JP2013029392A - Contact angle measurement device and prediction method for behavior of combustion ash in boiler furnace - Google Patents

Contact angle measurement device and prediction method for behavior of combustion ash in boiler furnace Download PDF

Info

Publication number
JP2013029392A
JP2013029392A JP2011164915A JP2011164915A JP2013029392A JP 2013029392 A JP2013029392 A JP 2013029392A JP 2011164915 A JP2011164915 A JP 2011164915A JP 2011164915 A JP2011164915 A JP 2011164915A JP 2013029392 A JP2013029392 A JP 2013029392A
Authority
JP
Japan
Prior art keywords
contact angle
pedestal
sample
container
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011164915A
Other languages
Japanese (ja)
Inventor
Tomoya Muramoto
知哉 村本
Naoki Sato
直樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011164915A priority Critical patent/JP2013029392A/en
Publication of JP2013029392A publication Critical patent/JP2013029392A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a contact angle measurement device that can predict a wet state of combustion ashes in a boiler furnace by heating the interior of a chamber and cooling a pedestal, and a prediction method for behavior of combustion ashes in a boiler furnace.SOLUTION: There is provided a contact angle measurement device 1 which measures the contact angle of a sample 7 placed on a pedestal 6 provided in a container 4. The contact angle measurement device includes heating means 8 of heating the sample in the container; cooling means 9 of cooling the pedestal; first temperature detection means 10 of detecting temperature in the container; second temperature detection means 11 of detecting temperature of the pedestal; control means 14 of controlling the heating means and cooling means on the basis of detection results of the first temperature detection means and second temperature detection means; imaging means 12 of imaging a state of the sample heated by the heating means; and image analysis means 14 of determining the contact angle on the basis of an image picked up by the imaging means.

Description

本発明は、固体に対する液体の濡れ状態を測定する接触角測定装置、特に石炭の燃焼灰等の融点が高い物質の接触角を測定する接触角測定装置及びボイラ炉内に於ける燃焼灰の挙動予測方法に関するものである。   The present invention relates to a contact angle measuring device for measuring the wet state of a liquid with respect to a solid, particularly a contact angle measuring device for measuring a contact angle of a substance having a high melting point such as coal combustion ash and the behavior of combustion ash in a boiler furnace. It relates to the prediction method.

固体に対する液体の濡れ状態を測定する際には、接触角測定装置が用いられ、接触角測定装置は台座と、台座上に載置された試験片とを有しており、試験片上に滴下された試料を側方よりカメラにて撮像し、取得した画像を解析することで試料の接触角を測定していた。   When measuring the wet state of the liquid with respect to the solid, a contact angle measuring device is used. The contact angle measuring device has a pedestal and a test piece placed on the pedestal, and is dropped onto the test piece. The contact angle of the sample was measured by capturing the sample with a camera from the side and analyzing the acquired image.

又、スラグ等の常温で固体である試料の接触角を測定する際には、台座を加熱することで試験片と試料とを一体に加熱し、或は気密なチャンバ内を加熱することで試験片と試料とを一体に加熱し、試料を溶融させた後に試料の接触角を測定していた。   When measuring the contact angle of a sample that is solid at room temperature, such as slag, the test piece and sample are heated together by heating the pedestal, or the inside of an airtight chamber is tested. The contact angle of the sample was measured after the piece and the sample were heated together to melt the sample.

加熱により溶融させた後に接触角を測定するものの1つとして、石炭焚きボイラに於ける石炭の燃焼灰がある。石炭焚きボイラでは、現在使用される炭種の拡大により、質の低い劣質炭の利用が進められているが、劣質炭は灰分が多く、又アルカリ金属の含有量が多い為、燃焼灰の融点も低くなる。その為、ボイラの炉壁への燃焼灰の粒子の付着量増加に伴う伝熱の阻害や流路の閉塞等、ボイラの安定運転を妨げる現象が発生する虞れがある。   One of the methods for measuring the contact angle after melting by heating is combustion ash of coal in a coal-fired boiler. In coal-fired boilers, the use of low-quality inferior coal is being promoted due to the expansion of the types of coal currently used, but inferior coal has a high ash content and a high alkali metal content, so the melting point of combustion ash Also lower. For this reason, there is a possibility that phenomena that hinder the stable operation of the boiler, such as inhibition of heat transfer and blockage of the flow path, accompanying the increase in the amount of combustion ash particles adhering to the furnace wall of the boiler may occur.

従って、ボイラの炉壁に対する燃焼灰の灰粒子の濡れ状態を予測し、どの様な原因で灰粒子がボイラの炉壁に付着するのかを解明し、炉壁への灰粒子の付着度合を予測する方法が求められている。   Therefore, the wet state of the ash particles of the combustion ash on the furnace wall of the boiler is predicted, the cause of the ash particles adhering to the furnace wall of the boiler is elucidated, and the degree of ash particle adhesion to the furnace wall is predicted. There is a need for a way to do that.

然し乍ら、従来の接触角測定装置の場合、チャンバ内で試料及び試料と接触する試験片とを一体に加熱、冷却する構造となっている為、炉内雰囲気迄加熱された灰粒子と、灰粒子が付着する炉壁の温度が炉内雰囲気よりも低いボイラの炉内環境を再現することができず、炉内に於ける灰粒子の濡れ状態を予測するのが困難であった。   However, in the case of the conventional contact angle measuring device, the sample and the test piece contacting the sample in the chamber are integrally heated and cooled, so that the ash particles heated to the furnace atmosphere and the ash particles It was difficult to reproduce the in-furnace environment of the boiler in which the temperature of the furnace wall where the ash adheres was lower than the atmosphere in the furnace, and it was difficult to predict the wet state of the ash particles in the furnace.

尚、抵抗加熱のヒータにより加熱可能、又はペルチェ効果を用いて冷却可能なプレートに基板を保持し、該基板の表面上に滴下した液滴に等間隔の明暗の縞パターンを投影する照明系を設け、前記基板と該基板に滴下された液滴が前記プレートにより一体に加熱又は冷却されると共に、前記照明系により得られた縞パターンから液滴の表面の3D形状を表す点群データを取得し、該点群データから液滴の接触角を求める接触角の測定装置として特許文献1に示されるものがある。   An illumination system that holds a substrate on a plate that can be heated by a resistance heater or that can be cooled using the Peltier effect, and projects a light and dark stripe pattern at equal intervals onto droplets dropped on the surface of the substrate. Provided, and the substrate and the droplet dropped onto the substrate are integrally heated or cooled by the plate, and point cloud data representing the 3D shape of the surface of the droplet is obtained from the stripe pattern obtained by the illumination system However, there is a device disclosed in Patent Document 1 as a contact angle measuring device for obtaining a contact angle of a droplet from the point cloud data.

特開2003−148937号公報JP 2003-148937 A

本発明は斯かる実情に鑑み、チャンバ内を加熱すると共に台座を冷却することで、ボイラの炉内に於ける燃焼灰の濡れ状態を予測可能とした接触角測定装置及びボイラ炉内に於ける燃焼灰の挙動予測方法を提供するものである。   In view of such circumstances, the present invention provides a contact angle measuring device and a boiler furnace that can predict the wet state of combustion ash in the boiler furnace by heating the chamber and cooling the pedestal. A method for predicting the behavior of combustion ash is provided.

本発明は、容器内に設けられた台座に載置された試料の接触角を測定する接触角測定装置であって、前記容器内で試料を加熱する加熱手段と、前記台座を冷却する冷却手段と、前記容器内の温度を検出する第1の温度検出手段と、前記台座の温度を検出する第2の温度検出手段と、前記第1の温度検出手段及び前記第2の温度検出手段の検出結果に基づき前記加熱手段及び前記冷却手段を制御する制御手段と、前記加熱手段により加熱された試料の状態を撮像する撮像手段と、該撮像手段により撮像された画像を基に接触角を求める画像解析手段とを具備する接触角測定装置に係るものである。   The present invention relates to a contact angle measuring apparatus for measuring a contact angle of a sample placed on a pedestal provided in a container, wherein the heating means heats the sample in the container, and the cooling means cools the pedestal. A first temperature detecting means for detecting the temperature in the container, a second temperature detecting means for detecting the temperature of the pedestal, and detection by the first temperature detecting means and the second temperature detecting means. Based on the result, a control means for controlling the heating means and the cooling means, an imaging means for imaging the state of the sample heated by the heating means, and an image for obtaining a contact angle based on the image captured by the imaging means The present invention relates to a contact angle measuring device comprising an analyzing means.

又本発明は、前記容器内に還元ガスを供給するガス供給手段と、前記容器内の雰囲気を排気するガス排気手段とを更に具備する接触角測定装置に係るものである。   The present invention also relates to a contact angle measuring apparatus further comprising a gas supply means for supplying a reducing gas into the container and a gas exhaust means for exhausting the atmosphere in the container.

更に又本発明は、加熱手段により容器内の雰囲気及び台座上に載置された石炭の燃焼灰を加熱する工程と、冷却手段により前記台座を冷却する工程と、前記容器内の雰囲気及び前記台座の温度をボイラの炉内雰囲気及び炉壁と同等とすることでボイラの炉内環境を擬似的に再現する工程と、撮像手段により前記台座上で溶融した燃焼灰を撮像する工程と、画像解析手段により撮像された画像を基に燃焼灰の接触角を測定する工程とを有するボイラ炉内に於ける燃焼灰の挙動予測方法に係るものである。   Furthermore, the present invention includes a step of heating the atmosphere in the container and the coal combustion ash placed on the pedestal by the heating means, a step of cooling the pedestal by the cooling means, the atmosphere in the container and the pedestal The temperature of the boiler is equal to the furnace atmosphere and the furnace wall of the boiler, the process of simulating the furnace environment of the boiler, the process of imaging the combustion ash melted on the pedestal by the imaging means, and the image analysis The present invention relates to a method for predicting the behavior of combustion ash in a boiler furnace having a step of measuring a contact angle of combustion ash based on an image picked up by means.

本発明によれば、容器内に設けられた台座に載置された試料の接触角を測定する接触角測定装置であって、前記容器内で試料を加熱する加熱手段と、前記台座を冷却する冷却手段と、前記容器内の温度を検出する第1の温度検出手段と、前記台座の温度を検出する第2の温度検出手段と、前記第1の温度検出手段及び前記第2の温度検出手段の検出結果に基づき前記加熱手段及び前記冷却手段を制御する制御手段と、前記加熱手段により加熱された試料の状態を撮像する撮像手段と、該撮像手段により撮像された画像を基に接触角を求める画像解析手段とを具備するので、ボイラの炉内環境を擬似的に再現することができ、灰粒子の前記炉内に於ける炉壁への付着の度合を予測することで、ボイラのメンテナンス時期の設定を容易に行うことができると共に、異種石炭の混合或は運転条件の変更等により前記炉壁への灰粒子の付着量を減少させることができ、メンテナンスの周期が延長されることで保守コストの低減を図ることができる。   According to the present invention, there is provided a contact angle measuring device for measuring a contact angle of a sample placed on a pedestal provided in a container, the heating means for heating the sample in the container, and the pedestal is cooled. Cooling means, first temperature detection means for detecting the temperature in the container, second temperature detection means for detecting the temperature of the pedestal, the first temperature detection means and the second temperature detection means A control means for controlling the heating means and the cooling means based on the detection result, an imaging means for imaging the state of the sample heated by the heating means, and a contact angle based on the image taken by the imaging means. It is possible to simulate the boiler furnace environment by predicting the degree of adhesion of ash particles to the furnace wall in the furnace, and to maintain the boiler. Easy time setting In addition, the amount of ash particles adhering to the furnace wall can be reduced by mixing different types of coal or changing operating conditions, etc., and maintenance costs can be reduced by extending the maintenance cycle. .

又本発明によれば、加熱手段により容器内の雰囲気及び台座上に載置された石炭の燃焼灰を加熱する工程と、冷却手段により前記台座を冷却する工程と、前記容器内の雰囲気及び前記台座の温度をボイラの炉内雰囲気及び炉壁と同等とすることでボイラの炉内環境を擬似的に再現する工程と、撮像手段により前記台座上で溶融した燃焼灰を撮像する工程と、画像解析手段により撮像された画像を基に燃焼灰の接触角を測定する工程とを有するので、燃焼灰が溶融した灰粒子の前記炉内に於ける炉壁への付着の度合を予測でき、ボイラのメンテナンス時期の設定を容易に行うことができると共に、異種石炭の混合或は運転条件の変更等により前記炉壁への灰粒子の付着量を減少させることができ、メンテナンスの周期が延長されることで保守コストの低減を図ることができるという優れた効果を発揮する。   According to the invention, the heating means heats the atmosphere in the container and the coal combustion ash placed on the pedestal; the cooling means cools the pedestal; the atmosphere in the container; and A step of reproducing the environment inside the boiler in a pseudo manner by making the temperature of the pedestal equivalent to the furnace atmosphere and the wall of the boiler, a step of imaging the combustion ash melted on the pedestal by an imaging means, and an image And a step of measuring the contact angle of the combustion ash based on the image taken by the analysis means, so that the degree of adhesion of the ash particles melted by the combustion ash to the furnace wall in the furnace can be predicted, and the boiler The maintenance period can be easily set, and the amount of ash particles adhering to the furnace wall can be reduced by mixing different types of coal or changing the operating conditions, thereby extending the maintenance cycle. Maintenance There is exhibited an excellent effect that it is possible to achieve a reduction of the door.

本発明の第1の実施例に係る接触角測定装置の概略構成図である。It is a schematic block diagram of the contact angle measuring apparatus which concerns on the 1st Example of this invention. 該接触角測定装置による接触角の測定を説明する説明図である。It is explanatory drawing explaining the measurement of a contact angle by this contact angle measuring apparatus. ボイラの炉内に於ける灰粒子の形態を示す説明図である。It is explanatory drawing which shows the form of the ash particle in the furnace of a boiler. ボイラの炉内に於ける灰粒子の接触角と炉壁への付着、反発の関係を示すグラフである。It is a graph which shows the relationship between the contact angle of the ash particle | grains in a boiler furnace, adhesion to a furnace wall, and a repulsion. 本発明の第2の実施例に係る接触角測定装置の概略構成図である。It is a schematic block diagram of the contact angle measuring apparatus which concerns on the 2nd Example of this invention.

以下、図面を参照しつつ本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、図1に於いて、本発明の第1の実施例に係る接触角測定装置について説明する。   First, referring to FIG. 1, a contact angle measuring apparatus according to a first embodiment of the present invention will be described.

第1の実施例に於ける接触角測定装置1は、試料保持部2と試料測定部3とで構成されている。   The contact angle measuring device 1 in the first embodiment is composed of a sample holding unit 2 and a sample measuring unit 3.

前記試料保持部2は気密な容器であるチャンバ4を有し、該チャンバ4は例えば耐熱ガラス等の耐熱性材料で形成された透過窓5が設けられている。前記チャンバ4の底面上に所望の材質、例えば後述するボイラの炉壁16(図3参照)と同材質である鉄製の台座6が設けられ、該台座6上に液体或は固体の試料7が載置される。前記台座6の上方には加熱手段であるヒータ8が設けられ、該ヒータ8は抵抗加熱、或は赤外線加熱等により前記チャンバ4内の雰囲気、及び試料7を加熱する様になっている。尚、前記台座6上に載置される試料7の量が極めて少ない場合には、前記ヒータ8としてレーザ加熱を用いてもよい。又、前記台座6は、材質の異なる台座6を複数製作し、該台座6を条件に応じて自在に交換できる様になっている。   The sample holder 2 has a chamber 4 that is an airtight container, and the chamber 4 is provided with a transmission window 5 formed of a heat resistant material such as heat resistant glass. A desired material, for example, an iron pedestal 6 made of the same material as a furnace wall 16 (see FIG. 3), which will be described later, is provided on the bottom surface of the chamber 4, and a liquid or solid sample 7 is placed on the pedestal 6. Placed. A heater 8 as a heating means is provided above the pedestal 6, and the heater 8 heats the atmosphere in the chamber 4 and the sample 7 by resistance heating or infrared heating. If the amount of the sample 7 placed on the pedestal 6 is extremely small, laser heating may be used as the heater 8. The pedestal 6 is made of a plurality of pedestals 6 made of different materials, and the pedestals 6 can be freely exchanged according to conditions.

前記台座6の内部には、冷却手段である冷却配管9が設けられている。該冷却配管9は冷却水、冷却ガス等の冷却媒体を流通させる図示しない冷却媒体供給手段に接続されており、前記冷却配管9内を冷却媒体が流通することで前記台座6が冷却される様になっている。尚、該台座6内に前記冷却配管9を設けるのではなく、前記台座6の下面にペルチェ素子を密着させ、ペルチェ素子により前記台座6を冷却する様にしてもよい。   Inside the pedestal 6 is provided a cooling pipe 9 as a cooling means. The cooling pipe 9 is connected to a cooling medium supply means (not shown) for flowing a cooling medium such as cooling water and cooling gas, and the pedestal 6 is cooled by flowing the cooling medium through the cooling pipe 9. It has become. Instead of providing the cooling pipe 9 in the pedestal 6, the Peltier element may be brought into close contact with the lower surface of the pedestal 6 and the pedestal 6 may be cooled by the Peltier element.

又、前記試料保持部2は外部より前記チャンバ4内に挿通された第1の温度検出手段である第1の熱電対10と、第2の温度検出手段である第2の熱電対11を有している。前記第1の熱電対10は先端が前記台座6と前記ヒータ8との間の空間に延出し、前記ヒータ8により加熱された前記チャンバ4内の温度を検出できる様になっている。又、前記第2の熱電対11は先端が前記台座6の端部に固定され、前記冷却配管9によって冷却された前記台座6の温度を検出できる様になっている。尚、前記温度検出手段は放射温度計であってもよく、放射温度計を用いる場合には試料7と前記台座6の温度が検出される。   The sample holder 2 has a first thermocouple 10 as a first temperature detection means inserted from the outside into the chamber 4 and a second thermocouple 11 as a second temperature detection means. doing. The tip of the first thermocouple 10 extends into the space between the base 6 and the heater 8 so that the temperature in the chamber 4 heated by the heater 8 can be detected. The tip of the second thermocouple 11 is fixed to the end of the pedestal 6 so that the temperature of the pedestal 6 cooled by the cooling pipe 9 can be detected. The temperature detecting means may be a radiation thermometer. When a radiation thermometer is used, the temperature of the sample 7 and the pedestal 6 is detected.

前記試料測定部3は、撮像手段であるCCDカメラ、或はCMOSセンサ等の撮像部を有するデジタルカメラ12と、表示手段であるモニタ13と、画像解析手段及び制御手段を有する制御演算装置(以下PCと称す)14とで構成されている。又、該PC14は前記デジタルカメラ12、前記モニタ13とLAN等の通信手段により接続されると共に、前記ヒータ8、冷却媒体供給手段(図示せず)、前記第1の熱電対10、前記第2の熱電対11と電気的に接続されており、前記第1の熱電対10及び前記第2の熱電対11により検出された温度を基に、前記ヒータ8及び前記冷却媒体供給手段の制御を行う様になっている。   The sample measurement unit 3 includes a CCD camera as an imaging unit or a digital camera 12 having an imaging unit such as a CMOS sensor, a monitor 13 as a display unit, and a control arithmetic unit having an image analysis unit and a control unit (hereinafter, referred to as a calculation unit). (Referred to as PC) 14. The PC 14 is connected to the digital camera 12 and the monitor 13 by communication means such as a LAN, the heater 8, a cooling medium supply means (not shown), the first thermocouple 10, and the second. The heater 8 and the cooling medium supply means are controlled based on the temperatures detected by the first thermocouple 10 and the second thermocouple 11. It is like.

前記台座6上の試料7は、前記透過窓5を介して前記デジタルカメラ12によって側方より撮像され、撮像された画像は前記モニタ13に表示されると共に、前記PC14に出力され、該PC14にて撮像された画像を基に試料7の前記台座6に対する接触角が演算される様になっている。   The sample 7 on the pedestal 6 is captured from the side by the digital camera 12 through the transmission window 5, and the captured image is displayed on the monitor 13 and output to the PC 14. The contact angle of the sample 7 with respect to the pedestal 6 is calculated based on the captured image.

次に、上記した前記接触角測定装置1を用いて試料7、例えばボイラ内より採取した石炭の燃焼灰の接触角を測定する場合について説明する。   Next, the case where the contact angle of the combustion ash of coal sampled from the inside of the sample 7, for example, a boiler is measured using the contact angle measuring apparatus 1 described above will be described.

先ず、前記台座6上に試料7を載置し、前記ヒータ8により試料7を加熱すると共に、前記冷却配管9に冷却媒体を流通させる。   First, the sample 7 is placed on the pedestal 6, the sample 7 is heated by the heater 8, and a cooling medium is circulated through the cooling pipe 9.

前記第1の熱電対10により検出された温度を基に、前記PC14は例えば前記チャンバ4内の雰囲気及び試料7の温度がボイラの炉内雰囲気と同等となる様、800℃〜1500℃程度迄前記ヒータ8に加熱させることで試料7が溶融し、溶融した試料7が前記台座6上に広がる。この時、前記PC14により前記冷却配管9を流れる冷却媒体の温度が、例えば最高で500℃程度となる様制御され、前記台座6の温度はボイラの炉壁16と同等となる300℃〜800℃程度となっている。   Based on the temperature detected by the first thermocouple 10, the PC 14 has a temperature of about 800 ° C. to 1500 ° C., for example, so that the atmosphere in the chamber 4 and the temperature of the sample 7 are equivalent to the furnace atmosphere in the boiler. By heating the heater 8, the sample 7 is melted, and the melted sample 7 spreads on the pedestal 6. At this time, the temperature of the cooling medium flowing through the cooling pipe 9 is controlled by the PC 14 to be, for example, about 500 ° C. at the maximum, and the temperature of the pedestal 6 is 300 ° C. to 800 ° C. which is equivalent to the furnace wall 16 of the boiler. It is about.

試料7が溶融したところで、前記デジタルカメラ12により図2に示される様な、前記台座6と試料7の画像が取得され、取得された画像が前記モニタ13に表示されると共に、前記PC14に出力される。   When the sample 7 is melted, the digital camera 12 acquires images of the pedestal 6 and the sample 7 as shown in FIG. 2, and the acquired image is displayed on the monitor 13 and output to the PC 14. Is done.

取得された画像が該PC14により解析されることで、試料7が前記台座6の表面と接する角度が演算され、試料7の表面よりも低温な前記台座6に対する試料7の接触角θを得ることができる。   By analyzing the acquired image by the PC 14, the angle at which the sample 7 contacts the surface of the pedestal 6 is calculated, and the contact angle θ of the sample 7 with respect to the pedestal 6 that is lower than the surface of the sample 7 is obtained. Can do.

上記した前記接触角測定装置1で得られた結果は、例えば石炭焚きボイラの炉内に於ける石炭の燃焼灰の挙動の予測等に利用することができる。   The results obtained by the contact angle measuring device 1 described above can be used, for example, for predicting the behavior of coal combustion ash in a coal-fired boiler furnace.

燃焼灰の灰粒子15がボイラの炉壁16に付着する原因の1つとして、高温となったボイラ内で灰粒子15が溶融し、溶融した灰粒子15の液滴が炉壁16に付着することが挙げられる。   As one of the causes that the ash particles 15 of the combustion ash adhere to the furnace wall 16 of the boiler, the ash particles 15 melt in the boiler that has become high temperature, and the droplets of the molten ash particles 15 adhere to the furnace wall 16. Can be mentioned.

図3は溶融した灰粒子15のボイラの炉壁16への付着と反発の概念を示した図であり、灰粒子15は前記炉壁16と衝突する過程で大きく分けて5つの形態に分けることができる。   FIG. 3 is a view showing the concept of adhesion and repulsion of the molten ash particles 15 to the furnace wall 16 of the boiler. The ash particles 15 are roughly divided into five forms in the process of colliding with the furnace wall 16. Can do.

図3中、15aは灰粒子15が前記炉壁16に衝突する前の溶融した形態を示し、15bは前記炉壁16との衝突により灰粒子15が最も広がった形態を示し、15cは前記炉壁16との衝突による反動で灰粒子15が前記炉壁16より飛上がる直前の形態を示している。又、15dは灰粒子15が前記炉壁16より飛上がった後、該炉壁16より離反せずに該炉壁16に付着して安定した形態を示し、15rは灰粒子15が前記炉壁16に反発し、該炉壁16から離反した形態を示している。   In FIG. 3, 15 a indicates a molten form before the ash particles 15 collide with the furnace wall 16, 15 b indicates a form in which the ash particles 15 are most spread due to the collision with the furnace wall 16, and 15 c indicates the furnace. The form immediately before the ash particles 15 fly from the furnace wall 16 due to the reaction caused by the collision with the wall 16 is shown. 15d shows a stable form in which the ash particles 15 fly from the furnace wall 16 and then adhere to the furnace wall 16 without being separated from the furnace wall 16, and 15r shows a stable form. 16 shows a form repelled by 16 and separated from the furnace wall 16.

該炉壁16から飛上がる直前の灰粒子15cの形態でのエネルギEcが、前記炉壁16から離れた状態の灰粒子15rの形態でのエネルギErよりも大きい場合には、灰粒子15が反発して前記炉壁16より離反し、EcがErよりも小さい場合には、灰粒子15が前記炉壁16より離反せず付着する。即ち、(Ec−Er)/Erが0よりも大きければ灰粒子15が前記炉壁16に反発して離反し、(Ec−Er)/Erが0以下であれば灰粒子15が前記炉壁16に付着する様になっている。   When the energy Ec in the form of the ash particles 15c immediately before flying from the furnace wall 16 is larger than the energy Er in the form of the ash particles 15r in a state away from the furnace wall 16, the ash particles 15 are repelled. Then, when separated from the furnace wall 16 and when Ec is smaller than Er, the ash particles 15 adhere to the furnace wall 16 without separating. That is, if (Ec-Er) / Er is larger than 0, the ash particles 15 repel and separate from the furnace wall 16, and if (Ec-Er) / Er is 0 or less, the ash particles 15 are separated from the furnace wall. 16 is attached.

更に、該炉壁16に対する灰粒子15の衝突角度や衝突速度、灰粒子15の粒径、灰粒子15の前記炉壁16に対する接触角等の種々の因子の内、接触角が前記炉壁16への付着及び反発により影響することが推察される。   Further, among various factors such as a collision angle and a collision speed of the ash particles 15 against the furnace wall 16, a particle diameter of the ash particles 15, and a contact angle of the ash particles 15 with respect to the furnace wall 16, the contact angle is the furnace wall 16. It is presumed to be affected by adhesion and repulsion.

図4は前記炉壁16に対する接触角と(Ec−Er)/Erとの関係を示したグラフである。   FIG. 4 is a graph showing the relationship between the contact angle with the furnace wall 16 and (Ec-Er) / Er.

図4に示される様に、灰粒子15は、前記炉壁16に対する接触角がαの時に(Ec−Er)/Er=0となっている。従って、接触角がαよりも大きければ灰粒子15は全て反発して前記炉壁16より離反し、接触角がα以下であれば灰粒子15が前記炉壁16に付着する様になっており、更に灰粒子15の接触角がα未満で且つ小さくなる程、より前記炉壁16に付着し易くなる様になっている。   As shown in FIG. 4, the ash particles 15 have (Ec−Er) / Er = 0 when the contact angle with the furnace wall 16 is α. Therefore, if the contact angle is larger than α, the ash particles 15 are all repelled and separated from the furnace wall 16, and if the contact angle is α or less, the ash particles 15 adhere to the furnace wall 16. Further, the smaller the contact angle of the ash particles 15 is less than α and the smaller the contact angle, the easier it is to adhere to the furnace wall 16.

従って、ボイラの炉内で燃焼された燃焼灰の灰粒子15の接触角を測定することで、灰粒子15が前記炉壁16に付着するかしないか、又灰粒子15が前記炉壁16にどの程度付着するかを予測することができる。   Therefore, by measuring the contact angle of the ash particles 15 of the combustion ash burned in the furnace of the boiler, whether the ash particles 15 adhere to the furnace wall 16 or whether the ash particles 15 adhere to the furnace wall 16. It is possible to predict how much it will adhere.

上述の様に、第1の実施例では、前記ヒータ8によって前記チャンバ4内を高温雰囲気とすることができると共に、前記冷却配管9により溶融した試料7が載置された台座6を冷却することができる。即ち、バーナによって加熱され炉内が高温雰囲気となると共に、水冷構造により炉壁が炉内雰囲気よりも低温となるボイラの炉内環境を擬似的に再現することができる。   As described above, in the first embodiment, the inside of the chamber 4 can be made a high temperature atmosphere by the heater 8 and the pedestal 6 on which the molten sample 7 is placed is cooled by the cooling pipe 9. Can do. In other words, it is possible to simulate the environment inside the furnace of the boiler in which the furnace is heated by the burner and the inside of the furnace becomes a high temperature atmosphere and the wall of the furnace is lower than the atmosphere in the furnace by the water cooling structure.

従って、ボイラ内から採取された燃焼灰、或は燃焼灰の組成を分析し、組成が一致する様作製した試料7を前記接触角測定装置1に適用し、燃焼灰或は試料7の接触角を測定することで、炉内に於ける灰粒子15の前記炉壁16への付着の度合を予測することができ、ボイラのメンテナンス時期の設定を容易に行うことができる。   Therefore, the composition of the combustion ash collected from the boiler or the combustion ash is analyzed, and the sample 7 prepared so that the composition matches is applied to the contact angle measuring device 1, and the contact angle of the combustion ash or sample 7 is applied. By measuring the above, the degree of adhesion of the ash particles 15 to the furnace wall 16 in the furnace can be predicted, and the maintenance time of the boiler can be easily set.

又、石炭毎の灰粒子15の接触角を測定し、灰粒子15の前記炉壁16への付着度合を予測することで、種類の異なる石炭を混合させる、或はボイラの運転条件を変更する等の処理により前記炉壁16への灰粒子15の付着量を減少させることができ、メンテナンスの周期が延長されることで保守コストの低減を図ることができる。   Further, the contact angle of the ash particles 15 for each coal is measured, and the degree of adhesion of the ash particles 15 to the furnace wall 16 is predicted, thereby mixing different types of coal or changing the operating conditions of the boiler. The amount of ash particles 15 adhering to the furnace wall 16 can be reduced by such a process, and the maintenance cost can be reduced by extending the maintenance cycle.

次に、図5に於いて、本発明の第2の実施例について説明する。尚、図5中、図1中と同等のものには同符号を付し、その説明を省略する。   Next, a second embodiment of the present invention will be described with reference to FIG. 5 that are the same as those in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted.

第2の実施例では、チャンバ4にガス供給管17とガス排気管18とがそれぞれ接続されている。前記ガス供給管17にはガス供給バルブ19が設けられると共に、図示しない還元ガス供給源に接続されている。前記ガス供給管17、前記ガス供給バルブ19、前記還元ガス供給源によりガス供給手段21が構成され、該ガス供給手段21によりCO、H2 等の還元ガスが前記チャンバ4内に供給される様になっている。   In the second embodiment, a gas supply pipe 17 and a gas exhaust pipe 18 are connected to the chamber 4. The gas supply pipe 17 is provided with a gas supply valve 19 and is connected to a reducing gas supply source (not shown). The gas supply pipe 17, the gas supply valve 19, and the reducing gas supply source constitute a gas supply means 21 so that a reducing gas such as CO or H 2 is supplied into the chamber 4 by the gas supply means 21. It has become.

又、前記ガス排気管18にはガス排気バルブ22が設けられると共に、真空ポンプ等の図示しない排気装置に接続されている。前記ガス排気管18、前記ガス排気バルブ22、前記排気装置によりガス排気手段23が構成され、該ガス排気手段23により前記チャンバ4内の雰囲気が排気される様になっている。第2の実施例では、前記チャンバ4、台座6、ヒータ8、冷却配管9、第1の熱電対10、第2の熱電対11、前記ガス供給手段21、前記ガス排気手段23とで試料保持部2が構成される。   The gas exhaust pipe 18 is provided with a gas exhaust valve 22 and connected to an exhaust device (not shown) such as a vacuum pump. The gas exhaust pipe 18, the gas exhaust valve 22, and the exhaust device constitute a gas exhaust means 23, and the atmosphere in the chamber 4 is exhausted by the gas exhaust means 23. In the second embodiment, the chamber 4, the base 6, the heater 8, the cooling pipe 9, the first thermocouple 10, the second thermocouple 11, the gas supply means 21, and the gas exhaust means 23 hold the sample. Part 2 is configured.

又、第2の実施例では、前記ガス供給バルブ19、前記ガス排気バルブ22、前記排気装置がPC14と電気的に接続されており、該PC14は前記ガス供給バルブ19を開、前記ガス排気バルブ22を閉として還元ガスを前記チャンバ4内に供給し、或は前記ガス供給バルブ19を閉、前記ガス排気バルブ22を開とし、前記チャンバ4内から還元ガスを排気する様制御される。   In the second embodiment, the gas supply valve 19, the gas exhaust valve 22, and the exhaust device are electrically connected to the PC 14. The PC 14 opens the gas supply valve 19, and the gas exhaust valve. Control is performed so that the reducing gas is supplied into the chamber 4 with the valve 22 closed or the gas supply valve 19 is closed and the gas exhaust valve 22 is opened to exhaust the reducing gas from the chamber 4.

第2の実施例では、前記チャンバ4内に還元ガスを供給し、該チャンバ4内を還元性雰囲気とすることができるので、該チャンバ4内に擬似的に再現されたボイラの炉内環境をより炉内環境へと近づけることができ、炉内に於ける灰粒子15(図3参照)の炉壁16(図3参照)への付着の度合をより高精度に予測することができる。   In the second embodiment, a reducing gas is supplied into the chamber 4 to make the inside of the chamber 4 a reducing atmosphere, so that the environment inside the furnace of the boiler reproduced in the chamber 4 is simulated. The furnace environment can be made closer, and the degree of adhesion of the ash particles 15 (see FIG. 3) to the furnace wall 16 (see FIG. 3) in the furnace can be predicted with higher accuracy.

1 接触角測定装置
2 試料保持部
3 試料測定部
4 チャンバ
6 台座
7 試料
8 ヒータ
9 冷却配管
10 第1の熱電対
11 第2の熱電対
12 デジタルカメラ
14 PC
21 ガス供給手段
23 ガス排気手段
DESCRIPTION OF SYMBOLS 1 Contact angle measuring device 2 Sample holding part 3 Sample measuring part 4 Chamber 6 Base 7 Sample 8 Heater 9 Cooling piping 10 1st thermocouple 11 2nd thermocouple 12 Digital camera 14 PC
21 Gas supply means 23 Gas exhaust means

Claims (3)

容器内に設けられた台座に載置された試料の接触角を測定する接触角測定装置であって、前記容器内で試料を加熱する加熱手段と、前記台座を冷却する冷却手段と、前記容器内の温度を検出する第1の温度検出手段と、前記台座の温度を検出する第2の温度検出手段と、前記第1の温度検出手段及び前記第2の温度検出手段の検出結果に基づき前記加熱手段及び前記冷却手段を制御する制御手段と、前記加熱手段により加熱された試料の状態を撮像する撮像手段と、該撮像手段により撮像された画像を基に接触角を求める画像解析手段とを具備することを特徴とする接触角測定装置。   A contact angle measuring device for measuring a contact angle of a sample placed on a pedestal provided in a container, the heating means for heating the sample in the container, the cooling means for cooling the pedestal, and the container On the basis of the detection results of the first temperature detection means for detecting the temperature inside, the second temperature detection means for detecting the temperature of the pedestal, the first temperature detection means and the second temperature detection means. Control means for controlling the heating means and the cooling means, imaging means for imaging the state of the sample heated by the heating means, and image analysis means for obtaining a contact angle based on the image captured by the imaging means A contact angle measuring device comprising: 前記容器内に還元ガスを供給するガス供給手段と、前記容器内の雰囲気を排気するガス排気手段とを更に具備する請求項1の接触角測定装置。   The contact angle measuring device according to claim 1, further comprising a gas supply unit that supplies a reducing gas into the container and a gas exhaust unit that exhausts the atmosphere in the container. 加熱手段により容器内の雰囲気及び台座上に載置された石炭の燃焼灰を加熱する工程と、冷却手段により前記台座を冷却する工程と、前記容器内の雰囲気及び前記台座の温度をボイラの炉内雰囲気及び炉壁と同等とすることでボイラの炉内環境を擬似的に再現する工程と、撮像手段により前記台座上で溶融した燃焼灰を撮像する工程と、画像解析手段により撮像された画像を基に燃焼灰の接触角を測定する工程とを有することを特徴とするボイラ炉内に於ける燃焼灰の挙動予測方法。   A step of heating the atmosphere in the container by the heating means and the combustion ash of coal placed on the pedestal; a step of cooling the pedestal by the cooling means; and the temperature of the atmosphere in the container and the pedestal and the furnace of the boiler The process of simulating the furnace environment of the boiler by making it equivalent to the internal atmosphere and furnace wall, the process of imaging the combustion ash melted on the pedestal by the imaging means, and the image captured by the image analysis means A method for predicting the behavior of combustion ash in a boiler furnace, comprising the step of measuring the contact angle of combustion ash based on
JP2011164915A 2011-07-28 2011-07-28 Contact angle measurement device and prediction method for behavior of combustion ash in boiler furnace Pending JP2013029392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011164915A JP2013029392A (en) 2011-07-28 2011-07-28 Contact angle measurement device and prediction method for behavior of combustion ash in boiler furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011164915A JP2013029392A (en) 2011-07-28 2011-07-28 Contact angle measurement device and prediction method for behavior of combustion ash in boiler furnace

Publications (1)

Publication Number Publication Date
JP2013029392A true JP2013029392A (en) 2013-02-07

Family

ID=47786566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011164915A Pending JP2013029392A (en) 2011-07-28 2011-07-28 Contact angle measurement device and prediction method for behavior of combustion ash in boiler furnace

Country Status (1)

Country Link
JP (1) JP2013029392A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016053557A (en) * 2014-09-04 2016-04-14 株式会社ノリタケカンパニーリミテド Evaluation device
CN106181101A (en) * 2016-07-13 2016-12-07 江苏科技大学 A kind of observation instantaneous high-temperature wetting areas assay device
CN106706473A (en) * 2017-01-13 2017-05-24 浙江师范大学 Device for rapidly acquiring surface contact angle of polymer melt
CN106885760A (en) * 2017-04-11 2017-06-23 攀钢集团研究院有限公司 For the measure device and assay method of metal solid-liquid boundary energy
CN110274850A (en) * 2019-07-30 2019-09-24 西南交通大学 A kind of contact angle test device and test method
CN114383978A (en) * 2021-12-30 2022-04-22 安徽理工大学 CO2Testing device and method for coal-rock component contact angle of water-coal system
KR20230086266A (en) * 2021-12-08 2023-06-15 한국항공우주연구원 Cryogenic and evaporative fluid contact angle measuring instrument

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083866A (en) * 2001-09-12 2003-03-19 Marcom:Kk Testing device of solder paste characteristic and testing method of solder paste characteristic
JP2003149116A (en) * 2001-11-14 2003-05-21 Canon Inc Measuring device for contact angle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083866A (en) * 2001-09-12 2003-03-19 Marcom:Kk Testing device of solder paste characteristic and testing method of solder paste characteristic
JP2003149116A (en) * 2001-11-14 2003-05-21 Canon Inc Measuring device for contact angle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016053557A (en) * 2014-09-04 2016-04-14 株式会社ノリタケカンパニーリミテド Evaluation device
CN106181101A (en) * 2016-07-13 2016-12-07 江苏科技大学 A kind of observation instantaneous high-temperature wetting areas assay device
CN106706473A (en) * 2017-01-13 2017-05-24 浙江师范大学 Device for rapidly acquiring surface contact angle of polymer melt
CN106706473B (en) * 2017-01-13 2019-04-02 浙江师范大学 A kind of device of quick obtaining polymer melt surface contact angle
CN106885760A (en) * 2017-04-11 2017-06-23 攀钢集团研究院有限公司 For the measure device and assay method of metal solid-liquid boundary energy
CN110274850A (en) * 2019-07-30 2019-09-24 西南交通大学 A kind of contact angle test device and test method
KR20230086266A (en) * 2021-12-08 2023-06-15 한국항공우주연구원 Cryogenic and evaporative fluid contact angle measuring instrument
KR102624280B1 (en) * 2021-12-08 2024-01-12 한국항공우주연구원 Cryogenic and evaporative fluid contact angle measuring instrument
CN114383978A (en) * 2021-12-30 2022-04-22 安徽理工大学 CO2Testing device and method for coal-rock component contact angle of water-coal system
CN114383978B (en) * 2021-12-30 2024-01-26 安徽理工大学 CO 2 Device and method for testing contact angle of coal-rock component of water-coal system

Similar Documents

Publication Publication Date Title
JP2013029392A (en) Contact angle measurement device and prediction method for behavior of combustion ash in boiler furnace
US7607825B2 (en) Method and apparatus for monitoring the formation of deposits in furnaces
Pang et al. An automated ash fusion test for characterisation of the behaviour of ashes from biomass and coal at elevated temperatures
CN102213548B (en) Molten drop furnace for measuring molten drop point of iron ore
ES2555053T3 (en) Device for automatic online measurement of mass loss by calcination and thermal decomposition of solid particles
CN105910430A (en) Contact angle measuring device through high-temperature pendant-drop method
CN202066813U (en) Iron ore high-temperature molten drop determination device
Glaser et al. Thermal modelling of the ladle preheating process
CN106247308B (en) Boiler scaling condition monitoring based on furnace exit temperature and control method
CN103592329A (en) Method for testing heat insulation temperature of thermal barrier coating
JP6107382B2 (en) Evaluation method of solid fuel
NL2004712A (en) Batch-wise operated retort using buffering of heat
CN104807817B (en) The apparatus and method for detecting coal Coking Process characteristic in coke oven
JP6716893B2 (en) Gas sampling device, gas analysis device, gas sampling method, and gas analysis method
CN101726512A (en) Method for rapidly testing shortest coal spontaneous combustion period by using external constant heating flow source
CN103063150A (en) Method and device for monitoring ash thickness based on digital picture processing technique
JP2007078287A (en) Furnace interior situation monitoring method, and furnace interior monitor
CN205784552U (en) A kind of high temperature sessile drop method contact angle determination device
JP3804272B2 (en) Apparatus for evaluating pyrophoric activity of pulverized coal and its evaluation method
CN209513693U (en) A kind of calorimeter assembly and system for coal dust calorific value on-line measurement
CN209878565U (en) Heat-resistant material hot corrosion resistance test device under combustion atmosphere
Pyszko et al. Measuring temperature of the atmosphere in the steelmaking furnace
Wu et al. High‐Temperature Thermophysical Property Characterization of Molten Blast Furnace Slag: A Critical Reviews
JP6111699B2 (en) Combustion ash measuring device and combustion ash measuring method
JP7180093B2 (en) In-core monitoring device and in-core monitoring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150818