JP2013032039A - Motorized tractor - Google Patents

Motorized tractor Download PDF

Info

Publication number
JP2013032039A
JP2013032039A JP2011167866A JP2011167866A JP2013032039A JP 2013032039 A JP2013032039 A JP 2013032039A JP 2011167866 A JP2011167866 A JP 2011167866A JP 2011167866 A JP2011167866 A JP 2011167866A JP 2013032039 A JP2013032039 A JP 2013032039A
Authority
JP
Japan
Prior art keywords
front wheel
power generation
motor
battery
output shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011167866A
Other languages
Japanese (ja)
Inventor
Yoshinori Doi
義典 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2011167866A priority Critical patent/JP2013032039A/en
Publication of JP2013032039A publication Critical patent/JP2013032039A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Agricultural Machines (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a motorized tractor with high energy recovery efficiency by accurately grasping a work mode and the like.SOLUTION: A tiller 41 is attached to a tractor body to be able to elevate to a machine body 1. A rear wheel motor 10, which is connected with a battery and performs a driving output to a rear wheel output shaft 12, and a front wheel motor 11, which performs a driving output to a front wheel output shaft 25, are respectively provided. The front wheel motor 11 is configured to be switched to a power generating mode by receiving a power generation output from the front wheel output shaft 25 side. A power charger is connected with a circuit of the front wheel motor 11 and generates power to charge the battery by receiving the power generation output from the front wheel output shaft 25 side. A brake action is applied to front wheels 2 by a power generating action to prevent so called dashing which is caused by a rotation of rotary claws of the tiller 41.

Description

この発明は、動力源としてバッテリと電動モータとを備えた電動トラクタに関する。   The present invention relates to an electric tractor including a battery and an electric motor as power sources.


走行用車輪を駆動する走行用電動モータと、作業機駆動用PTO軸を駆動するPTO用電動モータを備えた構成が公知である(特許文献1)。特許文献1には、機体を走行させて作業を行う場合には走行用電動モータとPTO用電動モータを駆動し、PTO用電動モータでPTO軸を回転させ、走行用電動モータで後輪及び前輪を駆動して機体を走行させる。ところで、引用文献1は、走行系電動モータから車輪へ至る動力伝動系にPTO系動力を合流させる構成であるため、走行負荷が増大して機体の前進速度が落ちてきた場合にはPTO電動モータの動力の一部を走行系に合流させ、走行トルクの不足分を補わせることができ、作業内容や圃場の土質条件に応じた効率的な動力伝達が可能とさせる。
特開2002−356116号公報

A configuration including a traveling electric motor that drives a traveling wheel and a PTO electric motor that drives a work machine driving PTO shaft is known (Patent Document 1). In Patent Document 1, when an operation is performed by running the machine body, the electric motor for traveling and the electric motor for PTO are driven, the PTO shaft is rotated by the electric motor for PTO, and the rear and front wheels are driven by the electric motor for traveling. To drive the aircraft. By the way, the cited document 1 is a configuration in which the PTO system power is joined to the power transmission system from the traveling system electric motor to the wheels, and therefore, when the traveling load increases and the forward speed of the vehicle body decreases, the PTO electric motor is reduced. A part of the power of the vehicle can be joined to the traveling system to compensate for the shortage of the traveling torque, and efficient power transmission according to the work contents and soil condition of the field is made possible.
JP 2002-356116 A


ところが、機体の後部に耕耘作業機を装着して耕耘作業を行う場合、耕耘作業機を駆動する駆動力で耕耘軸を回転させると耕耘爪が土壌を耕耘する際に生じる回転力が機体を前進側に押す力を生じて、走行車輪はこの押す力に抗して寧ろブレーキ状態となる。したがって、引用文献1の構成に基づく走行トルクの不足を補う構成とすると却って非効率となり易い。

However, when a tillage work machine is attached to the rear part of the machine, when the tillage shaft is rotated by the driving force that drives the work machine, the rotational force generated when the tillage claws plows the soil advances the machine. A pushing force is generated on the side, and the traveling wheel is in a brake state against this pushing force. Therefore, if it is configured to compensate for the shortage of running torque based on the configuration of cited document 1, it tends to be inefficient.

この発明は上記に鑑み、作業状態等を的確に把握してエネルギ回収効果の高い電動トラクタを具現しようとする。   In view of the above, the present invention intends to realize an electric tractor having a high energy recovery effect by accurately grasping a working state and the like.

この発明は前記課題に鑑み、次のような技術的手段を講じた。
即ち、請求項1の発明では、前後に走行用の車輪2,5を備えた機体1に耕耘作業機41を昇降自在に装着し、該機体1にはバッテリー45,65を備え、該バッテリー45に接続され後輪出力軸12に駆動出力する後輪用モータ10と前輪出力軸25に駆動出力する前輪用モータ11を夫々設け、前輪用モータ11を前輪出力軸25側からの発電出力を受けて発電状態に切換わる構成とした電動トラクタとする。
請求項2に記載の発明は、前輪用モータ11の回路に充電器49を接続することにより、前輪出力軸25側からの発電出力を受けて発電し前記バッテリー45,65を充電する構成とした請求項1に記載の電動トラクタとする。
このように構成し、後輪用モータ10を起動し適宜に回転駆動される耕耘作業機41を降下して作業姿勢に接地する。このとき前輪用モータ11を非駆動状態としておくことにより、前輪2は接地によって回転し、非駆動状態におかれた前輪用モータ11は発電機に切り替わる。この発電作用により前輪2にブレーキ作用を付与し、耕耘作業機41のロータリ爪の回転による所謂ダッシングを防止する。そして、前輪用モータ11の発電作用により充電器49を介してバッテリー45,65を充電する。
請求項3に記載の発明は、発電機能を備えた前記前輪用モータ11は、耕耘作業機41を非作業状態とする昇降機構38に対する上昇指令信号に基づき電力供給による前輪出力軸25を起動するモータ状態とし、逆に耕耘作業機41を作業状態とする下降指令信号に基づき前輪出力軸25側からの発電出力による発電状態に切り換える切換手段48を構成した請求項1又は請求項2に記載の電動トラクタとする。
このように構成することによって、自動的にモータ状態と発電状態に切り換わる。ダッシングを惹き起こし易い作業状態では発電状態として前輪2をブレーキ状態とする。
請求項4に記載の発明は、発電機能を備えた前記前輪用モータ11のモータ電流を検出する電流検出手段61を設け、この電流検出結果に基づき前輪用モータ11をモータ状態から発電状態に切り換える構成とした請求項1又は請求項2に記載の電動トラクタとする。
電流検出手段61により、ダッシング現象によって前輪の負荷電流が所定以下に低下することを判定すると、前輪用モータ11はモータ状態から発電状態に自動的に切り換わる。
請求項5に記載の発明は、後輪用モータ10によって後部装着の作業機用伝動軸17を駆動する構成とした請求項1〜請求項4のいずれか一に記載の電動トラクタとする。このように構成すると、後輪駆動とともに作業機を駆動することとなり、モータを兼用できる。
In view of the above problems, the present invention has taken the following technical means.
That is, according to the first aspect of the present invention, the tilling work machine 41 is mounted on the machine body 1 having the front and rear wheels 2 and 5 so as to be movable up and down, and the machine body 1 is provided with the batteries 45 and 65. Are provided with a rear wheel motor 10 for driving output to the rear wheel output shaft 12 and a front wheel motor 11 for driving output to the front wheel output shaft 25, respectively. The front wheel motor 11 receives the power generation output from the front wheel output shaft 25 side. Thus, the electric tractor is configured to be switched to the power generation state.
According to the second aspect of the present invention, the charger 49 is connected to the circuit of the front wheel motor 11 so as to receive the power generation output from the front wheel output shaft 25 side and generate power to charge the batteries 45 and 65. The electric tractor according to claim 1.
In this way, the rear wheel motor 10 is started and the tilling work machine 41, which is driven to rotate appropriately, is lowered and grounded to the working posture. At this time, by setting the front wheel motor 11 in the non-driven state, the front wheel 2 rotates by grounding, and the front wheel motor 11 placed in the non-driven state is switched to the generator. This power generation action applies a braking action to the front wheels 2 to prevent so-called dashing due to the rotation of the rotary claws of the tillage work machine 41. The batteries 45 and 65 are charged via the charger 49 by the power generation action of the front wheel motor 11.
According to a third aspect of the present invention, the front wheel motor 11 having a power generation function activates the front wheel output shaft 25 by power supply based on an ascending command signal to the lifting mechanism 38 that puts the tillage working machine 41 in a non-working state. 3. The switching means for switching to a power generation state by a power generation output from the front wheel output shaft 25 side on the basis of a lowering command signal for setting the motor state and conversely setting the tillage work machine 41 to the working state. Electric tractor.
With this configuration, the motor state and the power generation state are automatically switched. In a working state in which dashing is likely to occur, the front wheel 2 is brought into a brake state as a power generation state.
According to a fourth aspect of the present invention, there is provided current detection means 61 for detecting the motor current of the front wheel motor 11 having a power generation function, and the front wheel motor 11 is switched from the motor state to the power generation state based on the current detection result. The electric tractor according to claim 1 or claim 2 configured.
When it is determined by the current detection means 61 that the load current of the front wheels decreases below a predetermined level due to the dashing phenomenon, the front wheel motor 11 automatically switches from the motor state to the power generation state.
The invention according to claim 5 is the electric tractor according to any one of claims 1 to 4, wherein the rear-wheel motor 10 drives the rear-mounted work machine transmission shaft 17. If comprised in this way, a working machine will be driven with a rear-wheel drive, and a motor can be combined.

本発明は、前記の如く構成したので、以下の効果を奏する。
即ち、請求項1及び請求項2に記載の発明によると、耕耘作業機41を開始すると、前輪用モータ11を非駆動状態としておくことにより、前輪2は接地によって回転し、非駆動状態におかれた前輪用モータ11は発電状態となり、前輪2にブレーキ作用を付与し、耕耘作業機41のロータリ爪の回転による所謂ダッシングを防止できる。また、前輪用モータ11の発電作用により充電器49を介してバッテリー45を充電できる。
請求項3及び請求項4に記載の発明は、請求項1,2に記載の効果に加え、自動的にモータ状態と発電状態に切り換わるのでオペレータの操作負担を軽減できる。
Since the present invention is configured as described above, the following effects can be obtained.
That is, according to the first and second aspects of the invention, when the tillage work machine 41 is started, the front wheel motor 11 is set in a non-driven state, so that the front wheel 2 rotates by grounding and is brought into a non-driven state. The front wheel motor 11 is in a power generation state, applies a braking action to the front wheel 2, and can prevent so-called dashing due to rotation of the rotary claws of the tillage work machine 41. Further, the battery 45 can be charged via the charger 49 by the power generation action of the front wheel motor 11.
In addition to the effects described in claims 1 and 2, the invention described in claims 3 and 4 can automatically switch between the motor state and the power generation state, thereby reducing the operation burden on the operator.

請求項5に記載の発明は、請求項1乃至請求項3の効果に加え、後輪駆動とともに作業機を駆動することとなり、モータを兼用できる。   According to the fifth aspect of the present invention, in addition to the effects of the first to third aspects, the work machine is driven together with the rear wheel drive, so that the motor can also be used.

トラクタの全体側面図Overall side view of tractor トラクタの全体平面図Overall view of the tractor 伝動関係概要図Transmission diagram 制御ブロック図Control block diagram 制御ブロック図Control block diagram バッテリー装着状態を示す側面図(A)、その展開斜視図(B)、ヒッチ部材斜視図(C)Side view (A) showing the battery mounted state, developed perspective view (B), hitch member perspective view (C) バッテリー装着状態を示す側面図Side view showing the battery installed フローチャートflowchart フローチャートflowchart フローチャートflowchart フローチャートflowchart フローチャートflowchart フローチャートflowchart フローチャートflowchart フローチャートflowchart フローチャートflowchart

以下、図面に基づいて、この発明の実施例を説明する。
本実施例の電動トラクタの側面図を図1に、その平面図を図2にそれぞれ示す。
機体1の前部下側に左右一対の前輪2を有したフロントアクスル3をセンタピボット4周りに揺動自在にして支架し、後部下側に左右一対の後輪5を有したリヤアクスルケース6を機体1構成一部の伝動ケース7の左右に夫々支架する。
伝動ケース7内とボンネット8内には夫々後輪用モータ10、前輪用モータ11を備えている。
後輪用モータ10の出力軸12のピニオンギヤ13は後輪デフ機構14のリングギヤを連動し、該出力軸12の途中から中間ギヤ群15を介して伝動を分岐しPTO伝動軸17を駆動する構成である。さらに、該中間ギヤ15を介して油圧ポンプ18を駆動する構成としている。
前記後輪デフ機構14から左右に後車軸19を延出し、差動出力はブレーキ機構20,減速ギヤ機構21を経て後車輪軸22を連動する構成としている。
また、前記前輪用モータ11の出力軸25のピニオンギヤ26は、前輪デフ機構27のリングギヤ28を駆動する構成である。さらに、フロントアクスル3内に支架された左右の前車軸29を差動回転駆動する構成としている。前車軸28と前輪軸30との間の最終減速部には前輪2を操向可能に縦伝動軸31を備えている。
機体1を構成する伝動ケース7の後部には一対のロアリンク35と単一のトップリンク36とからなる3点リンク機構37を設け、昇降機構としての油圧式昇降シリンダ機構38によって昇降連動可能に構成している。すなわち、油圧式昇降シリンダ機構38のリフトアーム39とロアリンク35とをリフトロッド40で連結しており、昇降シリンダへの圧油の給排により、リフトアーム39を回動し、3点リンク機構37はその後部側を昇降連動する。なお、昇降シリンダへの圧油は、操作席31近傍の昇降レバー32の操作を往復操作することにより、前記油圧ポンプ18にて所定の作動油を図外バルブの切換えに基づいて供給又は排出できる構成としている。
3点リンク機構37の後部には耕耘作業機41を装着している。該作業機41はロータリ耕耘爪42を配設した耕耘軸43や各種カバー類を備えて、耕耘爪42は回転によって土壌中に打ち込まれ耕耘する公知の構成である。なお、耕耘軸43は図例の矢印D方向に回転し、耕耘爪42は耕耘作業機41機体の前側から打ち込まれて後方より耕耘土壌を跳ね上げるように作用する。
なお、前記PTO伝動軸17の後端は伝動ケース7の後部に延出してPTO取出軸部17aを形成し、自在継手軸を介して耕耘作業機41を駆動できる構成である。
図4又は図5のブロック図において、前記後輪用モータ10及び前輪用モータ11は、共にバッテリー45,65に電気的に接続され電力供給を受けて後輪用インバータ46及び前輪用インバータ47で設定された回転数Nf,Nrで回転し、後輪5及び前輪2を駆動できる構成としている。なお、後輪用インバータ46、前輪用インバータ47への変更入力は、アクセルペダル51の検出踏込量出力、及び前後進レバー52の機体前後進切換出力、起動・停止スイッチ53操作出力等に基づく。
ところで、前記前輪用モータ11は、出力軸25側からの駆動によって発電出力する発電機としての機能を併せ有する発電機能型電動機とされ、前輪2の回転を前車軸29を介して該前輪用モータ11に伝え、発電原理に基づき発電できる構成としている。詳細には前輪用モータ11とバッテリー45との間に切換スイッチ手段48(切換手段)を設け、一方は前輪用インバータ47に選択接続され、他方は充電器49に選択接続される構成である。切換スイッチ手段48のこれらへの切換は図外手動切換レバーによるほか、後記のように自動制御を行わせてもよい。
なお、回路途中に介在するバッテリーコントローラ50はバッテリー45,65からの電力供給を制御しあるいはバッテリー45,65への充電出力を制御するものである。
次いで、バッテリー45の機体への搭載構成について説明する。従来の農業用トラクタと比較すると、エンジンが不要であり、伝動ケース7内では各種変速機構が不要となるため当該箇所を利用してバッテリー45を装着することもある。ところが、重量が大であるため次のように構成してもよい。すなわち、機体1の前部又は後部(図例では前部)に平行リンク機構55を装着し、この平行リンク機構55にヒッチ部材56を構成しバッテリー45を搭載する。具体的には機体1の前部に平行リンク機構55を上下回動自在に装着し電動伸縮シリンダ57の伸縮作動によって前側のヒッチ部材56を平行に上下できる構成である。ヒッチ部材56にはバッテリー45の一側に形成する山形凹部45cを係合できる山形凸部56vを形成し、両者を係合すると共にフック形態のロック手段58をもって前後のずれ動きを規制してバッテリー45を機体1に装着する構成である。
このように構成すると、重量の大きいバッテリー45を地面に置き、平行リンク機構55を降下しヒッチ部材56の山形凸部56vをバッテリー45の山形凹部45cに下方側から進入して係合させ、さらに平行リンク機構55及びヒッチ部材56を上昇させてバッテリー45を所定の高さに維持する。この場合、平行リンク機構55にて平行上下させるものであるから水平姿勢を維持でき、バッテリー45が鉛蓄電池のように電解液を封入する形態にあっても当該電解液を偏らせることなく機体1に装着できる。なお、平行リンク機構55の機体1側への装着にあたり、平行リンク機構55を機体前後方向周りに回動調整できる構成とすると機体の左右傾いた状態で作業を行う場合であっても機体ローリング角度を補正して常時水平を維持できるため一層効果的である。
また、図6に示すように、第2のバッテリー45X、第3のバッテリー45Y…は、前後面に前記ヒッチ部材56の山形凸部56vや、バッテリー45の山形凹部45cに相当する山形凹部45cとこれに係合する山形凸部45vを構成してなり、バッテリー45本数を連続して装着できる構成としている。なお、これら山形凹部と山形凸部との間に、電極端子を備えており、順次接続されるバッテリー45X,45Y…は、第1のバッテリー45に対して所謂並列接続の構成となっている。
図7の構成は、積層状態に装着するバッテリー45,45X,45Yにおいて、発電機58を装着できる構成としている。該発電機58は箱体に構成されたフレーム内に小型エンジンを備え発電回路を組み込む構成とし、出力端子は前記積層状態に接続されるバッテリー45X,45Y…と同様に山形凹部58cを形成している。このためバッテリー45に形成される山形凸部45vと係合し合う関係に設けられ、機体1への装着することができる。このため作業中、発電機58を駆動することにより簡易に充電することができる。また、バッテリー45の一対で機体1から外し、適宜の場所で充電作業を行うことができる。
前記のように構成した電動トラクタで耕耘作業を行う。起動・停止スイッチ53を「起動」側に操作し、機体1各部を回転しながら圃場内で昇降レバー32を降下側に操作すると、非作業姿勢にある耕耘作業機41を圃場面に接地させる。この接地によってロータリ耕耘爪42の打ち込み作用が継続し、耕耘作業機41はダッシングしようとし、この作用力によって機体1は所定回転数で作業しようとしても後方から突っ掛けるように耕耘作業機41は所謂ダッシングしようとし、オペレータは昇降レバー32の微調整などで対応するが、この耕耘作業開始にあたり、切換スイッチ手段48を充電器49に選択接続することにより前輪用モータ11は前輪2側からの駆動力で発電状態となり発電出力はバッテリー45の充電に当てられる。この場合、前輪2には駆動力は伝達されないばかりでなく、前輪2への伝動系路を逆に辿って前輪用モータ11を回転駆動するものであるから、前輪2にブレーキ作用が働いて前記ダッシングを防止し、所期の耕耘作業を実施できる(図8)。
また、圃場の端部に達し旋回動作に入るときには前記切換スイッチ手段48を前輪用インバータ47に切換える。これに伴い、前輪用モータ11にバッテリー45側からの電力供給を受け前輪2は駆動される。したがって、前輪を駆動することにより小回り旋回に寄与できる。旋回後耕耘作業再開に当たっては、再度切換スイッチ手段48を充電器49側に切り換える(図8)。
上記のように構成すると、ダッシングを防止でき、然も不要のエネルギーを回収できる効果がある。
前記の実施例では、切換スイッチ手段48の切換えを手動操作で行う形態としたが、以下のように自動的に行う構成でもよい。すなわち、昇降レバー32の上昇操作又は下降操作に基づくものである。昇降レバー32の移動範囲に上昇側検出センサと下降側検出センサを備え、これらの検出結果に基づき、耕耘作業機41が上昇されたか、又は下降されたかを判定し、前輪用モータ11の接続を充電器49側又は前輪用インバータ47側に自動切換えする構成である(図9(切換スイッチ自動選択1))。こうすることにより、旋回時に必須の作業機昇降操作に基づいて自動的に切換スイッチの選択が行われオペレータの負担を軽減する。なお、昇降レバー32が下降側検出センサの位置から上昇側検出センサで検出することに基づいて作業機上昇を判定し、逆の場合に作業機下降を判定できる構成としている。
また、前記昇降シリンダ機構38のリフトアーム39に該アーム角を検出するポテンショメータ型の検出器60を設け、耕耘作業機41の昇降手段としての昇降シリンダ機構38に上昇指令信号が出力し、上記検出器60でリフとアーム39の検出角θが耕耘作業機41の非作業位置への上昇を検出すると、すなわち、あらかじめ設定した所定角度αを越えると、前記切換スイッチ手段48を電力供給により駆動モータとしての機能を有して前輪デフ機構27のリングギヤ28を駆動するモータ状態とし、逆に耕耘作業機41の作業位置への降下を検出すると前輪2及び前車軸29等を経由した出力軸25側からの発電出力を受けて発電状態に切り換わる構成である(図10(切換スイッチ自動選択2))。このように構成すると、上記と同様にオペレータが意識せずとも自動的に選択できるため負担軽減できる。
さらに、以下のように構成することもできる。前輪用モータの電流値Iを検出する電流検出器61を設け、この検出電流値Iがあらかじめ設定した設定電流値Isを越えるか否かに基づき、例えば前輪2の負荷が軽くなって、電流値Iが設定電流値Is以下になるとダッシングを惹起していると判定し、充電器49側に切り換える(図11(切換スイッチ自動選択3))。又は、後輪用モータ10の検出電流値Irに対する前輪用モータ11の検出電流値Ifの比があらかじめ設定した値β以下になるか否かでダッシングを受けているか否かを判定し、充電器49側に切り換える(図12(切換スイッチ自動選択4))。いずれの場合もモータ電流の監視により、前輪用モータ11を電力の供給を受けて出力軸を駆動するモータ状態か、あるいはこの前輪用モータ11を前輪2側からの駆動力を受ける発電状態かを自動的に切換でき、オペレータの操作負担を軽減する。
ついで、複数のバッテリー45,45X,45Y…を装着する構成の放電等制御について説明する。図13のように、トラクタ機体1の外装状態に着脱しうる外付け型のバッテリー45に対し、トラクタ機体1のボンネット8内に内蔵型のバッテリー65を設けている。以下、内蔵型バッテリー65を第1バッテリー65、外付け型バッテリー45を第2バッテリー45と称する。ブロック図(図5)のように、第1,第2バッテリー65,45、前・後輪用インバータ46,47、充電器49、バッテリーコントローラ50を接続する。まず、外付けの第2バッテリー45を装着する場合には、外付けのため交換可能な第2バッテリー45から内蔵の第1バッテリー65に充電可能に構成している。交換可能の第2バッテリー45から交換の容易でない内蔵型の第1バッテリー65に充電可能に構成することで内蔵型の第2バッテリー65を常時満充電状態とすることができ、作業性を向上できる。
また、第1,2のバッテリー45,65の放電制御について、バッテリーコントローラ50は、接続されるバッテリー45,65につき、前・後輪用モータ10,11への電力供給の順番制御を行う。すなわち、第2バッテリー45の使用(放電消費)を優先し、この第2バッテリー45が放電完了すると第1バッテリーからの電力供給を受けるようバッテリーコントローラ50は順序制御する。これによって、交換可能のバッテリー45から使用することで内蔵の第2バッテリー65の使用状況を見て外付けの第1バッテリーの充電時期を明確化できる。
以下の例は、前進から後進、あるいはその逆の操作を行う場合の安全を図る。前後進レバー52があっても直ちにこれにしたがって前輪用モータ11や後輪用モータ10を切り換えることとせず、アクセルペダル51の踏込量検出センサ66、前後進レバー52の前進・後進位置検出スイッチ67f,67r等の検出結果に基づき、一定の条件が整うときに適正にモータを正転または逆転に切換るものである。図13に示すように、前後進レバー52の操作があったとき、アクセルペダル51の踏込量検出センサ66がほぼゼロの状態、つまりオペレータがアクセルペダル51の踏み込みを解除することを条件に前後進レバー52で設定した方向に前進用モータ11、後進用モータ10を切換作動する(前後進切換制御1)。したがって、前後進レバー52操作後直ちに逆方向に発進する恐れがなく安全である。また、図14の例は、車速センサ68を設け、検出車速が所定低速Vm以下にならないと前後進レバー52で設定した方向に発進しない構成として安全を確保する(前後進切換制御2)。なおこれら例では、前輪用モータ11の発電状態は必ずしも必要ではない。
また図15は、旋回時前輪・後輪比制御を示し、ハンドル70操作によって旋回操作を行うが、このとき、前輪切れ角検出手段71によって旋回角度を検出し、この旋回角に応じたモータ回転となるよう前・後輪用インバータ46,47に回転補正出力し、旋回角度毎のあらかじめ設定した前輪・後輪回転比で旋回を行うものである。このように構成すると、小さな旋回半径で旋回動作を行うことができる。
さらに、図16は、片ブレーキ時前輪増速制御を示し、左・右ブレーキ検出スイッチ72L,72Rの検出結果に基づき、所謂片ブレーキ操作を行うときは、前輪用インバータ47に増速指令信号を出力する構成である。片ブレーキ操作は小回り旋回を行うときに用いられるが、機体1の回転中心が後輪軸線になって前輪と後輪の回転半径が異なり、前輪が却ってブレーキとなる。ところが、上記のように前輪を増速することで小回りを容易に行うことができる。図15、16の例も前輪用モータ11の発電状態は必ずしも必要ではない。
Embodiments of the present invention will be described below with reference to the drawings.
A side view of the electric tractor of the present embodiment is shown in FIG. 1, and a plan view thereof is shown in FIG.
A front axle 3 having a pair of left and right front wheels 2 on the lower front side of the body 1 is swingably supported around the center pivot 4 and a rear axle case 6 having a pair of left and right rear wheels 5 is mounted on the lower side of the rear part. 1 configuration A part of the transmission case 7 is supported on the left and right respectively.
A rear wheel motor 10 and a front wheel motor 11 are provided in the transmission case 7 and the hood 8, respectively.
The pinion gear 13 of the output shaft 12 of the rear wheel motor 10 interlocks with the ring gear of the rear wheel differential mechanism 14, and the transmission is branched from the middle of the output shaft 12 via the intermediate gear group 15 to drive the PTO transmission shaft 17. It is. Further, the hydraulic pump 18 is driven via the intermediate gear 15.
A rear axle 19 is extended from the rear wheel differential mechanism 14 to the left and right, and the differential output is configured to interlock with the rear wheel shaft 22 via a brake mechanism 20 and a reduction gear mechanism 21.
Further, the pinion gear 26 of the output shaft 25 of the front wheel motor 11 is configured to drive the ring gear 28 of the front wheel differential mechanism 27. Further, the left and right front axles 29 supported in the front axle 3 are configured to be differentially driven. A vertical transmission shaft 31 is provided at a final speed reduction portion between the front axle 28 and the front wheel shaft 30 so that the front wheel 2 can be steered.
A three-point link mechanism 37 comprising a pair of lower links 35 and a single top link 36 is provided at the rear part of the transmission case 7 constituting the airframe 1 and can be moved up and down by a hydraulic lifting cylinder mechanism 38 as a lifting mechanism. It is composed. That is, the lift arm 39 of the hydraulic lift cylinder mechanism 38 and the lower link 35 are connected by a lift rod 40, and the lift arm 39 is rotated by supply and discharge of pressure oil to and from the lift cylinder. 37 moves up and down the rear side. Note that the hydraulic oil to the lifting cylinder can be supplied or discharged by the hydraulic pump 18 based on switching of a non-illustrated valve by reciprocating the operation of the lifting lever 32 in the vicinity of the operation seat 31. It is configured.
A tilling work machine 41 is attached to the rear of the three-point link mechanism 37. The working machine 41 is provided with a tilling shaft 43 provided with a rotary tilling claw 42 and various covers, and the tilling claw 42 is a known configuration that is driven into the soil by rotation and tilled. The tilling shaft 43 rotates in the direction of arrow D in the figure, and the tilling claw 42 is driven from the front side of the tilling work machine 41 and acts to jump up the tilling soil from the rear.
The rear end of the PTO transmission shaft 17 extends to the rear portion of the transmission case 7 to form a PTO take-out shaft portion 17a, and the tilling work machine 41 can be driven via the universal joint shaft.
In the block diagram of FIG. 4 or FIG. 5, the rear wheel motor 10 and the front wheel motor 11 are both electrically connected to the batteries 45 and 65 and are supplied with electric power to receive the rear wheel inverter 46 and the front wheel inverter 47. The rear wheel 5 and the front wheel 2 can be driven by rotating at the set rotation speeds Nf and Nr. The change input to the rear-wheel inverter 46 and the front-wheel inverter 47 is based on the detected depression amount output of the accelerator pedal 51, the fuselage forward / reverse switching output of the forward / reverse lever 52, the operation output of the start / stop switch 53, and the like.
By the way, the front wheel motor 11 is a power generation function type electric motor that also has a function as a generator that generates and outputs power by driving from the output shaft 25 side, and the rotation of the front wheel 2 is transmitted through the front axle 29 to the front wheel motor. 11 to generate power based on the power generation principle. Specifically, a changeover switch means 48 (switching means) is provided between the front wheel motor 11 and the battery 45, one of which is selectively connected to the front wheel inverter 47 and the other is selectively connected to the charger 49. The changeover means 48 may be switched to these by automatic control as described later, as well as by a manual switching lever (not shown).
The battery controller 50 interposed in the circuit controls the power supply from the batteries 45 and 65 or controls the charging output to the batteries 45 and 65.
Next, a configuration for mounting the battery 45 on the fuselage will be described. Compared to a conventional agricultural tractor, an engine is not required, and various transmission mechanisms are not required in the transmission case 7, so the battery 45 may be mounted using the relevant part. However, since it is heavy, it may be configured as follows. That is, the parallel link mechanism 55 is mounted on the front or rear (front in the illustrated example) of the machine body 1, and the hitch member 56 is configured on the parallel link mechanism 55 to mount the battery 45. Specifically, the parallel link mechanism 55 is mounted on the front portion of the machine body 1 so as to be rotatable up and down, and the front hitch member 56 can be moved up and down in parallel by the expansion and contraction operation of the electric expansion and contraction cylinder 57. The hitch member 56 is formed with a mountain-shaped convex portion 56v that can engage with a mountain-shaped concave portion 45c formed on one side of the battery 45, engages both, and restricts the forward / backward movement by the hook-shaped locking means 58. 45 is mounted on the body 1.
With this configuration, the heavy battery 45 is placed on the ground, the parallel link mechanism 55 is lowered, and the mountain-shaped convex portion 56v of the hitch member 56 enters and engages the mountain-shaped concave portion 45c of the battery 45 from below, The parallel link mechanism 55 and the hitch member 56 are raised to maintain the battery 45 at a predetermined height. In this case, since the parallel link mechanism 55 is used to move up and down in parallel, the horizontal posture can be maintained, and even if the battery 45 is in the form of encapsulating the electrolyte solution like a lead storage battery, the airframe 1 does not bias the electrolyte solution. Can be attached to. Note that when the parallel link mechanism 55 is mounted on the body 1 side, the parallel link mechanism 55 can be adjusted to rotate about the longitudinal direction of the body. This is more effective because the level can always be maintained by correcting.
As shown in FIG. 6, the second battery 45X, the third battery 45Y,... Have a chevron convex portion 56v of the hitch member 56 on the front and rear surfaces, and a chevron concave portion 45c corresponding to the chevron concave portion 45c of the battery 45. A mountain-shaped convex portion 45v that engages with this is configured, and the number of 45 batteries can be continuously mounted. Note that the battery terminals 45X, 45Y,..., Which are provided with electrode terminals between the chevron-shaped concave portions and the chevron-shaped convex portions and are sequentially connected, have a so-called parallel connection configuration with respect to the first battery 45.
7 is configured such that the generator 58 can be mounted in the batteries 45, 45X, and 45Y that are mounted in a stacked state. The generator 58 includes a small engine in a frame formed in a box and incorporates a power generation circuit, and an output terminal is formed with a mountain-shaped recess 58c in the same manner as the batteries 45X, 45Y. Yes. For this reason, it is provided in a relationship of engaging with the mountain-shaped convex portion 45 v formed in the battery 45, and can be attached to the machine body 1. For this reason, it can charge easily by driving the generator 58 during a work. Further, the battery 45 can be removed from the machine body 1 with a pair of batteries 45 and charged at an appropriate place.
Tillage work is performed with the electric tractor configured as described above. When the start / stop switch 53 is operated to the “start” side and the lifting / lowering lever 32 is operated to the lowering side in the field while rotating each part of the body 1, the tilling work machine 41 in the non-working posture is grounded to the field scene. The grounding operation of the rotary tilling claw 42 continues by this contact, and the tilling work machine 41 tries to do the dashing, and the action work force makes the sowing work machine 41 soaked from the rear even if trying to work at a predetermined rotational speed. The operator tries to do the dashing, and the operator responds by fine adjustment of the elevating lever 32. At the start of the tilling work, the front wheel motor 11 is driven from the front wheel 2 side by selectively connecting the changeover switch means 48 to the charger 49. The power generation state is reached and the power generation output is applied to the charging of the battery 45. In this case, not only the driving force is not transmitted to the front wheels 2, but also the front wheel motor 11 is rotationally driven by tracing back the transmission path to the front wheels 2, so that the braking action is applied to the front wheels 2 and Dashing can be prevented and desired tilling work can be carried out (Fig. 8).
When the end of the field is reached and the turning operation is started, the changeover switch means 48 is switched to the front wheel inverter 47. Along with this, the front wheel 2 is driven by the power supply from the battery 45 side to the front wheel motor 11. Therefore, driving the front wheels can contribute to a small turn. When restarting the tilling work after the turn, the changeover switch means 48 is again switched to the charger 49 side (FIG. 8).
If comprised as mentioned above, dashing can be prevented and there exists an effect which can collect | recover unnecessary energy.
In the above-described embodiment, the changeover switch means 48 is switched manually. However, a configuration in which it is automatically performed as follows may be used. That is, it is based on the raising or lowering operation of the lifting lever 32. The moving range of the elevating lever 32 is provided with an ascending side detection sensor and a descending side detection sensor. Based on these detection results, it is determined whether the tilling work machine 41 is raised or lowered, and the front wheel motor 11 is connected. It is the structure which switches automatically to the charger 49 side or the inverter 47 for front wheels (FIG. 9 (switching switch automatic selection 1)). By doing so, the selector switch is automatically selected based on a work implement lifting operation essential during turning, thereby reducing the burden on the operator. It should be noted that the construction machine can be determined to be lifted based on the detection of the lifting lever 32 from the position of the descending side detection sensor by the rising side detection sensor, and in the opposite case, the construction machine can be judged to descend.
The lift arm 39 of the lift cylinder mechanism 38 is provided with a potentiometer type detector 60 for detecting the arm angle, and the lift command signal is output to the lift cylinder mechanism 38 as the lift means of the tillage work machine 41 to detect the detection. When the detection angle θ of the riff and arm 39 is detected to rise to the non-working position of the tilling work machine 41 by the device 60, that is, exceeds the predetermined angle α set in advance, the changeover switch means 48 is supplied with power to drive motor. When the lowering of the tilling work machine 41 to the working position is detected, the output shaft 25 side via the front wheel 2 and the front axle 29 is detected. Is configured to switch to a power generation state in response to the power generation output from (FIG. 10 (switching switch automatic selection 2)). With this configuration, the load can be reduced because the operator can automatically select without being aware of the same as described above.
Furthermore, it can also be configured as follows. A current detector 61 for detecting the current value I of the front wheel motor is provided. Based on whether or not the detected current value I exceeds a preset current value Is, for example, the load on the front wheel 2 becomes lighter and the current value When I becomes equal to or less than the set current value Is, it is determined that dashing is caused, and switching to the charger 49 side (FIG. 11 (switching switch automatic selection 3)). Alternatively, it is determined whether or not the dashing is performed based on whether the ratio of the detected current value If of the front wheel motor 11 to the detected current value Ir of the rear wheel motor 10 is equal to or less than a preset value β. Switch to 49 side (FIG. 12 (selection switch automatic selection 4)). In either case, the motor current is monitored to determine whether the front wheel motor 11 is in a motor state in which power is supplied to drive the output shaft, or whether the front wheel motor 11 is in a power generation state in which the driving force is received from the front wheel 2 side. It can be switched automatically, reducing the operational burden on the operator.
Next, a description will be given of control of discharging and the like in a configuration in which a plurality of batteries 45, 45X, 45Y. As shown in FIG. 13, a built-in battery 65 is provided in the hood 8 of the tractor body 1 with respect to the external battery 45 that can be attached to and detached from the exterior of the tractor body 1. Hereinafter, the built-in battery 65 is referred to as a first battery 65, and the external battery 45 is referred to as a second battery 45. As shown in the block diagram (FIG. 5), the first and second batteries 65 and 45, the front and rear wheel inverters 46 and 47, the charger 49, and the battery controller 50 are connected. First, when the external second battery 45 is mounted, the internal first battery 65 can be charged from the replaceable second battery 45 for external attachment. By configuring the built-in type first battery 65, which is not easy to replace, from the replaceable second battery 45, the built-in type second battery 65 can be always fully charged, and workability can be improved. .
Regarding the discharge control of the first and second batteries 45 and 65, the battery controller 50 controls the order of power supply to the front and rear wheel motors 10 and 11 for the connected batteries 45 and 65. That is, priority is given to the use (discharge consumption) of the second battery 45, and the battery controller 50 controls the order so that the power supply from the first battery is received when the discharge of the second battery 45 is completed. As a result, by using the replaceable battery 45, it is possible to clarify the charging timing of the externally attached first battery in view of the usage status of the built-in second battery 65.
The following examples provide safety when performing operations from forward to reverse or vice versa. Even if the forward / reverse lever 52 is present, the front wheel motor 11 and the rear wheel motor 10 are not immediately switched in accordance with this, but the depression amount detection sensor 66 of the accelerator pedal 51 and the forward / reverse position detection switch 67f of the forward / reverse lever 52 are detected. , 67r, etc., the motor is properly switched between forward rotation and reverse rotation when certain conditions are met. As shown in FIG. 13, when the forward / reverse lever 52 is operated, the forward / backward advance detection sensor 66 of the accelerator pedal 51 is almost zero, that is, the operator releases the accelerator pedal 51. The forward motor 11 and the reverse motor 10 are switched in the direction set by the lever 52 (forward / reverse switching control 1). Therefore, there is no fear of starting in the reverse direction immediately after the operation of the forward / reverse lever 52, which is safe. Further, in the example of FIG. 14, a vehicle speed sensor 68 is provided, and safety is ensured as a configuration in which the vehicle does not start in the direction set by the forward / reverse lever 52 unless the detected vehicle speed becomes a predetermined low speed Vm or less (forward / reverse switching control 2). In these examples, the power generation state of the front wheel motor 11 is not necessarily required.
FIG. 15 shows the front wheel / rear wheel ratio control during turning, and the turning operation is performed by operating the handle 70. At this time, the turning angle is detected by the front wheel turning angle detecting means 71, and the motor rotation corresponding to the turning angle is performed. Thus, the rotation correction output is output to the front and rear wheel inverters 46 and 47 so that the vehicle is turned at a predetermined front wheel / rear wheel rotation ratio for each turning angle. If comprised in this way, turning operation | movement can be performed with a small turning radius.
Further, FIG. 16 shows front brake speed increase control during single brake, and when a so-called single brake operation is performed based on the detection results of the left / right brake detection switches 72L and 72R, a speed increase command signal is sent to the front wheel inverter 47. It is the structure which outputs. The one-brake operation is used when making a small turn. However, the center of rotation of the airframe 1 is the rear wheel axis, and the rotation radii of the front and rear wheels are different. However, a small turn can be easily performed by increasing the speed of the front wheels as described above. The power generation state of the front wheel motor 11 is not necessarily required in the examples of FIGS.

1 機体
2 前輪
5 後輪
10 後輪用モータ
11 前輪用モータ
12 出力軸(後輪出力軸)
25 出力軸(前輪出力軸)
38 昇降シリンダ機構(昇降機構)
41 耕耘作業機
45 バッテリー
48 切換スイッチ手段(切換手段)
49 充電機
61 電流検出手段
65 バッテリー
1 Airframe 2 Front wheel 5 Rear wheel 10 Rear wheel motor 11 Front wheel motor 12 Output shaft (rear wheel output shaft)
25 Output shaft (front wheel output shaft)
38 Elevating cylinder mechanism (elevating mechanism)
41 Tillage working machine 45 Battery 48 Changeover switch means (switching means)
49 Battery charger 61 Current detection means 65 Battery

Claims (5)

前後に走行用の車輪(2,5)を備えた機体(1)に耕耘作業機(41)を昇降自在に装着し、該機体(1)にはバッテリー(45,65)を備え、該バッテリー(45,65)に接続され後輪出力軸(12)に駆動出力する後輪用モータ(10)と前輪出力軸(25)に駆動出力する前輪用モータ(11)を夫々設け、前輪用モータ(11)を前輪出力軸(25)側からの発電出力を受けて発電状態に切換わる構成とした電動トラクタ。 A tilling work machine (41) is mounted on a machine body (1) having front and rear wheels (2, 5) so as to be movable up and down, and the machine body (1) is provided with a battery (45, 65). A front wheel motor (10) connected to (45, 65) for driving output to the rear wheel output shaft (12) and a front wheel motor (11) for driving output to the front wheel output shaft (25). An electric tractor configured such that (11) receives a power generation output from the front wheel output shaft (25) side and switches to a power generation state. 前輪用モータ(11)の回路に充電器(49)を接続することにより、前輪出力軸(25)側からの発電出力を受けて発電し前記バッテリー(45,65)を充電する構成とした請求項1に記載の電動トラクタ。 A battery charger (49) is connected to the circuit of the front wheel motor (11) to receive power generation output from the front wheel output shaft (25) side to generate power and charge the battery (45, 65). The electric tractor according to Item 1. 発電機能を備えた前記前輪用モータ(11)は、耕耘作業機(41)を非作業状態とする昇降機構(38)に対する上昇指令信号に基づき電力供給による前輪出力軸(25)を起動するモータ状態とし、逆に耕耘作業機(41)を作業状態とする下降指令信号に基づき前輪出力軸(25)側からの発電出力による発電状態に切り換える切換手段(48)を構成した請求項1又は請求項2に記載の電動トラクタ。 The front wheel motor (11) having a power generation function is a motor that activates the front wheel output shaft (25) by power supply based on an ascending command signal to a lifting mechanism (38) that puts the tilling work machine (41) into a non-working state. The switching means (48) configured to switch to a power generation state based on a power generation output from the front wheel output shaft (25) side based on a lowering command signal that sets the state to a tilling work machine (41) in a working state. Item 3. The electric tractor according to Item 2. 発電機能を備えた前記前輪用モータ(11)のモータ電流を検出する電流検出手段(61)を設け、この電流検出結果に基づき前輪用モータ(11)をモータ状態から発電状態に切り換える構成とした請求項1又は請求項2に記載の電動トラクタ。 A current detection means (61) for detecting the motor current of the front wheel motor (11) having a power generation function is provided, and the front wheel motor (11) is switched from the motor state to the power generation state based on the current detection result. The electric tractor according to claim 1 or 2. 後輪用モータ(10)によって後部装着の作業機用伝動軸(17)を駆動する構成とした請求項1〜請求項4のいずれか一に記載の電動トラクタ。 The electric tractor according to any one of claims 1 to 4, wherein the rear wheel motor (10) drives the rear-mounted work machine transmission shaft (17).
JP2011167866A 2011-07-30 2011-07-30 Motorized tractor Withdrawn JP2013032039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011167866A JP2013032039A (en) 2011-07-30 2011-07-30 Motorized tractor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011167866A JP2013032039A (en) 2011-07-30 2011-07-30 Motorized tractor

Publications (1)

Publication Number Publication Date
JP2013032039A true JP2013032039A (en) 2013-02-14

Family

ID=47788315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011167866A Withdrawn JP2013032039A (en) 2011-07-30 2011-07-30 Motorized tractor

Country Status (1)

Country Link
JP (1) JP2013032039A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043317A (en) * 2015-08-28 2017-03-02 株式会社クボタ Electric work vehicle
JP2017189154A (en) * 2016-04-15 2017-10-19 小橋工業株式会社 Agricultural machine
CN109649141A (en) * 2019-01-10 2019-04-19 洛阳智能农业装备研究院有限公司 It is a kind of to set power-driven system configuration for the double of electric tractor
CN109720236A (en) * 2018-12-29 2019-05-07 凯博易控驱动(苏州)股份有限公司 Double-motor power power supply framework, control system and controller
WO2020143277A1 (en) * 2019-01-10 2020-07-16 洛阳智能农业装备研究院有限公司 Power matching method for electric tractor
WO2020143278A1 (en) * 2019-01-10 2020-07-16 洛阳智能农业装备研究院有限公司 Dual-power drive system configuration for electric tractor
JP2020157924A (en) * 2019-03-26 2020-10-01 ヤンマーパワーテクノロジー株式会社 Work vehicle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043317A (en) * 2015-08-28 2017-03-02 株式会社クボタ Electric work vehicle
JP2017189154A (en) * 2016-04-15 2017-10-19 小橋工業株式会社 Agricultural machine
CN109720236A (en) * 2018-12-29 2019-05-07 凯博易控驱动(苏州)股份有限公司 Double-motor power power supply framework, control system and controller
CN109649141A (en) * 2019-01-10 2019-04-19 洛阳智能农业装备研究院有限公司 It is a kind of to set power-driven system configuration for the double of electric tractor
WO2020143277A1 (en) * 2019-01-10 2020-07-16 洛阳智能农业装备研究院有限公司 Power matching method for electric tractor
WO2020143278A1 (en) * 2019-01-10 2020-07-16 洛阳智能农业装备研究院有限公司 Dual-power drive system configuration for electric tractor
JP2022507881A (en) * 2019-01-10 2022-01-18 洛陽智能農業装備研究院有限公司 Dual-powered drive system structure used in electric tractors
JP2022510139A (en) * 2019-01-10 2022-01-26 洛陽智能農業装備研究院有限公司 Electric tractor power distribution method
JP7206385B2 (en) 2019-01-10 2023-01-17 洛陽智能農業装備研究院有限公司 Structure of a dual power drive system for electric tractors
JP2020157924A (en) * 2019-03-26 2020-10-01 ヤンマーパワーテクノロジー株式会社 Work vehicle
JP7149213B2 (en) 2019-03-26 2022-10-06 ヤンマーパワーテクノロジー株式会社 work vehicle

Similar Documents

Publication Publication Date Title
JP2013032039A (en) Motorized tractor
CN103935410B (en) All-dimensional steering obstacle crossing vehicle based on hub motor
JP5740593B2 (en) Work vehicle with electromagnetic brake
EP3401153B1 (en) Electric work vehicle
JP5974637B2 (en) Electric work vehicle
US11872979B2 (en) Work vehicle
JP4815703B2 (en) Tractor
JP2017024710A (en) Tractor
JP5722577B2 (en) Wheeled work vehicle
JP2012075367A (en) Riding lawn mower
JP5847632B2 (en) Riding electric work machine
JP2004350475A (en) Transmission device for work vehicle
KR101324013B1 (en) Electric drive type agriculture vehicles
JP5521941B2 (en) Riding lawn mower vehicle and control method thereof
US9919697B2 (en) Work vehicle
JP2015085783A (en) Work vehicle
JP5798053B2 (en) Tractor
JP2020000115A (en) Sulky type lawn mower
JP5950525B2 (en) Motor control device for electric farm vehicle
JP4644056B2 (en) Miwa management machine
JP5678549B2 (en) Riding lawn mower vehicle and control method thereof
CN220009447U (en) Electric tractor
CN206520649U (en) A kind of electric drive turns to chassis
JP4685565B2 (en) Combine
JP2020000114A (en) Sulky type lawn mower

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007