JP6111699B2 - Combustion ash measuring device and combustion ash measuring method - Google Patents

Combustion ash measuring device and combustion ash measuring method Download PDF

Info

Publication number
JP6111699B2
JP6111699B2 JP2013015904A JP2013015904A JP6111699B2 JP 6111699 B2 JP6111699 B2 JP 6111699B2 JP 2013015904 A JP2013015904 A JP 2013015904A JP 2013015904 A JP2013015904 A JP 2013015904A JP 6111699 B2 JP6111699 B2 JP 6111699B2
Authority
JP
Japan
Prior art keywords
combustion
main body
combustion furnace
combustion ash
ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013015904A
Other languages
Japanese (ja)
Other versions
JP2014145568A (en
Inventor
佐藤 直樹
直樹 佐藤
克明 松澤
克明 松澤
恵美 大野
恵美 大野
田村 雅人
雅人 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2013015904A priority Critical patent/JP6111699B2/en
Publication of JP2014145568A publication Critical patent/JP2014145568A/en
Application granted granted Critical
Publication of JP6111699B2 publication Critical patent/JP6111699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)

Description

本発明は、燃焼炉の内側に付着する燃焼灰の量を測定する燃焼灰測定装置および燃焼灰測定方法に関する。   The present invention relates to a combustion ash measuring apparatus and a combustion ash measuring method for measuring the amount of combustion ash adhering to the inside of a combustion furnace.

従来、燃焼炉と、燃焼炉の内側に配され、水が流通する伝熱水管とを含んで構成される石炭焚きボイラが知られている。石炭焚きボイラでは、燃焼炉で石炭を燃焼させ、当該燃焼により生じた熱を伝熱水管内に伝えることで伝熱水管内の水を加熱している。このように、石炭焚きボイラの燃焼炉では、石炭を燃焼させているため燃焼灰が生じる。したがって、運転を継続すると、燃焼炉の内側に燃焼灰が蓄積し、伝熱水管にも燃焼灰が付着することになる。燃焼灰は、伝熱水管を構成する材料(例えば、金属)よりも熱伝導率が小さいため、伝熱水管への燃焼灰の付着量が増加するに従って、燃焼炉から伝熱水管内への伝熱効率が低下してしまう。   2. Description of the Related Art Conventionally, a coal-fired boiler is known that includes a combustion furnace and a heat transfer water pipe that is arranged inside the combustion furnace and through which water flows. In the coal-fired boiler, the coal in the heat transfer water pipe is heated by burning the coal in a combustion furnace and transferring the heat generated by the combustion into the heat transfer water pipe. Thus, in the combustion furnace of a coal fired boiler, combustion ash is generated because coal is burned. Therefore, if the operation is continued, the combustion ash accumulates inside the combustion furnace, and the combustion ash adheres to the heat transfer water pipe. Since the combustion ash has a lower thermal conductivity than the material constituting the heat transfer water pipe (for example, metal), as the amount of combustion ash adhering to the heat transfer water pipe increases, the transfer from the combustion furnace to the heat transfer water pipe is increased. Thermal efficiency will decrease.

そこで、石炭焚きボイラには、伝熱水管に付着した燃焼灰を取り除くスートブロワ(灰除去装置)が設けられている。スートブロワは、伝熱水管への燃焼灰の付着量が予め定められた閾値を超えると、伝熱水管の表面に蒸気や圧縮空気等を吹き付けて燃焼灰を除去する。   Therefore, the coal-fired boiler is provided with a soot blower (ash removal device) that removes combustion ash adhering to the heat transfer water pipe. When the amount of combustion ash adhering to the heat transfer water pipe exceeds a predetermined threshold, the soot blower blows steam, compressed air, or the like on the surface of the heat transfer water pipe to remove the combustion ash.

従来、伝熱水管への燃焼灰の付着量を測定するために、伝熱水管の内部に予め温度計を埋め込んでおき、当該温度計による計測値から、伝熱水管への燃焼灰の付着量を推定していた。具体的に説明すると、上述したように燃焼灰が付着すると伝熱水管への伝熱効率が低下するため、燃焼灰が付着していない状態よりも燃焼灰が付着した状態の方が伝熱水管内の温度が低下する。したがって、燃焼灰が付着していない状態との相対的な温度差や温度変化を計測することにより、燃焼灰の付着量を間接的に推定していた。   Conventionally, in order to measure the amount of combustion ash adhering to the heat transfer water pipe, a thermometer is embedded in the heat transfer water pipe in advance, and the amount of combustion ash adhering to the heat transfer water pipe from the measured value by the thermometer. Was estimated. Specifically, as described above, if combustion ash adheres, the heat transfer efficiency to the heat transfer water pipe decreases, so the state where the combustion ash is attached is more in the heat transfer water pipe than the state where the combustion ash is not attached. Temperature drops. Therefore, the adhesion amount of combustion ash was indirectly estimated by measuring the relative temperature difference and temperature change from the state where combustion ash is not attached.

しかし、スートブロワでは、完全に燃焼灰を除去することは困難であり、伝熱水管に定常的に燃焼灰が付着する状態となることがある。そうすると、上述した温度計を用いて燃焼灰の付着量を推定する方法では、温度計によって計測される温度の変化が鈍くなり、燃焼灰の付着量がどの程度変化したかを推定しにくくなる。また、温度計を介した測定では、燃焼灰の付着量を間接的にしか推定することができないため、燃焼させる石炭の種類や運転状況によっては、実際の付着量と推定量との間に誤差が生じるおそれもある。   However, in the soot blower, it is difficult to completely remove the combustion ash, and the combustion ash may be constantly attached to the heat transfer water pipe. If it does so, in the method of estimating the adhesion amount of combustion ash using the thermometer mentioned above, the change of the temperature measured with a thermometer will become dull, and it will become difficult to estimate how much the adhesion amount of combustion ash changed. In addition, measurement using a thermometer can only estimate the amount of combustion ash deposited indirectly, so depending on the type of coal being burned and the operating conditions, there is an error between the actual amount deposited and the estimated amount. May also occur.

そこで、石炭焚きボイラの建設時に、燃焼灰を自身の表面に付着させるプローブを、燃焼炉で生じる排ガスの排出経路内に予め固定しておき、石炭焚きボイラの運転中に当該プローブの重量を燃焼炉の外側から計量することで、プローブに付着した燃焼灰の量を直接測定する燃焼灰測定装置が開発されている(例えば、特許文献1)。   Therefore, when constructing a coal-fired boiler, a probe that attaches combustion ash to its surface is fixed in advance in the exhaust gas exhaust path generated in the combustion furnace, and the weight of the probe burns during operation of the coal-fired boiler. A combustion ash measuring device that directly measures the amount of combustion ash adhering to the probe by measuring from the outside of the furnace has been developed (for example, Patent Document 1).

特開2012−52771号公報JP 2012-52771 A

しかし、上述した特許文献1に記載されたプローブを既存の石炭焚きボイラに設置するためには、一旦運転を停止しなければならない。通常、石炭焚きボイラは、一度運転を開始すると、数年間停止しないため、プローブを設置するためだけに運転を停止させると、石炭焚きボイラ自体の運転効率が低下してしまう。   However, in order to install the probe described in Patent Document 1 described above in an existing coal fired boiler, the operation must be stopped once. Normally, once a coal fired boiler starts operation, it does not stop for several years. Therefore, if the operation is stopped only for installing a probe, the operation efficiency of the coal fired boiler itself is lowered.

また、石炭焚きボイラでは、燃焼させる石炭の種類や運転状況によって、燃焼灰が多く蓄積(付着)する位置が異なるため、燃焼炉の内側の燃焼灰の付着量の分布を把握したいという要望がある。そこで、上述した特許文献1の技術を利用して、燃焼灰の付着量の分布を計測することが考えられるが、燃焼炉全体に亘ってプローブを設置する必要があり、コスト高になってしまう。   Also, in coal-fired boilers, the position where a large amount of combustion ash accumulates (attaches) varies depending on the type of coal to be burned and the operating conditions, and there is a desire to grasp the distribution of the amount of combustion ash attached inside the combustion furnace. . Therefore, it is conceivable to measure the distribution of the attached amount of combustion ash by using the technique of Patent Document 1 described above, but it is necessary to install a probe over the entire combustion furnace, which increases the cost. .

そこで、本発明は、燃焼炉の運転を停止せずに燃焼炉の内側に付着した燃焼灰の量を測定することが可能な燃焼灰測定装置および燃焼灰測定方法の提供を目的とする。   Therefore, an object of the present invention is to provide a combustion ash measuring apparatus and a combustion ash measuring method capable of measuring the amount of combustion ash adhering to the inside of the combustion furnace without stopping the operation of the combustion furnace.

上記課題を解決するために、本発明の燃焼灰測定装置は、燃焼炉の内側に付着する燃焼灰の量を測定する燃焼灰測定装置であって、燃焼炉に設けられた孔に挿抜可能な本体部と、本体部の表面の一部であり、燃焼灰を付着させる付着面と、燃焼炉に設けられた孔への本体部の挿抜を案内するとともに、付着面の位置が燃焼炉の内側となる位置で本体部を保持するガイド部と、を備え、ガイド部は、筒形状であり、内側に本体部を支持する支持部と、燃焼炉に設けられた孔内に支持部を固定する固定部と、を備え、測定時において付着面は、支持部より燃焼炉の内側に突出して配され、燃焼炉に設けられた孔から本体部が抜脱される前に、付着面から落下した燃焼灰を支持部が収容可能な位置に、本体部を移動可能であることを特徴とする。 In order to solve the above problems, a combustion ash measuring apparatus according to the present invention is a combustion ash measuring apparatus that measures the amount of combustion ash adhering to the inside of a combustion furnace, and can be inserted into and removed from a hole provided in the combustion furnace. The main body part, a part of the surface of the main body part, the adhesion surface for adhering combustion ash, and guiding the insertion / extraction of the main body part into the hole provided in the combustion furnace, the position of the adhesion surface is the inside of the combustion furnace A guide portion that holds the main body portion at a position where the guide portion has a cylindrical shape, and a support portion that supports the main body portion on the inside and a support portion that is fixed in a hole provided in the combustion furnace. A fixing portion, and the adhesion surface is projected from the support portion to the inside of the combustion furnace at the time of measurement, and dropped from the adhesion surface before the main body portion is removed from the hole provided in the combustion furnace. The main body can be moved to a position where the combustion ash can be accommodated by the support .

また、付着面の温度と、本体部における当該付着面から予め定められた距離内側の温度をそれぞれ測定する温度測定部をさらに備えるとしてもよい。   Moreover, it is good also as providing the temperature measurement part which each measures the temperature inside the predetermined distance from the temperature of an adhesion surface, and the said adhesion surface in the main-body part.

また、付着面は、本体部における燃焼炉の内側に曝される側の先端面であり、本体部に設けられ、付着面のガイド部への接触を防止するスペーサ部をさらに備えるとしてもよい。   The adhesion surface is a tip surface of the main body portion that is exposed to the inside of the combustion furnace, and may further include a spacer portion that is provided on the main body portion and prevents the adhesion surface from contacting the guide portion.

また、本体部内に設けられた流路に熱媒体を流通させることで、付着面を予め定められた温度に冷却する制御部をさらに備えるとしてもよい。   Moreover, it is good also as providing the control part which cools an adhesion surface to predetermined temperature by distribute | circulating a heat medium to the flow path provided in the main-body part.

また、本体部は、中空形状であり、本体部内に当該本体部の内壁と離隔して配され、付着面側の端部が開放された流通管を備え、制御部は、流通管の内部空間、流通管の端部の開放口、本体部の内壁と流通管の外壁との間の空隙にこの順で熱媒体を流通させるとしてもよい。   Further, the main body portion has a hollow shape, and is provided in the main body portion with a flow pipe that is spaced apart from the inner wall of the main body portion and has an open end on the attachment surface side, and the control section is an internal space of the flow pipe. The heat medium may be circulated in this order through the opening at the end of the flow pipe and the gap between the inner wall of the main body and the outer wall of the flow pipe.

また、流通管の端部において、流通管の延伸方向と交差する方向に突出したリブをさらに備えるとしてもよい。   Moreover, it is good also as providing the rib which protruded in the direction which cross | intersects the extending | stretching direction of a flow pipe in the edge part of a flow pipe.

また、燃焼炉の内側には、内部に流体が流通する伝熱管が配されており、当該伝熱管の内部を流通する流体は、当該燃焼炉で生じた熱によって加熱され、測定時において、付着面を含む燃焼炉の水平断面の中心を基準とした当該付着面の相対的な位置が、伝熱管を含む燃焼炉の水平断面の中心を基準とした当該伝熱管の相対的な位置となるように、燃焼炉の内側に付着面が配されるとしてもよい。   In addition, a heat transfer tube through which the fluid flows is arranged inside the combustion furnace, and the fluid flowing through the heat transfer tube is heated by the heat generated in the combustion furnace and adheres at the time of measurement. The relative position of the attachment surface relative to the center of the horizontal cross section of the combustion furnace including the surface is the relative position of the heat transfer tube relative to the center of the horizontal cross section of the combustion furnace including the heat transfer tube. In addition, an adhesion surface may be disposed inside the combustion furnace.

上記課題を解決するために、本発明の燃焼灰測定方法は、燃焼炉に設けられた孔に挿抜可能な本体部と、当該本体部の表面の一部であり、燃焼灰を付着させる付着面と、筒形状の支持部、および、燃焼炉に設けられた孔に当該支持部を挿抜する固定部を有し、燃焼炉に設けられた孔への本体部の挿抜を案内するとともに、付着面の位置が燃焼炉の内側となる位置で当該本体部を保持するガイド部とを備えた燃焼灰測定装置を用いた燃焼灰測定方法であって、ガイド部を介して燃焼炉に設けられた孔に本体部を挿入する工程と、支持部における燃焼炉の内側に配される側の先端よりも付着面を突出させて、本体部を孔に挿入した状態を維持することで、付着面に燃焼炉で生じた燃焼灰を付着させる工程と、付着面から落下した燃焼灰を支持部が収容可能な位置に、本体部を移動させる工程と、予め定められた時間が経過すると付着面に燃焼灰を付着させた状態で、ガイド部ごと本体部を燃焼炉に設けられた孔から抜脱する工程と、を含むことを特徴とする。 In order to solve the above problems, a combustion ash measurement method of the present invention includes a main body part that can be inserted into and removed from a hole provided in a combustion furnace, and a part of the surface of the main body part, to which the combustion ash is attached. And a cylindrical support portion, and a fixing portion that inserts and removes the support portion into and from the hole provided in the combustion furnace, and guides insertion / extraction of the main body portion into the hole provided in the combustion furnace, and an adhesion surface Is a combustion ash measurement method using a combustion ash measuring device provided with a guide portion that holds the main body portion at a position where the position of the combustion chamber is inside the combustion furnace, and a hole provided in the combustion furnace via the guide portion The main body is inserted into the hole , and the sticking surface protrudes from the tip of the support portion on the inner side of the combustion furnace to maintain the state where the main body is inserted into the hole. adhering a combustion ash generated in the furnace, the support portion falling combustion ash from adhering surface The volume possible positions, and moving the main body, when a predetermined time has elapsed in a state adhered with combustion ash deposition surface, disconnect from holes provided to each guide portion main body to a combustion furnace And a step of removing.

本発明によれば、燃焼炉の運転を停止せずに燃焼炉の内側に付着した燃焼灰の量を測定することが可能となる。   According to the present invention, it is possible to measure the amount of combustion ash adhering to the inside of the combustion furnace without stopping the operation of the combustion furnace.

石炭焚きボイラの具体的な構成を説明するための図である。It is a figure for demonstrating the specific structure of a coal burning boiler. 燃焼炉を説明するための図である。It is a figure for demonstrating a combustion furnace. 燃焼灰測定装置の具体的な構成を説明するための図である。It is a figure for demonstrating the specific structure of a combustion ash measuring apparatus. 燃焼灰測定装置の燃焼炉への挿入方法を説明するための図である。It is a figure for demonstrating the insertion method to the combustion furnace of a combustion ash measuring apparatus. 燃焼灰測定装置の燃焼炉からの抜脱方法を説明するための図である。It is a figure for demonstrating the extraction method from the combustion furnace of a combustion ash measuring apparatus. 実施例で作製した燃焼灰測定装置および燃焼灰測定装置を用いて付着させた燃焼灰を説明するための図である。It is a figure for demonstrating the combustion ash adhering using the combustion ash measuring apparatus produced in the Example, and a combustion ash measuring apparatus. 実施例で作製した燃焼灰測定装置を用いて、熱流束を測定した結果を示す図である。It is a figure which shows the result of having measured the heat flux using the combustion ash measuring apparatus produced in the Example.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

図1は、石炭焚きボイラ100の具体的な構成を説明するための図であり、図2は、燃焼炉110を説明するための図である。また、本実施形態の図1および図2では、垂直に交わるX軸、Y軸、Z軸を図示の通り定義している。なお、図2中、バーナ112の位置を黒丸で、OAP114の位置をハッチングの丸で、覗き窓116の位置を白丸で示す。   FIG. 1 is a diagram for explaining a specific configuration of the coal fired boiler 100, and FIG. 2 is a diagram for explaining the combustion furnace 110. In FIGS. 1 and 2 of the present embodiment, the X axis, the Y axis, and the Z axis that intersect perpendicularly are defined as illustrated. In FIG. 2, the position of the burner 112 is indicated by a black circle, the position of the OAP 114 is indicated by a hatched circle, and the position of the viewing window 116 is indicated by a white circle.

図1および図2に示すように、石炭焚きボイラ100を構成する燃焼炉110は、例えば、X軸方向の幅Wが10m程度、Y軸方向の奥行きDが20m程度、Z軸方向の高さHが60m程度であり、側面にバーナ112が設けられており、バーナ112の上方に設けられたOAP(Over Air Port)114から供給された空気を用いて、底部110aに投入された石炭等の燃料を燃焼させる。また、燃焼炉110には、外部から燃焼炉110の内側を観察するための覗き窓116が複数設けられている。覗き窓116は、燃焼炉110に設けられた孔116aと、当該孔116aを封止する窓部116bとを含んで構成される。なお、孔116aの径は、例えば、100mm程度であるため、図1、2では、理解を容易にするために、燃焼炉110に対して覗き窓116を実際より大きく示している。   As shown in FIGS. 1 and 2, the combustion furnace 110 constituting the coal fired boiler 100 has, for example, a width W in the X-axis direction of about 10 m, a depth D in the Y-axis direction of about 20 m, and a height in the Z-axis direction. H is about 60 m, a burner 112 is provided on the side surface, and coal supplied to the bottom portion 110a using air supplied from an OAP (Over Air Port) 114 provided above the burner 112 is used. Burn the fuel. Further, the combustion furnace 110 is provided with a plurality of viewing windows 116 for observing the inside of the combustion furnace 110 from the outside. The observation window 116 includes a hole 116a provided in the combustion furnace 110 and a window portion 116b that seals the hole 116a. In addition, since the diameter of the hole 116a is about 100 mm, for example, in FIG. 1, 2, in order to make an understanding easy, the observation window 116 is shown larger than the actual with respect to the combustion furnace 110. FIG.

また、燃焼炉110の内側には、図1に示すように、伝熱管120(図1中、120a、120bで示す)が露出して設けられており、燃焼炉110において燃焼によって生じた熱および高温(例えば、1300℃〜1400℃程度)の燃焼排ガスで、伝熱管120の内部を流通する流体(例えば、水)が加熱される。そして、燃焼炉110で生じた燃焼排ガスは、ガス排出路110bを介して石炭焚きボイラ100の後段側に排出される。また、燃焼炉110には、高さ方向(図1中、Z軸方向)における予め定められた位置にくびれ部110cが設けられており、くびれ部110cは、燃焼排ガスの流れを制御し、伝熱管120a内を流通する流体を効率的に加熱する。   In addition, as shown in FIG. 1, a heat transfer tube 120 (indicated by 120 a and 120 b in FIG. 1) is exposed inside the combustion furnace 110, and heat generated by combustion in the combustion furnace 110 and A fluid (for example, water) flowing through the heat transfer tube 120 is heated with combustion exhaust gas at a high temperature (for example, about 1300 ° C. to 1400 ° C.). And the combustion exhaust gas which arose in the combustion furnace 110 is discharged | emitted by the back | latter stage side of the coal burning boiler 100 via the gas discharge path 110b. Further, the combustion furnace 110 is provided with a constricted portion 110c at a predetermined position in the height direction (Z-axis direction in FIG. 1). The constricted portion 110c controls the flow of combustion exhaust gas, and transmits it. The fluid flowing through the heat pipe 120a is efficiently heated.

伝熱管120は、燃焼炉110の上部に配される伝熱管120aと、燃焼炉110の内周面に沿って、らせん状に配される伝熱管120bとを含んで構成される。伝熱管120の外径は、例えば、30mm程度であるため、図1では、理解を容易にするために、燃焼炉110に対して伝熱管120を実際より大きく示している。   The heat transfer tube 120 includes a heat transfer tube 120 a disposed on the upper portion of the combustion furnace 110, and a heat transfer tube 120 b disposed in a spiral shape along the inner peripheral surface of the combustion furnace 110. Since the outer diameter of the heat transfer tube 120 is, for example, about 30 mm, in FIG. 1, the heat transfer tube 120 is shown larger than the actual size with respect to the combustion furnace 110 in order to facilitate understanding.

燃焼炉110において燃料を燃焼させると燃焼灰が生じるが、当該燃焼灰が伝熱管120や燃焼炉110の内周面に付着すると、燃焼炉110から伝熱管120内を流通する流体への伝熱効率が低下し、流体の加熱効率が低下したり、ガス排出路110bやくびれ部110cが閉塞してしまったりする。そこで、不図示の灰除去装置(スートブロワ)を用いて、伝熱管120の表面や燃焼炉110の内周面に蒸気や圧縮空気等を吹き付け、付着した燃焼灰を除去する。ここで、灰除去装置を駆動する契機(タイミング)を見極めるために、伝熱管120の表面や燃焼炉110の内周面といった燃焼炉110の内側に付着した燃焼灰の量(以下、単に「燃焼灰の付着量」と称する)の測定が望まれている。そこで、図1に示すように、燃焼炉110に燃焼灰測定装置200を設置し、燃焼炉110の内側に付着した燃焼灰の付着量を測定する。以下、燃焼灰測定装置200の具体的な構成について詳述する。   Combustion ash is generated when fuel is burned in the combustion furnace 110. If the combustion ash adheres to the heat transfer tube 120 or the inner peripheral surface of the combustion furnace 110, the heat transfer efficiency from the combustion furnace 110 to the fluid flowing through the heat transfer tube 120 is increased. Decreases, the heating efficiency of the fluid decreases, and the gas discharge passage 110b and the constricted portion 110c are blocked. Therefore, using an ash removal device (a soot blower) (not shown), steam, compressed air, or the like is sprayed on the surface of the heat transfer tube 120 or the inner peripheral surface of the combustion furnace 110 to remove the attached combustion ash. Here, in order to determine the trigger (timing) for driving the ash removal device, the amount of combustion ash adhering to the inside of the combustion furnace 110 such as the surface of the heat transfer tube 120 or the inner peripheral surface of the combustion furnace 110 (hereinafter simply referred to as “combustion”). The measurement of “the amount of ash” is desired. Therefore, as shown in FIG. 1, a combustion ash measuring device 200 is installed in the combustion furnace 110 and the amount of combustion ash attached to the inside of the combustion furnace 110 is measured. Hereinafter, a specific configuration of the combustion ash measuring apparatus 200 will be described in detail.

(燃焼灰測定装置200)
図3は、燃焼灰測定装置200の具体的な構成を説明するための図であり、図3(a)は、燃焼灰測定装置200の全体構成を示す図であり、図3(b)は、図3(a)の破線Aで囲った部分の拡大図を示す。また、本実施形態の図3では、垂直に交わるX軸、Y軸、Z軸を図示の通り定義している。さらに、図3(a)中、制御信号の流れを破線の矢印で示し、図3(b)中、熱媒体の流れを破線の矢印で示す。
(Combustion ash measuring device 200)
FIG. 3 is a diagram for explaining a specific configuration of the combustion ash measuring device 200, FIG. 3 (a) is a diagram showing an overall configuration of the combustion ash measuring device 200, and FIG. The enlarged view of the part enclosed with the broken line A of Fig.3 (a) is shown. Further, in FIG. 3 of the present embodiment, the X axis, the Y axis, and the Z axis that intersect perpendicularly are defined as illustrated. Further, in FIG. 3A, the flow of the control signal is indicated by a broken line arrow, and in FIG. 3B, the flow of the heat medium is indicated by a broken line arrow.

燃焼灰測定装置200を用いて、燃焼炉110の内側の燃焼灰の付着量を測定する場合、図3(a)に示すように、燃焼灰測定装置200を、覗き窓116を構成する孔116aに挿通して測定を行う。   When using the combustion ash measuring device 200 to measure the amount of combustion ash adhering inside the combustion furnace 110, the combustion ash measuring device 200 is connected to the hole 116a constituting the viewing window 116 as shown in FIG. Insert into and measure.

図3(a)に示すように、燃焼灰測定装置200は、本体部210と、温度測定部220と、制御部230と、流通管250と、ガイド部260とを含んで構成される。   As shown in FIG. 3A, the combustion ash measurement device 200 includes a main body part 210, a temperature measurement part 220, a control part 230, a flow pipe 250, and a guide part 260.

本体部210は、例えば、ステンレス鋼(SUS)等の金属材料で構成され、中空の円柱形状をなしており、孔116aに挿抜可能である。本体部210における燃焼炉110に挿入され、燃焼炉110の内側に曝される側の先端面には、付着面212が設けられている。燃焼灰測定装置200が燃焼炉110の内側に挿入され、付着面212が燃焼炉110の内側に露呈されて、燃焼炉110において燃料の燃焼が継続すると、付着面212に燃焼灰が付着することとなる。   The main body 210 is made of, for example, a metal material such as stainless steel (SUS), has a hollow cylindrical shape, and can be inserted into and removed from the hole 116a. An attachment surface 212 is provided on the front end surface of the main body 210 on the side that is inserted into the combustion furnace 110 and exposed to the inside of the combustion furnace 110. When the combustion ash measuring device 200 is inserted inside the combustion furnace 110 and the adhesion surface 212 is exposed inside the combustion furnace 110 and the combustion of fuel continues in the combustion furnace 110, the combustion ash adheres to the adhesion surface 212. It becomes.

具体的に説明すると、燃料としての石炭を燃焼させると、燃焼炉110の内部は、1300℃〜1400℃程度となり、燃焼灰は溶融スラグとなって存在する。したがって、溶融スラグとなった燃焼灰が有する粘着力で付着面212に付着することとなる。また、石炭を燃焼させると、燃焼灰には硫黄または硫黄化合物が含まれることとなる。硫黄や硫黄化合物は、金属と反応して結合する性質を有することから、燃焼灰に含まれる硫黄や硫黄化合物が付着面212を構成する金属と反応することで、燃焼灰が付着面212に付着することとなる。   More specifically, when coal as fuel is burned, the inside of the combustion furnace 110 is about 1300 ° C. to 1400 ° C., and the combustion ash exists as molten slag. Therefore, it adheres to the adhesion surface 212 with the adhesive force which the combustion ash which became the molten slag has. Moreover, when coal is burned, the combustion ash contains sulfur or a sulfur compound. Since sulfur and sulfur compounds have the property of reacting with and bonding to metals, sulfur and sulfur compounds contained in the combustion ash react with the metal constituting the adhesion surface 212, so that the combustion ash adheres to the adhesion surface 212. Will be.

このように、燃焼炉110に予め設けられた覗き窓116の孔116aに挿抜可能な本体部210と、本体部210に設けられた付着面212を備える構成により、石炭焚きボイラ100の運転中であっても、本体部210を燃焼炉110の内側に挿入することができる。そうすると、付着面212は、燃焼炉110の内側に位置することとなり、燃焼炉110の内側と実質的に同じ条件で付着面212にも燃焼灰が付着することになる。そして、石炭焚きボイラ100の運転中であっても、本体部210を燃焼炉110から引き抜くことができるため、付着面212に燃焼灰を付着させた状態で、燃焼灰を燃焼炉110の外部に取り出すことが可能となる。こうして取り出した燃焼灰の質量を測定することで、燃焼炉110の内側に付着した燃焼灰の質量を測定することができる。   As described above, the coal fired boiler 100 is in operation by the configuration including the main body 210 that can be inserted into and removed from the hole 116 a of the observation window 116 provided in advance in the combustion furnace 110 and the adhesion surface 212 provided in the main body 210. Even if it exists, the main-body part 210 can be inserted in the combustion furnace 110 inside. If it does so, the adhesion surface 212 will be located inside the combustion furnace 110, and combustion ash will also adhere to the adhesion surface 212 on the conditions substantially the same as the inside of the combustion furnace 110. Even when the coal-fired boiler 100 is in operation, the main body 210 can be pulled out of the combustion furnace 110, so that the combustion ash is placed outside the combustion furnace 110 with the combustion ash attached to the attachment surface 212. It can be taken out. By measuring the mass of the combustion ash thus taken out, the mass of the combustion ash adhering to the inside of the combustion furnace 110 can be measured.

また、取り出した燃焼灰の厚みを測定したり、燃焼灰を顕微鏡で観察して成分を分析したりすることも可能となる。さらに、上述したように、燃焼炉110には、様々な箇所に覗き窓116が設けられているため、覗き窓116が設けられる箇所それぞれに燃焼灰測定装置200を挿抜して燃焼灰を取り出せば、燃焼炉110の内側の燃焼灰の付着量の分布を把握することが可能となる。   It is also possible to measure the thickness of the extracted combustion ash or to analyze the components by observing the combustion ash with a microscope. Further, as described above, since the observation window 116 is provided in various places in the combustion furnace 110, if the combustion ash measuring device 200 is inserted and removed from each place where the observation window 116 is provided, the combustion ash is taken out. In addition, it is possible to grasp the distribution of the attached amount of combustion ash inside the combustion furnace 110.

さらに、上述したように、覗き窓116の孔116aの大きさは、100mm程度と、燃焼炉110の大きさ(X軸方向の幅Wが10m程度、Y軸方向の奥行きDが20m程度、Z軸方向の高さHが60m程度)と比較して、極めて小さい。したがって、本体部210を挿抜するために孔116aを一時的に開放したとしても、石炭焚きボイラ100の運転状況に影響を与える事態を回避しつつ、燃焼灰の測定を行うことが可能となる。   Furthermore, as described above, the size of the hole 116a of the observation window 116 is about 100 mm, and the size of the combustion furnace 110 (the width W in the X-axis direction is about 10 m, the depth D in the Y-axis direction is about 20 m, Z The height H in the axial direction is extremely small compared to about 60 m). Therefore, even if the hole 116a is temporarily opened in order to insert and remove the main body 210, it is possible to measure the combustion ash while avoiding a situation that affects the operation state of the coal burning boiler 100.

なお、図3(a)に示すように、燃焼灰の測定時(付着時)において、付着面212を含む燃焼炉110の水平断面(図3中、XY断面)の中心を基準とした付着面212の相対的な位置が、伝熱管120を含む燃焼炉110の水平断面の中心を基準とした伝熱管120の相対的な位置となるように本体部210を孔116aに挿入するとよい。こうすることで、伝熱管120と実質的に同じ条件で付着面212に燃焼灰を付着させることが可能となる。   In addition, as shown to Fig.3 (a), the adhesion surface on the basis of the center of the horizontal cross section (XY cross section in FIG. 3) of the combustion furnace 110 including the adhesion surface 212 at the time of combustion ash measurement (at the time of adhesion) The main body 210 may be inserted into the hole 116a so that the relative position of 212 is the relative position of the heat transfer tube 120 with respect to the center of the horizontal cross section of the combustion furnace 110 including the heat transfer tube 120. By doing so, it becomes possible to cause the combustion ash to adhere to the attachment surface 212 under substantially the same conditions as the heat transfer tube 120.

本実施形態において、付着面212は、YZ平面に沿った平面形状で構成したが、付着面212の形状に限定はなく、例えば、半球形状や、凸形状(例えば、伝熱管120bと曲率が実質的に同一な凸形状)、凹形状であってもよい。また、本実施形態において、付着面212は、本体部210の先端面であるが、本体部210の表面の一部であれば、位置に限定はなく、例えば、上面の一部であってもよい。   In the present embodiment, the attachment surface 212 is configured in a planar shape along the YZ plane, but the shape of the attachment surface 212 is not limited. The same convex shape) or a concave shape. Further, in the present embodiment, the attachment surface 212 is the front end surface of the main body 210, but the position is not limited as long as it is a part of the surface of the main body 210. Good.

温度測定部220は、例えば、熱電対で構成され、図3(b)に示すように、例えば、付着面212の中心T1、中心T1から本体部210の内部方向に予め定められた距離内側の位置T2、付着面212の面内であって、中心T1から予め定められた距離離隔した位置T3、T4に配置され、それぞれの部位の温度を直接測定する。ここで、本実施形態における、温度測定部220が温度を測定する位置と、本体部210の寸法関係について説明すると、本体部210(付着面212)の外径Bは、例えば60mmであり、位置T1と位置T2との距離Cは例えば5mmであり、付着面212の厚みDは例えば15mmであり、付着面212の裏面から後述する流通管250の端部250aまでの距離Eは例えば5mmであり、本体部210の内部から後述するリブ252までの距離Fは例えば5mmである。   The temperature measurement unit 220 is formed of, for example, a thermocouple. As shown in FIG. 3B, for example, the center T1 of the attachment surface 212 and a distance inside a predetermined distance from the center T1 toward the inside of the main body 210 are provided. Positioned at positions T3 and T4 within the plane of the position T2 and the attachment surface 212 and spaced from the center T1 by a predetermined distance, the temperature of each part is directly measured. Here, the position where the temperature measuring unit 220 measures the temperature and the dimensional relationship of the main body part 210 in this embodiment will be described. The outer diameter B of the main body part 210 (attachment surface 212) is 60 mm, for example. The distance C between T1 and the position T2 is, for example, 5 mm, the thickness D of the attachment surface 212 is, for example, 15 mm, and the distance E from the back surface of the attachment surface 212 to the end portion 250a of the flow pipe 250 described later is, for example, 5 mm. A distance F from the inside of the main body 210 to a rib 252 described later is, for example, 5 mm.

制御部230は、CPU(中央処理装置)を含む半導体集積回路で構成され、ROMからCPU自体を動作させるためのプログラムやパラメータ等を読み出し、ワークエリアとしてのRAMや他の電子回路と協働して燃焼灰測定装置200全体を管理および制御する。本実施形態において、制御部230は、温度測定部220が測定した温度に基づいて、燃焼炉110の内側の熱流束を導出したり、後述する流通管250に導入する熱媒体の温度や流量を制御することで付着面212を予め定められた温度に冷却したりする。   The control unit 230 is composed of a semiconductor integrated circuit including a CPU (Central Processing Unit), reads out programs and parameters for operating the CPU itself from the ROM, and cooperates with the RAM as a work area and other electronic circuits. The entire combustion ash measuring apparatus 200 is managed and controlled. In the present embodiment, the control unit 230 derives the heat flux inside the combustion furnace 110 based on the temperature measured by the temperature measurement unit 220 or determines the temperature and flow rate of the heat medium introduced into the flow pipe 250 described later. By controlling, the adhesion surface 212 is cooled to a predetermined temperature.

具体的に説明すると、制御部230は、温度測定部220が測定した付着面212の中心T1の温度と、中心T1から本体部210の内部方向に予め定められた距離内側の位置T2の温度との測定に基づいて熱流束を導出する。熱流束は下記数式(1)によって導出することができる。
熱流束q=λ×(T−T)/C …数式(1)
ここで、λは付着面212の熱伝導率(ここでは、ステンレス鋼の熱伝導率)、Tは位置T1の温度、Tは位置T2の温度、Cは位置T1と位置T2との距離を示す。
More specifically, the controller 230 measures the temperature at the center T1 of the attachment surface 212 measured by the temperature measurement unit 220 and the temperature at a position T2 inside a predetermined distance from the center T1 toward the inside of the main body 210. The heat flux is derived based on the measurement of The heat flux can be derived by the following formula (1).
Heat flux q = λ × (T 1 −T 2 ) / C Equation (1)
Where λ is the thermal conductivity of the attachment surface 212 (here, the thermal conductivity of stainless steel), T 1 is the temperature at position T 1 , T 2 is the temperature at position T 2 , and C is the distance between position T 1 and position T 2. Indicates.

このように、温度測定部220が付着面212と、付着面212近傍の温度を測定することにより、制御部230は、燃焼炉110の内側の熱流束を導出することができる。ここで、上述したように、付着面212が、燃焼炉110における伝熱管120の位置に配されるように本体部210を孔116aに挿入しておけば、伝熱管120の熱流束を推定することが可能となる。   As described above, the temperature measuring unit 220 measures the adhesion surface 212 and the temperature in the vicinity of the adhesion surface 212, so that the control unit 230 can derive the heat flux inside the combustion furnace 110. Here, as described above, if the main body 210 is inserted into the hole 116a so that the adhesion surface 212 is arranged at the position of the heat transfer tube 120 in the combustion furnace 110, the heat flux of the heat transfer tube 120 is estimated. It becomes possible.

続いて、制御部230による付着面212の冷却機構について説明すると、制御部230は、本体部210内に設けられた流路に熱媒体を流通させることで、付着面212を予め定められた温度に冷却する。具体的に説明すると、図3(b)に示すように、本体部210内に当該本体部210の内壁と離隔して、流通管250が複数本(ここでは、4本)配されている。流通管250は、付着面212側の端部250aが開放されており、制御部230による制御指令に応じて、外部から流通管250に熱媒体(ここでは、水)が導入されると、図3(b)中、破線の矢印で示すように、流通管250の内部空間、流通管250の端部250aの開放口、流路FC(本体部210の内壁と流通管250の外壁との間の空隙)をこの順で流通する。そうすると、熱媒体によって、付着面212が冷却されることになる。そして、流路FCを通過した熱媒体は、排出口210aを介して外部に排出されることとなる。なお、流通管250の流路断面積は、本体部210の鉛直断面積よりも小さいため、流通管250から付着面212の裏面に向かって熱媒体が吹き付けられる。   Subsequently, the cooling mechanism of the attachment surface 212 by the control unit 230 will be described. The control unit 230 causes the heat medium to flow through a flow path provided in the main body unit 210, thereby causing the attachment surface 212 to have a predetermined temperature. Cool down. Specifically, as shown in FIG. 3B, a plurality of (in this case, four) distribution pipes 250 are arranged in the main body 210 so as to be separated from the inner wall of the main body 210. The flow pipe 250 has an open end 250a on the adhesion surface 212 side, and when a heat medium (in this case, water) is introduced into the flow pipe 250 from the outside in accordance with a control command from the control unit 230, FIG. 3 (b), as indicated by the dashed arrows, the internal space of the flow pipe 250, the opening of the end 250a of the flow pipe 250, the flow path FC (between the inner wall of the main body 210 and the outer wall of the flow pipe 250). ) In this order. Then, the adhesion surface 212 is cooled by the heat medium. And the heat medium which passed the flow path FC will be discharged | emitted outside via the discharge port 210a. In addition, since the flow path cross-sectional area of the flow pipe 250 is smaller than the vertical cross-sectional area of the main body 210, the heat medium is sprayed from the flow pipe 250 toward the back surface of the attachment surface 212.

また、制御部230は、温度測定部220が測定した位置T1、T3、T4の温度に基づいて、熱媒体の温度や、熱媒体の流量(または流速)を制御して、付着面212の温度を予め定められた温度(例えば、500℃)に維持する。これにより、付着面212の温度を伝熱管120の温度と実質的に等しくすることができ、伝熱管120と実質的に同じ条件で付着面212に燃焼灰を付着させたり、伝熱管120と実質的に同じ条件の熱流束を導出したりすることが可能となる。   Further, the control unit 230 controls the temperature of the heat medium and the flow rate (or flow rate) of the heat medium based on the temperatures at the positions T1, T3, and T4 measured by the temperature measurement unit 220, and the temperature of the adhesion surface 212. Is maintained at a predetermined temperature (eg, 500 ° C.). Thereby, the temperature of the attachment surface 212 can be made substantially equal to the temperature of the heat transfer tube 120, and combustion ash is attached to the attachment surface 212 under substantially the same conditions as the heat transfer tube 120, or substantially the same as the heat transfer tube 120. In other words, it is possible to derive a heat flux under the same conditions.

また、流通管250の端部250aにおいて、流通管250の延伸方向(図3中X軸方向)と交差する方向(本実施形態では、図3中Z軸方向)に突出したリブ252が設けられている。   Further, at the end 250a of the flow pipe 250, a rib 252 is provided that protrudes in a direction (in this embodiment, the Z-axis direction in FIG. 3) intersecting the extending direction of the flow pipe 250 (X-axis direction in FIG. 3). ing.

リブ252を設けない場合、端部250aから放出された熱媒体は、付着面212に衝突した後直ちに、流路FCに流れてしまう。したがって、この場合、付着面212における端部250aの近傍のみしか冷却することができない。一方、リブ252を設ける構成により、端部250aから放出された熱媒体は、付着面212の裏面に沿って流通する。つまり、付着面212の裏面と熱媒体との接触時間を増加させることができ、リブ252を設けない場合と比較して付着面212を広範囲かつ満遍なく冷却することが可能となる。   When the rib 252 is not provided, the heat medium released from the end portion 250a flows into the flow path FC immediately after colliding with the adhesion surface 212. Therefore, in this case, only the vicinity of the end 250a on the adhesion surface 212 can be cooled. On the other hand, due to the configuration in which the ribs 252 are provided, the heat medium released from the end portion 250 a flows along the back surface of the attachment surface 212. That is, the contact time between the back surface of the attachment surface 212 and the heat medium can be increased, and the attachment surface 212 can be cooled over a wide range and evenly compared to the case where the rib 252 is not provided.

ガイド部260は、支持部262と、固定部264とを含んで構成され、燃焼炉110に設けられた孔116aへの本体部210の挿抜を案内するとともに、付着面212の位置が燃焼炉110の内側となる位置で本体部210を保持する。支持部262は、筒形状(ここでは、円筒形状)であり、固定部264は、支持部262から垂直方向に立設され、支持部262を燃焼炉110に設けられた孔116aに挿抜する。具体的に説明すると、支持部262が燃焼炉110に設けられた孔116aに挿抜可能であり、支持部262の内側に本体部210を挿入して支持したり、抜脱したりすることで、本体部210の孔116aへの挿抜を案内する。支持部262は、外径が孔116aに挿通可能な寸法関係を維持しており、内径が本体部210を挿通可能な寸法関係を維持している。固定部264は、孔116aよりも径が大きく形成されており、ガイド部260を孔116aに挿通した場合、固定部264によって孔116aが閉塞されるように構成されている。   The guide part 260 includes a support part 262 and a fixed part 264, guides the insertion / extraction of the main body part 210 into / from the hole 116a provided in the combustion furnace 110, and the position of the adhesion surface 212 is the combustion furnace 110. The main body 210 is held at a position that is on the inside. The support portion 262 has a cylindrical shape (here, a cylindrical shape), and the fixing portion 264 is erected in the vertical direction from the support portion 262, and the support portion 262 is inserted into and removed from a hole 116 a provided in the combustion furnace 110. More specifically, the support portion 262 can be inserted into and removed from the hole 116a provided in the combustion furnace 110, and the main body portion 210 is inserted into the support portion 262 to be supported or removed. The insertion / extraction of the part 210 to / from the hole 116a is guided. The support portion 262 maintains a dimensional relationship in which the outer diameter can be inserted into the hole 116 a, and the inner diameter maintains a dimensional relationship in which the main body portion 210 can be inserted. The fixing portion 264 is formed to have a diameter larger than that of the hole 116a, and the hole 116a is closed by the fixing portion 264 when the guide portion 260 is inserted into the hole 116a.

そして、燃焼灰測定装置200による燃焼灰の測定時、すなわち、本体部210およびガイド部260の挿通状態においては、孔116aにガイド部260が挿通され、付着面212が、支持部262における燃焼炉110の内側に配される側の先端よりも突出した状態で、支持部262内に本体部210が挿通されることとなる。また、本体部210の外周には、支持部262と本体部210との間に形成される間隙をシールするための帯状のシール部(断熱帯)270が巻き回されている。固定部264およびシール部270を設ける構成により、孔116aを確実に閉塞することができる。ガイド部260を用いた本体部210の挿入方法および抜脱方法の具体的な処理については、後に詳述する。   When the combustion ash is measured by the combustion ash measuring device 200, that is, in the inserted state of the main body part 210 and the guide part 260, the guide part 260 is inserted into the hole 116 a, and the adhesion surface 212 is a combustion furnace in the support part 262. The main body portion 210 is inserted into the support portion 262 in a state of protruding from the tip on the side arranged on the inside of the 110. In addition, a belt-shaped seal portion (heat insulating band) 270 for sealing a gap formed between the support portion 262 and the main body portion 210 is wound around the outer periphery of the main body portion 210. With the configuration in which the fixing portion 264 and the seal portion 270 are provided, the hole 116a can be reliably closed. Specific processing of the insertion method and the removal method of the main body part 210 using the guide part 260 will be described in detail later.

このように、本実施形態にかかる燃焼灰測定装置200は、ガイド部260を介して、本体部210を燃焼炉110の内側に挿入したり抜脱したりするが、上述したように、本体部210内に熱媒体が導入されると、本体部210の先端(付着面212)が鉛直下方向(図3中、Z軸方向)に傾くおそれがある。そこで、本実施形態では、本体部210にスペーサ部214を設け、付着面212のガイド部260への接触を防止する。スペーサ部214を備えることで、付着面212のガイド部260への接触により、付着面212に付着した燃焼灰が落下してしまう事態を回避することが可能となる。   As described above, the combustion ash measuring apparatus 200 according to the present embodiment inserts and removes the main body 210 into and out of the combustion furnace 110 via the guide 260, but as described above, the main body 210 When the heat medium is introduced into the inside, the tip (attachment surface 212) of the main body 210 may be tilted vertically downward (Z-axis direction in FIG. 3). Therefore, in this embodiment, the spacer part 214 is provided in the main body part 210 to prevent the adhesion surface 212 from contacting the guide part 260. By providing the spacer portion 214, it is possible to avoid a situation in which the combustion ash attached to the attachment surface 212 falls due to the contact of the attachment surface 212 with the guide portion 260.

以上、説明したように、本実施形態にかかる燃焼灰測定装置200によれば、燃焼炉110に予め設けられた覗き窓116の孔116aに挿入するだけで燃焼灰を付着させ、抜脱するだけで、付着した燃焼灰を取り出すことができるため、燃焼炉110の運転を停止せずに燃焼炉110の内側に付着した燃焼灰の量を測定することができる。   As described above, according to the combustion ash measuring apparatus 200 according to the present embodiment, the combustion ash is simply attached to and removed from the hole 116a of the observation window 116 provided in the combustion furnace 110 in advance. Since the attached combustion ash can be taken out, the amount of the combustion ash attached to the inside of the combustion furnace 110 can be measured without stopping the operation of the combustion furnace 110.

また、燃焼灰の測定と並行して、燃焼灰の付着を開始したときの熱流束、燃焼灰を付着させている間の熱流束、燃焼灰を取り出したときの熱流束を導出することができるので、燃焼灰が付着する前の伝熱管120の熱流束、燃焼灰が付着している間の伝熱管120の熱流束、燃焼灰を取り出したときの熱流束をリアルタイムに把握することが可能となる。   In parallel with the measurement of the combustion ash, the heat flux when the combustion ash starts to be attached, the heat flux while attaching the combustion ash, and the heat flux when the combustion ash is taken out can be derived. Therefore, it is possible to grasp in real time the heat flux of the heat transfer tube 120 before the combustion ash adheres, the heat flux of the heat transfer tube 120 while the combustion ash adheres, and the heat flux when the combustion ash is taken out. Become.

さらに、石炭焚きボイラ100の運転中に、燃焼灰の測定や熱流束の把握を実行することができるので、既存の石炭焚きボイラ100の燃焼灰の測定や熱流束の把握を遂行することが可能となる。また、上述したように、石炭焚きボイラ100を構成する燃焼炉110は、例えば、X軸方向の幅Wが10m程度、Y軸方向の奥行きDが20m程度、Z軸方向の高さHが60m程度と大きいため、石炭焚きボイラ100に予め熱電対を埋め込んだり、灰測定装置を埋め込んだりする工事を遂行するためには、足場を組んだり、重機を用いたりする等膨大な工事費を要する。しかし、本実施形態にかかる燃焼灰測定装置200を利用すれば、上記工事が不要となり、工事費を削減することが可能となる。   Furthermore, measurement of combustion ash and grasping of heat flux can be performed during operation of the coal-fired boiler 100, so that measurement of combustion ash and grasp of heat flux of the existing coal-fired boiler 100 can be performed. It becomes. As described above, the combustion furnace 110 constituting the coal fired boiler 100 has, for example, a width W in the X-axis direction of about 10 m, a depth D in the Y-axis direction of about 20 m, and a height H in the Z-axis direction of 60 m. Therefore, enormous construction costs such as building a scaffold or using heavy machinery are required to perform the work of embedding a thermocouple or ash measuring device in advance in the coal-fired boiler 100. However, if the combustion ash measuring apparatus 200 according to the present embodiment is used, the above construction is not necessary, and the construction cost can be reduced.

(燃焼灰測定方法)
続いて、上記燃焼灰測定装置200を用いた燃焼灰測定方法について説明する。図4、図5は、燃焼灰測定方法の処理の流れを説明するための図であり、図4は、燃焼灰測定装置200の燃焼炉110への挿入方法を説明するための図であり、図5は、燃焼灰測定装置200の燃焼炉110からの抜脱方法を説明するための図である。
(Combustion ash measurement method)
Then, the combustion ash measuring method using the said combustion ash measuring apparatus 200 is demonstrated. 4 and 5 are diagrams for explaining the processing flow of the combustion ash measuring method, and FIG. 4 is a diagram for explaining a method of inserting the combustion ash measuring device 200 into the combustion furnace 110. FIG. 5 is a view for explaining a method for removing the combustion ash measuring apparatus 200 from the combustion furnace 110.

燃焼灰測定装置200を燃焼炉110に挿入する場合、図4(a)に示すように、まず、作業者の操作に応じて、本体部210の外周にシール部270を巻き回し、続いて、図4(b)に示すように、本体部210をガイド部260に挿通して本体部210をガイド部260に固定する。ここで、ガイド部260の固定部264が孔116aを構成する覗き窓116の支持部に当接したときに、付着面212を含む燃焼炉110の水平断面の中心を基準とした付着面212の相対的な位置が、伝熱管120を含む燃焼炉110の水平断面の中心を基準とした伝熱管120の相対的な位置となるように、本体部210とガイド部260の位置を調整するとよい。また、本体部210は、付着面212が、支持部262における燃焼炉110の内側に曝される側の先端よりも突出した状態に配される。   When inserting the combustion ash measuring apparatus 200 into the combustion furnace 110, as shown in FIG. 4 (a), first, the seal part 270 is wound around the outer periphery of the main body part 210 according to the operation of the operator, As shown in FIG. 4B, the main body part 210 is inserted into the guide part 260 and the main body part 210 is fixed to the guide part 260. Here, when the fixing portion 264 of the guide portion 260 comes into contact with the support portion of the observation window 116 that constitutes the hole 116a, the attachment surface 212 of the combustion furnace 110 including the attachment surface 212 is used as a reference. The positions of the main body portion 210 and the guide portion 260 may be adjusted so that the relative position is the relative position of the heat transfer tube 120 with respect to the center of the horizontal cross section of the combustion furnace 110 including the heat transfer tube 120. Further, the main body 210 is arranged in a state in which the attachment surface 212 protrudes from the tip of the support portion 262 on the side exposed to the inside of the combustion furnace 110.

次に、図4(c)に示すように、ガイド部260ごと本体部210を燃焼炉110の孔116aに挿入する。ここで、燃焼炉110の圧力は10kPa程度と外部(大気圧)と比較して極めて小さい。したがって、ガイド部260ごと本体部210が燃焼炉110の内側に引き込まれるおそれがあるが、図4(d)に示すように、ガイド部260の固定部264が孔116aを構成する覗き窓116の外枠に当接することで、ガイド部260および本体部210のこれ以上の燃焼炉110の内側への移動が規制されることとなる。   Next, as shown in FIG. 4C, the main body part 210 together with the guide part 260 is inserted into the hole 116 a of the combustion furnace 110. Here, the pressure of the combustion furnace 110 is about 10 kPa, which is extremely small compared to the outside (atmospheric pressure). Therefore, there is a possibility that the main body portion 210 together with the guide portion 260 may be drawn into the combustion furnace 110, but as shown in FIG. 4 (d), the fixing portion 264 of the guide portion 260 of the viewing window 116 constituting the hole 116a. By abutting on the outer frame, further movement of the guide portion 260 and the main body portion 210 to the inside of the combustion furnace 110 is restricted.

続いて、燃焼灰測定装置200を燃焼炉110から抜脱する方法について説明する。上述した挿入方法に従って、燃焼灰測定装置200が燃焼炉110の内側に挿入され、付着面212が燃焼炉110の内側に曝されて、予め定められた時間が経過すると、図5(a)に示すように、付着面212に燃焼灰が付着する。そして、燃焼灰測定装置200の燃焼炉110からの抜脱を試みる場合、まず、図5(b)に示すように、作業者の操作に応じて、本体部210を支持部262の先端より内側に引き込んで、付着面212から落下した燃焼灰を支持部262が収容可能な位置に移動させる。そして、図5(c)に示すように、ガイド部260ごと本体部210を孔116aから抜脱する。最後に、図5(d)に示すように、ガイド部260から本体部210を抜脱する。   Next, a method for removing the combustion ash measuring apparatus 200 from the combustion furnace 110 will be described. When the combustion ash measuring apparatus 200 is inserted inside the combustion furnace 110 according to the insertion method described above, and the adhering surface 212 is exposed to the inside of the combustion furnace 110 and a predetermined time has elapsed, FIG. As shown, the combustion ash adheres to the attachment surface 212. When attempting to remove the combustion ash measuring apparatus 200 from the combustion furnace 110, first, as shown in FIG. 5 (b), the main body part 210 is placed inside the front end of the support part 262 according to the operator's operation. Then, the combustion ash that has fallen from the attachment surface 212 is moved to a position that can be accommodated by the support portion 262. And as shown in FIG.5 (c), the main-body part 210 with the guide part 260 is extracted from the hole 116a. Finally, as shown in FIG. 5D, the main body 210 is removed from the guide 260.

上述したように、燃焼炉110の圧力は外部(大気圧)と比較して極めて小さい。したがって、燃焼灰測定装置200の抜脱を試みて、燃焼灰測定装置200を摺動させている間に、燃焼灰測定装置200と孔116aとの間に形成された間隙を介して外部から燃焼炉110の内側に大気が流入する。そうすると、大気の流れによって、付着面212に付着した燃焼灰が燃焼炉110の内側に引き込まれてしまうおそれがある。   As described above, the pressure in the combustion furnace 110 is extremely small compared to the outside (atmospheric pressure). Therefore, while attempting to remove the combustion ash measurement device 200 and sliding the combustion ash measurement device 200, the combustion ash measurement device 200 is burned from the outside through a gap formed between the combustion ash measurement device 200 and the hole 116a. Air flows into the furnace 110. If it does so, there exists a possibility that the combustion ash adhering to the adhesion surface 212 may be drawn inside the combustion furnace 110 by the flow of air | atmosphere.

そこで、本体部210を燃焼炉110から抜脱する場合に、一旦本体部210を支持部262内に引き込んでから、ガイド部260ごと本体部210を孔116aから抜脱することにより、流入した大気の流れは、支持部262の外周を通ることとなり、燃焼灰が付着面212から引き込まれる可能性を低減することができる。また、本体部210を支持部262内に引き込むことにより、仮に燃焼灰が付着面212から落下したとしても支持部262で受け止めることができ、燃焼灰を燃焼炉110外に取り出すことが可能となる。   Therefore, when the main body part 210 is removed from the combustion furnace 110, the main body part 210 is once pulled into the support part 262, and then the main body part 210 is removed from the hole 116a together with the guide part 260. This flow passes through the outer periphery of the support portion 262, and the possibility that the combustion ash is drawn from the adhesion surface 212 can be reduced. Further, by pulling the main body part 210 into the support part 262, even if the combustion ash falls from the adhesion surface 212, it can be received by the support part 262, and the combustion ash can be taken out of the combustion furnace 110. .

以上説明したように、本実施形態の燃焼灰測定装置200によれば、燃焼炉110の運転を停止せずに燃焼炉110の内側に付着した燃焼灰の量を測定することができ、また、燃焼炉110の内側の燃焼灰の付着量の分布を把握することが可能となる。   As described above, according to the combustion ash measuring apparatus 200 of the present embodiment, the amount of combustion ash adhering to the inside of the combustion furnace 110 can be measured without stopping the operation of the combustion furnace 110, It becomes possible to grasp the distribution of the attached amount of combustion ash inside the combustion furnace 110.

(実施例)
図6は、実施例で作製した燃焼灰測定装置200および燃焼灰測定装置200を用いて付着させた燃焼灰を説明するための図である。図6(a)に示すように、本体部210、およびガイド部260をステンレス鋼で作製し、燃焼灰測定装置200を作製した。そして、石炭焚きボイラ100の燃焼炉110(覗き窓116の孔116a)に、作製した燃焼灰測定装置200を挿入した。その結果、図6(b)に示すように、付着面212に燃焼灰が付着することが確認できた。
(Example)
FIG. 6 is a diagram for explaining the combustion ash measurement apparatus 200 and the combustion ash deposited using the combustion ash measurement apparatus 200 manufactured in the example. As shown to Fig.6 (a), the main-body part 210 and the guide part 260 were produced with stainless steel, and the combustion ash measuring apparatus 200 was produced. And the produced combustion ash measuring apparatus 200 was inserted in the combustion furnace 110 (hole 116a of the observation window 116) of the coal burning boiler 100. FIG. As a result, as shown in FIG. 6B, it was confirmed that the combustion ash adhered to the adhesion surface 212.

図7は、実施例で作製した燃焼灰測定装置200を用いて、熱流束を測定した結果を示す図であり、縦軸は熱流束(kW/m)を示し、横軸は曝露時間(挿入時間)を示す。図7中、Case1−1、Case1−2はバーナ112の下流側に、Case2はOAP114の下流側に、それぞれ燃焼灰測定装置200を設置して、熱流束を測定した結果を示す。Case1−1とCase1−2とでは、測定位置は同一であるが、測定日時が異なる。 FIG. 7 is a diagram showing the results of measuring the heat flux using the combustion ash measuring apparatus 200 produced in the example. The vertical axis shows the heat flux (kW / m 2 ), and the horizontal axis shows the exposure time ( Insertion time). In FIG. 7, Case 1-1 and Case 1-2 are the downstream side of the burner 112, and Case 2 is the downstream side of the OAP 114. In Case 1-1 and Case 1-2, the measurement positions are the same, but the measurement dates and times are different.

図7のCase1−1、Case1−2に示すように、測定日時が異なっても測定位置が同一であれば、曝露時間における熱流束の挙動は略同一となることが確認できた。つまり、燃焼灰測定装置200は、再現性を有するデータを取得できることが確認された。一方、Case2と、Case1−1、Case1−2とを比較すると、曝露時間における熱流束の挙動が著しく異なることから、測定位置の違いにおける熱流束の挙動の違いを測定できることが分かった。   As shown in Case 1-1 and Case 1-2 in FIG. 7, if the measurement position is the same even if the measurement date and time are different, it has been confirmed that the behavior of the heat flux at the exposure time is substantially the same. That is, it was confirmed that the combustion ash measuring apparatus 200 can acquire reproducible data. On the other hand, when Case 2 was compared with Case 1-1 and Case 1-2, it was found that the behavior of the heat flux at the measurement position could be measured because the behavior of the heat flux at the exposure time was significantly different.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.

例えば、上記実施形態において、本体部210は、流通管250を4本備える構成について説明したが、流通管250の数に限定はない。流通管250の数は、熱媒体の温度、熱媒体の種類、熱媒体の流速、本体部210の外径および内径、付着面212の厚み、流通管250の流路断面積に基づいて、付着面212が所望する温度に冷却できるように決定すればよい。   For example, in the above embodiment, the main body 210 has been described with a configuration including four flow pipes 250, but the number of the flow pipes 250 is not limited. The number of flow pipes 250 is determined based on the temperature of the heat medium, the type of heat medium, the flow rate of the heat medium, the outer diameter and inner diameter of the main body 210, the thickness of the attachment surface 212, and the cross-sectional area of the flow pipe 250. What is necessary is just to determine so that the surface 212 can be cooled to the desired temperature.

また、上記実施形態において、付着面212の厚みが15mmである場合を例に挙げて説明したが、付着面212の厚みに限定はない。付着面212の厚みは、付着面212の材質、熱媒体の温度、熱媒体の種類、熱媒体の流速、本体部210の外径および内径、流通管250の流路断面積に基づいて、付着面212が所望する温度になるように決定すればよい。   Moreover, in the said embodiment, although the case where the thickness of the adhesion surface 212 was 15 mm was mentioned as an example, the thickness of the adhesion surface 212 is not limited. The thickness of the adhesion surface 212 is determined based on the material of the adhesion surface 212, the temperature of the heat medium, the type of the heat medium, the flow rate of the heat medium, the outer diameter and inner diameter of the main body 210, and the flow path cross-sectional area of the flow pipe 250. What is necessary is just to determine so that the surface 212 may become a desired temperature.

また、上記実施形態において、制御部230は、流通管250の内部空間、流通管250の端部250aの開放口、流路FCにこの順で前記熱媒体を流通させることとしているが、付着面212を冷却できれば、流路FC、流通管250の端部250aの開放口、流通管250の内部空間にこの順で前記熱媒体を流通させるとしてもよい。   Moreover, in the said embodiment, although the control part 230 is supposed to distribute | circulate the said heat medium in this order to the internal space of the flow pipe 250, the open port of the edge part 250a of the flow pipe 250, and the flow path FC, If the 212 can be cooled, the heat medium may be circulated in this order through the flow path FC, the opening of the end 250a of the flow pipe 250, and the internal space of the flow pipe 250.

本発明は、燃焼炉の内側に付着する燃焼灰の量を測定する燃焼灰測定装置および燃焼灰測定方法に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a combustion ash measuring device and a combustion ash measuring method for measuring the amount of combustion ash adhering to the inside of a combustion furnace.

110 …燃焼炉
116a …孔
120 …伝熱管
200 …燃焼灰測定装置
210 …本体部
212 …付着面
214 …スペーサ部
220 …温度測定部
230 …制御部
250 …流通管
250a …端部
252 …リブ
260 …ガイド部
262 …支持部
264 …固定部
DESCRIPTION OF SYMBOLS 110 ... Combustion furnace 116a ... Hole 120 ... Heat-transfer tube 200 ... Combustion ash measuring device 210 ... Main-body part 212 ... Adhesion surface 214 ... Spacer part 220 ... Temperature measurement part 230 ... Control part 250 ... Flow pipe 250a ... End part 252 ... Rib 260 ... Guide part 262 ... Support part 264 ... Fixed part

Claims (8)

燃焼炉の内側に付着する燃焼灰の量を測定する燃焼灰測定装置であって、
前記燃焼炉に設けられた孔に挿抜可能な本体部と、
前記本体部の表面の一部であり、前記燃焼灰を付着させる付着面と、
前記燃焼炉に設けられた孔への前記本体部の挿抜を案内するとともに、前記付着面の位置が前記燃焼炉の内側となる位置で前記本体部を保持するガイド部と、
を備え
前記ガイド部は、
筒形状であり、内側に前記本体部を支持する支持部と、
前記燃焼炉に設けられた孔内に前記支持部を固定する固定部と、
を備え、
測定時において前記付着面は、前記支持部より前記燃焼炉の内側に突出して配され、
前記燃焼炉に設けられた孔から前記本体部が抜脱される前に、前記付着面から落下した燃焼灰を前記支持部が収容可能な位置に、前記本体部を移動可能であることを特徴とする燃焼灰測定装置。
A combustion ash measuring device for measuring the amount of combustion ash adhering to the inside of a combustion furnace,
A main body that can be inserted into and removed from a hole provided in the combustion furnace;
A part of the surface of the main body, and an attachment surface to which the combustion ash is attached;
Guiding the insertion / extraction of the main body part into the hole provided in the combustion furnace, and holding the main body part at a position where the position of the adhesion surface is inside the combustion furnace;
Equipped with a,
The guide portion is
A cylindrical shape, and a support portion that supports the body portion on the inside;
A fixing part for fixing the support part in a hole provided in the combustion furnace;
With
At the time of measurement, the adhesion surface is arranged to protrude from the support portion to the inside of the combustion furnace,
Before the main body is removed from the hole provided in the combustion furnace, the main body can be moved to a position where the support portion can accommodate the combustion ash dropped from the adhesion surface. Combustion ash measuring device.
前記付着面の温度と、前記本体部における当該付着面から予め定められた距離内側の温度をそれぞれ測定する温度測定部をさらに備えたことを特徴とする請求項1に記載の燃焼灰測定装置。   The combustion ash measuring device according to claim 1, further comprising a temperature measuring unit that measures a temperature of the adhering surface and a temperature inside a predetermined distance from the adhering surface of the main body. 前記付着面は、前記本体部における前記燃焼炉の内側に曝される側の先端面であり、
前記本体部に設けられ、前記付着面の前記ガイド部への接触を防止するスペーサ部をさらに備えたことを特徴とする請求項1または2に記載の燃焼灰測定装置。
The adhesion surface is a tip surface on the side exposed to the inside of the combustion furnace in the main body,
Wherein provided on the body portion, the combustion ash measuring device according to claim 1 or 2, further comprising a spacer portion for preventing contact to the guide portion of the attachment surface.
前記本体部内に設けられた流路に熱媒体を流通させることで、前記付着面を予め定められた温度に冷却する制御部をさらに備えたことを特徴とする請求項1からのいずれか1項に記載の燃焼灰測定装置。 Wherein by circulating a heat medium in the flow passage provided in the body portion, any one of claims 1 to 3, characterized in that it comprises the attachment surface predetermined control unit further cooled to a temperature of The combustion ash measuring device according to item. 前記本体部は、中空形状であり、
前記本体部内に当該本体部の内壁と離隔して配され、前記付着面側の端部が開放された流通管を備え、
前記制御部は、前記流通管の内部空間、前記流通管の端部の開放口、前記本体部の内壁と前記流通管の外壁との間の空隙にこの順で前記熱媒体を流通させることを特徴とする請求項に記載の燃焼灰測定装置。
The main body has a hollow shape,
In the main body part, it is arranged separately from the inner wall of the main body part, and has a flow pipe having an open end on the attachment surface side,
The control unit circulates the heat medium in this order through the internal space of the flow pipe, the opening at the end of the flow pipe, and the gap between the inner wall of the main body and the outer wall of the flow pipe. The combustion ash measuring device according to claim 4 , wherein
前記流通管の端部において、前記流通管の延伸方向と交差する方向に突出したリブをさらに備えたことを特徴とする請求項に記載の燃焼灰測定装置。 The combustion ash measuring device according to claim 5 , further comprising a rib projecting in a direction intersecting with an extending direction of the flow pipe at an end of the flow pipe. 前記燃焼炉の内側には、内部に流体が流通する伝熱管が配されており、当該伝熱管の内部を流通する流体は、当該燃焼炉で生じた熱によって加熱され、
測定時において、前記付着面を含む前記燃焼炉の水平断面の中心を基準とした当該付着面の相対的な位置が、前記伝熱管を含む前記燃焼炉の水平断面の中心を基準とした当該伝熱管の相対的な位置となるように、前記燃焼炉の内側に前記付着面が配されることを特徴とする請求項1からのいずれか1項に記載の燃焼灰測定装置。
Inside the combustion furnace, a heat transfer tube through which a fluid flows is arranged, and the fluid flowing through the heat transfer tube is heated by the heat generated in the combustion furnace,
At the time of measurement, the relative position of the adhering surface with respect to the center of the horizontal cross section of the combustion furnace including the adhering surface is determined based on the center of the horizontal cross section of the combustion furnace including the heat transfer tube. The combustion ash measuring device according to any one of claims 1 to 6 , wherein the adhesion surface is arranged inside the combustion furnace so as to be a relative position of a heat tube.
燃焼炉に設けられた孔に挿抜可能な本体部と、当該本体部の表面の一部であり、燃焼灰を付着させる付着面と、筒形状の支持部、および、前記燃焼炉に設けられた孔に当該支持部を挿抜する固定部を有し、前記燃焼炉に設けられた孔への前記本体部の挿抜を案内するとともに、前記付着面の位置が前記燃焼炉の内側となる位置で当該本体部を保持するガイド部とを備えた燃焼灰測定装置を用いた燃焼灰測定方法であって、
前記ガイド部を介して前記燃焼炉に設けられた孔に前記本体部を挿入する工程と、
前記支持部における前記燃焼炉の内側に配される側の先端よりも前記付着面を突出させて、前記本体部を前記孔に挿入した状態を維持することで、前記付着面に前記燃焼炉で生じた燃焼灰を付着させる工程と、
前記付着面から落下した燃焼灰を前記支持部が収容可能な位置に、前記本体部を移動させる工程と、
予め定められた時間が経過すると、前記付着面に前記燃焼灰を付着させた状態で、前記ガイド部ごと前記本体部を前記燃焼炉に設けられた孔から抜脱する工程と、
を含むことを特徴とする燃焼灰測定方法。
A main body part that can be inserted into and removed from a hole provided in the combustion furnace, a part of the surface of the main body part, an attachment surface to which the combustion ash is attached, a cylindrical support part, and the combustion furnace provided in the combustion furnace A fixing portion that inserts and removes the support portion into and from the hole, guides the insertion and removal of the main body portion into and from the hole provided in the combustion furnace, and the position of the adhesion surface is located at the position inside the combustion furnace. A combustion ash measurement method using a combustion ash measurement device provided with a guide part for holding a main body part,
Inserting the main body into a hole provided in the combustion furnace through the guide;
By projecting the adhesion surface from the tip of the support portion on the side disposed inside the combustion furnace and maintaining the state where the main body portion is inserted into the hole, A process of attaching the generated combustion ash;
Moving the body part to a position where the support part can accommodate the combustion ash dropped from the adhesion surface;
If the predetermined time has elapsed in a state in which said depositing the ash before Symbol deposition surface, a step of pulling out the each of the guide portion and the body portion from the hole provided in the combustion furnace,
The combustion ash measuring method characterized by including.
JP2013015904A 2013-01-30 2013-01-30 Combustion ash measuring device and combustion ash measuring method Active JP6111699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013015904A JP6111699B2 (en) 2013-01-30 2013-01-30 Combustion ash measuring device and combustion ash measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013015904A JP6111699B2 (en) 2013-01-30 2013-01-30 Combustion ash measuring device and combustion ash measuring method

Publications (2)

Publication Number Publication Date
JP2014145568A JP2014145568A (en) 2014-08-14
JP6111699B2 true JP6111699B2 (en) 2017-04-12

Family

ID=51425946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013015904A Active JP6111699B2 (en) 2013-01-30 2013-01-30 Combustion ash measuring device and combustion ash measuring method

Country Status (1)

Country Link
JP (1) JP6111699B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6511928B2 (en) * 2015-04-13 2019-05-15 株式会社Ihi Measuring device and combustion furnace equipment
JP6471137B2 (en) * 2015-11-10 2019-02-13 東北発電工業株式会社 Combustion ash characteristic measurement probe, combustion ash characteristic measurement method, combustion ash characteristic evaluation method, and combustion gas concentration measurement method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101701A (en) * 1984-10-24 1986-05-20 471199 オンタリオ リミテツド Method and device for controlling operation of boiler
JP3089137B2 (en) * 1993-07-01 2000-09-18 三菱重工業株式会社 Boiler dust meter
JPH07270356A (en) * 1994-03-30 1995-10-20 Babcock Hitachi Kk High-temperature corrosion-monitoring apparatus
JP2002061837A (en) * 2000-08-17 2002-02-28 Babcock Hitachi Kk Portable furnace combustion-diagnosing device and method of diagnosing combustion in furnace
JP4653348B2 (en) * 2001-07-18 2011-03-16 新日本製鐵株式会社 Plasma torch for heating molten steel
JP2003042430A (en) * 2001-07-31 2003-02-13 Babcock Hitachi Kk Soot blower
JP5215750B2 (en) * 2008-06-20 2013-06-19 三菱重工業株式会社 Sensor, liquid film measuring device
JP5347551B2 (en) * 2009-02-16 2013-11-20 栗田工業株式会社 High temperature deposit control method
JP5976988B2 (en) * 2010-09-03 2016-08-24 株式会社Ihi Ash removal system and combustion furnace

Also Published As

Publication number Publication date
JP2014145568A (en) 2014-08-14

Similar Documents

Publication Publication Date Title
US8105533B2 (en) Apparatus for measuring corrosion loss
JP6111699B2 (en) Combustion ash measuring device and combustion ash measuring method
JP5233912B2 (en) Fine powder combustion test equipment
JP6511928B2 (en) Measuring device and combustion furnace equipment
JP5347551B2 (en) High temperature deposit control method
US9250188B2 (en) System and method for measuring cooling of a component
JP6722546B2 (en) Combustion device
JP2009174032A (en) Method and apparatus for detecting calcinating point in sintering machine
US11673188B2 (en) Method for removing refractory metal cores
JP2008249462A (en) Method of measuring temperature of combustion exhaust gas of waste incinerator
JP5976988B2 (en) Ash removal system and combustion furnace
JP5470170B2 (en) High temperature corrosion test equipment
JP6863257B2 (en) Waste incinerator Boiler blockage and corrosion control methods
JP6856116B2 (en) Corrosion evaluation method and probe for metallic materials
JP3432808B2 (en) Ash melting temperature monitoring sensor
WO2001061297A2 (en) Combustion process optimisation system by means of direct measurements inside the furnace
DK2759769T3 (en) PROCEDURE FOR PUTTING A PIPE IN A COMBUSTION PLANT AND A DEVICE WITH SUCH PIPE
JP6750238B2 (en) Vapor leak detector
CN103983369B (en) Station boiler flue multipoint mode cigarette temperature monitoring device and implementation method
KR100544237B1 (en) Apparatus for measuring fouling of boiler for power station
TWI682128B (en) Maintenance time notification device and maintenance time notification method for heat accumulator in regenerative burner, and remodeling method for combustion furnace having regenerative burner
KR102112549B1 (en) Apparatus for detecting hole of tube of the channel type recuperator
JP2005156122A (en) Boiler apparatus
JP2006279055A (en) Semiconductor manufacturing device
JP2005042999A (en) Ash melting facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170227

R151 Written notification of patent or utility model registration

Ref document number: 6111699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250