JP2013029286A - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP2013029286A
JP2013029286A JP2011167150A JP2011167150A JP2013029286A JP 2013029286 A JP2013029286 A JP 2013029286A JP 2011167150 A JP2011167150 A JP 2011167150A JP 2011167150 A JP2011167150 A JP 2011167150A JP 2013029286 A JP2013029286 A JP 2013029286A
Authority
JP
Japan
Prior art keywords
heat exchange
heat
water
flow path
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011167150A
Other languages
Japanese (ja)
Other versions
JP5653861B2 (en
Inventor
Kunihisa Hayashi
訓央 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Thermoener Co Ltd
Original Assignee
Nippon Thermoener Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Thermoener Co Ltd filed Critical Nippon Thermoener Co Ltd
Priority to JP2011167150A priority Critical patent/JP5653861B2/en
Publication of JP2013029286A publication Critical patent/JP2013029286A/en
Application granted granted Critical
Publication of JP5653861B2 publication Critical patent/JP5653861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable desired heated water to be supplied by efficiently recovering combustion heat of combustion exhaust gas discharged from a combustion burner provided in a water heater using a heating medium of a circulation system, and the rise of temperature/pressure to be prevented inside the water heater, and low temperature corrosion or the like accompanying cooling of the combustion exhaust gas further to be prevented.SOLUTION: The water heater includes: a body unit 10 having a combustion chamber 1 provided with a combustion burner 1d and a water pipe group 1b in which the heating medium for absorbing the combustion heat is distributed; and a heat exchange unit 20 having a lower heat exchange space 6 and an upper heat exchange space 7 for performing heat exchange of the heating medium which has absorbed the heat and supply water distributed from the first heat exchange part 7 to the second heat exchange part 6. The bypass flow rate of the supply water to bypass the first heat exchange part 7 is adjusted.

Description

本発明は、温水器に関し、例えば、産業用の温水発生装置である真空式温水器や無圧式温水器として有用である。   The present invention relates to a water heater, and is useful, for example, as a vacuum water heater or a pressureless water heater which is an industrial hot water generator.

従来、産業用の温水発生装置として多種多様な方式が利用されているが、100℃以下の温水を得る温水発生装置として、真空式温水器や無圧式温水器が多用されている。真空式温水器は、都市ガスや灯油、ペレットなどの燃料を燃焼し、その燃焼熱および排ガスを燃焼室の周囲に存在する熱媒水と熱交換させる。熱媒水は、大気圧下に減圧された減圧蒸発室で80℃〜90℃程度で減圧沸騰し、同室内にある熱交換器を介して給温水を加温する。熱媒水は燃焼室内に設けた伝熱管で燃焼排ガスと熱交換するが、通常は約200℃程度の排ガス温度まで熱回収する。熱効率は概ね90%程度である。   Conventionally, various types of industrial hot water generators have been used, but vacuum water heaters and non-pressure hot water heaters are frequently used as hot water generators for obtaining hot water of 100 ° C. or less. The vacuum water heater burns fuel such as city gas, kerosene, and pellets, and exchanges heat of the combustion heat and exhaust gas with heat transfer water existing around the combustion chamber. The heat transfer water boils under reduced pressure at about 80 ° C. to 90 ° C. in a reduced pressure evaporation chamber that has been depressurized under atmospheric pressure, and warms the hot water through a heat exchanger in the same chamber. The heat transfer water exchanges heat with the combustion exhaust gas through a heat transfer tube provided in the combustion chamber, but usually recovers heat up to an exhaust gas temperature of about 200 ° C. The thermal efficiency is approximately 90%.

こうした真空式温水器として、具体的には、例えば図5に示すような構成を有する真空式温水ボイラが挙げられる(例えば特許文献1参照)。上部に蒸気室102が形成されるよう熱媒水103を封入した熱媒水貯槽(缶体)101の下部内側に、上記熱媒水103に没するように燃焼室104を設けてバーナ105を設置し、且つ上記熱媒水貯槽101の頂部に、真空ポンプ106を、開閉弁108を備えた真空引きライン107を介し接続すると共に、上記蒸気室102となる熱媒水貯槽101内の上部位置に、加熱対象となる水109を外部から流通させることができるようにした熱交換器としての伝熱管110を設けた構成として、真空ポンプ106の作動により熱媒水貯槽101の内部を真空に引いた状態において、バーナ105を燃焼させることにより燃焼室104の壁面を介して熱媒水103を加熱し、これにより真空中にある熱媒水103を100℃以下の温度、たとえば、約80℃にて急速に沸騰、蒸発させ、発生した減圧蒸気を、蒸気室102に充満させると共に伝熱管110の表面で凝縮させることにより、該伝熱管110を流通する水109と熱交換を行わせて、該伝熱管110の出口より上記減圧蒸気の温度まで加熱された温水109aを回収できるようにしてある。なお、111は燃焼室104の排気口、112は燃焼室104内の中央部にてバーナ105に対峙するよう設置した火堰、113は火堰112の後方の煙道となる部分に燃焼室104を上下方向に貫通するよう設けた伝熱用水管である。凝縮伝熱を利用することで伝熱面積を小さくできると共に、減圧下における熱媒水103の凝縮領域の温度を制御温度とすることにより、加熱対象流体である水109を間欠的に熱交換させるような場合であっても、熱媒水103の温度が大きく変化することはなく、したがって、常に一定温度に加熱された温水109aを製造できるという特徴を有している(特許文献1段落0003〜0004参照)。   Specific examples of such a vacuum water heater include a vacuum hot water boiler having a configuration as shown in FIG. 5 (see, for example, Patent Document 1). A combustion chamber 104 is provided so as to be immersed in the heat medium water 103 inside the heat medium water storage tank (can body) 101 in which the heat medium water 103 is sealed so that the steam chamber 102 is formed in the upper part, and a burner 105 is provided. The top position of the heat transfer water storage tank 101 is connected to the top of the heat transfer water storage tank 101 via a vacuum line 107 provided with an on-off valve 108, and the upper position in the heat transfer water storage tank 101 serving as the steam chamber 102 The heat transfer pipe 110 as a heat exchanger that allows the water 109 to be heated to circulate from the outside is provided, and the inside of the heat transfer water storage tank 101 is evacuated by the operation of the vacuum pump 106. In this state, by burning the burner 105, the heat transfer water 103 is heated through the wall surface of the combustion chamber 104, so that the heat transfer water 103 in the vacuum has a temperature of 100 ° C. or lower. For example, by boiling and evaporating rapidly at about 80 ° C., the generated reduced-pressure steam fills the steam chamber 102 and condenses on the surface of the heat transfer tube 110, thereby exchanging heat with the water 109 flowing through the heat transfer tube 110. Thus, the hot water 109a heated up to the temperature of the reduced-pressure steam from the outlet of the heat transfer tube 110 can be recovered. In addition, 111 is an exhaust port of the combustion chamber 104, 112 is a fire weir installed at the center of the combustion chamber 104 so as to face the burner 105, and 113 is a combustion chamber 104 in a portion that becomes a flue behind the fire weir 112. Is a water pipe for heat transfer provided so as to penetrate through in the vertical direction. By using condensation heat transfer, the heat transfer area can be reduced, and the temperature of the condensation region of the heat transfer water 103 under reduced pressure is set as the control temperature, so that the water 109 that is the heating target fluid is intermittently heat-exchanged. Even in such a case, the temperature of the heat transfer water 103 does not change greatly, and therefore, the hot water 109a heated to a constant temperature can always be produced (Patent Document 1, paragraphs 0003 to 0003). 0004).

特開2003−279160号公報JP 2003-279160 A

しかし、上記のような真空式温水器あるいは無圧式温水器では、以下に挙げるような問題点や課題が生じることがあった。
(i)従来の真空式温水器では、熱媒水の温度を通常80℃〜90℃に加熱した状態で保持し、減圧蒸気室の熱交換器で冷水を温水に熱交換する。従来の構造では排ガス温度を熱媒水温度以下にすることができないため、構造的に大幅なボイラの高効率化は難しいという課題があった。
(ii)一方、加温−冷却を伴う循環系を形成する熱媒体と熱交換される燃焼排ガスには飽和に近い水分が含まれ、燃焼排ガスの減温・冷却による多量の凝縮水の発生に伴い、燃料が都市ガス等のガス焚きの場合には白煙の発生、重油等の油焚きの場合には低温腐食が生じるおそれがある(以下「低温腐食等」という)。特に燃焼熱をより効率的に回収するためには、燃焼排ガスを極力冷却することが好ましいことから、油焚きの場合の低温腐食等が生じない燃焼排ガスあるいは熱媒体の温度制御が要求される。
However, the above-described vacuum water heater or non-pressure water heater may have the following problems and problems.
(I) In the conventional vacuum water heater, the temperature of the heat transfer water is normally maintained in a state heated to 80 ° C. to 90 ° C., and the cold water is heat-exchanged with the hot water in the heat exchanger of the vacuum steam chamber. In the conventional structure, since the exhaust gas temperature cannot be made lower than the heat transfer water temperature, there is a problem that it is difficult to increase the efficiency of the boiler in terms of structure.
(Ii) On the other hand, the combustion exhaust gas that is heat-exchanged with the heat medium that forms a circulation system with heating-cooling contains moisture near saturation, which generates a large amount of condensed water due to the temperature reduction and cooling of the combustion exhaust gas. Accordingly, there is a risk that white smoke is generated when the fuel is gas-fired such as city gas, and low-temperature corrosion is caused when oil is burned such as heavy oil (hereinafter referred to as “low-temperature corrosion”). In particular, in order to recover the combustion heat more efficiently, it is preferable to cool the combustion exhaust gas as much as possible. Therefore, it is necessary to control the temperature of the combustion exhaust gas or the heat medium that does not cause low-temperature corrosion or the like in the case of oiling.

本発明の目的は、循環系の熱媒体を用い、温水器に設けられた燃焼バーナから排出される燃焼排ガスの燃焼熱を効率的に回収して所望の加温水を供給するとともに、温水器の高い燃焼効率を維持しつつ、燃焼排ガスの冷却に伴う低温腐食等を防止することができる温水器を提供することにある。   An object of the present invention is to use a circulating heat medium, efficiently recover the combustion heat of the combustion exhaust gas discharged from the combustion burner provided in the water heater, and supply the desired warming water. An object of the present invention is to provide a water heater capable of preventing low temperature corrosion and the like accompanying cooling of combustion exhaust gas while maintaining high combustion efficiency.

本発明者らは、鋭意研究を重ねた結果、以下に示す温水器によって上記目的を達成できることを見出し、本発明を完成するに到った。   As a result of intensive studies, the present inventors have found that the above-described object can be achieved by a water heater shown below, and have completed the present invention.

本発明に係る温水器は、燃焼バーナと内部を熱媒体が流通する水管群が備えられた燃焼室と、該燃焼室の上部に配設されて前記水管群と接続する上部流通路と、前記燃焼室の下方に配設されて前記水管群と接続する下部流通路と、を備えた本体ユニットと、前記上部流通路と上部連通流路で連通し、高温の熱媒体が流下する上部熱交換空間と、前記下部流通路と下部連通流路で連通し、低温の熱媒体が流通する下部熱交換空間と、が形成され、前記上部熱交換空間に第2熱交換部が配設され、前記下部熱交換空間に第1熱交換部が配設されるとともに、前記第1熱交換部への導入流路に供給された供給水が、前記第1熱交換部から接続流路を介して前記第2熱交換部に流通され、前記第2熱交換部の供出流路から加温水として供出される温水流路と、前記導入流路から分岐され、前記接続流路と接続されるバイパス流路と、を備えた熱交換ユニットと、を有することを特徴とする。   The water heater according to the present invention includes a combustion chamber provided with a combustion burner and a water tube group through which a heat medium flows, an upper flow passage disposed at an upper portion of the combustion chamber and connected to the water tube group, A main unit including a lower flow passage disposed below the combustion chamber and connected to the water pipe group, and an upper heat exchange that communicates with the upper flow passage and the upper communication flow path so that a high-temperature heat medium flows down A space, a lower heat exchange space that communicates with the lower flow passage and the lower communication channel, and a low-temperature heat medium flows therethrough, and a second heat exchange portion is disposed in the upper heat exchange space, A first heat exchange part is disposed in the lower heat exchange space, and supply water supplied to the introduction flow path to the first heat exchange part passes through the connection flow path from the first heat exchange part. Hot water that is circulated through the second heat exchange section and is supplied as warm water from the supply passage of the second heat exchange section And road is branched from the introduction flow path, and having a heat exchange unit and a bypass passage which is connected to the connecting channel.

既述のように、温水発生装置においては、燃焼排ガスの燃焼熱の効率的な回収が大きな課題になる。また、用いた熱媒体の温熱を効率的に利用して加温水を作製することが課題になる。本発明は、燃焼熱の回収に際して、本体ユニットにおいて、水管群を設け燃焼排ガスと回収に利用する熱媒体との熱交換を行ない、熱交換ユニットにおいて、熱媒体と加温の対象となる供給水とを2段階の熱交換を行なうとともに、両流体を各段階において向流的に熱交換させることによって、熱媒体の温熱を供給水に吸熱させ、非常に高い熱交換効率を得ることができることを見出した。つまり、熱交換ユニットにおいて、上方から下方に本体ユニットにおいて加熱された高温の熱媒体を流下させるとともに、上方に第2熱交換部、下方に第1熱交換部を配設して低温の供給水を下方から上方に流通させて向流的に各熱交換部において熱交換させることによって、非常に効率よく熱媒体の温熱を回収し、上方の第2熱交換部から高温の加温水を取出すことを可能にした。ここで、「水管群」とは、内部に熱媒体が通流可能な、複数の水管あるいは煙管が配設された高い熱交換機能を有する構成をいう。   As described above, in the hot water generator, efficient recovery of the combustion heat of the combustion exhaust gas becomes a major issue. Moreover, it becomes a subject to produce warm water efficiently using the heat of the used heat medium. In the recovery of combustion heat, the main body unit is provided with a water tube group to perform heat exchange between the combustion exhaust gas and the heat medium used for recovery, and in the heat exchange unit, supply water to be heated and heated. And heat exchange of both fluids countercurrently in each stage, so that the heat of the heat medium can be absorbed into the feed water and very high heat exchange efficiency can be obtained. I found it. That is, in the heat exchange unit, the high-temperature heat medium heated in the main body unit is caused to flow downward from above, and the second heat exchange unit is disposed above and the first heat exchange unit is disposed below to provide low-temperature supply water. The heat from the lower side to the upper side and heat is exchanged countercurrently in each heat exchange part, thereby recovering the heat of the heat medium very efficiently and taking out the hot water from the upper second heat exchange part Made possible. Here, the “water pipe group” refers to a configuration having a high heat exchange function in which a plurality of water pipes or smoke pipes are arranged, through which a heat medium can flow.

また、本発明は、第1熱交換部に供給される供給水の水量を調整・制御できるバイパス流路を備えたことを特徴とする。これは、本体ユニット,熱交換ユニットおよび温水器全体にとって、以下のような技術的意義を有する。
(i)本体ユニットに還流される熱媒体の温度が低温の場合、本体ユニットでの燃焼排ガスとの熱交換において多量の凝縮水の発生に伴う低温腐食等が生じるおそれがある。第1熱交換部での熱交換は供給水の温度条件によって影響されることから、供給水の温度が低温の場合、供給水の一部をバイパスさせ、あるいはバイパス流量を増加して第1熱交換部に導入する供給水の流量を減少させることによって、還流される熱媒体の温度の低温化を抑制して低温腐食等を防止することが可能となる。
(ii)温水器全体において、例えば、冷缶起動時において、供給水を第1熱交換部に導入せずにバイパス流路を介して第2熱交換部に導入させることによって、本体ユニット内の熱媒体の温度上昇を早め、効率よく本温水器の立ち上げを図ることができる。その後、徐々に第1熱交換部への供給水の導入量を増やすことによって、燃焼排ガスの燃焼熱を効率的に回収するとともに、冷缶起動時における燃焼排ガスの凝縮水発生を低減させることが可能となる。
In addition, the present invention is characterized in that a bypass flow path capable of adjusting and controlling the amount of water supplied to the first heat exchange unit is provided. This has the following technical significance for the main body unit, the heat exchange unit, and the water heater as a whole.
(I) When the temperature of the heat medium returned to the main unit is low, there is a risk of low temperature corrosion or the like accompanying the generation of a large amount of condensed water in heat exchange with the combustion exhaust gas in the main unit. Since the heat exchange in the first heat exchange unit is affected by the temperature condition of the feed water, when the feed water temperature is low, a part of the feed water is bypassed or the bypass flow rate is increased to increase the first heat. By reducing the flow rate of the supply water introduced into the exchange unit, it is possible to suppress low temperature corrosion and prevent low temperature corrosion and the like.
(Ii) In the whole water heater, for example, when starting the cold can, the supply water is not introduced into the first heat exchange unit, but is introduced into the second heat exchange unit via the bypass channel, The temperature rise of the heat medium can be accelerated, and the water heater can be started up efficiently. Thereafter, by gradually increasing the amount of water supplied to the first heat exchange section, the combustion heat of the combustion exhaust gas can be efficiently recovered, and the generation of condensed water of the combustion exhaust gas at the start of the cold can can be reduced. It becomes possible.

本発明は、上記温水器であって、前記燃焼室で発生した燃焼排ガスが、前記水管群で前記熱媒体と熱交換され、減温されて排気部から排出され、前記水管群の内部を充たす熱媒体が、前記燃焼排ガスとの熱交換によって燃焼熱を吸収して加温され、前記上部流通路を介して前記上部熱交換空間に移送され、前記第2熱交換部で熱交換して減温されて前記下部熱交換空間に流下し、前記第1熱交換部で熱交換して減温され、前記下部流通路を介して前記水管群の内部を流通する、循環流が形成され、供給水が、前記第1熱交換部および前記第2熱交換部に流通され、加温されて加温水として供出されるとともに、前記下部連通流路に設けられた温度センサの出力が入力され、前記温水流路あるいは前記バイパス流路に設けられた制御弁を制動する制御部によって、前記バイパス流路に流通させる供給水の流量が調整されることを特徴とする。
温水器においては、燃焼器において発生する温熱を、熱媒体に吸熱させ、さらに熱媒体を介して供給水に吸熱させるという2段階の熱交換が行なわれる。本発明は、このとき、温熱移送の媒体となる燃焼排ガスや熱媒体および吸熱側の供給水を如何に流通させて温熱を最大限に活用できるかを検証したもので、燃焼排ガス,熱媒体,供給水を、それぞれ上記のような流通を形成することによって、従前にない非常に効率的かつ安定的に供給水から加温水を取り出すことができることを見出した。また、熱媒体と燃焼排ガスとの熱交換において、多量の凝縮水の発生に伴う本体ユニットでの低温腐食等を防止するには、本体ユニットに還流する熱媒体の温度管理が重要であり、バイパス流量を増加して第1熱交換部に導入する供給水の流量を減少させることによって、還流される熱媒体の温度の低温化を抑制して低温腐食等を防止することが可能となった。
The present invention is the above-mentioned water heater, wherein the flue gas generated in the combustion chamber is heat-exchanged with the heat medium in the water tube group, is reduced in temperature, is discharged from an exhaust part, and fills the inside of the water tube group A heat medium absorbs combustion heat by heat exchange with the combustion exhaust gas, is heated, transferred to the upper heat exchange space through the upper flow passage, and reduced by heat exchange in the second heat exchange section. Heated and flowed down to the lower heat exchanging space, heat exchanged in the first heat exchanging part and reduced in temperature, and a circulation flow is formed and circulated through the water pipe group through the lower flow passage, and supplied Water is circulated through the first heat exchange unit and the second heat exchange unit, heated and supplied as warm water, and an output of a temperature sensor provided in the lower communication channel is input, Brakes the control valve provided in the hot water flow path or the bypass flow path The control unit, characterized in that the flow rate of feed water to be circulated in the bypass passage is adjusted.
In the water heater, two-stage heat exchange is performed in which the heat generated in the combustor is absorbed by the heat medium, and further, the supply water is absorbed through the heat medium. At this time, the present invention verifies how combustion heat exhaust gas, heat medium, and heat absorption side feed water that is a heat transfer medium can be circulated to make maximum use of heat, combustion exhaust gas, heat medium, It has been found that heated water can be taken out from the supplied water in an extremely efficient and stable manner by forming the circulation of the supplied water as described above. Also, in the heat exchange between the heat medium and the combustion exhaust gas, the temperature control of the heat medium returning to the main unit is important in order to prevent low temperature corrosion etc. in the main unit due to the generation of a large amount of condensed water. By increasing the flow rate and decreasing the flow rate of the feed water introduced into the first heat exchange section, it has become possible to prevent low temperature corrosion and the like by suppressing the temperature of the refluxed heat medium from being lowered.

本発明は、上記温水器であって、前記第1熱交換部が直列に配設された複数の熱交換単位によって構成され、各熱交換単位の接続部が分岐され前記バイパス流路に接続されるとともに、前記第1熱交換部に流通させる供給水の流量が調整されることを特徴とする。
既述のように、本体ユニットにおける凝縮水の発生防止は、特に重油等の油焚きの温水器の長期使用において重要である。一方、凝縮水の発生は、短時間の燃焼排ガス温度の低下によっても生じることから、燃焼排ガスと熱交換される本体ユニットへ還流される熱媒体の温度制御は、特に迅速性が要求される。本発明は、第1熱交換部がバイパス流路を有する複数の熱交換単位によって構成され、第1熱交換部に供給される供給水、特に、より燃焼排ガスと熱媒体の熱交換が行われる部位に近い熱交換単位への供給水の水量を調整・制御することによって、迅速に当該熱媒体の温度の安定性を確保することができる。
The present invention is the water heater as described above, wherein the first heat exchange unit is configured by a plurality of heat exchange units arranged in series, and a connection part of each heat exchange unit is branched and connected to the bypass flow path. In addition, the flow rate of the feed water to be circulated through the first heat exchange unit is adjusted.
As described above, the prevention of the generation of condensed water in the main unit is particularly important in the long-term use of oil-fired water heaters such as heavy oil. On the other hand, since the generation of condensed water is also caused by a short-time decrease in the combustion exhaust gas temperature, the temperature control of the heat medium returned to the main unit that exchanges heat with the combustion exhaust gas is particularly required to be quick. In the present invention, the first heat exchanging unit is configured by a plurality of heat exchanging units having a bypass flow path, and heat exchange between the supply water supplied to the first heat exchanging unit, in particular, the combustion exhaust gas and the heat medium is performed. By adjusting and controlling the amount of water supplied to the heat exchange unit close to the site, the temperature stability of the heat medium can be secured quickly.

本発明は、上記温水器であって、前記本体ユニットが、無圧式温水器を構成し、前記水管群において加温された液相の前記熱媒体が、前記上部流通路を介して前記上部熱交換空間に移送され、前記第2熱交換部で熱交換して減温されて前記下部熱交換空間に流下し、前記第1熱交換部で熱交換して減温され、前記下部流通路を介して前記水管群の内部を流通する、同相の熱媒体の循環流が形成されることを特徴とする。
上記のように、本発明は、熱交換ユニットにおいて、本体ユニットにおいて加熱された高温の熱媒体を流下させ、上方に第2熱交換部、下方に第1熱交換部を配設して低温の供給水を下方から上方に流通させて向流的に各熱交換部において熱交換させるとともに、第1熱交換部をバイパスさせる流路を設けて第1熱交換部に供給する供給水の流量を調整することによって、熱媒体の温熱を回収効率の向上を図るとともに、本体ユニットへ還流する熱媒体の温度を調整し、燃焼排ガスの凝縮による低温腐食等の防止を図ることを可能とした。特に、熱交換ユニットにおける上方から高温の熱媒体を供給し、下方から低温の熱媒体を回収する機能は、同相の熱媒体内部に温熱の逆流の発生を防止し、温熱の自然な流れを維持することができることから、同相の熱媒体の循環流が形成されることを特徴とする無圧式温水器にとって非常に有効である。
The present invention is the above-mentioned water heater, wherein the main body unit constitutes a pressureless water heater, and the heat medium in the liquid phase heated in the water pipe group is supplied to the upper heat passage through the upper flow passage. It is transferred to the exchange space, is heat-reduced by the second heat exchanging part, is reduced in temperature, flows down to the lower heat exchanging space, is heat-exchanged in the first heat exchanging part, is reduced in temperature, and passes through the lower flow passage A circulation flow of a heat medium having the same phase that circulates through the water tube group is formed.
As described above, according to the present invention, in the heat exchange unit, the high-temperature heat medium heated in the main body unit is caused to flow down, and the second heat exchange unit is disposed on the upper side and the first heat exchange unit is disposed on the lower side. The flow rate of the feed water supplied to the first heat exchanging unit by providing a flow path for bypassing the first heat exchanging unit while allowing the feed water to flow from the lower side to the upper side and exchanging heat in each heat exchange unit countercurrently. By adjusting, it was possible to improve the recovery efficiency of the heat of the heat medium, and to adjust the temperature of the heat medium returned to the main unit to prevent low temperature corrosion due to condensation of combustion exhaust gas. In particular, the function of supplying a high-temperature heat medium from above and recovering a low-temperature heat medium from below in the heat exchange unit prevents the occurrence of a backflow of heat inside the in-phase heat medium and maintains the natural flow of heat. Therefore, it is very effective for a pressureless water heater that is characterized in that a circulation flow of a heat medium in the same phase is formed.

本発明は、上記温水器であって、前記下部連通流路に熱回収部を備え、前記本体ユニットの燃焼室で発生した燃焼排ガスと前記熱交換ユニットから前記下部連通流路に流通される熱媒体との熱交換を行なうことを特徴とする。
燃焼排ガスと熱媒体のように異相間での熱交換は、多段階で行ない順次所定の温度管理を行なう方が、燃焼熱を高い効率で回収することができる。本発明は、無圧式温水器を構成する本体ユニットにおいて既に熱交換がされ低温化された燃焼排ガスと、熱交換ユニットにおいて既に熱交換がされ低温化され、次に本体ユニットにおいて加温されるべき熱媒体(燃焼排ガス温度よりも低い)との間に向流的に熱交換を行なう熱回収部を備えることによって、燃焼排ガスからの温熱の吸収と熱媒体への温熱の給熱の促進を図ると同時に、燃焼排ガスの低温化を抑制し低温腐食等の防止を図ることが可能となった。
The present invention is the above-mentioned water heater, wherein the lower communication flow path includes a heat recovery unit, and combustion exhaust gas generated in the combustion chamber of the main body unit and heat that is circulated from the heat exchange unit to the lower communication flow path The heat exchange with the medium is performed.
Heat exchange between different phases, such as combustion exhaust gas and heat medium, is performed in multiple stages, and by sequentially performing a predetermined temperature control, combustion heat can be recovered with higher efficiency. In the present invention, the main body unit constituting the pressureless water heater should be heat-exchanged and the combustion exhaust gas already lowered in temperature, and the heat-exchange unit already heat-reduced and lowered in temperature, and then heated in the main body unit. By providing a heat recovery section that exchanges heat countercurrently with the heat medium (lower than the combustion exhaust gas temperature), the heat absorption from the combustion exhaust gas and the supply of the heat to the heat medium are promoted. At the same time, it has become possible to prevent the low temperature corrosion of the combustion exhaust gas and prevent low temperature corrosion.

本発明は、上記温水器であって、前記本体ユニットが、減圧式温水器を構成し、前記燃焼バーナと上部排気部を有し、内部を熱媒体が流通する上部水管群が備えられた燃焼室と、該燃焼室の下方に配設され、排ガス流通路と下部排気部を有し、内部を熱媒体が流通し前記上部水管群と前記下部流通路に接続される下部水管群が備えられた対流室と、前記上部排気部と前記排ガス流通路とを接続する接続路と、前記燃焼室の上部に配設され、前記上部水管群と前記上部流通路に接続される減圧蒸気室と、を備えるとともに、前記熱交換ユニットが、前記上部流通路を介して前記減圧蒸気室と上部連通流路で連通し、気相の熱媒体が充たされる上部熱交換空間と、前記下部流通路を介して前記下部水管群と下部連通流路で連通し、液相の熱媒体が充たされる下部熱交換空間が形成されるとともに、前記上部熱交換空間に前記第2熱交換部、前記下部熱交換空間に前記第1熱交換部が配設されることを特徴とする。
上記のように、燃焼熱の回収に際して、熱交換ユニットにおいて、熱媒体と加温の対象となる供給水とを2段階の熱交換を行なうとともに、両流体を各段階において向流的に熱交換させることによって、非常に高い熱交換効率を得ることができることを見出した。本発明は、本体ユニットに対して、同様の技術思想を適用することによって、さらに熱交換効率の向上を図った。つまり、本体ユニットにおいて、上方に燃焼室、下方に対流室を配設して上方から下方に燃焼排ガスを流通させることによって、上方の高温条件と下方の低温条件を形成するとともに、熱媒体を下方から上方に流通させて各段階において向流的に熱交換させることによって、非常に効率よく燃焼排ガスの燃焼熱を回収し、上方から気化させた熱媒体を取出すことを可能にした。
The present invention is the above-mentioned water heater, wherein the main unit constitutes a decompression water heater, has a combustion burner and an upper exhaust part, and is provided with an upper water tube group in which a heat medium flows. And a lower water pipe group disposed below the combustion chamber, having an exhaust gas flow path and a lower exhaust part, and through which a heat medium flows and connected to the upper water pipe group and the lower flow path. A convection chamber, a connection path connecting the upper exhaust part and the exhaust gas flow passage, a decompression steam chamber disposed at an upper portion of the combustion chamber and connected to the upper water pipe group and the upper flow passage, And the heat exchange unit communicates with the decompression steam chamber through the upper flow passage in the upper communication flow path, and is filled with a gas phase heat medium, and through the lower flow passage. The lower water pipe group communicates with the lower communication channel, and the liquid phase heat medium is Together with the lower heat exchanger space is formed to be Tasa, the second heat exchanger to the upper heat exchanger space, wherein the first heat exchange unit to the lower heat exchanger space, characterized in that it is arranged.
As described above, at the time of recovery of combustion heat, the heat exchange unit performs heat exchange in two stages between the heat medium and the water to be heated, and heats both fluids countercurrently in each stage. It has been found that a very high heat exchange efficiency can be obtained. The present invention further improves the heat exchange efficiency by applying the same technical idea to the main unit. That is, in the main unit, a combustion chamber is disposed above and a convection chamber is disposed below, and the combustion exhaust gas is circulated from above to form the upper high temperature condition and the lower low temperature condition. The heat from the combustion exhaust gas can be recovered very efficiently and the heat medium vaporized from above can be taken out by circulating the heat upward from the top and exchanging heat countercurrently at each stage.

また、温水器の稼動時、本体ユニットおよび熱交換ユニットにおいて、熱媒体の循環系が形成される。このとき、熱媒体の循環移送に伴い、熱媒体の流通抵抗が生じることから、本体ユニットと熱交換ユニットに水位差が生じる。こうした水位差は、熱媒体の循環移送を推進力として機能し、自動的に循環系(自然循環系)を形成することができる。本発明は、熱媒体の循環系を本体ユニットと熱交換ユニットに分離し、熱交換ユニットにおいて、2つの熱交換器による効率的な熱交換を図るとともに、本体ユニットと熱交換ユニット間の水位差を形成させて、循環系を形成する熱媒体の移送推進機能を有する構成とした。以上のような構成によって、温水器に設けられた燃焼バーナから排出される燃焼排ガスの燃焼熱を、従前にない高い効率で回収して所望の加温水を供給することが可能となった。さらに、循環系を流通する熱媒体の移送量は、燃焼負荷率と本体ユニットの上部水管群または煙管群内部の熱媒体の水位(気液混合状態であればその平均的水位が相当すると推定される)によって規定され、本体ユニットと熱交換ユニットの水位差は、系全体の流通抵抗によって規定され、各ユニットの水位は、この循環系を流通する熱媒体の移送量と流通抵抗がバランスする位置で安定する。ここで「燃焼負荷率」とは、定格燃焼量に対する実際燃焼量の割合をいう。   Further, when the water heater is in operation, a heat medium circulation system is formed in the main unit and the heat exchange unit. At this time, a flow resistance of the heat medium is generated along with the circulation and transfer of the heat medium, so that a water level difference is generated between the main unit and the heat exchange unit. Such a water level difference functions as a driving force by circulating and transferring the heat medium, and can automatically form a circulation system (natural circulation system). The present invention separates the circulation system of the heat medium into a main unit and a heat exchange unit. In the heat exchange unit, the heat exchange is efficiently performed by two heat exchangers, and a water level difference between the main unit and the heat exchange unit is achieved. And having a function of transporting and propelling the heat medium that forms the circulation system. With the configuration as described above, it is possible to recover the combustion heat of the combustion exhaust gas discharged from the combustion burner provided in the water heater and supply the desired warm water with an unprecedented high efficiency. Furthermore, the amount of transfer of the heat medium that circulates in the circulation system is estimated to correspond to the combustion load factor and the water level of the heat medium in the upper water tube group or the smoke tube group of the main unit (the average water level in a gas-liquid mixed state). The water level difference between the main unit and the heat exchange unit is defined by the distribution resistance of the entire system, and the water level of each unit is a position where the transfer amount of the heat medium flowing through this circulation system and the distribution resistance are balanced. It stabilizes at. Here, the “combustion load factor” refers to the ratio of the actual combustion amount to the rated combustion amount.

本発明に係る温水器の基本構成例(第1構成例)を示す全体構成図Overall configuration diagram showing a basic configuration example (first configuration example) of a water heater according to the present invention 本発明に係る無圧式温水器の第2構成例を示す全体構成図Overall configuration diagram showing a second configuration example of a pressureless water heater according to the present invention 本発明に係る真空式温水器の第3構成例を示す全体構成図Overall configuration diagram showing a third configuration example of a vacuum water heater according to the present invention 本発明に係る真空式温水器の第4構成例を示す全体構成図Whole block diagram which shows the 4th structural example of the vacuum type water heater which concerns on this invention 従来技術に係る真空式温水ボイラの概略を例示する全体構成図Overall configuration diagram illustrating the outline of a vacuum hot water boiler according to the prior art

本発明に係る温水器(以下「本温水器」という)は、以下の本体ユニットと熱交換ユニットを有することを特徴とする。本体ユニットは、燃焼バーナと水管群が備えられた燃焼室と、燃焼室の上部に配設されて水管群と接続する上部流通路と、燃焼室の下方に配設されて水管群と接続する下部流通路と、を備え、熱交換ユニットは、上部流通路と上部連通流路で連通し、高温の熱媒体が流下する上部熱交換空間と、前記下部流通路と下部連通流路で連通し、低温の熱媒体が流通する下部熱交換空間と、が形成され、上部熱交換空間に第2熱交換部が配設され、下部熱交換空間に第1熱交換部が配設されるとともに、第1熱交換部への導入流路に供給された供給水が、第1熱交換部から接続流路を介して第2熱交換部に流通され、第2熱交換部の供出流路から加温水として供出される温水流路と、導入流路から分岐され、接続流路と接続されるバイパス流路と、を備える。   A water heater according to the present invention (hereinafter referred to as “the present water heater”) includes the following main body unit and heat exchange unit. The main body unit is provided with a combustion chamber provided with a combustion burner and a water tube group, an upper flow passage disposed at an upper portion of the combustion chamber and connected to the water tube group, and disposed below the combustion chamber and connected to the water tube group. The heat exchange unit communicates with the upper flow passage through the upper communication flow path, and communicates through the upper heat exchange space through which the high-temperature heat medium flows down, and communicates through the lower flow passage and the lower communication flow path. A lower heat exchange space in which a low-temperature heat medium flows, and a second heat exchange portion is disposed in the upper heat exchange space, and a first heat exchange portion is disposed in the lower heat exchange space, Supply water supplied to the introduction flow path to the first heat exchange section is circulated from the first heat exchange section to the second heat exchange section via the connection flow path, and added from the supply flow path of the second heat exchange section. A hot water channel provided as hot water, and a bypass channel branched from the introduction channel and connected to the connection channel. Obtain.

このとき、本温水器を構成する流体は、燃焼排ガス,熱媒体と供給水から形成され、以下のような流通機能と熱収支機能を有する。
(i)燃焼排ガスは、本体ユニットにおいて、燃焼室で発生し、水管群で熱媒体と熱交換され、減温されて排気部から排出される。
(ii)熱媒体は、本体ユニットにおいて、水管群の内部を充たし、燃焼排ガスとの熱交換によって燃焼熱を吸収して加温され、上部流通路を介して熱交換ユニットの上部熱交換空間に移送される。熱交換ユニットにおいて、第2熱交換部で熱交換して減温されて下部熱交換空間に流下し、第1熱交換部で熱交換して減温され、下部流通路を介して本体ユニットの水管群の内部を流通する。本体ユニットと熱交換ユニットの間を跨って循環流が形成される。
(iii)供給水は、熱交換ユニットにおいて第1熱交換部および第2熱交換部に流通され、加温されて加温水として供出されるとともに、下部連通流路に設けられた温度センサの出力が入力され、温水流路あるいはバイパス流路に設けられた制御弁を制動する制御部によって、バイパス流路に流通させる供給水の流量が調整される。
以下、本発明の実施の形態について、図面を参照しながら説明する。
At this time, the fluid constituting the water heater is formed from combustion exhaust gas, heat medium and supply water, and has the following distribution function and heat balance function.
(I) The combustion exhaust gas is generated in the combustion chamber in the main unit, is heat-exchanged with the heat medium in the water tube group, is reduced in temperature, and is discharged from the exhaust section.
(Ii) In the main unit, the heat medium fills the interior of the water tube group, absorbs the heat of combustion by heat exchange with the combustion exhaust gas, and is heated to enter the upper heat exchange space of the heat exchange unit through the upper flow path. Be transported. In the heat exchange unit, the temperature is reduced by exchanging heat in the second heat exchanging part and flowing down to the lower heat exchanging space, the temperature is lowered by exchanging heat in the first heat exchanging part, Circulates inside the water tube group. A circulation flow is formed across the main unit and the heat exchange unit.
(Iii) Supply water is circulated to the first heat exchange unit and the second heat exchange unit in the heat exchange unit, heated and supplied as warm water, and an output of a temperature sensor provided in the lower communication channel Is input, and the flow rate of the feed water to be circulated through the bypass channel is adjusted by a control unit that brakes a control valve provided in the hot water channel or the bypass channel.
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<本温水器の基本構成例>
本温水器の1つの実施態様として、その基本構成の概略を図1に示す(第1構成例)。本温水器は、無圧式温水器を構成し、本体ユニット10と熱交換ユニット20が上部流通路Tu−上部連通流路Luおよび下部連通流路Lb−下部流通路Tbで連通され、熱媒体が、本体ユニット10から上部流通路Tu−上部連通流路Luを介して熱交換ユニット20へ移送され、熱交換ユニット20から下部連通流路Lb−下部流通路Tbを介して本体ユニット10へ移送される。こうした熱媒体の循環的な動きによって、効率的な温熱移動を行うことができる。また、本体ユニット10は、温熱の源であり、かつ1次的伝熱の場である燃焼室1を有し、熱交換ユニット20は、温熱の放出端であり、かつ2次的伝熱の場である第2熱交換部6、3次的伝熱の場である第1熱交換部7を有し、温熱移送の場である上部熱交換空間8と下部熱交換空間9を形成する。さらに、熱交換ユニット20において、第1熱交換部7から第2熱交換部6に流通され、加温水として供出される供給水の一部あるいは全量が、第1熱交換部7をバイパスして第2熱交換部6に供給できるようにバイパス流路Bが設けられる。バイパス流路Bに流通させる供給水の流量(以下「バイパス流量」という)は、下部連通流路Lbを流通する熱媒体の温度(具体的には、該流路に設置された温度センサSの出力)を指標として、制御部5によって制御弁Vが制御され、調整される。ここで、熱媒体は、通常市水等の水が利用される。本温水器において循環系を形成する液相の熱媒体は、循環ポンプPによって同相で移送される。
<Basic configuration example of this water heater>
As one embodiment of this water heater, the basic configuration is schematically shown in FIG. 1 (first configuration example). This water heater constitutes a pressureless water heater, and the main unit 10 and the heat exchanging unit 20 are communicated with each other through an upper flow passage Tu-upper communication passage Lu and a lower communication passage Lb-lower flow passage Tb. The main unit 10 is transferred to the heat exchange unit 20 via the upper flow passage Tu-upper communication passage Lu, and is transferred from the heat exchange unit 20 to the main body unit 10 through the lower communication passage Lb-lower flow passage Tb. The By such a cyclic movement of the heat medium, efficient heat transfer can be performed. The main unit 10 has a combustion chamber 1 which is a source of heat and is a primary heat transfer field, and the heat exchange unit 20 is a discharge end of heat and has a secondary heat transfer. It has the 2nd heat exchange part 6 which is a field, the 1st heat exchange part 7 which is a field of tertiary heat transfer, and forms the upper heat exchange space 8 and the lower heat exchange space 9 which are the places of heat transfer. Furthermore, in the heat exchange unit 20, part or all of the supplied water that is circulated from the first heat exchange unit 7 to the second heat exchange unit 6 and is supplied as warm water bypasses the first heat exchange unit 7. A bypass flow path B is provided so that the second heat exchange unit 6 can be supplied. The flow rate of the feed water flowing through the bypass flow path B (hereinafter referred to as “bypass flow rate”) is the temperature of the heat medium flowing through the lower communication flow path Lb (specifically, the temperature sensor S installed in the flow path). The control valve V is controlled and adjusted by the control unit 5 using the output) as an index. Here, water such as city water is usually used as the heat medium. The liquid phase heat medium forming the circulation system in the water heater is transferred in phase by the circulation pump P.

本温水器においては、燃焼器1において発生する温熱を熱媒体に吸熱させ、さらに熱媒体を介して供給水に吸熱させるという2段階の熱交換が行なわれる。また、熱媒体から供給水への温熱の移送段階についても、熱交換ユニット20において、向流的に2段階の熱交換が行なわれる。具体的には、上方に配設された第2熱交換部6での高温条件の熱媒体と供給水の熱交換と、下方に配設された第1熱交換部7での低温条件の熱媒体と供給水の熱交換が行われる。つまり、熱エネルギーの循環系を形成する熱媒体の加温機能、熱媒体による供給水との交流的な2段階の熱交換機能によって、燃焼熱を本温水器の熱源として最大限利用し、本温水器の熱効率を向上させることができる。   In this water heater, two-stage heat exchange is performed in which the heat generated in the combustor 1 is absorbed by the heat medium, and further, the supply water is absorbed through the heat medium. Further, also in the stage of transferring the heat from the heat medium to the supply water, the heat exchange unit 20 performs two-stage heat exchange countercurrently. Specifically, heat exchange of the high-temperature condition heat medium and supply water in the second heat exchange unit 6 disposed above, and heat of the low-temperature condition in the first heat exchange unit 7 disposed below. Heat exchange between the medium and the feed water takes place. In other words, the heating medium heating function that forms the heat energy circulation system and the AC heat exchange function with the supply water by the heating medium make the maximum use of the combustion heat as the heat source of the water heater. The thermal efficiency of the water heater can be improved.

〔本体ユニット〕
本体ユニット10には、図1に例示するように、燃焼バーナ1aと水管群1bと排気部1cが備えられた燃焼室1が設けられる。燃焼室1では、別途供給された燃料と燃焼空気(図示せず)の燃焼反応により火炎1dが発生し、熱エネルギーの放射が行われる。これらの熱エネルギーは、複数の水管が配設された水管群1b内を流通する熱媒体によって吸収される。つまり、燃焼排ガスの燃焼熱は、主として水管群1bを介して吸収され、火炎1dの放射熱エネルギーは、燃焼室1の水冷壁を介して吸収される。このように、燃焼室1の水冷壁および水管群1bを燃焼室1内に適切に配設することによって、効率よく吸熱させることができる。
[Main unit]
As illustrated in FIG. 1, the main unit 10 is provided with a combustion chamber 1 provided with a combustion burner 1a, a water tube group 1b, and an exhaust part 1c. In the combustion chamber 1, a flame 1d is generated by a combustion reaction between separately supplied fuel and combustion air (not shown), and thermal energy is radiated. These thermal energies are absorbed by a heat medium that circulates in the water tube group 1b in which a plurality of water tubes are arranged. That is, the combustion heat of the combustion exhaust gas is absorbed mainly through the water tube group 1 b, and the radiant heat energy of the flame 1 d is absorbed through the water cooling wall of the combustion chamber 1. As described above, by appropriately disposing the water cooling wall of the combustion chamber 1 and the water tube group 1b in the combustion chamber 1, heat can be efficiently absorbed.

このとき、燃焼室1で発生した燃焼熱の多くは、水管群1b内部あるいは燃焼室1の水冷壁の外周部の熱媒体に移行される。このように、熱媒体の温度を通常80〜90℃に加熱した状態で維持され、上部流通路Tu−上部連通流路Luを介して熱交換ユニット20へ移送される。また、燃焼反応によって発生した燃焼排ガスは、減温されて(約150〜200℃)排気部1cから排気される。一方、本体ユニット10へは、下部連通流路Lb−下部流通路Tbを介して熱交換ユニット20から熱媒体が還流される。受け入れられた熱媒体は、燃焼室1の水管群等1bへ移送され、循環系を形成する。循環系を流通する熱媒体の移送量は、循環ポンプPによって調整される。   At this time, most of the combustion heat generated in the combustion chamber 1 is transferred to the heat medium inside the water tube group 1 b or the outer peripheral portion of the water cooling wall of the combustion chamber 1. In this way, the temperature of the heat medium is normally maintained in a state of being heated to 80 to 90 ° C., and is transferred to the heat exchange unit 20 via the upper flow passage Tu and the upper communication flow passage Lu. Further, the combustion exhaust gas generated by the combustion reaction is reduced in temperature (about 150 to 200 ° C.) and exhausted from the exhaust part 1c. On the other hand, the heat medium is refluxed from the heat exchange unit 20 to the main unit 10 via the lower communication flow path Lb and the lower flow path Tb. The accepted heat medium is transferred to the water tube group 1b of the combustion chamber 1 to form a circulation system. The amount of transfer of the heat medium flowing through the circulation system is adjusted by the circulation pump P.

〔熱交換ユニット〕
熱交換ユニット20は、2つの熱交換部が配設された空間を備える。ここでは、高温条件の熱媒体が存在する空間を上部熱交換空間8とし、低温条件の熱媒体が存在する空間を下部熱交換空間9とする。第2熱交換部6が上部熱交換空間8に配設され、第1熱交換部7が下部熱交換空間9に配設される。上方に配設された第2熱交換部6において、高温の熱媒体と第2熱交換部6内部を流通する供給水の高温条件の熱交換が行なわれる。熱媒体は、第2熱交換部6から下方の下部熱交換空間9へ流下し、貯留される。供給水として使用する水は、通常市水等を用いることができる。
[Heat exchange unit]
The heat exchange unit 20 includes a space in which two heat exchange units are disposed. Here, the space where the heat medium under the high temperature condition exists is referred to as the upper heat exchange space 8, and the space where the heat medium under the low temperature condition exists is referred to as the lower heat exchange space 9. The second heat exchange unit 6 is disposed in the upper heat exchange space 8, and the first heat exchange unit 7 is disposed in the lower heat exchange space 9. In the second heat exchanging unit 6 disposed above, heat exchange is performed on the high-temperature condition of the feed water flowing through the inside of the second heat exchanging unit 6 with the high-temperature heat medium. The heat medium flows down from the second heat exchange unit 6 to the lower heat exchange space 9 and is stored. The city water or the like can be used as the water used as the supply water.

また、熱交換ユニット20には、第1熱交換部7への導入流路Waに供給された供給水が、第1熱交換部7から接続流路Wbを介して第2熱交換部6に流通され、第2熱交換部6の供出流路Wcから加温水として供出される温水流路Wと、導入流路Waから分岐され、接続流路Wbと接続されるバイパス流路Bと、が備えられ、温水流路Wあるいはバイパス流路Bに設けられた制御弁Vを制動する制御部5によって、バイパス流量が調整される。バイパス流量は、下部連通流路Lbに設けられた温度センサSの出力を指標とし、本体ユニット10へ還流される熱媒体の温度が所定の範囲内(例えばガス焚きの場合は約45〜55℃,油焚きの場合は約55℃)になるように制御される。第1熱交換部7に供給される供給水が低温の場合等、本体ユニット10における燃焼排ガスの冷却による多量の凝縮水の発生に伴う低温腐食等の発生を防止することができる。本体ユニット10に対して、供給水の温度条件や加温水の温度条件等の変動要素を調整し、安定した熱交換効率を確保するとともに、低温腐食等の発生の防止を図ることができる。このように、両熱交換器6,7について、各々異なる機能を有することによって、種々の加温水の条件や要求仕様に対応可能な温水器を構成することが可能となった。   In addition, in the heat exchange unit 20, the supply water supplied to the introduction flow path Wa to the first heat exchange unit 7 is transferred from the first heat exchange unit 7 to the second heat exchange unit 6 through the connection flow path Wb. A warm water flow path W that is circulated and is supplied as heated water from the supply flow path Wc of the second heat exchange unit 6, and a bypass flow path B that is branched from the introduction flow path Wa and connected to the connection flow path Wb. The bypass flow rate is adjusted by the control unit 5 that is provided and brakes the control valve V provided in the hot water flow path W or the bypass flow path B. The bypass flow rate uses the output of the temperature sensor S provided in the lower communication flow path Lb as an index, and the temperature of the heat medium returned to the main unit 10 is within a predetermined range (for example, about 45 to 55 ° C. in the case of gas firing). In the case of oiling, the temperature is controlled to be about 55 ° C. When the supply water supplied to the 1st heat exchange part 7 is low temperature, generation | occurrence | production of the low temperature corrosion etc. accompanying generation | occurrence | production of a large amount of condensed water by cooling of the combustion exhaust gas in the main body unit 10 can be prevented. It is possible to adjust the fluctuation factors such as the temperature condition of the supply water and the temperature condition of the warming water with respect to the main body unit 10 to ensure stable heat exchange efficiency and to prevent the occurrence of low temperature corrosion or the like. Thus, it became possible to comprise the water heater which can respond to the conditions and required specifications of various warm water by having each different function about both heat exchangers 6 and 7. FIG.

上部熱交換空間8には、本体ユニット10が稼動する限りにおいて常に定温の熱媒体が供給されることから、第2熱交換部6は、非常に安定な伝熱機能を有することができる。従って、供給水の吸熱機能も安定することから、非常に安定した温度の加温水を供給することができる。また、上部熱交換空間8は、第2熱交換部6において効率的に熱媒体との熱交換が行なわれる範囲において、その形状・容積は問わない。第2熱交換部6において吸熱した供給水は、約70〜80℃に加温され、加温水として供出される。加温水は、給湯用や暖房用等の給温水等産業用の温水として使用される。また、本温水器では、供給水の供給量は、循環ポンプPによって調整されるが、昇圧ポンプと絞り弁や比例弁との組合せも可能である。   Since the constant-temperature heat medium is always supplied to the upper heat exchange space 8 as long as the main unit 10 operates, the second heat exchange unit 6 can have a very stable heat transfer function. Therefore, since the endothermic function of the supplied water is also stabilized, warm water having a very stable temperature can be supplied. Further, the shape and volume of the upper heat exchange space 8 are not limited as long as heat exchange with the heat medium is efficiently performed in the second heat exchange unit 6. The supply water that has absorbed heat in the second heat exchange unit 6 is heated to about 70 to 80 ° C. and supplied as warm water. The heated water is used as hot water for industrial use such as hot water supply for hot water supply or heating. Further, in the present water heater, the supply amount of the supply water is adjusted by the circulation pump P, but a combination of a booster pump and a throttle valve or a proportional valve is also possible.

バイパス流量を調整する制御弁Vについて、図1では第1熱交換部7への供給流量とバイパス流量の比率を変更することができる三方弁を例示したが、これに限定されず種々の構成の適用が可能である。例えば、図2(A)に例示するように、第1熱交換部7への供給流路とバイパス流路Bに、弁(開閉弁または制御弁)V1,V2を配設し、各流量を調整する構成が可能である。具体的には、以下の構成・機能を挙げることができる。
(a)開閉弁V1,V2を設け、その一方を開,他方を閉としてそれぞれの流路切換えを行い、バイパス流量を調整する。各開閉弁V1,V2の開閉時間は、温度センサSの出力を指標として決定される。
(b)開閉弁V1,V2を設け、通常開閉弁V1を開として第1熱交換部7に供給水を供給するとともに、バイパス流量を開閉弁V2のみ開閉させて調整する。さらに多くのバイパス流量が必要な場合には、開閉弁V2を開とするとともに、開閉弁V1のみ開閉させてバイパス流量を調整する。各開閉弁V1,V2の開閉時間は、温度センサSの出力を指標として決定される。
(c)制御弁V1,V2を設け、制御弁V1の開度(閉を含む)を調整して第1熱交換部7への供給水量を制御するとともに、制御弁V2の開度を調整してバイパス流量を制御する。各制御弁V1,V2の開度は、温度センサSの出力を指標として決定される。
導入流路Waに供給された供給水は、弁V1,第1熱交換部7を介して接続流路Wbに流通されるとともに、バイパス流路B,弁V2を介して接続流路Wbに流通され、集合して第2熱交換部6に流通される。バイパス流量は、下部連通流路Lbに設けられた温度センサSの出力を指標とし、本体ユニット10へ還流される熱媒体の温度が所定の範囲内(例えばガス焚きの場合は約45〜55℃,油焚きの場合は約55℃)になるように制御される。第2熱交換部6に流通された供給水は、供出流路Wcから加温水として供出される。
As for the control valve V that adjusts the bypass flow rate, FIG. 1 illustrates a three-way valve that can change the ratio of the supply flow rate to the first heat exchange unit 7 and the bypass flow rate, but is not limited to this, and has various configurations. Applicable. For example, as illustrated in FIG. 2A, valves (open / close valves or control valves) V1 and V2 are disposed in the supply flow path to the first heat exchange unit 7 and the bypass flow path B, and each flow rate is adjusted. A configuration to adjust is possible. Specifically, the following configurations and functions can be given.
(A) The on-off valves V1 and V2 are provided, and one of them is opened and the other is closed, and each flow path is switched to adjust the bypass flow rate. The opening / closing time of each on-off valve V1, V2 is determined using the output of the temperature sensor S as an index.
(B) The on-off valves V1 and V2 are provided, the normal on-off valve V1 is opened to supply water to the first heat exchange unit 7, and the bypass flow rate is adjusted by opening and closing only the on-off valve V2. When more bypass flow is required, the on-off valve V2 is opened and only the on-off valve V1 is opened and closed to adjust the bypass flow. The opening / closing time of each on-off valve V1, V2 is determined using the output of the temperature sensor S as an index.
(C) Control valves V1 and V2 are provided, and the opening degree (including closing) of the control valve V1 is adjusted to control the amount of water supplied to the first heat exchange unit 7, and the opening degree of the control valve V2 is adjusted. To control the bypass flow rate. The opening degree of each control valve V1, V2 is determined using the output of the temperature sensor S as an index.
The supply water supplied to the introduction flow path Wa is circulated to the connection flow path Wb via the valve V1 and the first heat exchange unit 7, and is also circulated to the connection flow path Wb via the bypass flow path B and the valve V2. Are collected and distributed to the second heat exchange unit 6. The bypass flow rate uses the output of the temperature sensor S provided in the lower communication flow path Lb as an index, and the temperature of the heat medium returned to the main unit 10 is within a predetermined range (for example, about 45 to 55 ° C. in the case of gas firing). In the case of oiling, the temperature is controlled to be about 55 ° C. The supply water circulated through the second heat exchange unit 6 is supplied as heated water from the supply flow path Wc.

また、第1熱交換部7に流通させる供給水の流量が調整されるバイパス流量の調整・制御を、図2(B)に例示するように、第1熱交換部7が直列に配設された複数(2つ)の熱交換単位7a,7bによって構成され、各熱交換単位7a,7bの接続部が分岐され(分岐流路Ba)バイパス流路Bに接続される構成によって行うことが可能である。なお、熱交換単位の数は、2つに限られるものではなく、制御精度に応じて増加させることができる(分岐流路の数も同様である)。凝縮水の発生は、短時間の燃焼排ガス温度の低下によっても生じることから、燃焼排ガスと熱交換される本体ユニットへ還流される熱媒体の温度制御は、特に迅速性が要求される。第1熱交換部7が有する2つの機能について、
(i)第2熱交換部6へ供給される供給水の予熱機能を主として熱交換単位7bが担い、(ii)本体ユニットへ還流される熱媒体の温度制御機能を、熱交換単位7aが担う
ことによって、温熱の効果的な回収を図るとともに、迅速に当該熱媒体の温度の安定性を確保することができる。具体的には、第1熱交換部7への供給流路Wd,分岐流路Baおよびバイパス流路Bに、弁(開閉弁または制御弁)V1,V2,V3を配設し、以下の構成・機能を挙げることができる。
(a)開閉弁V1〜V3を設け、その1つを開,他を閉としてそれぞれの流路切換えを行い、第1熱交換部7全体を通過する供給水量,熱交換単位7bのみを通過する供給水量およびバイパス流量を調整する。各開閉弁V1〜V3の開閉時間は、温度センサSの出力を指標として決定される。
(b)開閉弁V1〜V3を設け、通常開閉弁V1のみを開として第1熱交換部7に供給水を供給するとともに、熱交換単位7bのみに供給する場合には開閉弁V3のみを開とし、全量バイパスさせる場合には開閉弁V2のみを開とすることによって、第1熱交換部7への供給水量(バイパス流量)を調整する。各開閉弁V1〜V3の開閉時間は、温度センサSの出力を指標として決定される。
(c)制御弁V1〜V3を設け、制御弁V1の開度(閉を含む)を調整して第1熱交換部7への供給水量を制御するとともに、制御弁V2の開度を調整してバイパス流量を制御する。と同時に、制御弁V3の開度を調整して熱交換単位7bへの供給水量を制御する。各制御弁V1〜V3の開度は、温度センサSの出力を指標として決定される。
導入流路Waに供給された供給水が、(i)弁V1,第1熱交換部7(熱交換単位7aおよび熱交換単位7b)、(ii)分岐流路Ba,弁V3,熱交換単位7b、(iii)バイパス流路B,弁V2、という3つの流路のいずれか、あるいはそのいくつかを介して接続流路Wbに流通され、集合して第2熱交換部6に流通される。バイパス流路Bおよび分岐流路Baを流通するバイパス流量は、下部連通流路Lbに設けられた温度センサSの出力を指標とし、本体ユニット10へ還流される熱媒体の温度が所定の範囲内(例えばガス焚きの場合は約45〜55℃,油焚きの場合は約55℃)になるように制御される。調整されたバイパス流量の、バイパス流路Bと分岐流路Baに流れる流量比率は、供給水の温度や流量によって制御される。第2熱交換部6に流通された供給水は、供出流路Wcから加温水として供出される。
Moreover, the 1st heat exchange part 7 is arrange | positioned in series so that adjustment / control of the bypass flow volume by which the flow volume of the supply water distribute | circulated to the 1st heat exchange part 7 is adjusted may be illustrated in FIG.2 (B). It is possible to carry out by a configuration in which a plurality of (two) heat exchange units 7a and 7b are connected, and a connection portion of each heat exchange unit 7a and 7b is branched (branch channel Ba) and connected to the bypass channel B. It is. Note that the number of heat exchange units is not limited to two, and can be increased according to control accuracy (the number of branch channels is the same). Since the generation of condensed water is also caused by a short-term decrease in the temperature of the combustion exhaust gas, the temperature control of the heat medium returned to the main unit that exchanges heat with the combustion exhaust gas is required to be particularly quick. About two functions which the 1st heat exchange part 7 has,
(I) The heat exchange unit 7b is mainly responsible for the preheating function of the supply water supplied to the second heat exchange unit 6, and (ii) the heat exchange unit 7a is responsible for the temperature control function of the heat medium returned to the main unit. As a result, it is possible to effectively collect the heat and to quickly ensure the stability of the temperature of the heat medium. Specifically, valves (open / close valves or control valves) V1, V2, and V3 are disposed in the supply flow path Wd, the branch flow path Ba, and the bypass flow path B to the first heat exchange unit 7, and the following configuration is provided. -Can list functions.
(A) Open / close valves V1 to V3 are provided, one of them is opened and the other is closed to switch the respective flow paths, and only the amount of water supplied through the first heat exchange unit 7 and the heat exchange unit 7b are passed. Adjust water supply and bypass flow rate. The opening / closing time of each on-off valve V1 to V3 is determined using the output of the temperature sensor S as an index.
(B) The on-off valves V1 to V3 are provided, and only the normal on-off valve V1 is opened to supply water to the first heat exchange unit 7, and when only the heat exchange unit 7b is supplied, only the on-off valve V3 is opened. When the total amount is bypassed, only the on-off valve V2 is opened to adjust the amount of water supplied to the first heat exchange unit 7 (bypass flow rate). The opening / closing time of each on-off valve V1 to V3 is determined using the output of the temperature sensor S as an index.
(C) Control valves V1 to V3 are provided, and the opening (including closing) of the control valve V1 is adjusted to control the amount of water supplied to the first heat exchange unit 7, and the opening of the control valve V2 is adjusted. To control the bypass flow rate. At the same time, the amount of water supplied to the heat exchange unit 7b is controlled by adjusting the opening of the control valve V3. The opening degree of each control valve V1 to V3 is determined using the output of the temperature sensor S as an index.
The supply water supplied to the introduction flow path Wa is (i) the valve V1, the first heat exchange unit 7 (heat exchange unit 7a and heat exchange unit 7b), and (ii) the branch flow path Ba, valve V3, heat exchange unit. 7b, (iii) One of the three flow paths of bypass flow path B and valve V2, or some of them, are circulated to the connection flow path Wb, and are collected and circulated to the second heat exchange section 6. . The bypass flow rate flowing through the bypass flow path B and the branch flow path Ba is based on the output of the temperature sensor S provided in the lower communication flow path Lb, and the temperature of the heat medium returned to the main unit 10 is within a predetermined range. (For example, it is about 45-55 degreeC in the case of gas-fired, and about 55 degreeC in the case of oil-fired.). The ratio of the adjusted bypass flow rate that flows through the bypass flow path B and the branch flow path Ba is controlled by the temperature and flow rate of the feed water. The supply water circulated through the second heat exchange unit 6 is supplied as heated water from the supply flow path Wc.

下部熱交換空間9において、低温の熱媒体(出口温度約45〜60℃)と第1熱交換部7内部を流通する供給水(入口温度約20〜30℃)の熱交換が行われ、吸熱した供給水は加温され、第2熱交換部6に移送される。下部熱交換空間9の熱媒体は、下部連通流路Lb−下部流通路Tbを介して本体ユニット10へ移送される。このとき、供給水の入口温度が低くなり、液相の熱媒体の温度が所定の温度(例えばガス焚きの場合は約45〜55℃,油焚きの場合は約55℃)を下回る場合には、供給水のバイパス流量を増加するように制御される。第1熱交換部7において吸熱される温熱を減少させることによって、熱媒体の温度を上昇させることができる。なお、制御温度は、温水器の構成、例えば無圧式と真空式の相違や、ガス焚きと油焚き等燃料の相違等によって異なる値に設定される。温熱の効果的な回収を図るとともに、低温腐食等の発生を防止するために最適な温度が設定される。   In the lower heat exchange space 9, heat exchange is performed between a low-temperature heat medium (exit temperature of about 45 to 60 ° C.) and supply water (inlet temperature of about 20 to 30 ° C.) flowing through the inside of the first heat exchange unit 7. The supplied water is heated and transferred to the second heat exchange unit 6. The heat medium in the lower heat exchange space 9 is transferred to the main unit 10 via the lower communication flow path Lb and the lower flow path Tb. At this time, when the inlet temperature of the feed water becomes low and the temperature of the liquid phase heat medium falls below a predetermined temperature (for example, about 45 to 55 ° C. for gas-fired and about 55 ° C. for oil-fired) Controlled to increase the feedwater bypass flow rate. The temperature of the heat medium can be increased by reducing the heat absorbed by the first heat exchange unit 7. The control temperature is set to a different value depending on the configuration of the water heater, for example, the difference between the non-pressure type and the vacuum type, or the difference in fuel such as gas burning and oil burning. An optimum temperature is set in order to effectively collect the heat and prevent the occurrence of low temperature corrosion or the like.

〔本温水器における流体移送に伴う温熱の移送機能〕
本温水器においては、3つの流体は移送され、その流体間において温熱が移送される。具体的には、本体ユニット10において燃焼室1で発生した燃焼排ガス、本体ユニット10と熱交換ユニット20間を循環する熱媒体、および熱交換ユニット20において加温される供給水という、3つの流体が該当する。
(1)燃焼排ガスは、燃焼室1では、発生直後の高温の状態から(約700〜800℃)、水管群1bで熱交換して減温され(約150〜200℃)、排気部1cから排出される。
(2)熱媒体は、燃焼室1では、水管群1bの内部を流通し、燃焼排ガスとの熱交換によって燃焼熱を吸収して一部が加温され(約80〜90℃)、上部流通路Tu−上部連通流路Luを介して上部熱交換空間8に移送される。上部熱交換空間8では、第2熱交換部6で熱交換して減温され、下部熱交換空間9に流下し、さらに第1熱交換部7で熱交換して減温される(約45〜60℃)。下部熱交換空間9の低温条件の熱媒体は、下部連通流路Lb−下部流通路Tbを介して水管群等1bの内部を流通し、熱交換して加温,上方へ移送され(約80〜90℃)、循環流を形成する。
(3)供給水(入口温度約20〜30℃)は、第1熱交換部7に流通,加温され、次いで第2熱交換部6に流通,加温され(約70〜80℃)、加温水として供給される。このとき、供給水の入口温度が例えば5℃以下の場合等、本体ユニット10に還流される熱媒体の温度が所定の温度(例えばガス焚きの場合は約45〜55℃,油焚きの場合は約55℃)を下回る場合には、供給水のバイパス流量を増加させて所望の温度となるように制御される。
[Hot heat transfer function with fluid transfer in this water heater]
In this water heater, three fluids are transferred, and warm heat is transferred between the fluids. Specifically, the three fluids are combustion exhaust gas generated in the combustion chamber 1 in the main unit 10, a heat medium circulating between the main unit 10 and the heat exchange unit 20, and supply water heated in the heat exchange unit 20. Is applicable.
(1) In the combustion chamber 1, the combustion exhaust gas is reduced in temperature from the high temperature state immediately after generation (about 700 to 800 ° C.) through heat exchange in the water tube group 1b (about 150 to 200 ° C.). Discharged.
(2) In the combustion chamber 1, the heat medium circulates in the water tube group 1b, absorbs the combustion heat by heat exchange with the combustion exhaust gas, and partially heats (about 80 to 90 ° C.). It is transferred to the upper heat exchange space 8 via the passage Tu-upper communication passage Lu. In the upper heat exchange space 8, the temperature is reduced by exchanging heat in the second heat exchange unit 6, flows down to the lower heat exchange space 9, and further heat-exchanged in the first heat exchange unit 7 to be reduced in temperature (about 45 ~ 60 ° C). The heat medium under the low temperature condition in the lower heat exchange space 9 flows through the inside of the water tube group 1b through the lower communication flow path Lb and the lower flow path Tb, exchanges heat, is heated, and is transferred upward (about 80 ~ 90 ° C), forming a circulating flow.
(3) Supply water (inlet temperature about 20 to 30 ° C.) is circulated and heated to the first heat exchange unit 7 and then circulated and heated to the second heat exchange unit 6 (about 70 to 80 ° C.). Supplied as warm water. At this time, when the inlet temperature of the feed water is, for example, 5 ° C. or less, the temperature of the heat medium returned to the main unit 10 is a predetermined temperature (for example, about 45 to 55 ° C. in the case of gas firing, and in the case of oil firing). When the temperature is lower than about 55 ° C., the supply water bypass flow rate is increased and controlled to a desired temperature.

<本温水器の第2構成例>
本温水器は、図2に例示するように、下部連通流路Lbに熱回収部Eを備え、本体ユニット10の燃焼室1で発生した燃焼排ガスと熱交換ユニット20から下部連通流路Lbに流通される熱媒体との熱交換を行なうことが好適である(第2構成例)。燃焼排ガスからの温熱の吸収と熱媒体への温熱の給熱の促進を図ると同時に、燃焼排ガスの段階的な減温によって、低温腐食等の可能性あるいはその影響の大きい水管群での燃焼排ガスと熱媒体との熱交換の負荷を低減し、低温腐食等の防止を図ることができる。以下、第1構成例と共通する事項については、説明を省略することがある。
<Second configuration example of the hot water heater>
As illustrated in FIG. 2, the water heater includes a heat recovery unit E in the lower communication flow path Lb, and the combustion exhaust gas generated in the combustion chamber 1 of the main unit 10 and the heat exchange unit 20 to the lower communication flow path Lb. It is preferable to perform heat exchange with the circulating heat medium (second configuration example). Combustion exhaust gas in water tube groups that are likely to have low temperature corrosion or have a large effect due to gradual temperature reduction of the combustion exhaust gas while at the same time promoting the absorption of thermal heat from the combustion exhaust gas and the supply of heat to the heat medium The load of heat exchange with the heat medium can be reduced, and low temperature corrosion and the like can be prevented. Hereinafter, description of matters common to the first configuration example may be omitted.

具体的には、下部連通流路Lbに設けられた熱回収部Eに、本体ユニット10において減温された燃焼排ガス(約150〜200℃)と、熱交換ユニット20において減温されるとともに、所定温度に制御された熱媒体(約45〜60℃)が導入される。熱媒体を介して本体ユニット10への温熱の供給(還流)と燃焼排ガスの段階的な減温を図ることができる。特に、供給水のバイパス流量の制御と併せて用いることによって、熱回収部Eにおける燃焼排ガスの過度の温度低下つまり低温腐食等の発生を防止するとともに、本体ユニット10に還流する熱媒体の加温による本体ユニット10での温熱の有効利用を図ることができる。   Specifically, in the heat recovery part E provided in the lower communication flow path Lb, the temperature of the combustion exhaust gas (about 150 to 200 ° C.) reduced in temperature in the main unit 10 and the heat exchange unit 20 are reduced. A heat medium (about 45 to 60 ° C.) controlled to a predetermined temperature is introduced. It is possible to supply warm heat (recirculation) to the main unit 10 through the heat medium and to reduce the temperature of the combustion exhaust gas stepwise. In particular, when used in conjunction with the control of the bypass flow rate of the feed water, the temperature of the exhaust gas in the heat recovery section E is prevented from excessively decreasing, that is, the occurrence of low-temperature corrosion and the like, and the heating medium heated to the main unit 10 is heated. Therefore, effective use of the heat in the main unit 10 can be achieved.

<本温水器の第3構成例>
本温水器は、上記第1構成例における無圧式温水器に代えて、図3に例示するような、真空式温水器を構成することができる(第3構成例)。以下、第1構成例と共通する事項については、説明を省略することがある。
<The 3rd structural example of this water heater>
The present water heater can constitute a vacuum water heater as illustrated in FIG. 3 in place of the pressureless water heater in the first configuration example (third configuration example). Hereinafter, description of matters common to the first configuration example may be omitted.

本体ユニット10において、燃焼バーナ1dと上部排気部1cを有し、内部を熱媒体が流通する上部水管群1bが備えられた燃焼室1と、燃焼室1の下方に配設され、排ガス流通路2aと下部排気部2cを有し、内部を熱媒体が流通し上部水管群1bと下部流通路Tbに接続される下部水管群2bが備えられた対流室2と、上部排気部1cと排ガス流通路2aとを接続する接続路3と、燃焼室2の上部に配設され、上部水管群1bと上部流通路Tuに接続される減圧蒸気室4と、を備える。   The main body unit 10 includes a combustion chamber 1 having a combustion burner 1d and an upper exhaust part 1c, and an upper water pipe group 1b through which a heat medium circulates, and an exhaust gas flow path disposed below the combustion chamber 1. 2a and a lower exhaust part 2c, a convection chamber 2 provided with a lower water pipe group 2b connected to the upper water pipe group 1b and the lower flow path Tb through which a heat medium flows, and an upper exhaust part 1c and an exhaust gas flow A connection path 3 that connects the path 2a, and a decompression steam chamber 4 that is disposed above the combustion chamber 2 and is connected to the upper water pipe group 1b and the upper flow passage Tu.

熱交換ユニット20において、上部流通路Tuを介して減圧蒸気室4と上部連通流路Luで連通し、気相の熱媒体が充たされる上部熱交換空間8と、下部流通路Tbを介して下部水管群2bと下部連通流路Lbで連通し、液相の熱媒体が充たされる下部熱交換空間9が形成されるとともに、上部熱交換空間8に第2熱交換部6、下部熱交換空間9に第1熱交換部7が配設される。供給水は、第1熱交換部7から第2熱交換部6に流通され、加温水として供出される。このとき、本温水器においては、供給水の一部あるいは全量が、第1熱交換部7をバイパスして第2熱交換部6に供給できるようにバイパス流路Bが設けられる。バイパス流量は、下部連通流路Lbに設けられた温度センサSの出力を指標として、制御部5によって制御弁Vが制御され、調整される。安定した熱交換効率を確保するとともに、低温腐食等の発生の防止を図ることができる。   In the heat exchanging unit 20, an upper heat exchange space 8 filled with a vapor phase heat medium is communicated with the decompression steam chamber 4 via the upper flow passage Tu and the upper communication flow passage Lu, and a lower portion via the lower flow passage Tb. A lower heat exchange space 9 is formed which communicates with the water tube group 2b through the lower communication flow path Lb and is filled with a liquid phase heat medium. The second heat exchange section 6 and the lower heat exchange space 9 are formed in the upper heat exchange space 8. The 1st heat exchange part 7 is arrange | positioned. Supply water is distribute | circulated from the 1st heat exchange part 7 to the 2nd heat exchange part 6, and is supplied as heating water. At this time, in this water heater, a bypass flow path B is provided so that a part or all of the supplied water can be supplied to the second heat exchange unit 6 by bypassing the first heat exchange unit 7. The bypass flow rate is adjusted by controlling the control valve V by the control unit 5 using the output of the temperature sensor S provided in the lower communication flow path Lb as an index. While ensuring the stable heat exchange efficiency, generation | occurrence | production of low temperature corrosion etc. can be aimed at.

このとき、本体ユニット10と熱交換ユニット20において熱媒体の気相と液相の境界が形成されるとともに、本体ユニット10内の熱媒体の流通経路において燃焼熱により発生する流通抵抗によって、本体ユニット10と熱交換ユニット20の間に水位差が生じる。こうした水位差を利用し、無圧式温水器のように循環ポンプPを用いずに、重力による自然循環系を形成することも可能である。従って、循環系を流通する熱媒体の移送量は、燃焼負荷率と本体ユニット10の水位によって規定され、本体ユニット10と熱交換ユニット20の水位差は、系全体の流通抵抗によって規定され、本体ユニット10と熱交換ユニット20の水位は、この循環系を流通する熱媒体の移送量と流通抵抗がバランスする位置で安定する。燃焼負荷率が増加すれば、循環系を流通する熱媒体の移送量が増加し、該流通抵抗も増加するとともに、水位差も増加する。   At this time, a boundary between the gas phase and the liquid phase of the heat medium is formed in the main body unit 10 and the heat exchange unit 20, and the main body unit is generated by the flow resistance generated by the combustion heat in the flow path of the heat medium in the main body unit 10. A water level difference is generated between the heat exchange unit 10 and the heat exchange unit 20. Using such a water level difference, it is possible to form a natural circulation system by gravity without using the circulation pump P as in the non-pressure type water heater. Therefore, the transfer amount of the heat medium flowing through the circulation system is defined by the combustion load factor and the water level of the main unit 10, and the water level difference between the main unit 10 and the heat exchange unit 20 is defined by the distribution resistance of the entire system, The water level of the unit 10 and the heat exchange unit 20 is stabilized at a position where the transfer amount of the heat medium flowing through the circulation system and the flow resistance are balanced. If the combustion load factor increases, the transfer amount of the heat medium flowing through the circulation system increases, the flow resistance increases, and the water level difference also increases.

〔本体ユニット〕
本体ユニット10内において、温熱の源であり、かつ1次的伝熱の場である燃焼室1に加え、2次的伝熱の場である対流室2、温熱移送の場である接続路3および減圧蒸気室4を有する。上方に燃焼室1、下方に対流室2を配設して上方から下方に燃焼排ガスを流通させることによって、上方の高温条件と下方の低温条件を形成するとともに、熱媒体を下方から上方に流通させて各段階において向流的に熱交換させることによって、非常に効率よく燃焼排ガスの燃焼熱を回収し、上方から気化させた熱媒体を取出すことができる。
[Main unit]
In the main unit 10, in addition to the combustion chamber 1 which is a source of heat and a primary heat transfer field, a convection chamber 2 which is a secondary heat transfer field and a connection path 3 which is a heat transfer field. And a decompression steam chamber 4. By arranging the combustion chamber 1 on the upper side and the convection chamber 2 on the lower side to circulate the combustion exhaust gas from the upper side to the lower side, an upper high temperature condition and a lower low temperature condition are formed, and the heat medium is circulated from the lower side to the upper side. By performing countercurrent heat exchange in each stage, the combustion heat of the combustion exhaust gas can be recovered very efficiently and the heat medium vaporized from above can be taken out.

燃焼室1で発生した燃焼熱は、上部水管群1b内部(あるいは燃焼室1水冷壁の外周部)の熱媒体に移行される。吸熱した熱媒体は、その温度が通常80〜90℃に加熱され、気化された状態で維持されるとともに、減圧蒸気室4へ移送される。また、燃焼反応によって発生した燃焼排ガスは、減温されて(約150〜200℃)排気部1cおよび接続部3を介して対流室2へ移送される。   The combustion heat generated in the combustion chamber 1 is transferred to the heat medium inside the upper water tube group 1b (or the outer peripheral portion of the water cooling wall of the combustion chamber 1). The heat medium that has absorbed heat is normally heated to 80 to 90 ° C., maintained in a vaporized state, and transferred to the vacuum steam chamber 4. Further, the combustion exhaust gas generated by the combustion reaction is reduced in temperature (about 150 to 200 ° C.) and transferred to the convection chamber 2 via the exhaust part 1 c and the connection part 3.

減圧蒸気室4は、減圧条件(例えば−0.1MPa)に維持された空間が形成される。つまり、本体ユニット10および熱交換ユニット20において気相あるいは液相の熱媒体が充たされる空間は、例えば真空ポンプ等によって減圧され、熱媒体の常圧での沸点よりも低い温度で気相の熱媒体を形成することができように構成される。このとき、気相の熱媒体の温度は、上部水管群1bの内部温度と殆どバラツキがないことが確認されている。上部水管群1bの内部を含む熱媒体の対流効果によるものである。このように、減圧蒸気室4では、減圧条件における熱媒体の温度を通常80〜90℃に加熱した状態(減圧沸騰した状態)で維持され、上部連通流路Luを介して熱交換ユニット20へ移送される。   The decompression steam chamber 4 is formed with a space maintained under a decompression condition (for example, −0.1 MPa). That is, the space filled with the gas phase or liquid phase heat medium in the main unit 10 and the heat exchange unit 20 is decompressed by, for example, a vacuum pump or the like, and the heat of the gas phase is at a temperature lower than the boiling point of the heat medium at normal pressure. It is configured to be able to form a medium. At this time, it has been confirmed that the temperature of the gas phase heat medium has almost no variation from the internal temperature of the upper water pipe group 1b. This is due to the convection effect of the heat medium including the inside of the upper water pipe group 1b. Thus, in the decompression steam chamber 4, the temperature of the heat medium in the decompression condition is normally maintained in a state of being heated to 80 to 90 ° C. (a state of boiling under reduced pressure), and is transferred to the heat exchange unit 20 via the upper communication channel Lu. Be transported.

対流室2には、排ガス流通路2aと下部水管群等2bと下部排気部2cが備えられる。接続路3を介して対流室2に給送された燃焼排ガスの燃焼熱は、燃焼排ガスが排ガス流通路2aを流通する間に、下部水管群等2b内を流通する熱媒体によって吸収される。ここで、下部水管群等2bには、外周にフィンを配した中空菅を用いることが好ましい。フィンの伝熱面積を確保することができ、熱交換効率のさらなる向上を図ることができる。従って、排ガス流通路2aを流通する燃焼排ガスは、効率よく吸熱された状態(約70〜80℃)で、下部排気部2cを介して対流室2から排出される。このように、燃焼室1および対流室2において、それぞれ異なる機能を有する2段階の熱交換によって、燃焼熱を非常に効率よく熱媒体に吸熱させることができる。上部水管群等1b内部の熱媒体の水位は、沸騰状態で気液混合状態であればその平均的水位が相当すると推定される。   The convection chamber 2 is provided with an exhaust gas flow passage 2a, a lower water pipe group 2b, and a lower exhaust part 2c. The combustion heat of the combustion exhaust gas fed to the convection chamber 2 via the connection path 3 is absorbed by the heat medium flowing in the lower water tube group 2b while the combustion exhaust gas flows through the exhaust gas flow passage 2a. Here, for the lower water pipe group 2b or the like, it is preferable to use a hollow rod having fins arranged on the outer periphery. The heat transfer area of the fin can be ensured, and the heat exchange efficiency can be further improved. Therefore, the combustion exhaust gas flowing through the exhaust gas flow passage 2a is discharged from the convection chamber 2 via the lower exhaust part 2c in a state where heat is efficiently absorbed (about 70 to 80 ° C.). As described above, in the combustion chamber 1 and the convection chamber 2, the heat of combustion can be absorbed into the heat medium very efficiently by two-stage heat exchange having different functions. The water level of the heat medium inside the upper water tube group 1b is estimated to be equivalent to the average water level if it is in a boiled and gas-liquid mixed state.

〔熱交換ユニット〕
熱交換ユニット20においては、気相の熱媒体が存在する上部熱交換空間8に第2熱交換部6が配設され、液相の熱媒体が存在する下部熱交換空間9の液層内に第1熱交換部7が配設される。上方に配設された第2熱交換部6において、高温(約80〜90℃)の気相の熱媒体と第2熱交換部6内部を流通する供給水の高温条件の熱交換(潜熱の吸熱)が行なわれる。気相の熱媒体は、その潜熱を放出しながら第2熱交換部6の表面で凝縮し、液滴状の液相の熱媒体を形成する。液相の熱媒体は、所定の大きさに拡大した状態で、第2熱交換部6の上部から流下する熱媒体の流れに沿って下方の下部熱交換空間9へ落下し、貯留される。
[Heat exchange unit]
In the heat exchange unit 20, the second heat exchange unit 6 is disposed in the upper heat exchange space 8 where the gas phase heat medium exists, and in the liquid layer of the lower heat exchange space 9 where the liquid phase heat medium exists. A first heat exchange unit 7 is provided. In the second heat exchanging unit 6 disposed above, the heat exchange (latent heat) of the gas phase heat medium having a high temperature (about 80 to 90 ° C.) and the feed water flowing through the second heat exchanging unit 6 is performed. Endothermic). The vapor phase heat medium condenses on the surface of the second heat exchanging section 6 while releasing its latent heat, and forms a liquid liquid heat medium in the form of droplets. The liquid phase heat medium is dropped and stored in the lower heat exchange space 9 along the flow of the heat medium flowing down from the upper part of the second heat exchanging unit 6 in a state where the heat medium is expanded to a predetermined size.

また、導入流路Waに供給された供給水は、その一部がバイパス流路Bに流通されるとともに、第1熱交換部7に流通される。第1熱交換部7を流通した供給水はバイパス流路を流通した供給水と合流されて、接続流路Wbを介して第2熱交換部6に流通され、供出流路Wcから加温水として供出される。バイパス流量は、下部連通流路Lbに設けられた温度センサSの出力を指標とし、本体ユニット10へ還流される熱媒体の温度が所定の範囲内になるように、温水流路Wあるいはバイパス流路Bに設けられた制御弁Vを制動する制御部5によって、制御される。第1熱交換部7に供給される供給水が低温の場合等、本体ユニット10における燃焼排ガスの冷却による多量の凝縮水の発生に伴う低温腐食等の発生を防止することができる。本体ユニット10に対して、供給水の温度条件や加温水の温度条件等の変動要素を調整し、安定した熱交換効率を確保するとともに、低温腐食等の発生の防止を図ることができる。   A part of the supply water supplied to the introduction flow path Wa is circulated to the bypass flow path B and is also circulated to the first heat exchange unit 7. The supply water that has circulated through the first heat exchange section 7 is merged with the supply water that has circulated through the bypass flow path, and is circulated to the second heat exchange section 6 via the connection flow path Wb, as heated water from the supply flow path Wc. Be served. The bypass flow rate uses the output of the temperature sensor S provided in the lower communication flow path Lb as an index, and the hot water flow path W or the bypass flow so that the temperature of the heat medium returned to the main unit 10 falls within a predetermined range. It is controlled by the control unit 5 that brakes the control valve V provided in the path B. When the supply water supplied to the 1st heat exchange part 7 is low temperature, generation | occurrence | production of the low temperature corrosion etc. accompanying generation | occurrence | production of a large amount of condensed water by cooling of the combustion exhaust gas in the main body unit 10 can be prevented. It is possible to adjust the fluctuation factors such as the temperature condition of the supply water and the temperature condition of the warming water with respect to the main body unit 10 to ensure stable heat exchange efficiency and to prevent the occurrence of low temperature corrosion or the like.

本体ユニット10が稼動する限りにおいて、上部熱交換空間8には常に気相の熱媒体が供給されることから、第2熱交換部6は、非常に安定な伝熱機能を有することができる。従って、供給水の吸熱機能も安定することから、非常に安定した温度の加温水を供給することができる。第2熱交換部6において吸熱した供給水は、約70〜80℃に加温され、加温水として供出される。   As long as the main unit 10 is operated, a gas phase heat medium is always supplied to the upper heat exchange space 8, and thus the second heat exchange unit 6 can have a very stable heat transfer function. Therefore, since the endothermic function of the supplied water is also stabilized, warm water having a very stable temperature can be supplied. The supply water that has absorbed heat in the second heat exchange unit 6 is heated to about 70 to 80 ° C. and supplied as warm water.

下部熱交換空間9には、第2熱交換部6において凝縮した液相の熱媒体を含む循環系を流通する熱媒体が収集され、貯留される。下部熱交換空間9の液相の熱媒体内(液層内)に配設される。第1熱交換部7においては、第2熱交換部6で生成した熱媒体の凝縮液からの吸熱(顕熱)が主となることから、より多くの熱媒体との接触が好ましい。第1熱交換部7をその液層内に浸漬させることによって、効率的な熱媒体の顕熱の吸熱を行なうことができる。また、所定の容積を有する下部熱交換空間9に浸漬させた構成によって、ほぼ一定の安定した温度条件で熱交換ができ、大流量の供給水に対しても十分に吸熱させることができる。従って、上部熱交換空間8における安定した熱交換機能と相俟って、安定性の高い熱交換ユニット20を構成することができる。さらに、第1熱交換部7に高い熱交換機能を持たせることによって、第2熱交換部6における負荷を軽減し、熱交換ユニット20全体として、より高い熱交換機能を確保することができる。   In the lower heat exchange space 9, the heat medium flowing through the circulation system including the liquid heat medium condensed in the second heat exchange unit 6 is collected and stored. The lower heat exchange space 9 is disposed in the liquid phase heat medium (in the liquid layer). In the 1st heat exchange part 7, since the heat absorption (sensible heat) from the condensate of the heat medium produced | generated in the 2nd heat exchange part 6 becomes main, contact with more heat media is preferable. By immersing the first heat exchange part 7 in the liquid layer, it is possible to efficiently absorb the sensible heat of the heat medium. Further, the structure immersed in the lower heat exchange space 9 having a predetermined volume enables heat exchange under a substantially constant and stable temperature condition, and can sufficiently absorb heat even with a large flow rate of supply water. Therefore, in combination with the stable heat exchange function in the upper heat exchange space 8, a highly stable heat exchange unit 20 can be configured. Furthermore, by giving the 1st heat exchange part 7 a high heat exchange function, the load in the 2nd heat exchange part 6 can be reduced, and the higher heat exchange function can be ensured as the heat exchange unit 20 whole.

下部熱交換空間9において、液相の熱媒体(上層温度約80〜90℃、下層温度約40〜50℃)と第1熱交換部7内部を流通する供給水(入口温度約20〜30℃)の低温条件の熱交換(顕熱の吸熱)が行われ、吸熱した供給水は加温され、第2熱交換部6に移送される。このとき、熱媒体の液層内に浸漬させる第1熱交換部7については、熱交換効率の高い種々の形態の熱交換器を使用することができる。第2熱交換部6については、熱交換効率が高いことに加え、気相の熱媒体が凝縮しやすい表面を有し、発生した液滴の迅速な凝集が可能で、凝縮液を迅速に落下させることができる構成が要求される一方、液層内の第1熱交換部7には、熱交換効率の高さを最優先とする構成を選択することができる。具体的には、U字形状の熱交換器のみならず、フィン付水管を用いた熱交換器やプレート式熱交換器等を適用することができる。   In the lower heat exchange space 9, a liquid phase heat medium (upper layer temperature of about 80 to 90 ° C., lower layer temperature of about 40 to 50 ° C.) and supply water (inlet temperature of about 20 to 30 ° C.) flowing through the first heat exchange unit 7. ) Heat exchange under low temperature conditions (sensible heat absorption), the absorbed water is heated and transferred to the second heat exchange unit 6. At this time, for the first heat exchange unit 7 immersed in the liquid layer of the heat medium, various types of heat exchangers having high heat exchange efficiency can be used. In addition to high heat exchange efficiency, the second heat exchange unit 6 has a surface on which the gas phase heat medium is easy to condense, allowing rapid aggregation of the generated droplets, and quickly dropping the condensate On the other hand, a configuration capable of making the first heat exchanging portion 7 in the liquid layer a top priority is given to the high heat exchange efficiency. Specifically, not only a U-shaped heat exchanger but also a heat exchanger using a finned water pipe, a plate heat exchanger, and the like can be applied.

下部熱交換空間9に貯留された液相の熱媒体は、下部連通流路Lb−下部流通路Tbを介して本体ユニット10へ移送される。このとき、下部熱交換空間9は、液相の熱媒体の液面を確定し、維持する機能と同時に、本体ユニット10内の液相の熱媒体の液面との水位差による本体ユニット10への移送圧力の形成機能を有することによって、安定した熱媒体の循環系を形成することができる。また、下部熱交換空間9に存在する液相の熱媒体は、熱容量が大きいことから(特に水等を使用した場合)、供給水の温度変化(低温化)に対して急激な温度変化を生じることが少なく、安定した温度の熱媒体を本体ユニット10に還流することができる。従って、急激な供給水の温度低下が生じた場合であっても、オーバーシュートやアンダーシュートの発生を伴うような急激な変化を起こすことのないバイパス流量の制御を行うことができる。   The liquid phase heat medium stored in the lower heat exchange space 9 is transferred to the main unit 10 via the lower communication flow path Lb and the lower flow path Tb. At this time, the lower heat exchange space 9 determines and maintains the liquid level of the liquid phase heat medium, and at the same time, moves to the main unit 10 due to a difference in water level from the liquid level of the liquid phase heat medium in the main unit 10. Therefore, a stable heat medium circulation system can be formed. Further, since the liquid phase heat medium existing in the lower heat exchange space 9 has a large heat capacity (especially when water or the like is used), a rapid temperature change occurs with respect to the temperature change (lower temperature) of the supplied water. The heat medium having a stable temperature can be returned to the main unit 10. Therefore, even when the temperature of the supply water is suddenly lowered, it is possible to control the bypass flow rate without causing a sudden change such as the occurrence of overshoot or undershoot.

〔本温水器における流体移送に伴う温熱の移送機能〕
本温水器において、以下のように、燃焼排ガス,熱媒体および供給水という3つの流体間において温熱が移送される。
(1)燃焼排ガスは、燃焼室1では、発生直後の高温の状態から(約700〜800℃)、上部水管群1bで熱交換して減温され(約150〜200℃)、上部排気部1c,接続路3を介して対流室2に導入される。対流室2では、下部水管群等2bで熱交換して減温され、排ガス流通路2aを流通して下部排気部2cから排出される。
(2)熱媒体は、燃焼室1では、上部水管群1bの内部を流通し、燃焼排ガスとの熱交換によって燃焼熱を吸収して一部が加温,気化され(約80〜90℃)、減圧蒸気室4,上部連通流路Luを介して上部熱交換空間8に移送される。上部熱交換空間8では、第2熱交換部6で熱交換して減温,凝縮され(約80〜90℃)、凝縮液として下部熱交換空間9に滴下し、液相の熱媒体として貯留される。液相の熱媒体は、さらに第1熱交換部7で熱交換して減温される。下部熱交換空間9の液相の熱媒体は、下部連通流路Lbおよび下部熱媒体室5を介して対流室2に導入され、下部水管群等2bの内部を流通し、熱交換して加温,上方へ移送され(約80〜90℃)、再度上部水管群1bの内部を流通する(循環流を形成)。
(3)供給水(入口温度約20〜30℃)は、第1熱交換部7に流通,加温され、次いで第2熱交換部6に流通,加温され(約70〜80℃)、加温水として供給される。また、第2構成例同様、供給水のバイパス流量が制御される。
[Hot heat transfer function with fluid transfer in this water heater]
In the hot water heater, warm heat is transferred between three fluids of combustion exhaust gas, heat medium, and supply water as follows.
(1) In the combustion chamber 1, the combustion exhaust gas is reduced in temperature (about 150 to 200 ° C.) by exchanging heat in the upper water tube group 1b from a high temperature state immediately after generation (about 700 to 800 ° C.). 1 c is introduced into the convection chamber 2 via the connection path 3. In the convection chamber 2, the temperature is reduced by exchanging heat in the lower water tube group 2 b and the like, and is discharged from the lower exhaust part 2 c through the exhaust gas flow passage 2 a.
(2) In the combustion chamber 1, the heat medium circulates in the upper water tube group 1b, absorbs combustion heat by heat exchange with the combustion exhaust gas, and is partially heated and vaporized (about 80 to 90 ° C.). Then, it is transferred to the upper heat exchange space 8 through the decompression steam chamber 4 and the upper communication channel Lu. In the upper heat exchange space 8, the temperature is reduced and condensed (about 80 to 90 ° C.) by heat exchange in the second heat exchange unit 6, dropped as a condensate into the lower heat exchange space 9, and stored as a liquid phase heat medium. Is done. The liquid phase heat medium is further subjected to heat exchange in the first heat exchanging unit 7 to be reduced in temperature. The liquid phase heat medium in the lower heat exchange space 9 is introduced into the convection chamber 2 via the lower communication flow path Lb and the lower heat medium chamber 5, flows through the lower water pipe group 2b, etc., and is exchanged for heat. The temperature is transferred upward (about 80 to 90 ° C.), and flows again through the upper water pipe group 1b (forms a circulating flow).
(3) Supply water (inlet temperature about 20 to 30 ° C.) is circulated and heated to the first heat exchange unit 7 and then circulated and heated to the second heat exchange unit 6 (about 70 to 80 ° C.). Supplied as warm water. Further, the bypass flow rate of the feed water is controlled as in the second configuration example.

10 本体ユニット
20 熱交換ユニット
1 燃焼室
1a 燃焼バーナ
1b 水管群
1c 排気部
1d 火炎
2 対流室
2a 排ガス流通路
2b 下部水管群等
2c 下部排気部
3 接続路
4 減圧蒸気室
5 制御部
6 第2熱交換部
7 第1熱交換部
7a,7b 熱交換単位
8 上部熱交換空間
9 下部熱交換空間
B バイパス流路
Ba 分岐流路
E 第3熱交換部
S 温度センサ
Lu 上部連通流路
Lb 下部連通流路
P 循環ポンプ
S 温度センサ
Tu 上部流通路
Tb 下部流通路
V 制御弁
V1,V2,V3 弁(開閉弁または制御弁)
W 温水流路
Wa 導入流路
Wb 接続流路
Wc 供出流路
Wd 供給流路
DESCRIPTION OF SYMBOLS 10 Main body unit 20 Heat exchange unit 1 Combustion chamber 1a Combustion burner 1b Water pipe group 1c Exhaust part 1d Flame 2 Convection chamber 2a Exhaust gas flow path 2b Lower water pipe group etc. 2c Lower exhaust part 3 Connection path 4 Decompression steam chamber 5 Control part 6 2nd Heat exchange unit 7 First heat exchange unit 7a, 7b Heat exchange unit 8 Upper heat exchange space 9 Lower heat exchange space B Bypass channel Ba Branch channel E Third heat exchange unit S Temperature sensor Lu Upper communication channel Lb Lower communication Flow path P Circulation pump S Temperature sensor Tu Upper flow path Tb Lower flow path V Control valve V1, V2, V3 valve (open / close valve or control valve)
W Hot water flow path Wa Introduction flow path Wb Connection flow path Wc Delivery flow path Wd Supply flow path

Claims (6)

燃焼バーナと内部を熱媒体が流通する水管群が備えられた燃焼室と、該燃焼室の上部に配設されて前記水管群と接続する上部流通路と、前記燃焼室の下方に配設されて前記水管群と接続する下部流通路と、を備えた本体ユニットと、
前記上部流通路と上部連通流路で連通し、高温の熱媒体が流下する上部熱交換空間と、前記下部流通路と下部連通流路で連通し、低温の熱媒体が流通する下部熱交換空間と、が形成され、前記上部熱交換空間に第2熱交換部が配設され、前記下部熱交換空間に第1熱交換部が配設されるとともに、
前記第1熱交換部への導入流路に供給された供給水が、前記第1熱交換部から接続流路を介して前記第2熱交換部に流通され、前記第2熱交換部の供出流路から加温水として供出される温水流路と、前記導入流路から分岐され、前記接続流路と接続されるバイパス流路と、を備えた熱交換ユニットと、
を有することを特徴とする温水器。
A combustion chamber provided with a combustion burner and a water tube group through which a heat medium flows, an upper flow passage disposed above the combustion chamber and connected to the water tube group, and disposed below the combustion chamber. A lower flow passage connected to the water pipe group, and a main body unit,
An upper heat exchange space that communicates with the upper flow passage through the upper communication flow path and through which the high-temperature heat medium flows down, and a lower heat exchange space that communicates through the lower flow passage and the lower communication flow path and through which the low-temperature heat medium flows. And a second heat exchange part is disposed in the upper heat exchange space, a first heat exchange part is disposed in the lower heat exchange space,
Supply water supplied to the introduction flow path to the first heat exchange section is circulated from the first heat exchange section to the second heat exchange section through a connection flow path, and the second heat exchange section is supplied. A heat exchange unit comprising: a warm water channel provided as warm water from the channel; and a bypass channel branched from the introduction channel and connected to the connection channel;
The water heater characterized by having.
前記燃焼室で発生した燃焼排ガスが、前記水管群で前記熱媒体と熱交換され、減温されて排気部から排出され、
前記水管群の内部を充たす熱媒体が、前記燃焼排ガスとの熱交換によって燃焼熱を吸収して加温され、前記上部流通路を介して前記上部熱交換空間に移送され、前記第2熱交換部で熱交換して減温されて前記下部熱交換空間に流下し、前記第1熱交換部で熱交換して減温され、前記下部流通路を介して前記水管群の内部を流通する、循環流が形成され、
供給水が、前記第1熱交換部および前記第2熱交換部に流通され、加温されて加温水として供出されるとともに、前記下部連通流路に設けられた温度センサの出力が入力され、前記温水流路あるいは前記バイパス流路に設けられた制御弁を制動する制御部によって、前記バイパス流路に流通させる供給水の流量が調整されることを特徴とする請求項1記載の温水器。
Combustion exhaust gas generated in the combustion chamber is heat-exchanged with the heat medium in the water tube group, is reduced in temperature and discharged from the exhaust part,
The heat medium filling the inside of the water tube group absorbs combustion heat by heat exchange with the combustion exhaust gas, is heated and transferred to the upper heat exchange space via the upper flow passage, and the second heat exchange The temperature is reduced by exchanging heat in the section and flows down to the lower heat exchange space, the temperature is decreased by exchanging heat in the first heat exchange section, and circulates in the water pipe group through the lower flow path. A circulating flow is formed,
Supply water is circulated through the first heat exchange unit and the second heat exchange unit, heated and supplied as heated water, and an output of a temperature sensor provided in the lower communication channel is input, The water heater according to claim 1, wherein a flow rate of supply water to be circulated through the bypass flow path is adjusted by a controller that brakes a control valve provided in the hot water flow path or the bypass flow path.
前記第1熱交換部が直列に配設された複数の熱交換単位によって構成され、各熱交換単位の接続部が分岐され前記バイパス流路に接続されるとともに、前記第1熱交換部に流通させる供給水の流量が調整されることを特徴とする請求項1または2記載の温水器。   The first heat exchanging part is constituted by a plurality of heat exchanging units arranged in series, and the connecting part of each heat exchanging unit is branched and connected to the bypass flow path, and is distributed to the first heat exchanging part. The water heater according to claim 1 or 2, wherein the flow rate of the feed water is adjusted. 前記本体ユニットが、無圧式温水器を構成し、
前記水管群において加温された液相の前記熱媒体が、前記上部流通路を介して前記上部熱交換空間に移送され、前記第2熱交換部で熱交換して減温されて前記下部熱交換空間に流下し、前記第1熱交換部で熱交換して減温され、前記下部流通路を介して前記水管群の内部を流通する、同相の熱媒体の循環流が形成されることを特徴とする請求項1〜3いずれかに記載の温水器。
The main unit constitutes a pressureless water heater,
The liquid phase heat medium heated in the water tube group is transferred to the upper heat exchange space through the upper flow passage, and is heat-reduced and reduced in the second heat exchange section, so that the lower heat A circulation flow of an in-phase heat medium is formed that flows down to the exchange space, is reduced in temperature by exchanging heat in the first heat exchange section, and circulates in the water pipe group through the lower flow passage. The water heater according to any one of claims 1 to 3.
前記下部連通流路に熱回収部を備え、前記本体ユニットの燃焼室で発生した燃焼排ガスと前記熱交換ユニットから前記下部連通流路に流通される熱媒体との熱交換を行なうことを特徴とする請求項4記載の温水器。   The lower communication channel includes a heat recovery unit, and performs heat exchange between combustion exhaust gas generated in a combustion chamber of the main unit and a heat medium flowing from the heat exchange unit to the lower communication channel. The water heater according to claim 4. 前記本体ユニットが、減圧式温水器を構成し、
前記燃焼バーナと上部排気部を有し、内部を熱媒体が流通する上部水管群が備えられた燃焼室と、
該燃焼室の下方に配設され、排ガス流通路と下部排気部を有し、内部を熱媒体が流通し前記上部水管群と前記下部流通路に接続される下部水管群が備えられた対流室と、
前記上部排気部と前記排ガス流通路とを接続する接続路と、
前記燃焼室の上部に配設され、前記上部水管群と前記上部流通路に接続される減圧蒸気室と、
を備えるとともに、前記熱交換ユニットが、
前記上部流通路を介して前記減圧蒸気室と上部連通流路で連通し、気相の熱媒体が充たされる上部熱交換空間と、
前記下部流通路を介して前記下部水管群と下部連通流路で連通し、液相の熱媒体が充たされる下部熱交換空間が形成されるとともに、
前記上部熱交換空間に前記第2熱交換部、前記下部熱交換空間に前記第1熱交換部が配設されることを特徴とする請求項1〜3いずれかに記載の温水器。
The main unit constitutes a reduced pressure water heater,
A combustion chamber having an upper water pipe group having the combustion burner and an upper exhaust part, in which a heat medium flows;
A convection chamber disposed below the combustion chamber, having an exhaust gas flow path and a lower exhaust part, and having a lower water pipe group connected to the upper water pipe group and the lower flow path through which a heat medium flows. When,
A connection path connecting the upper exhaust part and the exhaust gas flow path;
A reduced pressure steam chamber disposed at an upper portion of the combustion chamber and connected to the upper water pipe group and the upper flow passage;
And the heat exchange unit comprises:
An upper heat exchange space that is communicated with the reduced-pressure steam chamber via the upper flow passage in the upper communication flow path and is filled with a gas phase heat medium;
A lower heat exchange space is formed which is communicated with the lower water pipe group via the lower flow passage in the lower communication flow path and filled with a liquid phase heat medium,
The water heater according to any one of claims 1 to 3, wherein the second heat exchange section is disposed in the upper heat exchange space, and the first heat exchange section is disposed in the lower heat exchange space.
JP2011167150A 2011-07-29 2011-07-29 Water heater Active JP5653861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011167150A JP5653861B2 (en) 2011-07-29 2011-07-29 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011167150A JP5653861B2 (en) 2011-07-29 2011-07-29 Water heater

Publications (2)

Publication Number Publication Date
JP2013029286A true JP2013029286A (en) 2013-02-07
JP5653861B2 JP5653861B2 (en) 2015-01-14

Family

ID=47786483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011167150A Active JP5653861B2 (en) 2011-07-29 2011-07-29 Water heater

Country Status (1)

Country Link
JP (1) JP5653861B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107388584A (en) * 2017-08-25 2017-11-24 东方电气集团东方锅炉股份有限公司 A kind of wealthy through-flow heater guiding device
WO2023128143A1 (en) * 2021-12-30 2023-07-06 주식회사 경동나비엔 Water heater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029754U (en) * 1988-06-29 1990-01-22
JPH029755U (en) * 1988-06-29 1990-01-22
JPH0649468A (en) * 1992-07-30 1994-02-22 Tokyo Gas Co Ltd Vacuum boiler-type evaporator
JPH08200816A (en) * 1995-01-26 1996-08-06 Mitsubishi Kakoki Kaisha Ltd Line heater for city gas
JP2007024441A (en) * 2005-07-20 2007-02-01 Tomoe Shokai:Kk Boiler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029754U (en) * 1988-06-29 1990-01-22
JPH029755U (en) * 1988-06-29 1990-01-22
JPH0649468A (en) * 1992-07-30 1994-02-22 Tokyo Gas Co Ltd Vacuum boiler-type evaporator
JPH08200816A (en) * 1995-01-26 1996-08-06 Mitsubishi Kakoki Kaisha Ltd Line heater for city gas
JP2007024441A (en) * 2005-07-20 2007-02-01 Tomoe Shokai:Kk Boiler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107388584A (en) * 2017-08-25 2017-11-24 东方电气集团东方锅炉股份有限公司 A kind of wealthy through-flow heater guiding device
CN107388584B (en) * 2017-08-25 2023-07-11 东方电气集团东方锅炉股份有限公司 Heater guiding device with wide through flow
WO2023128143A1 (en) * 2021-12-30 2023-07-06 주식회사 경동나비엔 Water heater

Also Published As

Publication number Publication date
JP5653861B2 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
TWI309704B (en) Method to start a continuous steam generator and said continuous steam generator for performing said method
WO2012114981A1 (en) Boiler plant and boiler plant operating method
JP2009299942A (en) Hot water supply system
CN107246291A (en) The double pressure evaporation organic Rankine cycle power generation systems of non-azeotropic working medium
JP5580225B2 (en) Vacuum water heater
JP6359321B2 (en) Vacuum water heater
WO2019011309A1 (en) Heat-transfer and heat-storage separation method and system for solar photothermal utilization
JP2008088892A (en) Non-azeotropic mixture medium cycle system
JP5653861B2 (en) Water heater
CN207081212U (en) A kind of deep condensation wall hanging furnace system
JP5225469B2 (en) Once-through boiler
JP6043635B2 (en) Heat source machine
ES2775004T3 (en) A solar thermal power plant and a method of operating a solar thermal power plant
CN107131645A (en) A kind of deep condensation wall hanging furnace system
JPH08105304A (en) Double current cycle plant
JP5580224B2 (en) Vacuum water heater
JP2008232534A (en) Vapor production system and vapor production method
US20190154359A1 (en) Combustion heating apparatus
CN106439769B (en) It is a kind of using heat-exchange system to the flow control methods that are heated stage by stage by heating fluid
JP4853125B2 (en) Steam generation system
JP2007192451A (en) Heat storage tank
KR102348104B1 (en) Plate heat exchanger in particular for a fuel-fired heater
JP7390186B2 (en) Vacuum water heater
JP4301145B2 (en) Water heater
JP6320958B2 (en) Absorption chiller / heater, heat exchanger, absorption chiller / heater control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141119

R150 Certificate of patent or registration of utility model

Ref document number: 5653861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250