JP2013029482A - Temperature sensor - Google Patents

Temperature sensor Download PDF

Info

Publication number
JP2013029482A
JP2013029482A JP2011167636A JP2011167636A JP2013029482A JP 2013029482 A JP2013029482 A JP 2013029482A JP 2011167636 A JP2011167636 A JP 2011167636A JP 2011167636 A JP2011167636 A JP 2011167636A JP 2013029482 A JP2013029482 A JP 2013029482A
Authority
JP
Japan
Prior art keywords
temperature sensor
screw part
male screw
slit
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011167636A
Other languages
Japanese (ja)
Inventor
Daisuke Mishima
大輔 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2011167636A priority Critical patent/JP2013029482A/en
Publication of JP2013029482A publication Critical patent/JP2013029482A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature sensor that reduce the possibility that a screw becomes loose even in environment in which the temperature sensor is exposed.SOLUTION: A temperature sensor 1 is fixed to an exhaust pipe 100 by being tightened up to a female screw part 112 provided in a peripheral wall 101 of the exhaust pipe 100. The temperature sensor 1 measures the temperature of exhaust gas flowing in the exhaust pipe 100. The temperature sensor 1 includes a male screw part 81 to be tightened up to the female screw part 112 of the exhaust pipe 100. A slit 85 is formed in the screw thread 84 of the male screw part 81. The slit 85 is a grooved region recessed inward in a radial direction of the temperature slit 1 at the tip of the screw thread 84, and formed continuously in a direction in which the screw thread 84 extends. When the male screw part 81 is tightened up to the female screw part 112, the screw thread 84 of the male screw part 81 elastically deforms in a direction such that the slit 85 decreases in opening width.

Description

本発明は、排気ガス、吸気ガス等の測定対象流体の温度を検出する温度センサに関する。   The present invention relates to a temperature sensor that detects the temperature of a fluid to be measured such as exhaust gas and intake gas.

従来、自動車の排気管等の内部を流れる測定対象流体の温度を検出する温度センサが知られている。温度センサは雄ねじ部を備える。例えば、測定対象流体が排気ガスである場合、排気管のボスに設けられた雌ねじ部に温度センサの雄ねじ部が締め付けられることで、温度センサは排気管に装着される。排気ガスの温度が高温になると、熱膨張の影響でねじが緩む場合がある。また、車両の振動によってねじが緩む場合もある。ねじの緩みが生じると、排気管内の気密性が低下し、さらには温度センサが雌ねじ部から抜け落ちる場合もある。   2. Description of the Related Art Conventionally, a temperature sensor that detects the temperature of a measurement target fluid that flows inside an automobile exhaust pipe or the like is known. The temperature sensor includes a male screw portion. For example, when the fluid to be measured is exhaust gas, the temperature sensor is attached to the exhaust pipe by tightening the male thread part of the temperature sensor to the female thread part provided on the boss of the exhaust pipe. When the temperature of the exhaust gas becomes high, the screw may be loosened due to thermal expansion. Further, the screw may be loosened due to the vibration of the vehicle. When the screw is loosened, the airtightness in the exhaust pipe is lowered, and the temperature sensor may come off from the female screw part.

特許文献1が開示している温度センサの取付構造では、温度センサが挿通されるボスの線熱膨張係数よりも、ボスの挿通孔の内壁に当接するフランジの線熱膨張係数が2.5×10−6/℃以上大きい。従って、ボスおよびフランジの温度が上昇する程、フランジが挿通孔の内壁に押圧される力が強くなり、ねじの緩みが防止される。 In the temperature sensor mounting structure disclosed in Patent Document 1, the linear thermal expansion coefficient of the flange contacting the inner wall of the insertion hole of the boss is 2.5 × than the linear thermal expansion coefficient of the boss through which the temperature sensor is inserted. 10 −6 / ° C. or higher. Therefore, as the temperature of the boss and the flange rises, the force with which the flange is pressed against the inner wall of the insertion hole becomes stronger, and the loosening of the screw is prevented.

特開2004−239716号公報JP 2004-239716 A

ところで、車両の排気系は実走行時に高温に加熱される一方、停止時には室温以下にまで低下する。温度センサはこの加熱と冷却の繰り返しの影響(冷熱サイクル)を受けるが、近年では加熱と冷却との間の温度差が大きくなってきており、温度センサが受ける冷熱サイクルがより過酷になってきている。そのため、ボス等の材質の線熱膨張係数を規定するだけでは、ねじの緩みを十分に防止できない場合がある。また、ボスと雄ねじ部の線熱膨張係数を同等にしたとしても、加熱と冷却との間の温度差が大きくなると、ボスと雄ねじ部は別部材であるので、両者の熱伸縮に微小なズレが生じる。同一部材内で温度分布の差が大きくなり、同一部材内の各部位で熱伸縮にズレが生じる場合もある。その結果、ねじの緩みが生じる可能性が考えられる。   By the way, the exhaust system of the vehicle is heated to a high temperature during actual driving, and decreases to a room temperature or lower when stopped. Although the temperature sensor is affected by repeated heating and cooling (cooling cycle), in recent years, the temperature difference between heating and cooling has increased, and the cooling cycle experienced by the temperature sensor has become more severe. Yes. Therefore, it may not be possible to sufficiently prevent the screws from loosening simply by defining the linear thermal expansion coefficient of the material such as the boss. Even if the linear thermal expansion coefficients of the boss and male thread are equal, if the temperature difference between heating and cooling increases, the boss and male thread are separate members, so there is a slight deviation in the thermal expansion and contraction of both. Occurs. There may be a difference in temperature distribution within the same member, and a thermal expansion and contraction may occur in each part within the same member. As a result, there is a possibility of loosening of the screw.

本発明は、温度センサが曝される環境に関わらず、ねじが緩む可能性を低下させることができる温度センサを提供することを目的とする。   An object of this invention is to provide the temperature sensor which can reduce possibility that a screw will loosen irrespective of the environment to which a temperature sensor is exposed.

本発明に係る温度センサは、測定対象流体が流れる管の周壁に設けられた取付けボス部の内側に形成された雌ねじ部に締め付けられて前記管に装着されることで、前記測定対象流体の温度を測定する温度センサであって、前記雌ねじ部に締め付けられる雄ねじ部を備え、前記雄ねじ部のねじ山は、先端において径方向内向きに凹み、且つねじ山の延びる方向に沿って連続する溝状に形成されたスリットを備え、前記雄ねじ部のねじ山は、前記雄ねじ部を前記雌ねじ部に締め付けたときに、前記スリットの開口幅が狭くなる方向に弾性変形可能に形成されている。   The temperature sensor according to the present invention is attached to the pipe by being fastened to a female screw part formed inside a mounting boss part provided on a peripheral wall of the pipe through which the fluid to be measured flows. A male screw part fastened to the female screw part, wherein the screw thread of the male screw part is recessed inward in the radial direction at the tip and is continuous in the direction in which the screw thread extends. The thread of the male threaded portion is formed so as to be elastically deformable in a direction in which the opening width of the slit becomes narrower when the male threaded portion is fastened to the female threaded portion.

本発明に係る温度センサでは、雄ねじ部を取付けボス部の雌ねじ部に締め付けると、雄ねじ部のねじ山は雌ねじ部から力を受けて、スリットの開口幅が狭くなる方向に弾性変形する。雄ねじ部のねじ山が弾性変形することで弾性応力が生じるため、雄ねじ部と雌ねじ部の接触面で生じる垂直抗力が増大する。よって、スリットを備えていない通常のねじ山を用いる場合に比べて摩擦力が増大し、温度センサを管の雌ねじ部に装着した際にねじが緩む可能性は低下する。さらに、雌ねじ部の温度が雄ねじ部の温度よりも高くなって雌ねじ部が膨張し、雌ねじ部の谷同士の間隔が広がっても、雄ねじ部は弾性力によってスリットが広がる方向に変形する。その結果、雄ねじ部と雌ねじ部の接触状態は維持される。つまり、雄ねじ部と雌ねじ部の接触面積が減少する割合は、スリットを備えていない通常のねじ山を用いる場合に比べて低下する。よって、本発明によれば、温度センサが曝される環境に関わらず、ねじが緩む可能性を低下させることができる。   In the temperature sensor according to the present invention, when the male screw portion is tightened to the female screw portion of the mounting boss portion, the thread of the male screw portion receives a force from the female screw portion and elastically deforms in the direction in which the slit opening width becomes narrower. Since elastic stress is generated by elastic deformation of the thread of the male screw part, the normal force generated at the contact surface between the male screw part and the female screw part increases. Therefore, the frictional force is increased as compared with the case of using a normal screw thread not provided with a slit, and the possibility that the screw is loosened when the temperature sensor is attached to the female screw portion of the pipe is reduced. Furthermore, even if the temperature of the female screw part becomes higher than the temperature of the male screw part and the female screw part expands and the interval between the valleys of the female screw part increases, the male screw part is deformed in the direction in which the slits are expanded by the elastic force. As a result, the contact state between the male screw portion and the female screw portion is maintained. That is, the rate at which the contact area between the male screw portion and the female screw portion is reduced is lower than that in the case of using a normal screw thread that is not provided with a slit. Therefore, according to the present invention, it is possible to reduce the possibility that the screw loosens regardless of the environment to which the temperature sensor is exposed.

前記温度センサは、前記取付けボス部の内周面に接触して前記管の内部から前記測定対象流体が外部に漏れ出すことを防止するフランジと、外周に前記雄ねじ部を有し、前記フランジと独立した状態で設けられ、前記雄ねじ部が前記雌ねじ部に締め付けられることで前記フランジを前記取付けボス部の前記内周面との間に挟んで固定するナットとをさらに備えてもよい。   The temperature sensor includes a flange that contacts an inner peripheral surface of the mounting boss portion and prevents the fluid to be measured from leaking from the inside of the pipe to the outside, and the male screw portion on the outer periphery. A nut may be further provided that is provided in an independent state, and the male screw portion is clamped to the female screw portion so that the flange is sandwiched and fixed between the inner peripheral surface of the mounting boss portion.

この場合、作業者は、フランジに対して独立した状態にあるナットだけを回転させることで、温度センサを容易に雌ねじ部に装着することができる。装着が完了すると、フランジがナットによって先端側へ押圧され、取付けボス部の内周面とフランジとの間の隙間が閉塞される。その結果、フランジは取付けボス部の内周面に接触し、管の内部から測定対象流体が外部に漏れ出すことが防止されるため、気密性が保たれる。一方で、フランジおよびナットを別体に備える温度センサは多くの部材によって形成される。従って、フランジおよびナットを備える温度センサは、部材毎に熱膨張率の差が生じることがあるので、熱膨張の影響を受けやすい。しかし、本発明によれば、温度センサが曝される環境に関わらずねじの緩みを防止できるので、熱膨張の影響を受けてもなお温度センサを強固に管に装着し続けることができる。ねじの緩みが防止されることで、管に対する温度センサの気密性を長期にわたって確保することができる。   In this case, the operator can easily attach the temperature sensor to the female thread portion by rotating only the nut that is independent of the flange. When the mounting is completed, the flange is pressed toward the tip by the nut, and the gap between the inner peripheral surface of the mounting boss portion and the flange is closed. As a result, the flange contacts the inner peripheral surface of the mounting boss portion, and the fluid to be measured is prevented from leaking from the inside of the tube to the outside, so that airtightness is maintained. On the other hand, a temperature sensor including a flange and a nut as separate bodies is formed by many members. Therefore, a temperature sensor including a flange and a nut is likely to be affected by thermal expansion because a difference in coefficient of thermal expansion may occur for each member. However, according to the present invention, the screw can be prevented from loosening regardless of the environment to which the temperature sensor is exposed, so that the temperature sensor can be firmly attached to the pipe even if it is affected by thermal expansion. By preventing the screws from loosening, the airtightness of the temperature sensor with respect to the tube can be ensured over a long period of time.

温度センサ1の縦断面図である。2 is a longitudinal sectional view of the temperature sensor 1. FIG. 排気管100に対する温度センサ1の取付構造を示す図である。It is a figure which shows the attachment structure of the temperature sensor 1 with respect to the exhaust pipe 100. FIG. 図2における領域Aの拡大図である。FIG. 3 is an enlarged view of a region A in FIG. 2.

以下、本発明を具現化した一実施形態について、図面を参照して説明する。参照する図面は、本発明が採用し得る技術的特徴を説明するために用いられるものである。図面に記載されているセンサの構成等は、それのみに限定する趣旨ではなく、単なる説明例である。図1〜図3の上下方向は温度センサ1の軸線O方向と平行である。図1〜図3の下側を温度センサ1の先端側、図1〜図3の上側を温度センサ1の後端側として説明する。   Hereinafter, an embodiment embodying the present invention will be described with reference to the drawings. The drawings to be referred to are used for explaining technical features that can be adopted by the present invention. The configuration and the like of the sensor described in the drawings are not intended to be limited to this, but are merely illustrative examples. The vertical direction of FIGS. 1 to 3 is parallel to the direction of the axis O of the temperature sensor 1. The lower side of FIGS. 1 to 3 will be described as the front end side of the temperature sensor 1, and the upper side of FIGS. 1 to 3 will be described as the rear end side of the temperature sensor 1.

図1に示すように、温度センサ1は、サーミスタ素子21を感温素子として用いる。本実施形態では、自動車のエンジンから排出される排気ガス(測定対象流体)を車外に放出するための排気管100(図2参照)に取り付けられる温度センサ1を例示する。温度センサ1は、サーミスタ素子21が内包された金属チューブ11の先端部13を排気管100内に配置することで、排気管100内を流れる排気ガスの温度を検出する。温度センサ1は、金属チューブ11と、サーミスタ素子21と、フランジ60と、筒部材31と、ナット80とを主に備える。   As shown in FIG. 1, the temperature sensor 1 uses a thermistor element 21 as a temperature sensitive element. In this embodiment, the temperature sensor 1 attached to the exhaust pipe 100 (refer FIG. 2) for discharging | emitting exhaust gas (measuring fluid) discharged | emitted from the engine of a motor vehicle outside is illustrated. The temperature sensor 1 detects the temperature of the exhaust gas flowing in the exhaust pipe 100 by disposing the distal end portion 13 of the metal tube 11 including the thermistor element 21 in the exhaust pipe 100. The temperature sensor 1 mainly includes a metal tube 11, a thermistor element 21, a flange 60, a cylindrical member 31, and a nut 80.

金属チューブ11は、金属(例えば、ステンレス合金)によって形成された有底筒状のチューブであり、温度センサ1の軸線O方向に延びる。金属チューブ11は、先端部13において縮径されており、先端10が閉じている。サーミスタ素子21は、金属チューブ11の先端部13内に配置されている。サーミスタ素子21は、ペロブスカイト型酸化物をディスク状に形成したサーミスタ焼結体と、サーミスタ焼結体内に一端側を埋設させた一対の電極線22(例えばPt/Rh合金線)とを有する公知の構成からなる。サーミスタ素子21の周囲にはセメント23が充填されている。その結果、サーミスタ素子21は金属チューブ11の先端部13内で固定される。   The metal tube 11 is a bottomed cylindrical tube made of metal (for example, a stainless alloy) and extends in the direction of the axis O of the temperature sensor 1. The metal tube 11 is reduced in diameter at the distal end portion 13 and the distal end 10 is closed. The thermistor element 21 is disposed in the distal end portion 13 of the metal tube 11. The thermistor element 21 has a known thermistor sintered body in which a perovskite oxide is formed in a disk shape, and a pair of electrode wires 22 (for example, Pt / Rh alloy wire) having one end embedded in the thermistor sintered body. Consists of configuration. A cement 23 is filled around the thermistor element 21. As a result, the thermistor element 21 is fixed in the distal end portion 13 of the metal tube 11.

金属チューブ11の後端部14側は開放されており、後端部14はステンレス合金製のフランジ60の内側に挿通されている。フランジ60は、鞘部61および張り出し部62を有する。鞘部61は、軸線O方向に延びる筒状の部位である。鞘部61は、後端側において外径が細く形成され、二段形状をなしている。張り出し部62は、鞘部61の先端側で径方向外向きに一周に亘って鍔状に張り出した部位である。張り出し部62は、先端側に向けて縮径するように形成された周面である座面63を有する。座面63は、後述のテーパー部114(図2参照)に対応したテーパー形状をなす。   The rear end portion 14 side of the metal tube 11 is open, and the rear end portion 14 is inserted inside a stainless steel flange 60. The flange 60 has a sheath portion 61 and an overhang portion 62. The sheath portion 61 is a cylindrical portion extending in the axis O direction. The sheath 61 is formed with a thin outer diameter on the rear end side, and has a two-stage shape. The projecting portion 62 is a portion projecting in a bowl shape over the entire circumference in the radially outward direction on the distal end side of the sheath portion 61. The overhang portion 62 has a seat surface 63 that is a circumferential surface formed so as to be reduced in diameter toward the distal end side. The seat surface 63 has a tapered shape corresponding to a later-described tapered portion 114 (see FIG. 2).

金属チューブ11の後端部14は、張り出し部62の先端側から挿入されて、鞘部61の内側に圧入されている。さらに、鞘部61が周方向に亘ってレーザ溶接され、金属チューブ11の後端部14の外周面と鞘部61の後端部分(外径の細い部分)の内周面との重なり合う部分が接合されている。これにより、フランジ60は、金属チューブ11の径方向外側に突出した状態で、サーミスタ素子21よりも金属チューブ11の後端部14側に固定される。フランジ60の後端側には、軸線O方向に沿って延びる筒状の部材である筒部材31が配置される。筒部材31は、鞘部61の先端部分(外径の太い部分)の外周に外嵌めされている。さらに、筒部材31が周方向に亘ってレーザ溶接され、鞘部61の先端部分の外周面と筒部材31の先端部32の内周面との重なり合う部分が接合されている。これにより、筒部材31がフランジ60に対して固定される。   The rear end portion 14 of the metal tube 11 is inserted from the distal end side of the overhang portion 62 and is press-fitted inside the sheath portion 61. Further, the sheath portion 61 is laser welded in the circumferential direction, and an overlapping portion between the outer peripheral surface of the rear end portion 14 of the metal tube 11 and the inner peripheral surface of the rear end portion (a portion having a small outer diameter) of the sheath portion 61 is formed. It is joined. Accordingly, the flange 60 is fixed to the rear end portion 14 side of the metal tube 11 with respect to the thermistor element 21 in a state of protruding outward in the radial direction of the metal tube 11. A cylindrical member 31 that is a cylindrical member extending along the axis O direction is disposed on the rear end side of the flange 60. The cylindrical member 31 is fitted on the outer periphery of the distal end portion (a portion having a large outer diameter) of the sheath portion 61. Further, the cylindrical member 31 is laser welded in the circumferential direction, and the overlapping portion of the outer peripheral surface of the distal end portion of the sheath portion 61 and the inner peripheral surface of the distal end portion 32 of the cylindrical member 31 is joined. Thereby, the cylindrical member 31 is fixed to the flange 60.

金属チューブ11、フランジ60、および筒部材31の内部には、軸線O方向に延びるシース部材41が配置される。シース部材41は、ステンレス合金(例えば、SUS310S)からなる外筒42を有する。外筒42の内部には、一対のシース芯線35が挿通されている。シース芯線35はステンレス合金(例えば、SUS310S)からなり、断面が略円形をなす。外筒42内には、MgOまたはSiOを主体とする絶縁粉末(図示外)が充填される。絶縁粉末が充填されることで、外筒42と各シース芯線35との間が絶縁されると共に、外筒42内でシース芯線35が保持される。 A sheath member 41 extending in the direction of the axis O is disposed inside the metal tube 11, the flange 60, and the cylindrical member 31. The sheath member 41 has an outer cylinder 42 made of a stainless alloy (for example, SUS310S). A pair of sheath core wires 35 are inserted into the outer cylinder 42. The sheath core wire 35 is made of a stainless alloy (for example, SUS310S) and has a substantially circular cross section. The outer cylinder 42 is filled with insulating powder (not shown) mainly composed of MgO or SiO 2 . Filling the insulating powder insulates the outer cylinder 42 from each sheath core wire 35 and holds the sheath core wire 35 in the outer cylinder 42.

シース部材41の先端側は、金属チューブ11内に配置される。一対のシース芯線35の先端部は、外筒42の先端から突出する。金属チューブ11の先端部13内では、シース芯線35の先端部が、サーミスタ素子21の一対の電極線22にレーザ溶接または抵抗溶接によって接続される。一方、シース部材41の後端側は筒部材31内に配置される。一対のシース芯線35の後端部は、外筒42の後端から突出する。シース芯線35の後端部は、2本のリード線51に電気的に接続されている。詳細には、2本のリード線の各々は、金属製の撚り線を絶縁性の被覆材にて被覆することで形成されている。各リード線51の先端では撚り線がむき出されており、むき出された撚り線の各々には中継端子52が加締めにより取り付けられている。中継端子52は、例えばSUS304からなる板状の部材であり、リード線51に加締めた部分よりも先端側の端部53が、リード線51の延長方向へ板状に突き出す形態をなす。シース芯線35の端部36は、中継端子52の端部53に、それぞれ、抵抗溶接によって接合されている。   The distal end side of the sheath member 41 is disposed in the metal tube 11. The distal ends of the pair of sheath core wires 35 protrude from the distal end of the outer cylinder 42. Within the distal end portion 13 of the metal tube 11, the distal end portion of the sheath core wire 35 is connected to the pair of electrode wires 22 of the thermistor element 21 by laser welding or resistance welding. On the other hand, the rear end side of the sheath member 41 is disposed in the cylindrical member 31. The rear end portions of the pair of sheath core wires 35 protrude from the rear end of the outer cylinder 42. The rear end portion of the sheath core wire 35 is electrically connected to the two lead wires 51. Specifically, each of the two lead wires is formed by coating a metal stranded wire with an insulating coating material. A stranded wire is exposed at the tip of each lead wire 51, and a relay terminal 52 is attached to each of the exposed stranded wire by caulking. The relay terminal 52 is a plate-like member made of, for example, SUS304, and the end 53 on the tip side of the portion crimped to the lead wire 51 protrudes in a plate shape in the extending direction of the lead wire 51. The end portion 36 of the sheath core wire 35 is joined to the end portion 53 of the relay terminal 52 by resistance welding.

一対のシース芯線35、リード線51、および中継端子52は、絶縁チューブ75によって互いに絶縁される。さらに、シース芯線35、リード線51、および中継端子52は、絶縁チューブ75によって筒部材31とも絶縁される。筒部材31の後端部33の開口内には、耐熱ゴム製のグロメット71が配置される。リード線51はグロメット71に挿通される。筒部材31の後端部33が径方向内側に向かって丸加締め、あるいは多角加締めされることで、グロメット71と筒部材31とが気密性を保ちながら互いに固定される。   The pair of sheath core wires 35, the lead wires 51, and the relay terminals 52 are insulated from each other by an insulating tube 75. Further, the sheath core wire 35, the lead wire 51, and the relay terminal 52 are also insulated from the cylindrical member 31 by the insulating tube 75. A grommet 71 made of heat-resistant rubber is disposed in the opening of the rear end portion 33 of the cylindrical member 31. The lead wire 51 is inserted through the grommet 71. The rear end portion 33 of the cylindrical member 31 is circularly or polygonally crimped toward the inside in the radial direction, so that the grommet 71 and the cylindrical member 31 are fixed to each other while maintaining airtightness.

各リード線51は、筒部材31の後端部33から温度センサ1の外部に引き出され、外部回路(例えば、エンジンコントロールユニット)と接続するためのコネクタの端子部材(図示外)に接続される。サーミスタ素子21の出力は、シース部材41のシース芯線35からリード線51によって外部回路に取り出される。   Each lead wire 51 is drawn out of the temperature sensor 1 from the rear end portion 33 of the cylindrical member 31, and is connected to a terminal member (not shown) of a connector for connecting to an external circuit (for example, an engine control unit). . The output of the thermistor element 21 is taken out from the sheath core wire 35 of the sheath member 41 to the external circuit through the lead wire 51.

筒部材31の先端部32(換言すると、フランジ60における張り出し部62の後端側)には、筒部材31の外周を取り囲むように、円筒状のナット80が設けられている。ナット80は、雄ねじ部81、頭部82、および軸孔83を有する。雄ねじ部81は、外周面にねじ山84(図2および図3参照)を備える。ねじ山84の構造の詳細については後述する。雄ねじ部81の径は、フランジ60における張り出し部62の径よりも若干大きい。頭部82は、雄ねじ部81よりも寸法が大きい六角ナットであり、雄ねじ部81の後端側に設けられている。軸孔83は、雄ねじ部81および頭部82を軸線O方向に貫通して形成された孔部である。軸孔83には筒部材31が内挿される。   A cylindrical nut 80 is provided at the distal end portion 32 of the cylindrical member 31 (in other words, the rear end side of the projecting portion 62 of the flange 60) so as to surround the outer periphery of the cylindrical member 31. The nut 80 has a male screw part 81, a head part 82, and a shaft hole 83. The male screw portion 81 includes a screw thread 84 (see FIGS. 2 and 3) on the outer peripheral surface. Details of the structure of the thread 84 will be described later. The diameter of the male screw portion 81 is slightly larger than the diameter of the protruding portion 62 in the flange 60. The head portion 82 is a hexagonal nut having a size larger than that of the male screw portion 81 and is provided on the rear end side of the male screw portion 81. The shaft hole 83 is a hole formed through the male screw portion 81 and the head portion 82 in the axis O direction. The cylindrical member 31 is inserted into the shaft hole 83.

軸孔83に筒部材31が内挿された状態では、ナット80は筒部材31に沿って軸線O方向に移動でき、且つ筒部材31およびフランジ60とは独立して回転することができる。ナット80が筒部材31の先端部32まで移動すると、雄ねじ部81の先端面が張り出し部62の後端面に接触し、ナット80の先端側への移動が規制される。雄ねじ部81の先端面が張り出し部62の後端面に接触する位置が、ナット80の適正な装着位置である。   In a state where the cylindrical member 31 is inserted into the shaft hole 83, the nut 80 can move in the direction of the axis O along the cylindrical member 31 and can rotate independently of the cylindrical member 31 and the flange 60. When the nut 80 moves to the distal end portion 32 of the cylindrical member 31, the distal end surface of the male screw portion 81 comes into contact with the rear end surface of the projecting portion 62, and movement of the nut 80 toward the distal end side is restricted. A position where the front end surface of the male screw portion 81 contacts the rear end surface of the overhang portion 62 is an appropriate mounting position of the nut 80.

図2を参照して、温度センサ1の取付構造について説明する。排気管100の周壁101には、温度センサ1を取り付けるためのボス110が溶接されている。ボス110は、雌ねじ部112および挿通孔113を備える。雌ねじ部112は、ボス110の外側(図2の上側)の端部から中心部近傍にかけて形成されており、ナット80の雄ねじ部81と螺合する。挿通孔113は、雌ねじ部112が設けられた位置よりも排気管100の内部側(図2の下側)に形成されている。挿通孔113は、温度センサ1における金属チューブ11の先端部13(図1参照)を、排気管100の外部から内部へ挿通する。挿通孔113は、テーパー部114および小径部115を備える。テーパー部114は、排気管100の内部側へ近づくほど縮径する部位である。従って、テーパー部114の内壁は、排気管100の外側(図2の上方)を向く。小径部115は、テーパー部114の内部側端部から排気管100の内部まで貫通する。小径部115の径(挿通孔113の最小径)は、雌ねじ部112の最小内径および張り出し部62の外径よりも小さく、金属チューブ11の径よりも大きい。なお、ボス110が本発明の「取付けボス部」に相当する。   With reference to FIG. 2, the attachment structure of the temperature sensor 1 is demonstrated. A boss 110 for attaching the temperature sensor 1 is welded to the peripheral wall 101 of the exhaust pipe 100. The boss 110 includes a female screw portion 112 and an insertion hole 113. The female screw portion 112 is formed from the outer end (upper side in FIG. 2) of the boss 110 to the vicinity of the center portion, and is screwed with the male screw portion 81 of the nut 80. The insertion hole 113 is formed on the inner side of the exhaust pipe 100 (lower side in FIG. 2) than the position where the female screw portion 112 is provided. The insertion hole 113 inserts the distal end portion 13 (see FIG. 1) of the metal tube 11 in the temperature sensor 1 from the outside to the inside of the exhaust pipe 100. The insertion hole 113 includes a tapered portion 114 and a small diameter portion 115. The tapered portion 114 is a portion that decreases in diameter as it approaches the inner side of the exhaust pipe 100. Therefore, the inner wall of the tapered portion 114 faces the outside of the exhaust pipe 100 (upward in FIG. 2). The small diameter portion 115 penetrates from the inner side end portion of the tapered portion 114 to the inside of the exhaust pipe 100. The diameter of the small diameter portion 115 (the minimum diameter of the insertion hole 113) is smaller than the minimum inner diameter of the female screw portion 112 and the outer diameter of the overhang portion 62, and larger than the diameter of the metal tube 11. The boss 110 corresponds to the “mounting boss portion” of the present invention.

温度センサ1を排気管100に装着する場合、作業者は金属チューブ11をボス110の挿通孔113に差し込む。これに伴い、フランジ60は雌ねじ部112を通過し、ナット80は雌ねじ部112の入口へ移動する。作業者がナット80の頭部82を締め付け方向に回転させると、雄ねじ部81が雌ねじ部112に螺合される(締め付けられる)。ナット80は筒部材31とは独立して回転するので、ナット80が回転してもリード線51(図1参照)は捻れない。よって、作業者は容易にナット80を雌ねじ部112に締め付けることができる。   When attaching the temperature sensor 1 to the exhaust pipe 100, the operator inserts the metal tube 11 into the insertion hole 113 of the boss 110. Along with this, the flange 60 passes through the female screw portion 112, and the nut 80 moves to the inlet of the female screw portion 112. When the operator rotates the head portion 82 of the nut 80 in the tightening direction, the male screw portion 81 is screwed (tightened) to the female screw portion 112. Since the nut 80 rotates independently of the cylindrical member 31, even if the nut 80 rotates, the lead wire 51 (see FIG. 1) cannot be twisted. Therefore, the operator can easily tighten the nut 80 to the female screw portion 112.

作業者がナット80を回転させ続けると、張り出し部62の座面63は、先端側(図2の下側)に強く押圧された状態で、挿通孔113におけるテーパー部114の内壁に接触(密着)する。つまり、ナット80がボス110の雌ねじ部112に締め付けられると、フランジ60の張り出し部62は、挿通孔113におけるテーパー部114の内壁とナット80の先端との間に挟まれて固定される。フランジ60がボス110の内周面に接触(密着)する(より具体的には、張り出し部62の座面63がテーパー部114の内壁に密着する)ので、排気管100の内部を流通する排気ガスが挿通孔113を介して排気管100の外部へ漏出することが防止される。   When the operator continues to rotate the nut 80, the seat surface 63 of the overhanging portion 62 comes into contact with (in close contact with) the inner wall of the tapered portion 114 in the insertion hole 113 while being strongly pressed toward the tip side (the lower side in FIG. 2). ) In other words, when the nut 80 is fastened to the female threaded portion 112 of the boss 110, the protruding portion 62 of the flange 60 is sandwiched and fixed between the inner wall of the tapered portion 114 in the insertion hole 113 and the tip of the nut 80. Since the flange 60 is in contact with (in close contact with) the inner peripheral surface of the boss 110 (more specifically, the seat surface 63 of the overhanging portion 62 is in close contact with the inner wall of the tapered portion 114), the exhaust gas that flows through the exhaust pipe 100 is exhausted. Gas is prevented from leaking out of the exhaust pipe 100 through the insertion hole 113.

図2および図3を参照し、ねじ山84の構造について説明する。図2に示すように、雄ねじ部81のねじ山84にはスリット85が形成されている。スリット85は、ねじ山84の先端において径方向内向きに凹んだ溝状の部位である。スリット85は、ねじ山84の延びる方向に沿って連続して形成されている。   The structure of the screw thread 84 will be described with reference to FIGS. As shown in FIG. 2, a slit 85 is formed in the thread 84 of the male screw portion 81. The slit 85 is a groove-like portion that is recessed radially inward at the tip of the screw thread 84. The slit 85 is continuously formed along the direction in which the thread 84 extends.

ナット80がボス110の雌ねじ部112に締め付けられると、ねじ山84は雌ねじ部112から力を受けて、スリット85の幅(開口幅)が狭くなる方向に弾性変形する。図3に示すように、スリット85を備えたねじ山84が弾性変形することで弾性応力が生じる。その結果、ねじ山84(雄ねじ部81)と雌ねじ部112の接触面で生じる垂直抗力が増大する。よって、スリット85を備えていない通常のねじ山を用いる場合に比べて摩擦力が増大し、温度センサ1を雌ねじ部112に装着した際にねじが緩む可能性は低下する。さらに、雌ねじ部112が雄ねじ部81よりも大きく膨張し、雌ねじ部112の谷同士の間隔が広がっても、雄ねじ部81は弾性力によってスリット85が広がる方向に変形する。その結果、雄ねじ部81と雌ねじ部112の接触状態は維持される。つまり、雄ねじ部81と雌ねじ部112の接触面積が減少する割合は、スリット85を備えていない通常のねじ山を用いる場合に比べて低下する。従って、温度センサ1は、加熱と冷却の温度差が大きい過酷な冷熱サイクルの環境下に置かれても、ねじの緩みによる抜け落ち、気密性の低下等の不具合が生じ難い。   When the nut 80 is fastened to the female threaded portion 112 of the boss 110, the screw thread 84 receives a force from the female threaded portion 112 and elastically deforms in a direction in which the width (opening width) of the slit 85 becomes narrower. As shown in FIG. 3, elastic stress is generated by elastic deformation of the thread 84 provided with the slit 85. As a result, the normal force generated at the contact surface between the screw thread 84 (the male screw portion 81) and the female screw portion 112 increases. Therefore, the frictional force is increased as compared with the case of using a normal screw thread not provided with the slit 85, and the possibility that the screw is loosened when the temperature sensor 1 is attached to the female screw portion 112 is reduced. Further, even if the female screw portion 112 expands larger than the male screw portion 81 and the interval between the valleys of the female screw portion 112 increases, the male screw portion 81 is deformed in the direction in which the slit 85 is expanded by the elastic force. As a result, the contact state between the male screw portion 81 and the female screw portion 112 is maintained. That is, the rate at which the contact area between the male screw portion 81 and the female screw portion 112 decreases is lower than when a normal screw thread that does not include the slit 85 is used. Therefore, even if the temperature sensor 1 is placed in a severe cooling / heating cycle environment where the temperature difference between heating and cooling is large, problems such as falling off due to loosening of the screws and deterioration of airtightness are unlikely to occur.

本実施形態の温度センサ1では、フランジ60とナット80は別部材であり、ナット80は筒部材31等とは独立して自在に回転することができる。ナット80を雌ねじ部112に締め付けると、フランジ60はナット80によって先端側に押圧された状態で固定される。従って、温度センサ1は容易にボス110に装着することができ、且つ気密性を確保できる。一方で、フランジ60とナット80を別部材とする温度センサ1は多くの部材によって形成されるので、熱膨張の影響をより強く受けやすい。仮に、フランジ60、ナット80、およびボス110の線熱膨張係数を同等にしたとしても、これらは別部材であるので熱伸縮にズレが生じ、ねじが緩む可能性が考えられる。本実施形態の温度センサ1は、雄ねじ部81にスリット85を形成することでねじが緩む可能性を低下させることができる。従って、本実施形態の温度センサ1は、フランジ60とナット80を別部材とすることの利点を維持しつつ、ねじの緩みによる不具合の発生(例えば、気密性の低下等)を防止できる。   In the temperature sensor 1 of the present embodiment, the flange 60 and the nut 80 are separate members, and the nut 80 can freely rotate independently of the cylindrical member 31 and the like. When the nut 80 is fastened to the female thread portion 112, the flange 60 is fixed in a state where it is pressed to the tip side by the nut 80. Therefore, the temperature sensor 1 can be easily attached to the boss 110 and airtightness can be secured. On the other hand, since the temperature sensor 1 having the flange 60 and the nut 80 as separate members is formed by many members, it is more easily affected by thermal expansion. Even if the linear thermal expansion coefficients of the flange 60, the nut 80, and the boss 110 are made equal, these are separate members, so that there is a possibility that the thermal expansion / contraction is displaced and the screw is loosened. The temperature sensor 1 of this embodiment can reduce the possibility that the screw is loosened by forming the slit 85 in the male screw portion 81. Therefore, the temperature sensor 1 of the present embodiment can prevent the occurrence of malfunctions due to loosening of screws (for example, a decrease in airtightness) while maintaining the advantage of using the flange 60 and the nut 80 as separate members.

[評価試験]
過酷な冷熱サイクルの環境下でもねじが緩み難くなることを確認するために、評価試験を行った。具体的には、雄ねじ部にスリット85を備えない2つの温度センサと、雄ねじ部81にスリット85を備える3つの温度センサ1(図1〜図3参照)とを用意し、各温度センサに対して以下の工程で評価試験を行った。なお、上記2種類の温度センサの構造は、スリット85を備えるか否かが異なるのみであり、その他の構造および寸法は同一である。
[Evaluation test]
An evaluation test was conducted to confirm that the screws are less likely to loosen even under severe cooling and cycling conditions. Specifically, two temperature sensors that are not provided with the slit 85 in the male screw portion and three temperature sensors 1 (see FIGS. 1 to 3) that are provided with the slit 85 in the male screw portion 81 are prepared. An evaluation test was conducted in the following steps. The structures of the two types of temperature sensors differ only in whether or not the slits 85 are provided, and the other structures and dimensions are the same.

(1)水槽の底部に設けられたボス110に、各温度センサを装着する。各温度センサを装着する際の締め付けトルクを記録する。ボス110の材質は、SUS304である。(2)バーナーによる水槽の底部の加熱を開始する。(3)ボス110の温度が400℃に到達した時点で、水槽の内部への注水を開始する。注水量は、温度センサ本体が30秒以内に完全に水没する流量とした。(4)温度センサが水没した状態を1分間保持した後、水槽内部の水を排水する。(5)上記(3)・(4)を100サイクル実施する。(6)各温度センサの外しトルクを測定する。この評価試験の結果を表1に示す。   (1) Each temperature sensor is mounted on the boss 110 provided at the bottom of the water tank. Record the tightening torque when mounting each temperature sensor. The material of the boss 110 is SUS304. (2) Start heating the bottom of the water tank with a burner. (3) When the temperature of the boss 110 reaches 400 ° C., water injection into the water tank is started. The amount of water injection was such that the temperature sensor body was completely submerged within 30 seconds. (4) After keeping the temperature sensor submerged for 1 minute, the water inside the water tank is drained. (5) The above (3) and (4) are carried out for 100 cycles. (6) Measure the removal torque of each temperature sensor. The results of this evaluation test are shown in Table 1.

Figure 2013029482
Figure 2013029482

表1に示すように、この評価試験では、全ての温度センサをほぼ同一の締め付けトルクでボス110に装着した。しかし、スリット85を備えない温度センサの外しトルクはいずれも0Nmとなったのに対し、スリット85を備える温度センサ1の外しトルクは4.9Nm、13.0Nm、5.3Nmとなった。つまり、外しトルクの値は、スリット85を備える3つの温度センサ1の全てにおいて、スリット85を備えない温度センサよりも高くなった。以上にように、雄ねじ部81のねじ山84にスリット85を備えることで、過酷な冷熱サイクルの環境下でもねじが緩み難くなることが、この評価試験によって確認できた。   As shown in Table 1, in this evaluation test, all temperature sensors were mounted on the boss 110 with substantially the same tightening torque. However, the removal torque of the temperature sensor without the slit 85 was 0 Nm, whereas the removal torque of the temperature sensor 1 with the slit 85 was 4.9 Nm, 13.0 Nm, and 5.3 Nm. That is, the value of the removal torque is higher in all three temperature sensors 1 including the slit 85 than in the temperature sensor not including the slit 85. As described above, it was confirmed by this evaluation test that the screw 84 is less likely to loosen even in a severe heat cycle environment by providing the slits 85 in the thread 84 of the male screw portion 81.

本発明は、以上詳述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が加えられてもよい。上記実施形態の温度センサ1では、フランジ60とナット80が別部材とされており、ナット80は筒部材31等とは独立して回転できる。しかし、本発明は、フランジ60とナット80が別部材とされていない温度センサ、ナット80と共に筒部材31が回転する温度センサ等にも適用できる。   The present invention is not limited to the embodiments described in detail above, and various modifications may be made without departing from the scope of the present invention. In the temperature sensor 1 of the above embodiment, the flange 60 and the nut 80 are separate members, and the nut 80 can rotate independently of the cylindrical member 31 and the like. However, the present invention can also be applied to a temperature sensor in which the flange 60 and the nut 80 are not separate members, a temperature sensor in which the cylindrical member 31 rotates together with the nut 80, and the like.

上記実施形態における温度センサ1のフランジ60は、挿通孔113のうち、排気管100の内部側へ近づくほど縮径するテーパー部114の内壁に押圧される(図2参照)。その結果、隙間が閉塞されて気密性が確保される。しかし、挿通孔113のうちフランジ60に接触する部分は、テーパー部114でなくてもよい。例えば、挿通孔113は、温度センサ1の後端側(図2の上方)に垂直に向く後端向き面を備えても良い。フランジ60は、挿通孔113の後端向き面に接触することで隙間を閉塞してもよい。   The flange 60 of the temperature sensor 1 in the above embodiment is pressed against the inner wall of the tapered portion 114 whose diameter decreases as it approaches the inner side of the exhaust pipe 100 in the insertion hole 113 (see FIG. 2). As a result, the gap is closed and airtightness is ensured. However, the portion of the insertion hole 113 that contacts the flange 60 may not be the tapered portion 114. For example, the insertion hole 113 may include a rear end facing surface that is perpendicular to the rear end side (upper side in FIG. 2) of the temperature sensor 1. The flange 60 may close the gap by contacting the surface facing the rear end of the insertion hole 113.

スリット85の形状は変更してもよい。上記実施形態では、図3に示すように、スリット85の伸張方向に垂直な断面におけるスリット85の形状はV字状である。しかし、スリット85の形状は、断面U字状であってもよいし、底面と側面とを有する形状であってもよい。スリット85は、ねじ山84の全周に亘って形成していなくてもよい。例えば、ねじ山84のうち、中心部よりも後端側の部分にのみスリット85を形成してもよい。   The shape of the slit 85 may be changed. In the above embodiment, as shown in FIG. 3, the shape of the slit 85 in the cross section perpendicular to the extending direction of the slit 85 is V-shaped. However, the slit 85 may have a U-shaped cross section or a shape having a bottom surface and a side surface. The slit 85 may not be formed over the entire circumference of the screw thread 84. For example, the slit 85 may be formed only in the rear end side portion of the screw thread 84 with respect to the center portion.

1 温度センサ
60 フランジ
80 ナット
81 雄ねじ部
84 ねじ山
85 スリット
100 排気管
101 周壁
110 ボス
112 雌ねじ部
113 挿通孔
DESCRIPTION OF SYMBOLS 1 Temperature sensor 60 Flange 80 Nut 81 Male thread part 84 Screw thread 85 Slit 100 Exhaust pipe 101 Perimeter wall 110 Boss 112 Female thread part 113 Insertion hole

Claims (2)

測定対象流体が流れる管の周壁に設けられた取付けボス部の内側に形成された雌ねじ部に締め付けられて前記管に装着されることで、前記測定対象流体の温度を測定する温度センサであって、
前記雌ねじ部に締め付けられる雄ねじ部を備え、
前記雄ねじ部のねじ山は、先端において径方向内向きに凹み、且つねじ山の延びる方向に沿って連続する溝状に形成されたスリットを備え、
前記雄ねじ部のねじ山は、前記雄ねじ部を前記雌ねじ部に締め付けたときに、前記スリットの開口幅が狭くなる方向に弾性変形可能に形成されたことを特徴とする温度センサ。
A temperature sensor that measures the temperature of the fluid to be measured by being fastened to a female screw portion formed inside a mounting boss provided on a peripheral wall of the tube through which the fluid to be measured flows, and being attached to the tube. ,
A male screw part fastened to the female screw part;
The thread of the male screw part includes a slit formed in a groove shape that is recessed radially inward at the tip and continuous along the direction in which the thread extends.
The temperature sensor characterized in that the thread of the male screw part is formed so as to be elastically deformable in a direction in which the opening width of the slit becomes narrow when the male screw part is fastened to the female screw part.
前記取付けボス部の内周面に接触して前記管の内部から前記測定対象流体が外部に漏れ出すことを防止するフランジと、
外周に前記雄ねじ部を有し、前記フランジと独立した状態で設けられ、前記雄ねじ部が前記雌ねじ部に締め付けられることで前記フランジを前記取付けボス部の前記内周面との間に挟んで固定するナットと
をさらに備えたことを特徴とする請求項1に記載の温度センサ。
A flange that contacts the inner peripheral surface of the mounting boss portion and prevents the fluid to be measured from leaking out of the tube to the outside;
The male screw part is provided on the outer periphery and provided in a state independent of the flange, and the male screw part is fastened to the female screw part so that the flange is sandwiched between the inner peripheral surface of the mounting boss part and fixed. The temperature sensor according to claim 1, further comprising:
JP2011167636A 2011-07-29 2011-07-29 Temperature sensor Withdrawn JP2013029482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011167636A JP2013029482A (en) 2011-07-29 2011-07-29 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011167636A JP2013029482A (en) 2011-07-29 2011-07-29 Temperature sensor

Publications (1)

Publication Number Publication Date
JP2013029482A true JP2013029482A (en) 2013-02-07

Family

ID=47786642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011167636A Withdrawn JP2013029482A (en) 2011-07-29 2011-07-29 Temperature sensor

Country Status (1)

Country Link
JP (1) JP2013029482A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104266773A (en) * 2014-10-20 2015-01-07 蚌埠日月仪器研究所有限公司 Digital temperature measuring device
KR101854838B1 (en) 2016-09-30 2018-05-04 삼성중공업 주식회사 Temperature measurement device for fluid in a pipe
KR101960893B1 (en) * 2017-12-08 2019-03-21 주식회사 유라테크 Temperature Sensor
KR102180743B1 (en) * 2019-05-23 2020-11-19 이삼해 Apparatus for maintaining the gas storage temperature
JP7451810B2 (en) 2022-08-04 2024-03-18 株式会社芝浦電子 temperature sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104266773A (en) * 2014-10-20 2015-01-07 蚌埠日月仪器研究所有限公司 Digital temperature measuring device
KR101854838B1 (en) 2016-09-30 2018-05-04 삼성중공업 주식회사 Temperature measurement device for fluid in a pipe
KR101960893B1 (en) * 2017-12-08 2019-03-21 주식회사 유라테크 Temperature Sensor
KR102180743B1 (en) * 2019-05-23 2020-11-19 이삼해 Apparatus for maintaining the gas storage temperature
JP7451810B2 (en) 2022-08-04 2024-03-18 株式会社芝浦電子 temperature sensor

Similar Documents

Publication Publication Date Title
US9581565B2 (en) Gas sensor
US7581879B2 (en) Temperature sensor
JP2013029482A (en) Temperature sensor
JP4253642B2 (en) Temperature sensor
US6997607B2 (en) Temperature sensor
JP4838871B2 (en) Gas sensor
US9891138B2 (en) Pressure sensor
KR20090117658A (en) Temperature sensor
US8256956B2 (en) Temperature sensor
US9347854B2 (en) Glow plug with pressure sensor
JP3787569B2 (en) Temperature sensor
US10428716B2 (en) High-temperature exhaust sensor
JP5139373B2 (en) Gas sensor mounting structure and gas sensor with protective cover
JP2007240341A (en) Temperature sensor
JP4829007B2 (en) Temperature sensor
JP2004239716A (en) Mounting structure of temperature sensor
JP2017134069A (en) Sensor
JP6560562B2 (en) Pressure sensor
JP3826095B2 (en) Temperature sensor
JP2019027994A (en) Temperature sensor
JP5576350B2 (en) Temperature sensor
JP5192460B2 (en) Temperature sensor
JP2004286491A (en) Manufacturing method of temperature sensor
JP2016027313A (en) Temperature sensor and temperature sensor manufacturing method
JP2006126067A (en) Method for manufacturing temperature sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007