JP2013029348A - Antenna measuring method - Google Patents

Antenna measuring method Download PDF

Info

Publication number
JP2013029348A
JP2013029348A JP2011164076A JP2011164076A JP2013029348A JP 2013029348 A JP2013029348 A JP 2013029348A JP 2011164076 A JP2011164076 A JP 2011164076A JP 2011164076 A JP2011164076 A JP 2011164076A JP 2013029348 A JP2013029348 A JP 2013029348A
Authority
JP
Japan
Prior art keywords
antenna
phase
array antenna
phased array
excitation amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011164076A
Other languages
Japanese (ja)
Inventor
Hisataka Kojima
央任 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011164076A priority Critical patent/JP2013029348A/en
Publication of JP2013029348A publication Critical patent/JP2013029348A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem of a conventional method for measuring the excitation amplitude and phase distribution of a phased array antenna, the conventional method requiring provision of a control circuit, a control command, and a program for changing the phase of each element antenna, aside from beam formation and beam scan in the phased array antenna.SOLUTION: The excitation amplitude and phase distribution of a phased array antenna are measured by receiving a radiation pattern when beam scanning the phased array antenna by a pickup antenna installed at the front of the phased array antenna and performing an inverse Fourier transform with respect to the reception signal.

Description

この発明は、直線または平面上に等間隔で配列された放射素子アンテナと各放射素子アンテナにつながれた移相器からなるフェーズドアレーアンテナにおいて、アレーアンテナの励振振幅及び位相分布を測定するアンテナ測定法に関する。   The present invention relates to an antenna measurement method for measuring the excitation amplitude and phase distribution of an array antenna in a phased array antenna comprising a radiating element antenna arranged on a straight line or a plane at equal intervals and a phase shifter connected to each radiating element antenna. About.

フェーズドアレーアンテナは、直線または平面上に配列された放射素子アンテナを移相器により所望の励振振幅・位相で励振することで、所望のビーム形状、サイドローブ形状を得る。フェーズドアレーアンテナは、通信装置またはレーダー装置において広く用いられている。   The phased array antenna obtains a desired beam shape and sidelobe shape by exciting radiating element antennas arranged in a straight line or a plane with a desired excitation amplitude and phase by a phase shifter. Phased array antennas are widely used in communication devices or radar devices.

しかしながら、実際に製造したフェーズドアレーアンテナは給電回路、移相器、素子アンテナ等の製造誤差、または素子アンテナ間の相互結合の影響により、所望の励振振幅・位相からずれてしまい、ビーム形状の変動、利得の低下またはサイドローブの上昇等の問題が生じる。   However, the phased array antenna actually manufactured deviates from the desired excitation amplitude and phase due to the manufacturing error of the feeding circuit, phase shifter, element antenna, etc., or the mutual coupling between the element antennas, resulting in fluctuations in the beam shape. Problems such as a decrease in gain or an increase in side lobe occur.

従ってフェーズドアレーアンテナの試験調整において、実際の励振振幅・位相分布を知る必要があり、そのようなフェーズドアレーアンテナの励振振幅及び位相分布の測定方法として、特許文献1に示す従来技術があった。   Therefore, it is necessary to know the actual excitation amplitude and phase distribution in the test adjustment of the phased array antenna. As a method for measuring the excitation amplitude and the phase distribution of such a phased array antenna, there is a conventional technique disclosed in Patent Document 1.

特許第1690499号公報Japanese Patent No. 1690499

従来のフェーズドアレーアンテナにおける励振振幅・位相分布の測定方法は、各素子アンテナの位相を変化させて、合成電力レベルの変化を測定し、位相変化に対するcosineカーブ(余弦曲線)状のレベル変化を求め、求めたレベル変化のデータを処理することより、最大/最小比r及び最大点Δpを求めている。これらの求められたrとΔpを用いて所定の計算を行うことで、位相変化させた素子アンテナの相対振幅、位相が決定されることになる。初期設定を同じにして全ての素子アンテナについて同様の測定とデータ処理と計算をくり返し行なえば、全ての素子アンテナの相対振幅、位相を知ることができる。   The measurement method of excitation amplitude and phase distribution in the conventional phased array antenna is to measure the change of the combined power level by changing the phase of each element antenna and obtain the level change in the shape of a cosine curve (cosine curve) with respect to the phase change. The maximum / minimum ratio r and the maximum point Δp are obtained by processing the obtained level change data. By performing a predetermined calculation using these determined r and Δp, the relative amplitude and phase of the element antenna whose phase has been changed are determined. By repeating the same measurement, data processing and calculation for all element antennas with the same initial settings, the relative amplitudes and phases of all element antennas can be known.

しかしながら、フェーズドアレーアンテナにおける所定のビーム形成、ビーム走査を行うための通常の制御回路とは別に、励振振幅・位相分布の測定時に各素子アンテナの位相を変化させるための試験用の制御回路や、制御コマンド及びプログラムを用意する必要があるので、試験準備に手間がかかり、時間を要するという問題があった。   However, apart from the normal control circuit for performing predetermined beam formation and beam scanning in the phased array antenna, a test control circuit for changing the phase of each element antenna when measuring the excitation amplitude and phase distribution, Since it is necessary to prepare control commands and programs, there is a problem that it takes time and effort to prepare for the test.

また、素子アンテナの位相を変化させた場合の初期位相により解の選択が変化するため、測定振幅と電力分配器の設計上の電力分配比との対応を取って計測を行うことや、あるいは初期設定の位相分布を変えて、もう一度全ての素子アンテナについて励振振幅・位相分布の測定を行ない、1回目の結果と比較して同じものを解とする等、アレーアンテナの特性に応じた試験方法の調整及び最適化が必要であり、試験準備に時間を必要とした。   In addition, since the selection of the solution changes depending on the initial phase when the phase of the element antenna is changed, measurement is performed by taking the correspondence between the measurement amplitude and the power distribution ratio in the design of the power distributor, or in the initial stage. Change the set phase distribution, measure the excitation amplitude and phase distribution for all the element antennas once again, and make the same solution as the first result. Adjustment and optimization were required and time was required for test preparation.

この発明は係る課題を解決するためになされたものであり、フェーズドアレーアンテナにおける励振振幅及び位相分布の測定時に、試験準備に要する手間を省くことのできる、アンテナ測定法を得ることを目的とする。   The present invention has been made to solve such problems, and an object of the present invention is to obtain an antenna measurement method that can save labor required for test preparation when measuring excitation amplitude and phase distribution in a phased array antenna. .

この発明によるアンテナ測定法は、直線または平面上に等間隔で配列された放射素子アンテナと、各放射素子アンテナに接続された移相器からなるフェーズドアレーアンテナの励振振幅及び位相分布を測定するアンテナ測定法において、
フェーズドアレーアンテナをビーム走査する方向をθ0とし、θ0を変化させてアンテナ正面のピックアップアンテナで受信した信号をF(θ0)とした場合、可視領域−k≦u≦kの放射パターンを−Mk≦u≦Mk(Mは励振振幅、位相の解析精度を決めるパラメータである自然数)の不可視領域まで伸長した上で、式1により逆フーリエ変換を行なうことによって、励振振幅及び位相分布E(x)を求めるアンテナ測定法。
The antenna measurement method according to the present invention is an antenna for measuring the excitation amplitude and phase distribution of a phased array antenna comprising a radiating element antenna arranged at equal intervals on a straight line or a plane, and a phase shifter connected to each radiating element antenna. In the measurement method,
When the beam scanning direction of the phased array antenna is θ 0 and θ 0 is changed and the signal received by the pickup antenna in front of the antenna is F (θ 0 ), the radiation pattern in the visible region −k ≦ u ≦ k is -Mk.ltoreq.u.ltoreq.Mk (M is a natural number that is a parameter that determines the accuracy of analysis of excitation amplitude and phase), and the inverse Fourier transform is performed by Equation 1 to obtain the excitation amplitude and phase distribution E ( Antenna measurement method for obtaining x).

Figure 2013029348
Figure 2013029348

この発明に係るアンテナ測定法によれば、ビーム形成、ビーム走査用のコマンドのみで励振振幅,位相を測定することが可能となり、試験準備の手間を省くことができる。また、素子アンテナの相対振幅、位相の解が一義的に求められるため、試験方法の調整・最適化が不要であり、試験準備時間の短縮が可能となる。   According to the antenna measurement method according to the present invention, it is possible to measure the excitation amplitude and phase with only the commands for beam forming and beam scanning, and it is possible to save labor for test preparation. In addition, since the solutions of the relative amplitude and phase of the element antenna are uniquely determined, it is not necessary to adjust and optimize the test method, and the test preparation time can be shortened.

実施の形態1によるアンテナ測定法を説明するための図である。It is a figure for demonstrating the antenna measuring method by Embodiment 1. FIG.

実施の形態1.
以下、図を用いてこの発明に係る実施の形態1のアレーアンテナの開口分布を測定するアンテナ測定法について説明する。図1において、実施の形態1による、フェーズドアレーアンテナの励振振幅及び位相分布を測定するアレーアンテナの測定法は、アレーアンテナ1と、アレーアンテナ1のアンテナ正面に設けられたピックアップアンテナ5を用いて測定が行われる。アレーアンテナ1は、複数の放射素子アンテナ2と、各放射素子アンテナ2に接続された移相器3、各移相器につながれ、移相器を制御する制御器4からなる。ピックアップアンテナ5で受信された信号は信号解析用の受信器6に送られ、受信器6にて測定された受信信号を基に放射パターンの解析を行う。
Embodiment 1 FIG.
Hereinafter, an antenna measurement method for measuring the aperture distribution of the array antenna according to the first embodiment of the present invention will be described with reference to the drawings. In FIG. 1, the array antenna measurement method for measuring the excitation amplitude and phase distribution of a phased array antenna according to Embodiment 1 uses an array antenna 1 and a pickup antenna 5 provided in front of the antenna of the array antenna 1. Measurement is performed. The array antenna 1 includes a plurality of radiating element antennas 2, a phase shifter 3 connected to each radiating element antenna 2, and a controller 4 connected to each phase shifter and controlling the phase shifter. The signal received by the pickup antenna 5 is sent to the signal analysis receiver 6, and the radiation pattern is analyzed based on the received signal measured by the receiver 6.

図1において、g(θ)は放射素子アンテナnの素子パターン、F(θ)はアレーアンテナの放射パターン、dは素子間隔を示している。このようなアレーアンテナ1の放射パターンF(θ)は、次式で表される。 In FIG. 1, g n (θ) is the element pattern of the radiating element antenna n, F (θ) is the radiation pattern of the array antenna, and d is the element spacing. Such a radiation pattern F (θ) of the array antenna 1 is expressed by the following equation.

Figure 2013029348
Figure 2013029348

ここで、Nは素子数、Anは素子nの複素励振分布、kは波数である。制御器4にて式2においてθ0方向にビームを走査した場合は、アレーアンテナ1の放射パターンは次式で表される。 Here, N is the number of elements, An is the complex excitation distribution of element n, and k is the wave number. When the controller 4 scans the beam in the θ 0 direction in Equation 2, the radiation pattern of the array antenna 1 is expressed by the following equation.

Figure 2013029348
Figure 2013029348

式3で表される放射パターンをアンテナ正面に置かれたピップアップアンテナ5で受信すると、θ=0のため、アレーアンテナ1の放射パターンは次式で表される。   When the radiation pattern represented by Equation 3 is received by the pip-up antenna 5 placed in front of the antenna, since θ = 0, the radiation pattern of the array antenna 1 is represented by the following equation.

Figure 2013029348
Figure 2013029348

ここで、g(0)は全ての放射素子アンテナが同一方式であれば、すべて等しい。従ってこれは、素子nの複素励振分布Anに含めて考えて良い。式4より、フェーズドアレーアンテナで連続的にビーム走査を行い、アンテナ正面に置かれたピックアップアンテナでRF信号を受信した場合、その受信信号は正面方向における励振振幅位相を離散フーリエ変換したものに等しいことがわかる。 Here, g n (0) is all equal if all the radiating element antennas are of the same type. Therefore, this may be included in the complex excitation distribution An of the element n. From Equation 4, when a beam scan is continuously performed with a phased array antenna and an RF signal is received with a pickup antenna placed in front of the antenna, the received signal is equal to a discrete Fourier transform of the excitation amplitude phase in the front direction. I understand that.

離散フーリエ変換と通常のフーリエ変換の関係から、これを連続波源の形に改めると、次式のようになる。   From the relationship between the discrete Fourier transform and the normal Fourier transform, when this is changed to the form of a continuous wave source, the following equation is obtained.

Figure 2013029348
Figure 2013029348

ここで、Lはアレーアンテナ1の長さであり、E(x)はアレー素子位置ではgn(0)を含んだアレーアンテナ1の励振振幅、位相の複素表示であり、それ以外は0となる関数である。式5から、放射パターンからE(x)を求めると、次式となる Here, L is the length of the array antenna 1, E (x) is a complex display of the excitation amplitude and phase of the array antenna 1 including g n (0) at the array element position, and 0 otherwise. It is a function. When E (x) is obtained from the radiation pattern from Equation 5, the following equation is obtained.

Figure 2013029348
Figure 2013029348

式6は、例えば時間軸波形のフーリエ変換により、周波数スペクトルを求める式と同様である。しかし、アレーアンテナの場合、素子波源が離散的に分布しているため、励振振幅、位相分布の逆フーリエ変換は周期性を有する無限連続する関数となり、そのうち可視領域と呼ばれる一部のみが実測された放射パターンとして測定される。そのため、実測したアレーアンテナの放射パターンを逆フーリエ変換しても、可視領域端での不連続が生じ、正確な励振振幅、位相を求めることが難しい。   Expression 6 is the same as the expression for obtaining the frequency spectrum by, for example, Fourier transform of the time axis waveform. However, in the case of an array antenna, since the element wave sources are distributed discretely, the inverse Fourier transform of the excitation amplitude and phase distribution becomes an infinite continuous function having periodicity, and only a part called the visible region is actually measured. Measured as a radiation pattern. Therefore, even if the measured radiation pattern of the array antenna is subjected to inverse Fourier transform, discontinuity occurs at the end of the visible region, and it is difficult to obtain accurate excitation amplitude and phase.

そこで実施の形態1によるアンテナ測定法では、受信器6において測定した可視領域-k≦u≦kの放射パターンを用いて、次7、8に基づいて、Fa(u)を−Mk≦u≦Mk(Mは励振振幅、位相の解析精度を決めるパラメータである自然数)の範囲の不可視領域まで伸長した上で逆フーリエ変換することで、可視領域端での不連続を除去する。   Therefore, in the antenna measurement method according to the first embodiment, Fa (u) is set to −Mk ≦ u ≦ based on the following 7 and 8, using the radiation pattern of the visible region −k ≦ u ≦ k measured in the receiver 6. The discontinuity at the end of the visible region is removed by performing inverse Fourier transform after extending to the invisible region in the range of Mk (M is a natural number that is a parameter that determines the analysis accuracy of the excitation amplitude and phase).

Figure 2013029348
Figure 2013029348

Figure 2013029348
Figure 2013029348

式8のFa’(u)を用いて、次式9のように逆フーリエ変換することで各素子アンテナの励振振幅、位相を求める。   The excitation amplitude and phase of each element antenna are obtained by performing inverse Fourier transform as shown in the following expression 9 using Fa ′ (u) of expression 8.

Figure 2013029348
Figure 2013029348

上記のように実施の形態1によるアンテナ測定法は、制御器4がフェーズドアレーアンテナのビーム形成、ビーム走査機能のみを有していれば、各素子アンテナ2の位相を変化させる制御を行うための特別な試験用制御回路を設けなくとも、各素子アンテナ2の励振振幅及び位相を測定することが可能である。また、式9を用いて、各素子アンテナ2の励振振幅及び位相の解が一義的に求められるため、試験方法の調整及び最適化が不要となり、試験準備時間の短縮が可能である。   As described above, the antenna measurement method according to the first embodiment is for performing control to change the phase of each element antenna 2 if the controller 4 has only the beam forming and beam scanning functions of the phased array antenna. Without providing a special test control circuit, the excitation amplitude and phase of each element antenna 2 can be measured. Further, since the solution of the excitation amplitude and phase of each element antenna 2 is uniquely determined using Equation 9, adjustment and optimization of the test method are not required, and the test preparation time can be shortened.

また、上記説明では、1次元に素子アンテナを配列したリニアアレーアンテナについて説明したが、素子アンテナを平面上に2次元配列したプラナーアレーアンテナにおいても、式8が2次元フーリエ変換となるだけで同様に励振振幅、位相を測定可能である。   In the above description, the linear array antenna in which the element antennas are arranged one-dimensionally has been described. However, in the planar array antenna in which the element antennas are two-dimensionally arranged on the plane, the same is true except that Equation 8 is a two-dimensional Fourier transform. The excitation amplitude and phase can be measured.

また、上記説明では、ピックアップアンテナはフェーズドアレーアンテナ1の正面としたが、他の方向であっても、角度差による位相差分を補正する必要があるだけで、同様な測定が可能である。   In the above description, the pickup antenna is the front surface of the phased array antenna 1, but the same measurement is possible even if the pickup antenna is in another direction, only by correcting the phase difference due to the angle difference.

1 フェーズドアレーアンテナ、2 素子アンテナ、3 移相器、4 制御器、5 ピックアップアンテナ、6 受信器   1 phased array antenna, 2 element antenna, 3 phase shifter, 4 controller, 5 pickup antenna, 6 receiver

Claims (1)

直線または平面上に等間隔で配列された放射素子アンテナと、各放射素子アンテナに接続された移相器からなるフェーズドアレーアンテナの励振振幅及び位相分布を測定するアンテナ測定法において、
フェーズドアレーアンテナをビーム走査する方向をθ0とし、θ0を変化させてアンテナ正面のピックアップアンテナで受信した信号をF(θ0)とした場合、可視領域−k≦u≦kの放射パターンを−Mk≦u≦Mk(Mは励振振幅、位相の解析精度を決めるパラメータである自然数)の不可視領域まで伸長した上で、式1により逆フーリエ変換を行なうことによって、励振振幅及び位相分布E(x)を求めるアンテナ測定法。
Figure 2013029348
In an antenna measurement method for measuring the excitation amplitude and phase distribution of a phased array antenna comprising a radiating element antenna arranged at equal intervals on a straight line or a plane and a phase shifter connected to each radiating element antenna,
When the beam scanning direction of the phased array antenna is θ 0 and θ 0 is changed and the signal received by the pickup antenna in front of the antenna is F (θ 0 ), the radiation pattern in the visible region −k ≦ u ≦ k is -Mk.ltoreq.u.ltoreq.Mk (M is a natural number that is a parameter that determines the accuracy of analysis of excitation amplitude and phase), and the inverse Fourier transform is performed by Equation 1 to obtain the excitation amplitude and phase distribution E ( Antenna measurement method for obtaining x).
Figure 2013029348
JP2011164076A 2011-07-27 2011-07-27 Antenna measuring method Withdrawn JP2013029348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011164076A JP2013029348A (en) 2011-07-27 2011-07-27 Antenna measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011164076A JP2013029348A (en) 2011-07-27 2011-07-27 Antenna measuring method

Publications (1)

Publication Number Publication Date
JP2013029348A true JP2013029348A (en) 2013-02-07

Family

ID=47786531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011164076A Withdrawn JP2013029348A (en) 2011-07-27 2011-07-27 Antenna measuring method

Country Status (1)

Country Link
JP (1) JP2013029348A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409853A (en) * 2014-11-27 2015-03-11 中国船舶重工集团公司第七二四研究所 Method for controlling electric scanning beam shape of planar array antenna
CN104820213A (en) * 2015-04-28 2015-08-05 电子科技大学 Dynamic elimination-based search and tracking radar directional pattern estimation method
KR101954183B1 (en) * 2018-09-04 2019-03-05 한화시스템 주식회사 Far-field signal measurement system of active phased array antenna and operation method for thereof
JP2019132836A (en) * 2018-01-31 2019-08-08 ロックウェル・コリンズ・インコーポレーテッド Method and system for esa metrology

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409853A (en) * 2014-11-27 2015-03-11 中国船舶重工集团公司第七二四研究所 Method for controlling electric scanning beam shape of planar array antenna
CN104820213A (en) * 2015-04-28 2015-08-05 电子科技大学 Dynamic elimination-based search and tracking radar directional pattern estimation method
JP2019132836A (en) * 2018-01-31 2019-08-08 ロックウェル・コリンズ・インコーポレーテッド Method and system for esa metrology
JP2021119344A (en) * 2018-01-31 2021-08-12 ロックウェル・コリンズ・インコーポレーテッド Method and system for testing phased antenna arrays
JP7250838B2 (en) 2018-01-31 2023-04-03 ロックウェル・コリンズ・インコーポレーテッド Method and system for testing phased antenna arrays
KR101954183B1 (en) * 2018-09-04 2019-03-05 한화시스템 주식회사 Far-field signal measurement system of active phased array antenna and operation method for thereof

Similar Documents

Publication Publication Date Title
US20120146841A1 (en) Phased array antenna and its phase calibration method
KR101564730B1 (en) Method for arranging array plane of phase array antenna
CN107390035B (en) Antenna measurement system and antenna measurement method
JP2012122874A (en) Phase calibration method of phased array antenna, and phased array antenna
JP2017134026A (en) Massive-mimo antenna measurement device and method for measuring directivity of the same
CN109813967B (en) Method, device and system for measuring array antenna directional pattern
JP6212879B2 (en) Antenna measuring device
Hassett Phased array antenna calibration measurement techniques and methods
JP6678554B2 (en) Antenna measuring device
JP2013029348A (en) Antenna measuring method
CN106199220B (en) Array antenna phase equalization measurement method based on optical path difference correction
US9568593B2 (en) Method, system and calibration target for the automatic calibration of an imaging antenna array
JP6908406B2 (en) Radar transmission beam calibration equipment, programs and methods
JP3638108B2 (en) Antenna measuring apparatus and antenna measuring method
KR101564729B1 (en) Method for arranging array plane of phase array antenna and method for operating the same
Hu et al. Antenna calibration and digital beam forming technique of the digital array radar
JP2019113355A (en) Antenna measuring system and antenna measuring method
CN113092880B (en) Multichannel array receiver amplitude-phase inconsistency detection method based on phase rotation
JP3491038B2 (en) Apparatus and method for measuring antenna characteristics using near-field measurement
JP2010237069A (en) Apparatus for measuring radar reflection cross-section
KR101273183B1 (en) Calibration of active multi polarimetric radar system
KR102189867B1 (en) Calibration system, apparatus and method for phased array antenna
JP2016046577A (en) Antenna device
KR101167097B1 (en) Acquisition method on phase of active phased array antenna radiating elements using sub-array's near-field data
CN110532631B (en) 6G communication antenna array element position tolerance determination method based on channel capacity sensitivity

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007