JP2013029521A - Radioactive waste storage container heat removal structure - Google Patents

Radioactive waste storage container heat removal structure Download PDF

Info

Publication number
JP2013029521A
JP2013029521A JP2012218797A JP2012218797A JP2013029521A JP 2013029521 A JP2013029521 A JP 2013029521A JP 2012218797 A JP2012218797 A JP 2012218797A JP 2012218797 A JP2012218797 A JP 2012218797A JP 2013029521 A JP2013029521 A JP 2013029521A
Authority
JP
Japan
Prior art keywords
storage container
air flow
rising
storage
radioactive waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012218797A
Other languages
Japanese (ja)
Other versions
JP5443573B2 (en
Inventor
Mitsuo Wakamatsu
光夫 若松
Chikako Iwaki
智香子 岩城
Tatsumi Ikeda
達實 池田
Shinichi Morooka
慎一 師岡
Shinji Kubo
伸二 久保
Yasushi Yamamoto
泰 山本
Hiroshi Ikeda
浩 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012218797A priority Critical patent/JP5443573B2/en
Publication of JP2013029521A publication Critical patent/JP2013029521A/en
Application granted granted Critical
Publication of JP5443573B2 publication Critical patent/JP5443573B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To enhance cooling efficiency in a storage shed by improving and working out a storage container stored in the storage shed.SOLUTION: When a wall thickness of a storage container 1 is varied according to a circumferential position, a thermal flow rate is increased at portions having thin wall thicknesses and the thermal flow rate is decreased at portions having thick wall thicknesses. Further, when differences in distribution of thermal flow rates occur due to the circumferential position, a rising speed of a rising air flow in a circumferential direction on a surface of the storage container 1 also becomes non-uniform, an air flow rising in an oblique direction occurs, disturbance of the air flow occurs and heat transfer is accelerated.

Description

本発明は、放射性廃棄物が密封されて成る発熱体を収納して帯熱状態にある筒状収納容
器の除熱構造に関するものである。
The present invention relates to a heat removal structure for a cylindrical storage container that contains a heating element in which radioactive waste is sealed and is in a heated state.

原子力プラントにおける使用済み燃料等の放射性廃棄物は発熱体として密封され、この
密封された発熱体が専用の収納容器に収納されている。そして、この収納容器は、放射線
を遮断するのに充分な厚さを有する鉄筋コンクリート材などで形成された貯蔵庫の内部に
貯蔵される。
Radioactive waste such as spent fuel in a nuclear power plant is sealed as a heating element, and the sealed heating element is stored in a dedicated storage container. And this storage container is stored in the inside of the store | warehouse | chamber formed with the reinforced concrete material etc. which have sufficient thickness to interrupt radiation.

放射性廃棄物を密封して成る発熱体は高温であるため収納容器は帯熱状態となっており
、それ故、貯蔵庫内部の温度もかなりの程度上昇することになる。しかし、貯蔵庫を形成
している鉄筋コンクリート材の耐熱温度はせいぜい60°C程度であるから、貯蔵庫内部
がこれ以上の温度に上昇するのを抑制する必要がある。
Since the heating element formed by sealing the radioactive waste is hot, the storage container is in a heated state. Therefore, the temperature inside the storage is also increased considerably. However, since the heat-resistant temperature of the reinforced concrete material forming the storage is about 60 ° C. at most, it is necessary to suppress the inside of the storage from rising to a temperature higher than this.

そして、従来は、外部から貯蔵庫内部に空気を導入し、この導入空気を貯蔵庫内部に形
成した冷却流路を通過させることにより、貯蔵庫内部の温度上昇を所謂自然冷却方式で抑
制する等の方策が採用されていた(例えば特許文献1参照)。
And conventionally, measures such as suppressing the temperature rise inside the storage by a so-called natural cooling method by introducing air from outside into the storage and passing the introduced air through the cooling flow path formed inside the storage. It has been adopted (see, for example, Patent Document 1).

特開平7−294697号公報Japanese Patent Laid-Open No. 7-294697

しかし、従来採用されていた方策は、いずれも貯蔵庫内部の構造について改善・工夫を
施したものに過ぎないため、自然冷却方式の冷却効率を一定レベル以上に向上させること
は困難であった。
However, since all of the measures that have been employed in the past are merely improvements and improvements to the internal structure of the storage, it has been difficult to improve the cooling efficiency of the natural cooling system to a certain level or more.

本発明は上記事情に鑑みてなされたものであり、貯蔵庫内に貯蔵される収納容器に改善
・工夫を施すことにより、貯蔵庫内での冷却効率を向上させることが可能な放射性廃棄物
収納容器除熱構造を提供することを目的としている。
The present invention has been made in view of the above circumstances, and it is possible to remove a radioactive waste storage container that can improve the cooling efficiency in the storage by improving and devising the storage container stored in the storage. It aims to provide a thermal structure.

上記課題を解決するための手段として、請求項1記載の発明は、放射性廃棄物が密封さ
れて成る発熱体を収納して帯熱状態にある筒状収納容器において、前記筒状収納容器の肉
厚を、その周方向位置に応じて変化させた、ことを特徴とする。
As a means for solving the above-mentioned problem, the invention according to claim 1 is a cylindrical storage container in which a heating element in which radioactive waste is sealed is stored and in a heated state, and the meat of the cylindrical storage container is The thickness is changed according to the position in the circumferential direction.

本発明によれば、貯蔵庫内に貯蔵される収納容器に改善・工夫を施したので、貯蔵庫内
での冷却効率を向上させることができる。
According to the present invention, since the storage container stored in the storage is improved and devised, the cooling efficiency in the storage can be improved.

本発明の第1の実施形態の説明図であり、(a)は正面図、(b)は(a)のB−B矢視図。It is explanatory drawing of the 1st Embodiment of this invention, (a) is a front view, (b) is a BB arrow line view of (a). 本発明の第2の実施形態の説明図であり、(a)は縦断面図、(b)は(a)のB−B矢視図。It is explanatory drawing of the 2nd Embodiment of this invention, (a) is a longitudinal cross-sectional view, (b) is a BB arrow line view of (a). 本発明の第3の実施形態の説明図。Explanatory drawing of the 3rd Embodiment of this invention. 本発明の第4の実施形態の説明図。Explanatory drawing of the 4th Embodiment of this invention. 本発明の第5の実施形態の説明図。Explanatory drawing of the 5th Embodiment of this invention. 本発明の第6の実施形態の説明図。Explanatory drawing of the 6th Embodiment of this invention. 本発明の第7の実施形態の説明図であり、(a)は正面図、(b)は(a)のB−B矢視図、(c)は本実施形態の特性図。It is explanatory drawing of the 7th Embodiment of this invention, (a) is a front view, (b) is a BB arrow line view of (a), (c) is a characteristic view of this embodiment. 図7の第7の実施形態に対応する従来構成の説明図であり、(a)は横断面図、(b)は従来構成の特性図。It is explanatory drawing of the conventional structure corresponding to 7th Embodiment of FIG. 7, (a) is a cross-sectional view, (b) is a characteristic view of a conventional structure. 本発明の第8の実施形態の説明図。Explanatory drawing of the 8th Embodiment of this invention. 本発明の第9の実施形態の説明図。Explanatory drawing of the 9th Embodiment of this invention. 本発明の第10の実施形態の説明図であり、(a)は正面図、(b)は(a)のB−B矢視図。It is explanatory drawing of the 10th Embodiment of this invention, (a) is a front view, (b) is a BB arrow line view of (a).

図1は、本発明の第1の実施形態の説明図であり、(a)は正面図、(b)は(a)の
B−B矢視図である。収納容器1は、例えば直径50cmで高さが8m程度のステンレス
製の円筒状のものであり、図示を省略している貯蔵庫の内部に、グリッドスペーサ等の適
当な支持部材により垂直姿勢に支持された状態で貯蔵されるものである。なお、本実施形
態の収納容器1は、断面形状が円形の円筒状となっているが、本発明の収納容器は断面形
状は特に限定されず、多角形の筒状のものであってもかまわない。
1A and 1B are explanatory views of a first embodiment of the present invention, in which FIG. 1A is a front view and FIG. 1B is a BB arrow view of FIG. The storage container 1 is, for example, a cylindrical cylinder made of stainless steel having a diameter of 50 cm and a height of about 8 m. The storage container 1 is supported in a vertical posture by a suitable support member such as a grid spacer inside a storage that is not shown. It is stored in a heated state. The storage container 1 of the present embodiment has a cylindrical shape with a circular cross section, but the storage container of the present invention is not particularly limited, and may be a polygonal cylindrical shape. Absent.

収納容器1の内部には、高温の放射性廃棄物が密封されて形成された発熱体2が収納さ
れている。そして、収納容器1の表面には多数の円錐状の突起部3が形成されている。突
起部3は、通常は溶接により収納容器1の表面に固着されるので、その材質は収納容器1
と同じステンレス製のものが好ましい。
Inside the storage container 1 is stored a heating element 2 formed by sealing high-temperature radioactive waste. A large number of conical protrusions 3 are formed on the surface of the storage container 1. Since the protrusion 3 is usually fixed to the surface of the storage container 1 by welding, the material thereof is the storage container 1.
The same stainless steel is preferable.

次に、この第1の実施形態の作用につき説明する。収納容器1は発熱体2を収納してい
るため帯熱状態となっている。したがって、収納容器1の表面と接触する空気は、熱せら
れて膨張し、密度が低下するため軽くなって上昇する。つまり、収納容器1の表面付近に
は上昇空気流が発生する。
Next, the operation of the first embodiment will be described. Since the storage container 1 stores the heating element 2, it is in a heated state. Therefore, the air that comes into contact with the surface of the storage container 1 is heated and expands, and the density decreases, so that it becomes lighter and rises. That is, an upward air flow is generated near the surface of the storage container 1.

このとき、この上昇空気流は上昇途中に多数の突起部3とぶつかるため、上昇空気流に
乱れが生じる。そして、この上昇空気流の乱れは、収納容器1に対して接触する空気量の
増大、及び接触時間の増大をもたらすために、収納容器1から上昇空気流への熱伝達率の
増大をもたらすことになる。したがって、本実施形態の収納容器1によれば、表面に何も
形成されていなかった従来の収納容器に比べて効果的な除熱を行うことができ、自然冷却
方式での冷却効率を向上させることができる。
At this time, the rising air flow collides with a large number of protrusions 3 in the middle of the rising, so that the rising air flow is disturbed. The turbulence of the rising air flow causes an increase in the amount of air that contacts the storage container 1 and an increase in the contact time, thereby increasing the heat transfer rate from the storage container 1 to the rising air flow. become. Therefore, according to the storage container 1 of the present embodiment, it is possible to remove heat more effectively than a conventional storage container in which nothing is formed on the surface, and the cooling efficiency in the natural cooling system is improved. be able to.

なお、本実施形態では、突起部3の形状が円錐状の場合を示したが、形状は、上昇空気
流に乱れを生じさせるものであればよいので特に限定されるわけではない。したがって、
円筒状、角柱状など製造上都合の良い形状を適宜採用するようにしても差し支えない。ま
た、突起部3の大きさも特に限定されるわけではなく、非常に小さな微小突起や、あるい
は更に、収納容器1の表面をザラザラした粗粒面に仕上げた場合のミクロ的な凸部なども
本実施形態の「突起部」に含まれる。
In the present embodiment, the case where the shape of the protrusion 3 is conical has been described. However, the shape is not particularly limited as long as it causes disturbance in the ascending air flow. Therefore,
A shape convenient for manufacturing such as a cylindrical shape or a prismatic shape may be appropriately adopted. Further, the size of the protrusion 3 is not particularly limited, and a very small minute protrusion, or a micro-projection when the surface of the storage container 1 is finished to a rough rough surface is also used. It is included in the “projection” of the embodiment.

図2は、本発明の第2の実施形態の説明図であり、(a)は縦断面図、(b)は(a)
のB−B矢視図である。本実施形態では、円筒状の収納容器1の中心部には中空部1aが
形成されている。そして、多段に積層された状態の複数の発熱体2にも中空部1aと同心
の中空部2aが形成されており、これら複数の発熱体2が収納容器1内に収納可能になっ
ている。
FIG. 2 is an explanatory view of a second embodiment of the present invention, where (a) is a longitudinal sectional view, and (b) is (a).
It is a BB arrow line view. In this embodiment, the hollow part 1a is formed in the center part of the cylindrical storage container 1. FIG. The plurality of heating elements 2 stacked in multiple stages are also formed with a hollow part 2a concentric with the hollow part 1a, and the plurality of heating elements 2 can be stored in the storage container 1.

本実施形態によれば、上昇空気流は収納容器1の外周面に沿って上昇するだけでなく、
中空流路として機能する中空部1a内を通って上昇するので、その分だけ収納容器1から
上昇空気流への熱伝達率が増大し、収納容器1の除熱面積が増大することになる。したが
って、本実施形態の収納容器1によれば、中空部が形成されていなかった従来の収納容器
に比べて効果的な除熱を行うことができ、自然冷却方式での冷却効率を向上させることが
できる。
According to this embodiment, the rising air flow not only rises along the outer peripheral surface of the storage container 1,
Since it raises through the hollow part 1a which functions as a hollow flow path, the heat transfer rate from the storage container 1 to an ascending air flow increases correspondingly, and the heat removal area of the storage container 1 increases. Therefore, according to the storage container 1 of the present embodiment, it is possible to remove heat more effectively than a conventional storage container in which no hollow portion is formed, and to improve the cooling efficiency in the natural cooling method. Can do.

なお、本実施形態では、収納容器1内に収納される発熱体2は、複数に分割されて多段
に積層された状態になっているが、発熱体2の形態は種々であり、一体となって収納容器
1内に収納される場合も勿論ある。
In the present embodiment, the heating element 2 stored in the storage container 1 is divided into a plurality of layers and stacked in multiple stages. However, the heating element 2 has various forms and is integrated. Of course, there is a case where it is stored in the storage container 1.

図3は、本発明の第3の実施形態の説明図である。この実施形態では、収納容器1の下
端部及び上端部に流線形キャップ4が取り付けられている。この流線形キャップ4は、例
えばアルミ製のものであり、点溶接等により収納容器1に固着されている。
FIG. 3 is an explanatory diagram of the third embodiment of the present invention. In this embodiment, streamline caps 4 are attached to the lower end and the upper end of the storage container 1. The streamline cap 4 is made of aluminum, for example, and is fixed to the storage container 1 by spot welding or the like.

本実施形態によれば、収納容器1の下端側及び上端側では上昇空気流の流動抵抗が小さ
くなるので、上昇空気流の流速が速くなり、収納容器1から上昇空気流への熱伝達率が増
大する。したがって、本実施形態の収納容器1によれば、流線形キャップ4が取り付けら
れていなかった従来の収納容器に比べて効果的な除熱を行うことができ、自然冷却方式で
の冷却効率を向上させることができる。
According to this embodiment, since the flow resistance of the rising air flow is reduced on the lower end side and the upper end side of the storage container 1, the flow rate of the rising air flow is increased, and the heat transfer rate from the storage container 1 to the rising air flow is increased. Increase. Therefore, according to the storage container 1 of the present embodiment, effective heat removal can be performed as compared with the conventional storage container in which the streamline cap 4 is not attached, and the cooling efficiency in the natural cooling system is improved. Can be made.

なお、本実施形態では、収納容器1の下端部及び上端部の双方に流線形キャップ4を取
り付けているが、スペース等の環境条件に応じて、下端部又は上端部のうちのいずれか一
方のみに流線形キャップ4を取り付ける構成としてもよい。
In the present embodiment, the streamline cap 4 is attached to both the lower end and the upper end of the storage container 1, but only one of the lower end or the upper end depends on the environmental conditions such as space. It is good also as a structure which attaches the streamline cap 4.

図4は、本発明の第4の実施形態の説明図である。この実施形態では、例えば布やスポ
ンジ等の天然繊維又は合成繊維で形成された吸水性部材5により収納容器1の表面が包ま
れている。そして、この吸水性部材5の下端部は、受け皿6に満たされた冷却水7中に浸
された状態になっている。また、受け皿6の上方には、受け皿6内の冷却水7中に没した
状態になっている供給口8a(供給量を調整可能な弁が設けられている)を有する冷却水
供給タンク8が配設されている。なお、受け皿6には水位計(図示せず)が設けられてお
り、水位が低下すると自動的に供給口8aから冷却水7が供給され、常に受け皿6に満た
されている冷却水7の水位が一定に維持されるようになっている。
FIG. 4 is an explanatory diagram of the fourth embodiment of the present invention. In this embodiment, for example, the surface of the storage container 1 is wrapped by a water absorbing member 5 formed of natural fibers or synthetic fibers such as cloth and sponge. And the lower end part of this water absorbing member 5 is the state immersed in the cooling water 7 with which the saucer 6 was filled. A cooling water supply tank 8 having a supply port 8a (provided with a valve capable of adjusting the supply amount) that is immersed in the cooling water 7 in the receiving tray 6 is provided above the receiving tray 6. It is arranged. The tray 6 is provided with a water level gauge (not shown). When the water level drops, the cooling water 7 is automatically supplied from the supply port 8a, and the water level of the cooling water 7 always filled in the tray 6 is provided. Is kept constant.

このような本実施形態の構成によれば、受け皿6に満たされている冷却水7が毛細管現
象により吸水性部材5を上昇して収納容器1の表面に接触する。そして、収納容器1の表
面に接触している水、及び吸水性部材5に含まれている水は、収納容器1の熱により蒸発
する。したがって、このときの水の蒸発によって収納容器1からは熱が奪われるので、収
納容器1の除熱を効果的に行うことができる。
According to such a configuration of the present embodiment, the cooling water 7 filled in the receiving tray 6 ascends the water absorbing member 5 by capillary action and contacts the surface of the storage container 1. The water in contact with the surface of the storage container 1 and the water contained in the water absorbing member 5 are evaporated by the heat of the storage container 1. Therefore, since heat is removed from the storage container 1 by the evaporation of water at this time, the heat removal of the storage container 1 can be effectively performed.

図5は、本発明の第5の実施形態の説明図である。この実施形態は第4の実施形態の変
形例と言えるものである。吸水性部材5により表面が包まれた収納容器1は容器収容ボッ
クス9の内部に配設されている。容器収容ボックス9の底部は受け皿として用いられてお
り、この底部に冷却水7が満たされている。そして、この吸水性部材5の下端部は、容器
収容ボックス9の底部に満たされた冷却水7中に浸された状態になっている。また、容器
収容ボックス9の外側に冷却水供給タンク8が配設され、供給口8aのみが壁を通って冷
却水7中に没した状態になっている。
FIG. 5 is an explanatory diagram of the fifth embodiment of the present invention. This embodiment can be said to be a modification of the fourth embodiment. The storage container 1 whose surface is wrapped by the water absorbing member 5 is disposed inside the container storage box 9. The bottom of the container storage box 9 is used as a tray, and the bottom is filled with cooling water 7. And the lower end part of this water absorbing member 5 is the state immersed in the cooling water 7 with which the bottom part of the container storage box 9 was satisfy | filled. Further, a cooling water supply tank 8 is disposed outside the container housing box 9, and only the supply port 8 a passes through the wall and is immersed in the cooling water 7.

容器収容ボックス9の底部付近であって冷却水7の水面よりやや上方の位置にはエア導
入口9aが形成されると共に、容器収容ボックス9の天井部にはエア排出口9bが形成さ
れている。このエア排出口9bの周囲には、アルミなどの熱伝導性の良好な材料により形
成された放熱フィン10が取り付けられている。
An air inlet 9 a is formed near the bottom of the container housing box 9 and slightly above the water surface of the cooling water 7, and an air outlet 9 b is formed in the ceiling of the container housing box 9. . Around the air discharge port 9b, a radiating fin 10 made of a material having good thermal conductivity such as aluminum is attached.

本実施形態の構成によれば、図4の第4の実施形態で既述したように、収納容器1の表
面に接触している水、及び吸水性部材5に含まれている水が収納容器1の熱により蒸発す
るので、このときの水の蒸発によって収納容器1からは熱が奪われ、収納容器1の除熱を
効果的に行うことができる。
According to the configuration of this embodiment, as already described in the fourth embodiment of FIG. 4, the water in contact with the surface of the storage container 1 and the water contained in the water absorbing member 5 are stored in the storage container. Therefore, the heat is removed from the storage container 1 by the evaporation of water at this time, and the heat removal of the storage container 1 can be performed effectively.

このとき、容器収容ボックス9の内部は水の蒸発により高湿度になっており、エア導入
口9aから導入される乾燥した空気は、湿気を多量に含んだ後にエア排出口9bから排出
されようとする。しかし、エア排出口9bの周囲には放熱フィン10が取り付けられてい
るので、排出されようとする空気に含まれている湿気は、エア排出口9bの内壁に水滴と
して付着する。この付着した水滴は、次第に内壁に沿って下がり、やがて容器収容ボック
ス9の底部に落下する。
At this time, the inside of the container housing box 9 is highly humid due to evaporation of water, and the dry air introduced from the air inlet 9a tends to be discharged from the air outlet 9b after containing a large amount of moisture. To do. However, since the heat radiating fins 10 are attached around the air discharge port 9b, the moisture contained in the air to be discharged adheres to the inner wall of the air discharge port 9b as water droplets. The adhering water drops gradually fall along the inner wall, and eventually fall to the bottom of the container storage box 9.

このように、吸水性部材5に含まれていた水分は、一旦空気中に蒸発するが、また水滴
として落下し、容器収容ボックス9の底部に戻るので、冷却水供給タンク8から供給され
た冷却水7は容器収容ボックス9内で循環することになる。そのため、容器収容ボックス
9の底部における水位の変動はそれほど大きくなることはなく、水位管理が容易になる。
In this way, the water contained in the water absorbing member 5 once evaporates into the air, but also drops as water droplets and returns to the bottom of the container housing box 9, so that the cooling supplied from the cooling water supply tank 8. The water 7 circulates in the container storage box 9. Therefore, the fluctuation of the water level at the bottom of the container housing box 9 does not become so large, and the water level can be easily managed.

また、放熱フィン10の働きにより、排出される空気中の湿分の多くが除去されるので
、容器収容ボックス9が設置される貯蔵庫の室内が高湿度になるのを抑制することができ
る。
Moreover, since most of the moisture in the exhausted air is removed by the action of the heat radiating fins 10, it is possible to suppress the humidity of the interior of the storage in which the container housing box 9 is installed.

図6は、本発明の第6の実施形態の説明図である。この実施形態は、収納容器1の表面
に、収納容器1周囲の上昇空気流を案内するためのワイヤ状部材11を螺旋状に巻回して
固着したものである。
FIG. 6 is an explanatory diagram of the sixth embodiment of the present invention. In this embodiment, a wire-like member 11 for guiding the rising air flow around the storage container 1 is spirally wound and fixed to the surface of the storage container 1.

上昇空気流は収納容器1表面のごく薄い層内で発生するものであり、層外の空気は殆ど
動かない。ところが、図6のように、収納容器1表面にワイヤ状部材11を螺旋状に巻回
して固着すると、上昇空気流が螺旋状に巻回されたワイヤ状部材11にぶつかって乱れが
生じるため、温度の高い上昇空気流とその外側の停止した冷たい空気との境界が乱されて
両者が混合され、上昇空気流の温度が低下する。したがって、収納容器1表面と上昇空気
流との間の温度差が大きくなり、前者から後者への熱伝達が促進されるので、効果的な除
熱が行われることになる。
The rising air flow is generated in a very thin layer on the surface of the storage container 1, and the air outside the layer hardly moves. However, as shown in FIG. 6, when the wire-like member 11 is spirally wound and fixed on the surface of the storage container 1, the ascending air flow hits the wire-like member 11 wound in a spiral, resulting in disturbance. The boundary between the high temperature rising air flow and the cold air that has stopped outside is disturbed and mixed, and the temperature of the rising air flow decreases. Therefore, the temperature difference between the surface of the storage container 1 and the rising air flow is increased, and heat transfer from the former to the latter is promoted, so that effective heat removal is performed.

図7は、本発明の第7の実施形態の説明図であり、(a)は正面図、(b)は(a)の
B−B矢視図、(c)は本実施形態の特性図である。
FIGS. 7A and 7B are explanatory views of a seventh embodiment of the present invention, where FIG. 7A is a front view, FIG. 7B is a view taken along the line BB in FIG. It is.

本実施形態では、図7(b)に示すように、収納容器1の肉厚を、その周方向位置に応
じて変化させたものとしている。つまり、横断面上に仮に設定した回転座標において、0
°(360°)及び180°付近の肉厚を厚くすると共に、90°及び270°付近の肉
厚を薄くしている。
In this embodiment, as shown in FIG.7 (b), the thickness of the storage container 1 shall be changed according to the circumferential direction position. That is, in the rotational coordinates temporarily set on the cross section, 0
The wall thickness near 90 ° (360 °) and 180 ° is increased, and the wall thickness near 90 ° and 270 ° is decreased.

このように、周方向位置に応じて収納容器1の肉厚を変化させておくと、発熱体2から
の熱の伝わり方にも変化が生じ、図7(c)に示すように、肉厚の薄い個所での熱流速は
速くなり、一方、肉厚の厚い個所での熱流速は遅くなる。そして、周方向位置によって熱
流速の分布に差違が生じると、収納容器1表面の上昇空気流の周方向の上昇速度も非均一
となる。この上昇速度の非均一化によって、従来は垂直方向にまっすぐ上昇していた空気
流に横方向への圧力が作用し、図7(a)に示すように、斜め方向に上昇する空気流が発
生する。この斜め方向の上昇空気流と垂直方向の上昇空気流とが衝突することにより、収
納容器1表面の空気流に乱れが生じ、収納容器1表面から上昇空気流への熱伝達が促進さ
れ、効果的な除熱が行われる。
In this way, if the thickness of the storage container 1 is changed according to the circumferential position, the heat transfer from the heating element 2 also changes, and as shown in FIG. The heat flow rate at the thin part increases, while the heat flow rate at the thick part decreases. And if a difference occurs in the distribution of the heat flow rate depending on the circumferential position, the rising speed in the circumferential direction of the rising air flow on the surface of the storage container 1 also becomes non-uniform. Due to this non-uniform ascent rate, pressure in the lateral direction acts on the air flow that has been straightly rising in the vertical direction, and an air flow that rises in an oblique direction is generated, as shown in FIG. To do. The oblique rising air flow and the vertical rising air flow collide with each other so that the air flow on the surface of the storage container 1 is disturbed, and heat transfer from the surface of the storage container 1 to the rising air flow is promoted. Heat removal is performed.

これに対し、従来の収納容器1の肉厚は、図8(a)の横断面図に示すように、その周
方向位置にかかわらず一定の厚さであったため、熱流速は、図8(b)に示すように、ど
の周方向位置においても同一であった。したがって、収納容器1表面の上昇空気流の周方
向の上昇速度が均一となり、上昇方向も全て垂直方向となるので、収納容器1表面の空気
流に乱れが生じることはなく、一定レベル以上の除熱の効果を期待することはできなかっ
た。
On the other hand, the wall thickness of the conventional storage container 1 is constant regardless of the circumferential position as shown in the cross-sectional view of FIG. As shown in b), it was the same at any circumferential position. Therefore, since the rising speed in the circumferential direction of the rising air flow on the surface of the storage container 1 is uniform and all the rising directions are also in the vertical direction, the air flow on the surface of the storage container 1 is not disturbed. The effect of heat could not be expected.

図9は、本発明の第8の実施形態の説明図である。この実施形態は、収納容器1を、そ
の周方向位置に応じて熱伝導率の異なる材料が分布するように、複数の金属材料A,B,
Cで形成したものである。例えば、金属材料Aには熱伝導率が最も大きな銅、金属材料B
にはその次に熱伝導率が大きなアルミニウム、金属材料Cには熱伝導率が最も小さな鉄又
はステンレスを用いることなどが考えられる。
FIG. 9 is an explanatory diagram of the eighth embodiment of the present invention. In this embodiment, the storage container 1 has a plurality of metal materials A, B, so that materials having different thermal conductivities are distributed according to the circumferential position.
It is formed of C. For example, the metal material A has the highest thermal conductivity, such as copper and metal material B.
For example, aluminum having the next highest thermal conductivity, and iron or stainless steel having the lowest thermal conductivity may be used for the metal material C.

このように、周方向位置に応じて収納容器1を形成する金属材料の種類に変化を持たせ
ておくと、発熱体2からの熱の伝わり方にも変化が生じ、熱伝導率の大きな金属材料にお
ける熱流速は速くなり、一方、熱伝導率の小さな金属材料における熱流速は遅くなる。そ
して、周方向位置によって熱流速の分布に差違が生じると、収納容器1表面の上昇空気流
の周方向の上昇速度も非均一となる。この上昇速度の非均一化によって、従来は垂直方向
にまっすぐ上昇していた空気流に横方向への圧力が作用し、斜め方向に上昇する空気流が
発生する。この斜め方向の上昇空気流と垂直方向の上昇空気流とが衝突することにより、
収納容器1表面の空気流に乱れが生じ、収納容器1表面から上昇空気流への熱伝達が促進
され、効果的な除熱が行われる。すなわち、本実施形態の構成によれば、収納容器1の肉
厚を周方向位置に応じて変化させた第7の実施形態と同様の効果を奏することが可能であ
る。
As described above, if the kind of the metal material forming the storage container 1 is changed according to the position in the circumferential direction, the heat conduction from the heating element 2 is also changed, and the metal having a high thermal conductivity. The heat flow rate in the material is increased, while the heat flow rate in the metal material having a small thermal conductivity is decreased. And if a difference occurs in the distribution of the heat flow rate depending on the circumferential position, the rising speed in the circumferential direction of the rising air flow on the surface of the storage container 1 also becomes non-uniform. Due to this non-uniform ascent rate, pressure in the lateral direction acts on the air flow that has been straightly rising in the vertical direction, and an air flow that rises in an oblique direction is generated. By the collision of the rising air flow in the oblique direction and the rising air flow in the vertical direction,
The air flow on the surface of the storage container 1 is disturbed, heat transfer from the surface of the storage container 1 to the rising air flow is promoted, and effective heat removal is performed. That is, according to the configuration of the present embodiment, it is possible to achieve the same effect as that of the seventh embodiment in which the thickness of the storage container 1 is changed according to the circumferential position.

図10は、本発明の第9の実施形態の説明図である。この実施形態は、例えばステンレ
ス製の複数のリング部材12を収納容器1の外周面に取り付けたものである。これら複数
のリング部材12の取付間隔は必ずしも等間隔である必要はなく、上昇空気流の状態に応
じて適宜変更してもよい。
FIG. 10 is an explanatory diagram of the ninth embodiment of the present invention. In this embodiment, for example, a plurality of ring members 12 made of stainless steel are attached to the outer peripheral surface of the storage container 1. The mounting intervals of the plurality of ring members 12 are not necessarily equal, and may be appropriately changed according to the state of the rising air flow.

本実施形態によれば、上昇空気流が上昇途中に複数のリング部材12にぶつかり、上昇
空気流に乱れを生じさせることができるので、図1の第1の実施形態、及び図6の第6の
実施形態とほぼ同様の効果を得ることができる。
According to the present embodiment, the ascending air flow can collide with the plurality of ring members 12 in the middle of the ascent and cause the ascending air flow to be disturbed, so that the first embodiment of FIG. 1 and the sixth embodiment of FIG. The substantially same effect as that of the embodiment can be obtained.

図11は、本発明の第10の実施形態の説明図であり、(a)は正面図、(b)は(a
)のB−B矢視図である。この実施形態は、複数本(図示の例では4本)の収納容器1を
挿通させることができ、また、中央部に孔部13aが設けられている複数枚の平板状スペ
ーサ部材13を、これら複数本の収納容器1に取り付けたものである。
FIG. 11 is an explanatory diagram of a tenth embodiment of the present invention, where (a) is a front view and (b) is (a
It is a BB arrow line view of). In this embodiment, a plurality (four in the illustrated example) of storage containers 1 can be inserted, and a plurality of plate-like spacer members 13 having a hole portion 13a at the center are provided. A plurality of storage containers 1 are attached.

本実施形態によれば、上昇空気流は各スペーサ部材13の周縁部付近及び孔部13aを
通って上昇するが、その上昇途中でこれら複数枚のスペーサ部材13にぶつかり、上昇空
気流に乱れを生じさせることができる。したがって、図1の第1の実施形態、図6の第6
の実施形態、及び図10の第9の実施形態とほぼ同様の効果を得ることができる。
According to the present embodiment, the ascending air flow rises in the vicinity of the peripheral edge of each spacer member 13 and through the hole 13a, but hits the plurality of spacer members 13 in the middle of the ascent and disturbs the ascending air flow. Can be generated. Accordingly, the first embodiment of FIG. 1 and the sixth embodiment of FIG.
The substantially same effect as in the ninth embodiment and the ninth embodiment in FIG. 10 can be obtained.

1:収納容器
1a:中空部
2:発熱体
2a:中空部
3:突起部
4:流線形キャップ
5:吸水性部材
6:受け皿
7:冷却水
8:冷却水供給タンク
8a:供給口
9:容器収容ボックス
9a:エア導入口
9b:エア排出口
10:放熱フィン
11:ワイヤ状部材
12:リング部材
13:スペーサ部材
13a:孔部
1: storage container 1a: hollow part 2: heating element 2a: hollow part 3: projection part 4: streamline cap 5: water absorbing member 6: tray 7: cooling water 8: cooling water supply tank 8a: supply port 9: container Housing box 9a: Air inlet 9b: Air outlet 10: Radiation fin 11: Wire-like member 12: Ring member 13: Spacer member 13a: Hole

Claims (2)

放射性廃棄物が密封されて成る発熱体を収納して帯熱状態にある筒状収納容器において

前記筒状収納容器の肉厚を、その周方向位置に応じて変化させた、
ことを特徴とする放射性廃棄物収納容器除熱構造。
In a cylindrical storage container that contains a heating element in which radioactive waste is sealed and is in a heated state,
The thickness of the cylindrical storage container was changed according to its circumferential position,
A heat removal structure for a radioactive waste container.
前記筒状収納容器の肉厚が、その横断面の中心として任意に設定された回転座標におい
て、0°および180°付近の肉厚よりも、90°および270°付近の肉厚が薄く構成
され、
前記横断面上において、前記筒状収納容器の外周が円形、内周が楕円であることを特徴
とする請求項1記載の放射性廃棄物収納容器除熱構造。
The thickness of the cylindrical storage container is configured so that the thickness near 90 ° and 270 ° is thinner than the thickness near 0 ° and 180 ° in the rotation coordinates arbitrarily set as the center of the cross section. ,
2. The radioactive waste storage container heat removal structure according to claim 1, wherein an outer periphery of the cylindrical storage container is circular and an inner periphery is elliptical on the cross section.
JP2012218797A 2012-09-28 2012-09-28 Radioactive waste storage container Expired - Fee Related JP5443573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012218797A JP5443573B2 (en) 2012-09-28 2012-09-28 Radioactive waste storage container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012218797A JP5443573B2 (en) 2012-09-28 2012-09-28 Radioactive waste storage container

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009016810A Division JP2010175331A (en) 2009-01-28 2009-01-28 Heat removal structure for radioactive waste storage container

Publications (2)

Publication Number Publication Date
JP2013029521A true JP2013029521A (en) 2013-02-07
JP5443573B2 JP5443573B2 (en) 2014-03-19

Family

ID=47786652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012218797A Expired - Fee Related JP5443573B2 (en) 2012-09-28 2012-09-28 Radioactive waste storage container

Country Status (1)

Country Link
JP (1) JP5443573B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177089A (en) * 1996-12-19 1998-06-30 Ishikawajima Harima Heavy Ind Co Ltd Melt container
JPH11183694A (en) * 1997-12-25 1999-07-09 Mitsubishi Heavy Ind Ltd Canister for storing spent fuel
JP2003194987A (en) * 2001-12-28 2003-07-09 Ishikawajima Harima Heavy Ind Co Ltd Canister cooling structure and canister cooling method
JP2003294891A (en) * 2002-04-05 2003-10-15 Mitsubishi Heavy Ind Ltd Housing pipe for high-level radioactive waste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177089A (en) * 1996-12-19 1998-06-30 Ishikawajima Harima Heavy Ind Co Ltd Melt container
JPH11183694A (en) * 1997-12-25 1999-07-09 Mitsubishi Heavy Ind Ltd Canister for storing spent fuel
JP2003194987A (en) * 2001-12-28 2003-07-09 Ishikawajima Harima Heavy Ind Co Ltd Canister cooling structure and canister cooling method
JP2003294891A (en) * 2002-04-05 2003-10-15 Mitsubishi Heavy Ind Ltd Housing pipe for high-level radioactive waste

Also Published As

Publication number Publication date
JP5443573B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP2010236885A (en) Cooling structure of reactor containment vessel
JP4660270B2 (en) Heat exchanger, manufacturing method thereof, and reactor containment system
KR102159794B1 (en) Steam generator for a nuclear reactor
JP6700288B2 (en) Method and device for producing steam with scale vessel and steam equipment equipped with such device
CN101256043A (en) Plate shell-type nonsaturated evaporation condensing plant
CN110475465A (en) A kind of hot-pipe system of jet hole height change
JP2015502518A5 (en)
JP2010175331A (en) Heat removal structure for radioactive waste storage container
CN103740567A (en) High-temperature steam cooling system
JP5443573B2 (en) Radioactive waste storage container
CN102288060A (en) Film falling evaporation heat exchange pipe with fins made from silk screen
CN200941018Y (en) Vertical internal tube unsaturated evaporation direct cooling device
US4021676A (en) Waste canister for storage of nuclear wastes
JP5761078B2 (en) Battery package
CN208139926U (en) A kind of extension tube attached of cross flow cooling tower broadcasts water cover
JP6464648B2 (en) cooling tower
JP2014215250A (en) Air-cooling system of reactor containment vessel
KR102185670B1 (en) Cooling system for steam ejected from pressurizer
JP7264536B2 (en) Humidity control gas generator
CN110530066B (en) Low pressure refrigerant flooded evaporator
CN1884953A (en) Multi-phase flow unsaturated in-tube evaporation direct cooling device
KR20230072044A (en) Tray
KR200470800Y1 (en) Cylinder structure of vertical type steam humidifier making use of electrodes
JP5637739B2 (en) Cap for forming liquid film and falling film heat exchanger
KR100775576B1 (en) Built-in guide tube of which dashpot is press worked in a uniform tube

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131219

R151 Written notification of patent or utility model registration

Ref document number: 5443573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees