of the machinable ceramic block using an NC lathe, as shown in FIG. 3, a rotationally symmetric aspherical surface represented by the following formula (Equation 1): A heat-resistant ceramic transfer mold 12 having a convex surface 11 having a shape is produced. It is easy to form a rotationally symmetric aspherical shape by cutting.

転写型12に使用可能なマシナブルセラミックには、例えばKepets社のセラミックディスクがある。   Machinable ceramics that can be used for the transfer mold 12 include, for example, ceramic disks manufactured by Kepets.

式(数1)は、円錐の切断面から得られる二次曲面(楕円面、双曲面及び放物面)を主体に、第2項以下で周辺の形状補正を可能としたものである。   The expression (Equation 1) makes it possible to correct the shape of the periphery with the second term or less, mainly on a quadric surface (ellipsoid, hyperboloid, and paraboloid) obtained from a conical cut surface.

Figure 2008221720
但し、h2=X2+Y2、R:頂点における曲率半径、K:非球面係数、An:第2項以下の係数、n:正の整数、である。
Figure 2008221720
Here, h 2 = X 2 + Y 2 , R: radius of curvature at the apex, K: aspheric coefficient, A n : coefficient of the second term or less, n: positive integer.

そして、図5(a)に示すように、厚みの均一な(すなわち、凸面14と凹面15とが同じ曲率半径の球面形状とされた)無機硝子製の円形状の曲面板13(図4参照)を、熱源29を有するオーブン内で転写型12の凸面11上に、凸面14が上方に向くように載置し、徐冷工程を含んだ数時間の加熱により軟化させて、図5(b)に示すように、凸面11の非球面形状を、曲面板13に転写する。   Then, as shown in FIG. 5A, a circular curved plate 13 made of inorganic glass having a uniform thickness (that is, the convex surface 14 and the concave surface 15 have a spherical shape with the same radius of curvature) (see FIG. 4). ) Is placed on the convex surface 11 of the transfer mold 12 in an oven having a heat source 29 so that the convex surface 14 faces upward, and is softened by heating for several hours including a slow cooling step. ), The aspherical shape of the convex surface 11 is transferred to the curved plate 13.

なお、複数の転写型12を用意して、それぞれに曲面板13を載置してオーブン内に入れれば、複数の曲面板13を同時にスランプ加工可能である。かかる場合には、加熱むらを防ぐため、転写型12を円環状に並べてオーブン内での配置位置が変わるように回転させることが好ましく、また、かかる回転を行う場合、曲面板13が転写型12からずれないように、真空吸引により曲面板13を転写型12に吸着しておくことが好ましい。   If a plurality of transfer molds 12 are prepared, and a curved plate 13 is placed on each of them and placed in an oven, the plurality of curved plates 13 can be slumped simultaneously. In such a case, in order to prevent uneven heating, it is preferable that the transfer molds 12 are arranged in an annular shape and rotated so as to change the arrangement position in the oven. It is preferable to adsorb the curved plate 13 to the transfer mold 12 by vacuum suction so as not to deviate from the above.

曲面板13に使用可能な無機硝子には、例えばCorning社の8092やSchott社のS3がある。これらはいずれも硼珪酸硝子で、BKという範囲に入る。本実施形態では、Corning社の8092を用いる。   Examples of inorganic glass that can be used for the curved plate 13 include Corning 8092 and Schott S3. These are all borosilicate glass and fall within the range of BK. In this embodiment, Corning 8092 is used.

本実施形態では、転写型12に接触していない凸面14に転写された非球面形状を、レンズを成形する際の付形面とする。転写後、転写型12との接触面である凹面15を鏡面研磨して、硝子製モールド16を得る。凹面15を鏡面研磨するのは、モールド16の傷等の外観検査をし易くするためである。   In this embodiment, the aspherical shape transferred to the convex surface 14 that is not in contact with the transfer mold 12 is used as a shaping surface when the lens is molded. After the transfer, the concave surface 15 which is a contact surface with the transfer mold 12 is mirror-polished to obtain a glass mold 16. The reason why the concave surface 15 is mirror-polished is to facilitate visual inspection of the mold 16 and the like.

このようにして得た硝子製モールド16は、上記式(数1)で示される非球面形状を凸面14に有しており、レンズの内面(後面)に非球面形状を与えるものである。   The glass mold 16 thus obtained has an aspheric shape represented by the above formula (Equation 1) on the convex surface 14 and gives the aspheric shape to the inner surface (rear surface) of the lens.

次に、図6に基づいて、硝子製モールド16を用いた内面非球面又は両面非球面のプラスチック製眼鏡レンズ20の製造方法について説明する。図6(a)に示すように、硝子製モールド16を内面モールドとし、レンズの外面に球面形状又は非球面形状を与える硝子製モールド17を、外面モールドとして、間隔を開けて硝子製モールド16、17を対向配置し、プラスチック製テープ18で周囲を巻回することにより硝子製モールド16、17間の空間を密閉するとともに、硝子製モールド16、17を固定して、成形型19とする。   Next, based on FIG. 6, the manufacturing method of the plastic spectacle lens 20 of the inner surface aspherical surface or both surfaces aspherical surface using the glass mold 16 will be described. As shown in FIG. 6 (a), the glass mold 16 is an inner surface mold, and the glass mold 17 that gives a spherical shape or an aspherical shape to the outer surface of the lens is an outer surface mold. 17 is arranged oppositely, and the space between the glass molds 16 and 17 is sealed by winding the periphery with a plastic tape 18, and the glass molds 16 and 17 are fixed to form a molding die 19.

硝子製モールド17は、レンズ20を成形する際の付形面である凹面25が、レンズ20外面に球面形状を与える場合(すなわち、内面非球面のレンズ20を製造する場合)には球面形状、レンズ20外面に非球面形状を与える場合(すなわち、両面非球面のレンズ20を製造する場合)には非球面形状とされている。   The glass mold 17 has a spherical shape when the concave surface 25 which is a shaping surface when the lens 20 is molded gives a spherical shape to the outer surface of the lens 20 (that is, when manufacturing the lens 20 having an inner aspheric surface). When an aspherical shape is given to the outer surface of the lens 20 (that is, when a double-sided aspherical lens 20 is manufactured), the aspherical shape is used.

この成形型19内部の空間にレンズ用の透明液状プラスチック材料を注入したものを、加熱又は紫外線照射等の光照射による硬化後、離型することにより、図6(b)のように、内面非球面又は両面非球面のレンズ20を得る。   The one in which the transparent liquid plastic material for the lens is injected into the space inside the molding die 19 is cured after being cured by light irradiation such as heating or ultraviolet irradiation, thereby releasing the inner surface as shown in FIG. A spherical or double-sided aspheric lens 20 is obtained.

使用可能な透明液状プラスチック材料には、上記特許文献14の段落0023に記載されたものがある。   Examples of the transparent liquid plastic material that can be used include those described in paragraph 0023 of Patent Document 14.

このように、レンズ20内面に非球面形状を与える硝子製モールド16を、スランプ法で作製すれば、直接切削、研磨する方法に比べ、加工精度のよい硝子製モールド16が得られる。なお、スランプ法は、モールド成形の1サイクルに時間が掛かるという欠点があるが、転写型12を多数用意しておき多数個のモールド16を同時に加工することにより、この欠点を補うことができるとともに、モールド16の量産が可能である。そして、かかるモールド16を用いてレンズ20をキャスト成形すれば、簡単かつ低コストで内面又は両面非球面レンズを量産可能である。   Thus, if the glass mold 16 which gives the aspherical shape to the inner surface of the lens 20 is produced by the slump method, the glass mold 16 with higher processing accuracy can be obtained compared to the method of direct cutting and polishing. The slump method has the disadvantage that it takes a long time for one molding process. However, by preparing a large number of transfer molds 12 and processing a large number of molds 16 simultaneously, this disadvantage can be compensated. The mass production of the mold 16 is possible. If the lens 20 is cast using the mold 16, the inner surface or double-sided aspheric lens can be mass-produced easily and at low cost.

次に、レンズ20内面に乱視屈折力を有する非球面形状を与える硝子製モールド16の作成方法について説明する。   Next, a method for producing the glass mold 16 that gives the inner surface of the lens 20 an aspherical shape having astigmatic refractive power will be described.

レンズ20内面に、乱視屈折力を有する(すなわち、乱視成分を含む)非球面形状を与える場合、球面度数の種類(例えば45種類)及び乱視度数の種類(例えば0〜2ジオプターまで0.25ジオプター毎であれば9種類)に応じた硝子製モールド16を作製するために、全ての転写型12を用意しようとすると、例えば45×9=405種類といった多種類の転写型12が必要となり、コスト高を招いてしまう。また、転写型12の凸面11を、乱視屈折力を有する非球面形状(すなわち、非回転対称非球面形状)に切削することは困難である。一方、凸面11を回転対称非球面形状に切削することは容易であり、曲面板13の凸面14を乱視面形状に切削することも容易である。さらに、発明者は、スランプ法における曲面板13の軟化時に、凸面14における乱視屈折力が保持されることを見出した。そこで、以下の(1)(2)のようにして、乱視屈折力を有する非球面形状をレンズ20内面に与える硝子モールド16を作製した。   When an aspheric shape having astigmatic refractive power (that is, including an astigmatic component) is given to the inner surface of the lens 20, the type of spherical power (for example, 45 types) and the type of astigmatic power (for example, 0.25 diopter from 0 to 2 diopters). In order to prepare all the transfer molds 12 in order to produce a glass mold 16 according to 9 types), for example, many types of transfer molds 12 such as 45 × 9 = 405 types are required, and the cost is reduced. Invite high. Further, it is difficult to cut the convex surface 11 of the transfer mold 12 into an aspherical shape having astigmatic refractive power (that is, a non-rotationally symmetric aspherical shape). On the other hand, it is easy to cut the convex surface 11 into a rotationally symmetric aspherical shape, and it is also easy to cut the convex surface 14 of the curved plate 13 into an astigmatic surface shape. Furthermore, the inventors have found that the astigmatic refractive power on the convex surface 14 is maintained when the curved plate 13 is softened by the slump method. Therefore, a glass mold 16 was produced that gave an aspherical shape having astigmatic refractive power to the inner surface of the lens 20 as in (1) and (2) below.

(1)転写型12の凸面11を、球面屈折力に応じた回転対称非球面形状に切削することとし、各球面度数に応じた転写型12を用意する。     (1) The convex surface 11 of the transfer mold 12 is cut into a rotationally symmetric aspheric shape corresponding to the spherical refractive power, and the transfer mold 12 corresponding to each spherical power is prepared.

(2)曲面板13の凸面14を予め、乱視度数に応じた乱視面に(すなわち、乱視屈折力を加えた曲率半径を持つように)切削しておいてから、かかる曲面板13を(1)の転写型12に載せてスランプ加工を行う。     (2) The convex surface 14 of the curved plate 13 is previously cut into an astigmatic surface corresponding to the astigmatism power (that is, to have a radius of curvature to which the astigmatic refractive power is added), and then the curved plate 13 is (1 ) And the slump process is performed.

すなわち、乱視カーブを転写型12から転写するのではなく、乱視カーブは予め曲面板13の凸面14に付けておき、転写型12からは回転対称非球面形状のみを転写する方法とした。   That is, instead of transferring the astigmatism curve from the transfer mold 12, the astigmatism curve was previously attached to the convex surface 14 of the curved plate 13, and only the rotationally symmetric aspheric shape was transferred from the transfer mold 12.

なお、乱視面とは、球面である基準面を一方向に切削等することにより、その方向における曲率半径を、その基準面の曲率半径とは異なるものとしたトロイダル面を言う。また、ある面のある方向における屈折力とは、基材の屈折率から1を引いた値を1000倍した後、その面のその方向における曲率半径で除した値をいい、乱視面の直交する2方向の屈折力の差を乱視屈折力という。   The astigmatic surface is a toroidal surface in which a radius of curvature in the direction is different from the radius of curvature of the reference surface by cutting a spherical reference surface in one direction. Further, the refractive power in a certain direction of a certain surface means a value obtained by multiplying the value obtained by subtracting 1 from the refractive index of the base material by 1000 and then dividing by the radius of curvature of that surface in that direction, and is orthogonal to the astigmatic surface. The difference between the refractive powers in the two directions is called astigmatic refractive power.

図4に、曲面板13の立体形状を表す三次元空間を示す。図4中、BCはベースカーブ、CCはクロスカーブである。以下、ベースカーブをBC、クロスカーブをCCと表記する。レンズ6のBCは水平方向のカーブ、CCは鉛直方向のカーブであるが、曲面板13におけるBC、CCは、それぞれ、その曲面板13から形成されたモールド16によって付形されるレンズ6のBC、CCと同方向とする。BCとCCとは直交し、BCとCCとの屈折力の差が乱視屈折力となる。   FIG. 4 shows a three-dimensional space representing the three-dimensional shape of the curved plate 13. In FIG. 4, BC is a base curve, and CC is a cross curve. Hereinafter, the base curve is denoted by BC and the cross curve is denoted by CC. BC of the lens 6 is a horizontal curve and CC is a vertical curve. BC and CC on the curved plate 13 are BC of the lens 6 formed by the mold 16 formed from the curved plate 13, respectively. , In the same direction as CC. BC and CC are orthogonal to each other, and the difference in refractive power between BC and CC becomes astigmatic refractive power.

本実施形態では、元は球面をなす凸面14の一方向を、元の球面の曲率半径とは異なる曲率半径により研削、研磨することにより、凸面14を互いに直交する曲率半径が異なる乱視面とする。元の球面の曲率半径がBC、新たに創成された曲率半径がCCである。したがって、この場合の曲面板13は、厚みが均一ではない(すなわち、凸面14と凹面15とが平行面ではない)。   In the present embodiment, one direction of the convex surface 14 that originally forms a spherical surface is ground and polished with a radius of curvature different from the radius of curvature of the original spherical surface, thereby making the convex surface 14 an astigmatic surface having different curvature radii orthogonal to each other. . The original spherical radius of curvature is BC, and the newly created radius of curvature is CC. Therefore, the curved plate 13 in this case is not uniform in thickness (that is, the convex surface 14 and the concave surface 15 are not parallel surfaces).

この加工方法により、転写型12の凸面11の回転対称非球面形状から、曲面板13の凸面14に非回転対称非球面であるアトーリック面(非球面乱視面)を得ることが可能となり、凸面14は、回転対称非球面形状の転写面と乱視面形状の切削面とが合成(複合)された合成面(複合面)となる。   By this processing method, it becomes possible to obtain an atoric surface (aspheric astigmatism surface) which is a non-rotationally symmetric aspheric surface on the convex surface 14 of the curved plate 13 from the rotationally symmetric aspherical shape of the convex surface 11 of the transfer mold 12. 14 is a composite surface (composite surface) in which a rotationally symmetric aspherical transfer surface and an astigmatic cutting surface are combined (composite).

この方法によれば、2ジオプターまでの0.25ジオプター毎の乱視度数範囲を考えた場合、9分の1のセラミック量で内面非球面形状を与える硝子製モールド16を作製できて低コストである。また、乱視屈折力を有する非球面形状は非回転対称非球面形状であるため、転写型12を乱視屈折力を有する非球面形状に切削することは容易ではないが、転写型12を回転対称非球面形状に切削することは容易であるとともに、曲面板13を乱視面形状に切削することは容易であるため、この方法によればモールド16の製造が容易である。   According to this method, considering an astigmatic power range of 0.25 diopters up to 2 diopters, it is possible to produce a glass mold 16 that gives an inner aspheric shape with a ceramic amount of 1/9 and is low in cost. . Further, since the aspherical shape having astigmatic refractive power is a non-rotationally symmetric aspherical shape, it is not easy to cut the transfer mold 12 into an aspherical shape having astigmatic refractive power, but the transfer mold 12 is not rotationally symmetric. Since it is easy to cut into a spherical shape and it is easy to cut the curved plate 13 into an astigmatic surface shape, the mold 16 can be easily manufactured according to this method.

なお、上記特許文献15に記載されたモールドの製造方法は、研削加工により、セラミック製母型に累進多焦点面(すなわち、累進屈折面)、ガラスブランクスに軸対称非球面(すなわち、回転対称非球面)を形成しておき、スランプ法により、それらの合成面として、累進屈折面の変化率が非球面的な面を、ガラスブランクスの凹面に形成するものであるが、本発明のように非球面乱視面を形成するものではない。また、研削加工により累進屈折面を形成することは困難であるため、上記特許文献15に記載されたモールドの製造方法は、モールドの製造が容易とは言えない。   Note that the mold manufacturing method described in the above-mentioned Patent Document 15 is obtained by grinding a progressive multifocal surface (that is, progressive refracting surface) on a ceramic matrix and an axially symmetric aspheric surface (that is, rotationally symmetric surface) on a glass blank. (Spherical surface) is formed, and a surface having aspherical change rate of the progressive refractive surface is formed on the concave surface of the glass blanks by the slump method as a composite surface thereof. It does not form a spherical astigmatic surface. Moreover, since it is difficult to form a progressive refractive surface by grinding, it cannot be said that the mold manufacturing method described in Patent Document 15 is easy to manufacture the mold.

以下、各実施例及び比較例について説明する。   Hereinafter, each Example and a comparative example are demonstrated.

〈実施例1〉
マシナブルセラミック(ここでは、Kepets社のセラミックディスク)製の円柱形状のブロック(外径:100mmφ、厚み25mm)を、NC旋盤を使用して、下記のデータに基づいて、上面に次式(数2)で表される回転対称非球面形状をなす凸面11が形成されるように、切削し、転写型12とする(図3参照)。
<Example 1>
A cylindrical block (outer diameter: 100 mmφ, thickness: 25 mm) made of a machinable ceramic (here, Kepets ceramic disc), using an NC lathe, the following formula ( The transfer mold 12 is cut so that the convex surface 11 having the rotationally symmetric aspherical shape represented by 2) is formed (see FIG. 3).

曲率半径 102.13mm
非球面係数(K) −3.0
多項式の係数(A) 4.310E−08
多項式の係数(B) 4.510E−11
多項式の係数(C) 9.500E−16
多項式の係数(D) −1.500E−18
非球面の有効径 90mmφ
Curvature radius 102.13mm
Aspheric coefficient (K) -3.0
Coefficient of polynomial (A) 4.310E-08
Polynomial coefficient (B) 4.510E-11
Coefficient of polynomial (C) 9.500E-16
Polynomial coefficient (D) -1.500E-18
Effective diameter of aspheric surface 90mmφ

Figure 2008221720
ここで、R:頂点における曲率半径、K:非球面係数、A、B、C、D:多項式部分の係数、h2=X2+Y2である。
Figure 2008221720
Here, R: radius of curvature at the apex, K: aspherical coefficient, A, B, C, D: coefficient of polynomial part, h 2 = X 2 + Y 2 .

続いて、硝子材料(Corning社、8092)を用いて、両面共下記の曲率半径で鏡面研磨された厚み6.0mm、外径80mmφの円形状の硝子製曲面板(素玉)13を作製する。   Subsequently, using a glass material (Corning, 8092), a circular glass curved surface plate (bare) 13 having a thickness of 6.0 mm and an outer diameter of 80 mmφ, which is mirror-polished with the following curvature radius on both sides, is produced. .

曲率半径 102.26mm
この曲面板13をオーブン内にて前述の転写型12に載置して、図7に示すようなMax.725℃の温度サイクルで、前述のスランプ法(図5参照)により、転写型12の非球面形状を転写し、硝子製モールド16とする。
Curvature radius 102.26mm
The curved plate 13 is placed on the transfer mold 12 in the oven, and Max. In the temperature cycle of 725 ° C., the aspherical shape of the transfer mold 12 is transferred by the above-described slump method (see FIG. 5) to obtain a glass mold 16.

オーブン内で転写型12に接触していない曲面板13の凸面14とは異なり、凹面15は接触していたためにゆず肌状になっており、そのままでは硝子製モールド16の外観検査が難しいこと、及び、プラスチックモノマーの注入時に気泡などが見づらいことから、凹面15を転写型12の曲率半径に近いカーブで再研磨して硝子製モールド16を得た。この硝子製モールド16を、以下、非球面内面モールドIという。   Unlike the convex surface 14 of the curved plate 13 that is not in contact with the transfer mold 12 in the oven, the concave surface 15 is in the form of a skin because it is in contact, and it is difficult to inspect the appearance of the glass mold 16 as it is. Also, since it is difficult to see bubbles or the like when the plastic monomer is injected, the concave surface 15 is re-polished with a curve close to the radius of curvature of the transfer mold 12 to obtain a glass mold 16. This glass mold 16 is hereinafter referred to as an aspheric inner surface mold I.

この非球面内面モールドIの凸面14を、(株)ミツトヨ製の形状測定機CS-H5000を使用して三次元測定を行い、下記の各数値を得た。   The convex surface 14 of this aspherical inner surface mold I was measured three-dimensionally using a shape measuring machine CS-H5000 manufactured by Mitutoyo Corporation, and the following numerical values were obtained.

曲率半径 104.464mm
非球面係数(K) −2.43311
多項式の係数(A) 1.37649E−07
多項式の係数(B) −6.57381E−10
多項式の係数(C) 9.78809E−13
多項式の係数(D) −4.60287E−16
このように、非球面内面モールドIの凸面14は、非球面形状となっている。
Curvature radius 104.464mm
Aspheric coefficient (K) -2.44331
Coefficient of polynomial (A) 1.37649E-07
Polynomial coefficient (B) -6.55731E-10
Coefficient of polynomial (C) 9.78809E-13
Coefficient of polynomial (D) -4.660287E-16
Thus, the convex surface 14 of the aspherical inner surface mold I has an aspherical shape.

〈実施例2〉
実施例1の曲面板13の凸面14を、下記の曲率半径を有するように鏡面研磨して、実施例2の曲面板13とする。
<Example 2>
The convex surface 14 of the curved plate 13 of Example 1 is mirror-polished so as to have the following radius of curvature to obtain the curved plate 13 of Example 2.

曲率半径(BC) 102.26mm
曲率半径(CC) 89.82mm
実施例2の曲面板13は実施例1と異なり、約1.0Dの乱視度数を有している。この曲面板13を、実施例1と同じ転写型12に載置して、実施例1と同様に、オーブン内にて図7に示されるMax.725℃の温度サイクルにより転写型12の非球面形状を転写する。そして、オーブン内で転写型12に接触していた曲面板13の凹面15を、転写型12の曲率半径に近いカーブで再研磨して硝子製モールド16を得た。この硝子製モールド16を、以下、非球面内面モールドIIという。
Curvature radius (BC) 102.26mm
Curvature radius (CC) 89.82mm
Unlike the first embodiment, the curved plate 13 of the second embodiment has an astigmatic power of about 1.0D. The curved plate 13 is placed on the same transfer mold 12 as in the first embodiment, and the Max. Shown in FIG. The aspherical shape of the transfer mold 12 is transferred by a temperature cycle of 725 ° C. Then, the concave surface 15 of the curved plate 13 that was in contact with the transfer mold 12 in the oven was re-polished with a curve close to the radius of curvature of the transfer mold 12 to obtain a glass mold 16. The glass mold 16 is hereinafter referred to as an aspheric inner surface mold II.

この非球面内面モールドIIの凸面14を、(株)ミツトヨ製の形状測定機CS-H5000を使用して三次元測定を行い、下記の各数値を得た。   The convex surface 14 of the aspherical inner surface mold II was subjected to three-dimensional measurement using a shape measuring machine CS-H5000 manufactured by Mitutoyo Corporation, and the following numerical values were obtained.

<BC> 曲率半径 103.590mm
非球面係数(K) −2.43311
多項式の係数(A) 1.37649E−07
多項式の係数(B) −6.57381E−10
多項式の係数(C) 9.78809E−13
多項式の係数(D) −4.60287E−16
<CC> 曲率半径 88.832mm
非球面係数(K) −2.43311
多項式の係数(A) 1.37649E−07
多項式の係数(B) −6.57381E−10
多項式の係数(C) 9.78809E−13
多項式の係数(D) −4.60287E−16
このように、凸面14は、曲面板13の乱視屈折力を略保持した非球面形状となっている。
<BC> Radius of curvature 103.590mm
Aspheric coefficient (K) -2.44331
Coefficient of polynomial (A) 1.37649E-07
Polynomial coefficient (B) -6.55731E-10
Coefficient of polynomial (C) 9.78809E-13
Coefficient of polynomial (D) -4.660287E-16
<CC> Radius of curvature 88.832mm
Aspheric coefficient (K) -2.44331
Coefficient of polynomial (A) 1.37649E-07
Polynomial coefficient (B) -6.55731E-10
Coefficient of polynomial (C) 9.78809E-13
Coefficient of polynomial (D) -4.660287E-16
Thus, the convex surface 14 has an aspherical shape that substantially holds the astigmatic refractive power of the curved plate 13.

〈実施例3〉
実施例1の曲面板13の凸面14を、下記の曲率半径を有するように鏡面研磨して、実施例3の曲面板13とする。
<Example 3>
The convex surface 14 of the curved plate 13 of Example 1 is mirror-polished so as to have the following radius of curvature to obtain the curved plate 13 of Example 3.

曲率半径(BC) 102.26mm
曲率半径(CC) 80.08mm
実施例3の曲面板13は約2.0Dの乱視度数を有している。この曲面板13を、実施例1と同じ転写型12に載置して、実施例1と同様に、オーブン内にて、図7に示すMax.725℃の温度サイクルで、転写型12の非球面形状を転写する。そして、オーブン内で転写型12に接触していた曲面板13の凹面15を、転写型12の曲率半径に近いカーブで再研磨して硝子製モールド16を得た。この硝子製モールド16を、以下、非球面内面モールドIIIという。
Curvature radius (BC) 102.26mm
Curvature radius (CC) 80.08mm
The curved plate 13 of Example 3 has an astigmatic power of about 2.0D. This curved plate 13 is placed on the same transfer mold 12 as in Example 1, and in the same manner as in Example 1, Max. The aspherical shape of the transfer mold 12 is transferred at a temperature cycle of 725 ° C. Then, the concave surface 15 of the curved plate 13 that was in contact with the transfer mold 12 in the oven was re-polished with a curve close to the radius of curvature of the transfer mold 12 to obtain a glass mold 16. This glass mold 16 is hereinafter referred to as an aspheric inner surface mold III.

この非球面内面モールドIIIの凸面14を、(株)ミツトヨ製の形状測定機 CS-H5000を使用して三次元測定を行い、下記の各数値を得た。   The convex surface 14 of the aspherical inner surface mold III was subjected to three-dimensional measurement using a shape measuring machine CS-H5000 manufactured by Mitutoyo Corporation, and the following numerical values were obtained.

<BC> 曲率半径 100.917mm
非球面係数(K) −3.62018
多項式の係数(A) 1.00207E−07
多項式の係数(B) −5.09245E−10
多項式の係数(C) 8.03171E−13
多項式の係数(D) −3.99888E−16
<CC> 曲率半径 80.537mm
非球面係数(K) −1.55009
多項式の係数(A) 5.89467E−08
多項式の係数(B) −2.91128E−10
多項式の係数(C) 4.48570E−13
多項式の係数(D) −2.18738E−16
このように、凸面14は、曲面板13の乱視屈折力を略保持した非球面形状となっている。
<BC> Curvature radius 100.917mm
Aspheric coefficient (K) -3.62018
Polynomial coefficient (A) 1.00207E-07
Coefficient of polynomial (B) -5.09245E-10
Coefficient of polynomial (C) 8.0171E-13
Polynomial coefficient (D) -3.98888E-16
<CC> Radius of curvature 80.537mm
Aspheric coefficient (K) -1.55009
Polynomial coefficient (A) 5.89467E-08
Coefficient of polynomial (B) -2.991128E-10
Coefficient of polynomial (C) 4.48570E-13
Coefficient of polynomial (D) -2.18738E-16
Thus, the convex surface 14 has an aspherical shape that substantially holds the astigmatic refractive power of the curved plate 13.

〈外面モールドの作製例〉
マシナブルセラミック製の円柱形状のブロック(外径:100mmφ、厚み25mm)を、NC旋盤を使用して、下記のデータに基づいて、図8に示すように、上記式(数2)で表される回転対称非球面形状が凹面21に形成されるように、切削し、転写型22とする。
<Example of external mold fabrication>
A machinable ceramic cylindrical block (outer diameter: 100 mmφ, thickness: 25 mm) is represented by the above formula (Equation 2) as shown in FIG. 8 based on the following data using an NC lathe. The transfer die 22 is cut so that a rotationally symmetric aspherical shape is formed on the concave surface 21.

曲率半径 792.292mm
非球面係数(K) −60.0
多項式の係数(A) 2.850E−08
多項式の係数(B) 1.210E−11
多項式の係数(C) −5.750E−15
多項式の係数(D) −1.100E−19
非球面の有効径 90 mmφ
続いて、硝子材料を(Corning社、8092)を用いて、両面共に下記の曲率半径で鏡面研磨された厚み6.0mm、外径80.0mmφの円形状の硝子製曲面板23(図9参照)を作製する。
Radius of curvature 792.292mm
Aspheric coefficient (K) -60.0
Polynomial coefficient (A) 2.850E-08
Coefficient of polynomial (B) 1.210E-11
Coefficient of polynomial (C) -5.750E-15
Polynomial coefficient (D) -1.100E-19
Effective diameter of aspheric surface 90 mmφ
Subsequently, using a glass material (Corning, 8092), a circular glass curved plate 23 having a thickness of 6.0 mm and an outer diameter of 80.0 mmφ, both surfaces of which are mirror-polished with the following curvature radius (see FIG. 9). ).

曲率半径 1226.17mm
この曲面板23を、図9に示すように、オーブン内で転写型22に載置し、実施例1と同様に、図7に示すMax.725℃の温度サイクルで、転写型22の非球面形状を転写する。オーブン内で転写型22に接触していた曲面板23の凸面24を、転写型23の曲率半径に近いカーブで再研磨して、外面モールドである硝子製モールド17を得た。この硝子製モールド17を、以下、非球面外面モールドIVという。
Radius of curvature 1226.17mm
As shown in FIG. 9, the curved plate 23 is placed on the transfer mold 22 in an oven, and the Max. The aspherical shape of the transfer mold 22 is transferred at a temperature cycle of 725 ° C. The convex surface 24 of the curved plate 23 that was in contact with the transfer mold 22 in the oven was re-polished with a curve close to the radius of curvature of the transfer mold 23 to obtain a glass mold 17 as an outer mold. This glass mold 17 is hereinafter referred to as an aspheric outer surface mold IV.

この非球面外面モールドIVの凹面25を、(株)ミツトヨ製の形状測定機 CS-H5000を使用して三次元測定を行い、下記の各数値を得た。   The concave surface 25 of the aspherical outer surface mold IV was subjected to three-dimensional measurement using a shape measuring machine CS-H5000 manufactured by Mitutoyo Corporation, and the following numerical values were obtained.

曲率半径 773.325mm
非球面係数(K) −61.7716
多項式の係数(A) 2.99157E−08
多項式の係数(B) −5.88881E−11
多項式の係数(C) 2.32888E−14
多項式の係数(D) −4.01451E−18
このように、凹面25は、非球面形状となっている。
Curvature radius 773.325mm
Aspheric coefficient (K) -61.7716
Polynomial coefficient (A) 2.99157E-08
Polynomial coefficient (B) -5.88881E-11
Coefficient of polynomial (C) 2.32888E-14
Coefficient of polynomial (D) -4.0451E-18
Thus, the concave surface 25 has an aspherical shape.

〈実施例4〉
非球面内面モールドIと非球面外面モールドIVとを、図6(a)に示すように、凸面14と凸面25とが対向するように所定間隔を開けて配置し、ポリエステル製粘着テープ18で周囲を巻回することにより固定して、成形型19とする。
<Example 4>
As shown in FIG. 6A, the aspheric inner surface mold I and the aspheric outer surface mold IV are arranged at a predetermined interval so that the convex surface 14 and the convex surface 25 face each other, and are surrounded by a polyester adhesive tape 18. To form a mold 19.

一方、ビス(2,3-エピチオプロピル)ジスルフィド(三井化学(株)製、商品名:MR-174 A液)100部にビス(メルカプトメチル)-3,6,9-トリチア-1,1,1-ウンデカンジチオール(三井化学(株)製、商品名:MR-174 B液)10部、紫外線吸収剤1部と無水酢酸0.084部を添加し、十分に撹拌した後、N,N-ジメチルシクロヘキシルアミン0.04部とN,N-ジシクロヘキシルメチルアミン0.1部を加える。更に撹拌して、3μmのフィルターで濾過し、レンズ用モノマーとした。   On the other hand, bis (mercaptomethyl) -3,6,9-trithia-1,1 was added to 100 parts of bis (2,3-epithiopropyl) disulfide (trade name: MR-174 A solution, manufactured by Mitsui Chemicals, Inc.). , 1-Undecanedithiol (trade name: MR-174 B solution, manufactured by Mitsui Chemicals, Inc.), 1 part of an ultraviolet absorber and 0.084 part of acetic anhydride were added, and after stirring sufficiently, N, N Add 0.04 parts of -dimethylcyclohexylamine and 0.1 part of N, N-dicyclohexylmethylamine. The mixture was further stirred and filtered through a 3 μm filter to obtain a lens monomer.

続いて上記の成形型19にこのレンズ用モノマーを注入し、熱風循環型のオーブン内に置き、図10に示すMax.80℃の温度サイクルで加熱硬化し、くさび状の工具にて離型して、両面共に非球面形状を有し、乱視度数は有さないプラスチック製眼鏡レンズ20を得た。   Subsequently, the lens monomer was injected into the mold 19 and placed in a hot air circulation type oven. It was heat-cured at a temperature cycle of 80 ° C. and released with a wedge-shaped tool to obtain a plastic spectacle lens 20 having both aspherical surfaces on both sides and no astigmatic power.

このレンズ20の縁厚と、後述する比較例1で得られた、後面が球面形状の、同材質のプラスチック製眼鏡レンズの縁厚とを比較すると、次の通りである。   A comparison between the edge thickness of the lens 20 and the edge thickness of a plastic spectacle lens made of the same material having a spherical rear surface obtained in Comparative Example 1 described later is as follows.

実施例4 6.1mm
比較例1 6.9mm
次に、10mm角の方眼紙をレンズ20を通して見ると、図11に示すように、レンズの周辺まで全く歪むことなく見ることが出来た。このことはレンズ20の球面収差、歪曲収差が除去されたことを意味している。
Example 4 6.1 mm
Comparative Example 1 6.9 mm
Next, when a 10 mm square graph paper was viewed through the lens 20, as shown in FIG. 11, the periphery of the lens could be seen without any distortion. This means that the spherical aberration and distortion of the lens 20 have been removed.

〈比較例1〉
凸面が実施例1の非球面内面モールドIと同じ曲率半径の球面形状とされた硝子製モールドを、研磨加工により作製する。この硝子製モールドを、以下、球面内面モールドVという。この球面内面モールドVと非球面外面モールドIVとを、実施例4と同様に所定間隔を開けて配置し、成形型を組み立てる。
<Comparative example 1>
A glass mold having a convex spherical surface with the same radius of curvature as the aspheric inner surface mold I of Example 1 is manufactured by polishing. This glass mold is hereinafter referred to as a spherical inner surface mold V. The spherical inner surface mold V and the aspheric outer surface mold IV are arranged at a predetermined interval in the same manner as in Example 4 to assemble the mold.

次に、この成形型に実施例4で調合されたレンズ用モノマーを注入し、図10に示すMax.80℃の温度サイクルで加熱硬化し、くさび状の工具にて離型して、凸面側のみ非球面形状を有するプラスチック製眼鏡レンズ、いわゆる外面非球面レンズを得た。   Next, the monomer for the lens prepared in Example 4 was injected into this mold, and it was cured by heating at a temperature cycle of Max.80 ° C. shown in FIG. 10, and was released with a wedge-shaped tool. Only a plastic spectacle lens having an aspheric shape, a so-called outer aspheric lens was obtained.

10mm角の方眼紙をこのレンズを通して見ると、図12に示すように、レンズの周辺が歪んで見えた。   When a 10 mm square graph paper was viewed through this lens, the periphery of the lens appeared distorted as shown in FIG.

〈実施例5〉
非球面内面モールドIIと非球面外面モールドIVとを、図6(a)に示すように、凸面14と凸面25とが対向するように所定間隔を開けて配置し、ポリエステル製粘着テープ18で周囲を巻回することにより固定して、成形型19とする。
<Example 5>
As shown in FIG. 6A, the aspheric inner surface mold II and the aspheric outer surface mold IV are arranged at a predetermined interval so that the convex surface 14 and the convex surface 25 face each other, and are surrounded by a polyester adhesive tape 18. To form a mold 19.

次に、実施例4で調合されたレンズ用モノマーをこの成形型19に注入し、熱風循環型のオーブン内に置き、図10に示すMax.80℃の温度サイクルで加熱硬化し、くさび状の工具にて離型して、両面共に非球面形状を有し、後面に非球面の乱視屈折力を有するプラスチック製眼鏡レンズ20を得た。   Next, the lens monomer prepared in Example 4 is poured into the mold 19, placed in a hot air circulation oven, and cured by heating at a temperature cycle of Max.80 ° C. shown in FIG. After releasing with a tool, a plastic spectacle lens 20 having an aspheric shape on both sides and an aspheric astigmatic refractive power on the rear surface was obtained.

このレンズ20の縁厚と、後述する比較例2で得られた、後面が球面形状のプラスチック製乱視用眼鏡レンズの縁厚とを比較すると、次の通りである。   A comparison between the edge thickness of the lens 20 and the edge thickness of the plastic astigmatic spectacle lens having a spherical rear surface obtained in Comparative Example 2 described later is as follows.

BC CC
実施例6 6.1mm 7.1mm
比較例2 6.9mm 7.9mm
次に、10mm角の方眼紙をこのレンズ20を通して見ると、図13に示すように、レンズ20の周辺まで全く歪むことなく見ることが出来た。このことは、レンズの球面収差、歪曲収差が除去されたことを意味している。
BC CC
Example 6 6.1 mm 7.1 mm
Comparative Example 2 6.9 mm 7.9 mm
Next, when a 10 mm square graph paper was viewed through the lens 20, as shown in FIG. 13, the periphery of the lens 20 could be seen without any distortion. This means that the spherical aberration and distortion of the lens have been removed.

〈比較例2〉
凸面が実施例2の非球面内面モールドIIと同じ曲率半径の乱視面(トロイダル面)形状とされた(すなわち、凸面が、非球面内面モールドIIのBC、CCとそれぞれ同じ曲率半径のBC、CCを有する乱視面(トロイダル面)形状とされた)硝子製乱視モールドを、研磨加工により作製する。この硝子製乱視モールドを、以下、球面内面モールドVIという。この球面内面モールドVIと、非球面外面モールドIVとを、実施例4と同様に所定間隔を開けて配置し、成形型を組み立てる。
<Comparative example 2>
The convex surface has an astigmatic surface (toroidal surface) shape having the same curvature radius as that of the aspheric inner surface mold II of Example 2 (that is, the convex surfaces are BC, CC having the same curvature radius as BC and CC of the aspheric inner surface mold II, respectively). A glass astigmatism mold (having an astigmatic surface (toroidal surface) shape) with a polishing process is prepared by polishing. This glass astigmatism mold is hereinafter referred to as a spherical inner surface mold VI. The spherical inner surface mold VI and the aspheric outer surface mold IV are arranged at a predetermined interval in the same manner as in Example 4 to assemble the mold.

次に、この成形型に実施例4で調合されたレンズ用モノマーを注入し、図10に示すMax.80℃の温度サイクルで加熱硬化し、くさび状の工具にて離型して、凸面側のみ非球面形状を有するプラスチック製眼鏡レンズ、いわゆる外面非球面レンズを得た。   Next, the monomer for the lens prepared in Example 4 was injected into this mold, and it was cured by heating at a temperature cycle of Max.80 ° C. shown in FIG. 10, and was released with a wedge-shaped tool. Only a plastic spectacle lens having an aspheric shape, a so-called outer aspheric lens was obtained.

10mm角の方眼紙をこのレンズを通して見ると、図14に示すように、レンズの周辺が歪んで見えた。   When a 10 mm square graph paper was viewed through this lens, the periphery of the lens appeared distorted as shown in FIG.

〈実施例7〉
非球面内面モールドIIIと非球面外面モールドIVとを、図6(a)に示すように、凸面14と凸面25とが対向するように所定間隔を開けて配置し、ポリエステル製粘着テープ18で周囲を巻回することにより固定して、成形型19とする。
<Example 7>
As shown in FIG. 6A, the aspheric inner surface mold III and the aspheric outer surface mold IV are arranged at a predetermined interval so that the convex surface 14 and the convex surface 25 face each other, and are surrounded by a polyester adhesive tape 18. To form a mold 19.

次に、実施例4で調合されたレンズ用モノマーをこの成形型19に注入し、熱風循環型のオーブン内に置き、図10に示すMax.80℃の温度サイクルで加熱硬化し、くさび状の工具にて離型して、両面共に非球面形状を有し、後面に非球面の乱視屈折力を有するプラスチック製眼鏡レンズ20を得た。   Next, the lens monomer prepared in Example 4 is poured into the mold 19, placed in a hot air circulation oven, and cured by heating at a temperature cycle of Max.80 ° C. shown in FIG. After releasing with a tool, a plastic spectacle lens 20 having an aspheric shape on both sides and an aspheric astigmatic refractive power on the rear surface was obtained.

このレンズ20の縁厚と、後述する比較例3で得られた、後面が球面形状のプラスチック製乱視眼鏡レンズの縁厚とを比較すると、次の通りである。   A comparison between the edge thickness of the lens 20 and the edge thickness of a plastic astigmatic spectacle lens having a spherical rear surface obtained in Comparative Example 3 described later is as follows.

BC CC
実施例7 6.1mm 8.1mm
比較例3 6.9mm 9.0mm
次に、10mm角の方眼紙をこのレンズ20を通して見ると、図15に示すように、レンズ20の周辺まで全く歪むことなく見ることが出来た。このことは、レンズの球面収差、歪曲収差が除去されたことを意味している。
BC CC
Example 7 6.1 mm 8.1 mm
Comparative Example 3 6.9 mm 9.0 mm
Next, when a 10 mm square graph paper was viewed through the lens 20, as shown in FIG. 15, the periphery of the lens 20 could be seen without any distortion. This means that the spherical aberration and distortion of the lens have been removed.

〈比較例3〉
凸面が実施例3の非球面内面モールドIIIと同じ曲率半径を有する乱視面(トロイダル面)形状とされた(すなわち、凸面が、非球面内面モールドIIIのBC、CCとそれぞれ同じ曲率半径のBC、CCを有する乱視面(トロイダル面)形状とされた)硝子製乱視モールドを、研磨加工により作製する。この硝子製乱視モールドを、以下、球面内面モールドVIという。この球面内面モールドVIと、非球面外面モールドIVとを、実施例4と同様に所定間隔を開けて配置し、成形型を組み立てる。
<Comparative Example 3>
The convex surface has an astigmatic surface (toroidal surface) shape having the same radius of curvature as that of the aspheric inner surface mold III of Example 3 (that is, the convex surface is BC having the same curvature radius as BC and CC of the aspheric inner surface mold III, respectively). A glass astigmatism mold (made to have an astigmatic surface (toroidal surface) shape having CC) is produced by polishing. This glass astigmatism mold is hereinafter referred to as a spherical inner surface mold VI. The spherical inner surface mold VI and the aspheric outer surface mold IV are arranged at a predetermined interval in the same manner as in Example 4 to assemble the mold.

次に、この成形型に実施例4で調合されたレンズ用モノマーを注入し、図10に示すMax.80℃の温度サイクルで加熱硬化し、くさび状の工具にて離型して、凸面側のみ非球面形状を有するプラスチック製眼鏡レンズ、いわゆる外面非球面レンズを得た。   Next, the monomer for the lens prepared in Example 4 was injected into this mold, and it was cured by heating at a temperature cycle of Max.80 ° C. shown in FIG. 10, and was released with a wedge-shaped tool. Only a plastic spectacle lens having an aspheric shape, a so-called outer aspheric lens was obtained.

10mm角の方眼紙をこのレンズを通して見ると、図16に示すように、レンズの周辺が歪んで見えた。   When a 10 mm square graph paper was viewed through this lens, the periphery of the lens appeared distorted as shown in FIG.

表1に、試作した各レンズの内容と使用されたモールドの記号を示す。表中、外面非球面とは外面は非球面で内面は球面である場合を示し、asは非球面モールドであることを示す。   Table 1 shows the contents of each prototype lens and the mold symbol used. In the table, the outer surface aspheric surface indicates a case where the outer surface is an aspheric surface and the inner surface is a spherical surface, and as indicates an aspheric mold.

Figure 2008221720
Figure 2008221720

直接切削、研磨してレンズを得る方法を示す図であり、(a)は切削、研磨前のセミフィニッシュトレンズ、(b)は切削、研磨後のフィニッシュトレンズを示す。It is a figure which shows the method of obtaining a lens by direct cutting and grinding | polishing, (a) shows the semi-finished lens before cutting and grinding | polishing, (b) shows the finished lens after cutting and grinding | polishing. キャスト成形によりレンズを得る方法を示す図であり、(a)は成形中、(b)は離型後を示す。It is a figure which shows the method of obtaining a lens by cast shaping | molding, (a) is during shaping | molding, (b) shows after mold release. 非球面切削された内面モールド用セラミック製転写型の例である。It is an example of the ceramic transfer mold for inner surface mold by which the aspherical surface was cut. モールドの立体形状を表す三次元空間を示す図である。It is a figure which shows the three-dimensional space showing the solid shape of a mold. スランプ法による内面モールドの製造方法を示す図であり、(a)は加熱前、(b)は加熱後を示す。It is a figure which shows the manufacturing method of the internal mold by a slump method, (a) shows before a heating, (b) shows after a heating. キャスト成形によりレンズを得る方法を示す図であり、(a)は成形中、(b)は離型後を示す。It is a figure which shows the method of obtaining a lens by cast shaping | molding, (a) is during shaping | molding, (b) shows after mold release. スランプ加工の温度サイクル例である。It is a temperature cycle example of slump processing. 外面モールド用セラミック製転写型の例である。It is an example of the ceramic transcription | transfer type for outer surface molds. スランプ法による外面モールドの製造方法を示す図であり、(a)は加熱前、(b)は加熱後を示す。It is a figure which shows the manufacturing method of the outer surface mold by a slump method, (a) shows before heating, (b) shows after heating. プラスチックレンズの重合温度サイクル例である。It is an example of the polymerization temperature cycle of a plastic lens. 実施例4で得られたレンズで方眼紙を見たときの図である。FIG. 6 is a diagram when a graph paper is viewed with the lens obtained in Example 4; 比較例1で得られたレンズで方眼紙を見たときの図である。It is a figure when a graph paper is seen with the lens obtained in Comparative Example 1. 実施例5で得られたレンズで方眼紙を見たときの図である。FIG. 10 is a diagram when a graph paper is viewed with the lens obtained in Example 5. 比較例2で得られたレンズで方眼紙を見たときの図である。It is a figure when a graph paper is seen with the lens obtained in Comparative Example 2. 実施例6で得られたレンズで方眼紙を見たときの図である。It is a figure when a graph paper is seen with the lens obtained in Example 6. 比較例3で得られたレンズで方眼紙を見たときの図である。It is a figure when a graph paper is seen with the lens obtained in Comparative Example 3.

符号の説明Explanation of symbols

11…凸面
12…転写型
13…曲面板
14…凸面
16…硝子製モールド
20…レンズ
DESCRIPTION OF SYMBOLS 11 ... Convex surface 12 ... Transfer mold 13 ... Curved surface board 14 ... Convex surface 16 ... Glass mold 20 ... Lens

Claims (4)

プラスチック製眼鏡レンズのキャスト成形に使用されてレンズの内面に非球面形状を与える硝子製モールドの製造方法であって、
非球面形状の凸面を有する耐熱性転写型の当該凸面上に、硝子製曲面板を、当該曲面板の凸面が上方を向くように載置し、加熱により当該曲面板を軟化させて、当該曲面板に前記転写型の凸面の非球面形状を転写することにより、当該曲面板の凸面を非球面形状に形成して、当該曲面板を硝子製モールドとすることを特徴とする硝子製モールドの製造方法。
A method of manufacturing a glass mold that is used for cast molding of a plastic spectacle lens to give an aspherical shape to the inner surface of the lens,
On the convex surface of the heat-resistant transfer mold having an aspherical convex surface, a glass curved plate is placed so that the convex surface of the curved plate faces upward, and the curved plate is softened by heating, so that the curved plate is curved. A glass mold, wherein the convex surface of the curved plate is formed into an aspherical shape by transferring the aspherical shape of the convex surface of the transfer mold to the face plate, and the curved plate is made into a glass mold. Method.
前記転写型の凸面が回転対称非球面形状であり、前記曲面板の凸面を予め乱視面に形成しておいてから、前記曲面板に前記転写型の凸面の回転対称非球面形状を転写することにより、前記曲面板の凸面を、乱視屈折力を有する非球面形状に形成することを特徴とする請求項1記載の硝子製モールドの製造方法。   The convex surface of the transfer mold has a rotationally symmetric aspherical shape, and the convex surface of the curved plate is previously formed on an astigmatic surface, and then the rotationally symmetric aspherical shape of the convex surface of the transfer mold is transferred to the curved plate. The method for producing a glass mold according to claim 1, wherein the convex surface of the curved plate is formed into an aspherical shape having astigmatic refractive power. プラスチック製眼鏡レンズのキャスト成形に使用されてレンズの内面に非球面形状を与える硝子製モールドであって、
レンズの内面に非球面形状を与える凸面が、回転対称非球面形状の転写面と乱視面形状の切削面とが合成された合成面であることを特徴とする硝子製モールド。
A glass mold that is used for cast molding of plastic spectacle lenses and gives an aspherical shape to the inner surface of the lens,
A glass mold characterized in that the convex surface giving an aspherical shape to the inner surface of the lens is a synthetic surface in which a rotationally symmetric aspherical transfer surface and an astigmatic cutting surface are combined.
請求項3記載の硝子製モールドをレンズの内面側の付形モールドとして用い、キャスト成形により内面又は両面非球面のプラスチック製眼鏡レンズを製造することを特徴とする内面又は両面非球面のプラスチック製眼鏡レンズの製造方法。   A glass spectacle lens having an inner surface or a double-sided aspheric surface is produced by cast molding using the glass mold according to claim 3 as a shaping mold on the inner surface side of the lens. Lens manufacturing method.
JP2007065543A 2007-03-14 2007-03-14 Glass mold for spectacle lens, manufacturing method thereof, and manufacturing method of spectacle lens Active JP4969277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007065543A JP4969277B2 (en) 2007-03-14 2007-03-14 Glass mold for spectacle lens, manufacturing method thereof, and manufacturing method of spectacle lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007065543A JP4969277B2 (en) 2007-03-14 2007-03-14 Glass mold for spectacle lens, manufacturing method thereof, and manufacturing method of spectacle lens

Publications (2)

Publication Number Publication Date
JP2008221720A true JP2008221720A (en) 2008-09-25
JP4969277B2 JP4969277B2 (en) 2012-07-04

Family

ID=39840873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007065543A Active JP4969277B2 (en) 2007-03-14 2007-03-14 Glass mold for spectacle lens, manufacturing method thereof, and manufacturing method of spectacle lens

Country Status (1)

Country Link
JP (1) JP4969277B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098136A1 (en) * 2009-02-27 2010-09-02 Hoya株式会社 Method of producing mold for lens and method of producing eyeglass lens
EP2402133A1 (en) * 2009-02-27 2012-01-04 Hoya Corporation Method of producing mold for lens and method of producing eyeglass lens
US8197727B2 (en) 2005-11-30 2012-06-12 Hoya Corporation Method of manufacturing formed article, covering member, and forming apparatus comprising the same
US8277704B2 (en) 2005-11-18 2012-10-02 Hoya Corporation Method of manufacturing formed article, mold and method of manufacturing the same
KR101196887B1 (en) * 2009-10-09 2012-11-01 은현수 Manufacturing for aspherical lens and lensmold
JP2013237261A (en) * 2012-03-26 2013-11-28 Hoya Corp Method of manufacturing die for mold, mold and eyeglass lens
CN104015276A (en) * 2014-05-24 2014-09-03 江苏康耐特光学有限公司 Manufacturing method of aspheric glass mold
WO2015056660A1 (en) * 2013-10-15 2015-04-23 日本合成化学工業株式会社 Resin sheet and use thereof
WO2015136997A1 (en) * 2014-03-11 2015-09-17 興和株式会社 Ophthalmic lens and method for designing ophthalmic lens
US9242889B2 (en) 2005-11-18 2016-01-26 Hoya Corporation Method of manufacturing formed article, glass material, and method of determining shape of glass material and mold
KR101620303B1 (en) 2013-06-28 2016-05-12 은현수 Plastic head light lens producting method for vehicle
CN108908820A (en) * 2018-06-19 2018-11-30 深圳摩方新材科技有限公司 A kind of manufacturing method of resinae optical mirror slip

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058353A1 (en) * 2005-11-18 2007-05-24 Hoya Corporation Process for production of molded articles, glass material, and method for determing the surface shapes of glass material and mold

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058353A1 (en) * 2005-11-18 2007-05-24 Hoya Corporation Process for production of molded articles, glass material, and method for determing the surface shapes of glass material and mold

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8277704B2 (en) 2005-11-18 2012-10-02 Hoya Corporation Method of manufacturing formed article, mold and method of manufacturing the same
US9242889B2 (en) 2005-11-18 2016-01-26 Hoya Corporation Method of manufacturing formed article, glass material, and method of determining shape of glass material and mold
US8197727B2 (en) 2005-11-30 2012-06-12 Hoya Corporation Method of manufacturing formed article, covering member, and forming apparatus comprising the same
EP2402132A4 (en) * 2009-02-27 2014-10-15 Hoya Corp Method of producing mold for lens and method of producing eyeglass lens
EP2402133A1 (en) * 2009-02-27 2012-01-04 Hoya Corporation Method of producing mold for lens and method of producing eyeglass lens
EP2402132A1 (en) * 2009-02-27 2012-01-04 Hoya Corporation Method of producing mold for lens and method of producing eyeglass lens
WO2010098136A1 (en) * 2009-02-27 2010-09-02 Hoya株式会社 Method of producing mold for lens and method of producing eyeglass lens
US8641937B2 (en) 2009-02-27 2014-02-04 Hoya Corporation Method of manufacturing lens casting mold and method of manufacturing eyeglass lens
JP5615799B2 (en) * 2009-02-27 2014-10-29 Hoya株式会社 Method for manufacturing lens mold and method for manufacturing spectacle lens
EP2402133A4 (en) * 2009-02-27 2014-10-15 Hoya Corp Method of producing mold for lens and method of producing eyeglass lens
KR101196887B1 (en) * 2009-10-09 2012-11-01 은현수 Manufacturing for aspherical lens and lensmold
JP2013237261A (en) * 2012-03-26 2013-11-28 Hoya Corp Method of manufacturing die for mold, mold and eyeglass lens
US9676157B2 (en) 2012-03-26 2017-06-13 Hoya Corporation Manufacturing method for mold die, mold and eyeglass lens
KR101620303B1 (en) 2013-06-28 2016-05-12 은현수 Plastic head light lens producting method for vehicle
WO2015056660A1 (en) * 2013-10-15 2015-04-23 日本合成化学工業株式会社 Resin sheet and use thereof
CN105392827A (en) * 2013-10-15 2016-03-09 日本合成化学工业株式会社 Resin sheet and use thereof
WO2015136997A1 (en) * 2014-03-11 2015-09-17 興和株式会社 Ophthalmic lens and method for designing ophthalmic lens
KR20160132908A (en) * 2014-03-11 2016-11-21 코와 가부시키가이샤 Ophthalmic lens and method for designing ophthalmic lens
JP6049939B2 (en) * 2014-03-11 2016-12-27 興和株式会社 Ophthalmic lens and ophthalmic lens design method
KR102302427B1 (en) * 2014-03-11 2021-09-15 코와 가부시키가이샤 Ophthalmic lens and method for designing ophthalmic lens
CN104015276A (en) * 2014-05-24 2014-09-03 江苏康耐特光学有限公司 Manufacturing method of aspheric glass mold
CN108908820A (en) * 2018-06-19 2018-11-30 深圳摩方新材科技有限公司 A kind of manufacturing method of resinae optical mirror slip

Also Published As

Publication number Publication date
JP4969277B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4969277B2 (en) Glass mold for spectacle lens, manufacturing method thereof, and manufacturing method of spectacle lens
KR101998550B1 (en) Glasses lens and method for making same
JP6316184B2 (en) Manufacturing method of polarizing lens
JP2019521397A5 (en)
CN1980779B (en) Mold designing method, mold, and molded piece
JPH0588647B2 (en)
BRPI0618657A2 (en) method of making a shaped article, glassware for use in a forming method, and method of determining a shape of a surface
CN102490103B (en) Meniscus lens and processing method therefor
JP2008285375A (en) Joined optical element and its manufacturing method
CN100447585C (en) New type lens, fabricating technique, and fabrication die
AU648209B2 (en) Polymer bifocal lens production process
JP2008285376A (en) Joined optical element
JP2008285374A (en) Joined optical element and its manufacturing method
JPH06130333A (en) Production of glass mold for multifocal spectacle lens
JP2008285377A (en) Joined optical element
JP5495529B2 (en) Manufacturing method of lens mold and manufacturing method of lens
US20050018311A1 (en) Method of producing aspherical optical surfaces
JP2014002342A (en) Semifinished lens and design method of semifinished lens
CN104015276A (en) Manufacturing method of aspheric glass mold
JPH02234103A (en) Resin cemented type aspherical lens
CN219926770U (en) Environment-friendly aspherical resin lens injection mold
CN110549586A (en) Lens molding method, lens mold and lens
JP4780937B2 (en) Mold design method, mold and mold manufacturing method
JP2006215216A (en) Manufacturing method of spectacle lens, and spectacle lens
JP4850145B2 (en) Optical element molding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250