JP2013027821A - Sand filtration device, and method for producing filter sand therefor - Google Patents

Sand filtration device, and method for producing filter sand therefor Download PDF

Info

Publication number
JP2013027821A
JP2013027821A JP2011165446A JP2011165446A JP2013027821A JP 2013027821 A JP2013027821 A JP 2013027821A JP 2011165446 A JP2011165446 A JP 2011165446A JP 2011165446 A JP2011165446 A JP 2011165446A JP 2013027821 A JP2013027821 A JP 2013027821A
Authority
JP
Japan
Prior art keywords
sand
filtration
raw water
water
cod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011165446A
Other languages
Japanese (ja)
Inventor
Kenichi Shishida
健一 宍田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2011165446A priority Critical patent/JP2013027821A/en
Publication of JP2013027821A publication Critical patent/JP2013027821A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively and effectively remove COD (chemical oxygen demand) by filtration without needing special facilities.SOLUTION: In a moving bed type upflow sand filtration device 2, a filter sand supporting metals is used. Raw water flows upward from raw water dispersion device 9, and is filtered while passing a filter layer 6 to become treated water. A filter sand flows gradually through the filter layer 6 from top down. While the filter sand exists below from the raw water dispersion device 9, the COD component adsorbed to the filter sand undergoes biolysis though its speed is slow. Further, a microbial group which can decompose the persistent COD is formed by mixing a backwash effluent.

Description

本発明は、廃水等の被処理水中のCODを低減させることのできる砂ろ過装置とそれに用いるろ過砂の製造方法に関するものである。   The present invention relates to a sand filtration device capable of reducing COD in water to be treated such as waste water and a method for producing filter sand used therefor.

近年、下水道の整備にしたがって、公共用水域の水質汚濁は改善されてきている。しかし、閉鎖性水域(東京湾や伊勢湾、瀬戸内海、あるいは琵琶湖などの湖沼)でのCOD濃度は一向に低下していない。これは、窒素、リンなどの栄養塩類の除去が必要なこともあるが、処理水中に通常の水処理では分解できないCODが残留することも大きな一因である。なお、COD(化学的酸素要求量)という用語は水質汚濁の指標であるが、以下の説明において、処理水中に含まれる有機物などの物質の意味で用いることもある。   In recent years, water pollution in public water bodies has been improved with the development of sewers. However, the COD concentration in closed water areas (Tokyo Bay, Ise Bay, Seto Inland Sea, or lakes such as Lake Biwa) has not decreased. Although this may require removal of nutrient salts such as nitrogen and phosphorus, a major reason is that COD that cannot be decomposed by ordinary water treatment remains in the treated water. The term COD (chemical oxygen demand) is an indicator of water pollution, but in the following description, it may be used to mean a substance such as an organic substance contained in treated water.

従来、CODを除去する技術としては、凝集沈殿による方法、オゾン処理による方法、生物活性炭による方法などが知られている。また、ろ過を行う担体に生物膜を付着させてCODなどの除去を行う生物膜ろ過の技術もある(特許文献1,2)。更に、オゾン処理と生物膜ろ過とを組み合わせた技術も提案されている(特許文献3,非特許文献1)。   Conventionally, as a technique for removing COD, a method using coagulation sedimentation, a method using ozone treatment, a method using biological activated carbon, and the like are known. There is also a biofilm filtration technique for removing COD by attaching a biofilm to a carrier for filtration (Patent Documents 1 and 2). Furthermore, the technique which combined ozone treatment and biofilm filtration is also proposed (patent document 3, nonpatent literature 1).

特開2004−237219号公報JP 2004-237219 A 特開平11−128968号公報Japanese Patent Laid-Open No. 11-128968 特開平9−29285号公報JP-A-9-29285

曽根啓一ほか、「オゾンと分離膜を組み合わせた下水再生水製造システム」、衛生工学シンポジウム論文集、2001年11月1日、P.220−224Keiichi Sone et al., “Sewage Reclaimed Water Production System Combining Ozone and Separation Membrane”, Proceedings of Sanitary Engineering Symposium, November 1, 2001, p. 220-224

しかしながら、凝集沈殿による方法では、薬剤費が高価であり、また、オゾン処理、生物活性炭による方法では、設備費及びランニングコストが高価であり、これが導入する際のネックになっている。また、生物膜ろ過による方法では、生物膜の蓄積による性能低下の防止に留意する必要があるなど、維持管理が複雑であり、またその効果が低いという問題点がある。
このようなことから安価でCOD除去が行えるシステムの構築が望まれているところである。
However, in the method using coagulation and precipitation, the cost of the drug is expensive, and in the method using ozone treatment and biological activated carbon, the equipment cost and the running cost are expensive, which is a bottleneck when introducing it. Moreover, in the method using biofilm filtration, there is a problem that maintenance and management are complicated and the effect is low, for example, it is necessary to pay attention to prevention of performance degradation due to biofilm accumulation.
For this reason, it is desired to build a system that can remove COD at low cost.

本発明は、前述のような問題点に鑑みてなされたもので、特別な設備を必要とすることなく、安価にかつ効果的にろ過によるCOD除去処理を実現することのできる砂ろ過装置を提供し、併せてその砂ろ過装置に用いるろ過砂の製造方法を提供することを目的とするものである。   The present invention has been made in view of the above-described problems, and provides a sand filtration device capable of realizing COD removal processing by filtration effectively and inexpensively without requiring special equipment. And it aims at providing the manufacturing method of the filtration sand used for the sand filtration apparatus collectively.

前記目的を達成するために、第1発明による砂ろ過装置は、
ろ過槽内に充填したろ過砂に原水を通過させてろ過処理を行う砂ろ過装置において、
前記ろ過砂として、金属類を担持させたろ過砂を用いることにより、溶解性CODを除去するようにしたことを特徴とするものである。
In order to achieve the above object, the sand filtration device according to the first invention comprises:
In the sand filtration device that passes the raw water through the filtration sand filled in the filtration tank and performs filtration treatment,
Soluble COD is removed by using filtration sand carrying metals as the filtration sand.

ここで、前記砂ろ過装置は、ろ過槽の下部から供給された原水が上向流となってろ過砂を通過して処理水となる移床式上向流砂ろ過装置であるのが好ましい(第2発明)。   Here, the sand filtration device is preferably a moving bed upward flow sand filtration device in which the raw water supplied from the lower part of the filtration tank becomes an upward flow, passes through the filtration sand and becomes treated water (first). 2 invention).

第2発明において、前記砂ろ過装置から排出される逆洗排水が原水に混入されるのが好ましい(第3発明)。   In the second invention, it is preferable that the backwash waste water discharged from the sand filter is mixed into the raw water (third invention).

また、第4発明によるろ過砂の製造方法は、
前記第1発明〜第3発明のいずれかの砂ろ過装置に用いるろ過砂の製造方法であって、
金属硝酸塩を硝酸溶液に溶解させ、pHを調整する工程と、溶液中に未処理のろ過砂を投入した後、NaOHを添加してpHを再調整する工程と、溶液を撹拌し、その後に遠心分離する工程と、遠心分離により得られた固体分を純水で洗浄し、その後に乾燥させる工程を経ることにより、金属類を担持させたろ過砂を得ることを特徴とするものである。
Moreover, the manufacturing method of the filtration sand by 4th invention is as follows.
A method for producing filtration sand used in the sand filtration device according to any one of the first to third inventions,
A step of dissolving a metal nitrate in a nitric acid solution and adjusting the pH, a step of adding untreated filtration sand into the solution and then adding NaOH again to readjust the pH, and stirring the solution followed by centrifugation A filtration sand carrying metals is obtained by performing a separation step and a step of washing a solid content obtained by centrifugation with pure water, followed by a drying step.

前記第4発明において、前記純水による洗浄は、上澄み液の電気伝導度が1000μS/cm以下になるまで行われるのが好ましい(第5発明)。   In the fourth aspect of the invention, the cleaning with pure water is preferably performed until the electrical conductivity of the supernatant is 1000 μS / cm or less (the fifth aspect).

ここで、前記金属硝酸塩は、硝酸鉄又は硝酸アルミニウムであるのが良い(第6発明)。   Here, the metal nitrate may be iron nitrate or aluminum nitrate (sixth invention).

本発明によれば、ろ過砂が金属類を担持しているので、ろ過砂の表面を正電荷に帯電させることができる。一方、水中に溶存している有機物のうち、特に下水処理水に含有されるフミン質などの有機物は負電荷に帯電していることが多いため、正電荷に帯電されたろ過砂のCOD吸着能力が飛躍的に大きくなり、CODの吸着除去効果が維持できるようになる。したがって、これまで不可能であった溶解性のCOD除去をろ過と同時に行うことが可能となる。   According to the present invention, since the filtration sand carries metals, the surface of the filtration sand can be charged to a positive charge. On the other hand, among organic substances dissolved in water, especially organic substances such as humic substances contained in sewage treated water are often negatively charged, so the COD adsorption capacity of positively charged filtration sand is Becomes drastically increased, and the adsorption removal effect of COD can be maintained. Therefore, soluble COD removal that has been impossible until now can be performed simultaneously with filtration.

本発明の一実施形態に係るろ過砂の製造方法を示すフロー図The flowchart which shows the manufacturing method of the filtration sand which concerns on one Embodiment of this invention. 本発明の他の実施形態に係るろ過砂の製造方法を示すフロー図The flowchart which shows the manufacturing method of the filtration sand which concerns on other embodiment of this invention. 実施例1及び比較例1の吸着テストを行った系の模式図Schematic diagram of system in which adsorption test of Example 1 and Comparative Example 1 was performed 実施例1及び比較例1の吸着テスト結果を示すグラフThe graph which shows the adsorption test result of Example 1 and Comparative Example 1 実施例2及び比較例2の移床式上向流砂ろ過装置の断面図Sectional drawing of the moving bed type upward sand filter of Example 2 and Comparative Example 2

次に、本発明による砂ろ過装置とそれに用いるろ過砂の製造方法の具体的な実施の形態について、図面を参照しつつ説明する。   Next, specific embodiments of the sand filtration device according to the present invention and the method for producing the filtration sand used therein will be described with reference to the drawings.

本発明は、ろ過砂の表面に金属を担持させてその表面を正電荷に帯電させることにより、負電荷に帯電したCODを吸着する能力が飛躍的に向上するという知見に基づくものである。なお、ろ過砂によるCODの吸着は、処理を継続するうちに破過に至るが、吸着固定されている間に徐々に生物分解を受け、継続的な除去が可能である。   The present invention is based on the knowledge that the ability to adsorb COD charged to a negative charge is drastically improved by carrying a metal on the surface of the filter sand and charging the surface to a positive charge. In addition, although adsorption of COD by filtration sand reaches breakthrough while continuing the treatment, it is gradually subjected to biodegradation while being adsorbed and fixed, and can be continuously removed.

ろ過砂に担持させる金属としては、陽イオンとなるものであれば特に限定されないが、アルカリ土類金属をはじめとする典型金属や、遷移金属が好ましい。中でも、鉄やマンガン、アルミニウムが好ましい。   The metal to be supported on the filter sand is not particularly limited as long as it becomes a cation, but typical metals such as alkaline earth metals and transition metals are preferable. Of these, iron, manganese, and aluminum are preferable.

図1、図2には、金属担持砂(ろ過砂)の製造方法を表すフロー図が例示されている。図1は、鉄を担持させる場合、図2は、アルミニウムを担持させる場合の例である。   FIG. 1 and FIG. 2 exemplify flowcharts representing a method for producing metal-carrying sand (filtered sand). FIG. 1 shows an example in which iron is supported, and FIG. 2 shows an example in which aluminum is supported.

<ろ過砂の表面に鉄を担持させる方法について(図1)>
S1:硝酸鉄の水和物(Fe(NO・9HO)25.25gを秤量する。
S2:秤量した上記硝酸鉄の水和物を0.1規定(N)の硝酸(HNO)に溶解し、MQ水(超純水)で10Lにメスアップする。なお、この溶液は、無色でpH=1.0である。
S3:溶液中に市販のろ過砂を投入する。
S4:1規定(N)の硝酸(HNO)でpH=2.5に再調整し、1時間放置した砂の入った液に5規定(N)の水酸化ナトリウム(NaOH)をpH=3.0になるまで添加する。なお、この溶液は、色がイエローブラウンに変化する。
S5:溶液を撹拌しながら、1規定(N)の水酸化ナトリウム(NaOH)でpH=8.0になるまで滴下する。
S6:3時間撹拌を続け、1規定(N)の水酸化ナトリウム(NaOH)でpH=8.0に再調整する。このとき、溶液の色はブラウンになる。
S7:24時間暗所で撹拌し、7000gで15分遠心分離する。
S8〜S9:遠心分離により得られた固体分をMQ水で洗浄する。この洗浄を、溶液の上澄み液の電気伝導度が1000μS/cm(マイクロジーメンス)以下になるまで行う。
S10:上澄み液が所定の電気伝導度になると、乾燥させ、暗所で保存する。
<Method for supporting iron on the surface of the filtration sand (FIG. 1)>
S1: hydrate of iron nitrate (Fe (NO 3) 3 · 9H 2 O) are weighed 25.25 g.
S2: Dissolve the weighed iron nitrate hydrate in 0.1 N (N) nitric acid (HNO 3 ), and make up to 10 L with MQ water (ultra pure water). This solution is colorless and has pH = 1.0.
S3: A commercially available filter sand is put into the solution.
S4: Re-adjust to pH = 2.5 with 1N (N) nitric acid (HNO 3 ), and add 5N (N) sodium hydroxide (NaOH) to the solution containing sand left for 1 hour. Add until 0. This solution changes its color to yellow brown.
S5: While stirring the solution, 1N (N) sodium hydroxide (NaOH) is added dropwise until pH = 8.0.
S6: Continue stirring for 3 hours and readjust to pH = 8.0 with 1N (N) sodium hydroxide (NaOH). At this time, the color of the solution becomes brown.
S7: Stir in the dark for 24 hours and centrifuge at 7000 g for 15 minutes.
S8 to S9: The solid content obtained by centrifugation is washed with MQ water. This washing is performed until the electrical conductivity of the supernatant of the solution becomes 1000 μS / cm (micro Siemens) or less.
S10: When the supernatant liquid has a predetermined electrical conductivity, it is dried and stored in a dark place.

<ろ過砂の表面にアルミニウムを担持させる方法について(図2)>
T1:硝酸アルミニウムの水和物(Al(NO・9HO)7.50gを秤量する。
T2:秤量した上記硝酸アルミニウムの水和物を0.1規定(N)の硝酸(HNO)に溶解し、MQ水(超純水)で10Lにメスアップする。
T3:溶液中に、ケイ酸ナトリウム(NaSiO・9HO)5.684gを添加する。なお、この溶液はpH=3.0である。
T4:溶液中に市販のろ過砂を投入する。
T5:1規定(N)の硝酸(HNO)でpH=2.5に再調整し、1時間放置した砂の入った液に1規定(N)の水酸化ナトリウム(NaOH)をpH=7.0になるまで滴下する。なお、この溶液は、pH=4.5で濁度が初めて確認され、pH=7.0で相当白濁する。
T6:24時間撹拌を続けると、pH=6.5に落ち着くので、1規定(N)の水酸化ナトリウム(NaOH)でpH=7.0に再調整する。
T7:1ヶ月撹拌(10分/24時間)を続け、7000gで15分遠心分離する。
T8〜T9:遠心分離により得られた固体分をMQ水で洗浄する。この洗浄を、溶液の上澄み液の電気伝導度が1000μS/cm(マイクロジーメンス)以下になるまで行う。
T10:上澄み液が所定の電気伝導度になると、乾燥させ、暗所で保存する。
<Method for supporting aluminum on the surface of the filtration sand (FIG. 2)>
T1: Weigh aluminum nitrate hydrate (Al (NO 3) 3 · 9H 2 O) 7.50g.
T2: The weighed aluminum nitrate hydrate is dissolved in 0.1 N (N) nitric acid (HNO 3 ) and made up to 10 L with MQ water (ultra pure water).
T3: in solution, the addition of sodium silicate (Na 2 SiO 3 · 9H 2 O) 5.684g. This solution has pH = 3.0.
T4: Commercially available filter sand is put into the solution.
T5: readjusted to pH = 2.5 with nitric acid (HNO 3 ) of 1N (N), and 1N sodium hydroxide (NaOH) was added to the solution containing sand left for 1 hour at pH = 7 Add dropwise until 0. This solution is first confirmed to have turbidity at pH = 4.5, and becomes considerably cloudy at pH = 7.0.
T6: If stirring is continued for 24 hours, the pH settles down to 6.5, so readjust to pH = 7.0 with 1 N sodium hydroxide (NaOH).
T7: Continue stirring for 1 month (10 minutes / 24 hours) and centrifuge at 7000 g for 15 minutes.
T8 to T9: The solid content obtained by centrifugation is washed with MQ water. This washing is performed until the electrical conductivity of the supernatant of the solution becomes 1000 μS / cm (micro Siemens) or less.
T10: When the supernatant liquid has a predetermined electrical conductivity, it is dried and stored in a dark place.

なお、上述のステップS10,T10において、乾燥、暗所保存するのは、保管中の変質を防止することを目的としたものである。乾燥方法としては、熱風による乾燥は調質した砂が変質するため不適であり、凍結乾燥や室温での通気乾燥が好ましい。また、長期保管する場合は、乾燥状態を保持(例えば少量であればデシケータ内で、大量であれば乾燥室内で保管)することが好ましい。   Note that, in steps S10 and T10 described above, the purpose of drying and storing in the dark is to prevent alteration during storage. As a drying method, drying with hot air is unsuitable because the tempered sand is altered, and freeze drying or aeration drying at room temperature is preferable. In the case of long-term storage, it is preferable to keep the dry state (for example, in a desiccator if the amount is small, or in the drying chamber if the amount is large).

<実施例1、比較例1>
次に、図1に示されるようにして鉄を担持させたろ過砂の効果を確認するために、市販のフミン酸ナトリウムを溶解させた水を原水とし、図3に示されるようにカラム1にろ過砂を充填した状態で原水に接触させることによる吸着テストを実施した。このとき用いた砂は、有効径1.0mm、均等係数1.4以下のろ過砂である。実施例1としては、上記ろ過砂に鉄を担持させたものを使用し、比較例1としては、市販のろ過砂をそのまま使用した。そして、原水を連続的にカラム1に流入させ、原水及び処理水のCOD濃度を測定することにより評価を行った。なお、ろ層の逆洗浄は実施しなかった。
<Example 1, comparative example 1>
Next, in order to confirm the effect of the filtered sand carrying iron as shown in FIG. 1, water in which commercially available sodium humate is dissolved is used as raw water, and the column 1 as shown in FIG. An adsorption test was conducted by contacting the raw water with the filter sand filled. The sand used at this time is filtered sand having an effective diameter of 1.0 mm and a uniformity coefficient of 1.4 or less. As Example 1, what carried | supported iron on the said filtration sand was used, and as the comparative example 1, commercially available filtration sand was used as it was. Then, the raw water was continuously flowed into the column 1, and the evaluation was performed by measuring the COD concentration of the raw water and the treated water. In addition, the back washing | cleaning of the filter layer was not implemented.

上記吸着テストの結果が図4に示されている。図4から明らかなように、比較例1では、原水濃度と処理水濃度との比率がほぼ1であり、COD濃度に変化が見られないのに対し、実施例1ではCOD吸着能力が格段に改善されていることがわかる。この結果、ろ過砂に鉄などの金属類を担持させることによって、ろ過砂のCOD吸着能力を大幅に高めることができることが明らかとなった。したがって、このようなろ過砂を用いた砂ろ過装置は、ろ過層によるろ過と併せて、溶解性のCOD成分の除去が可能になることが明らかである。   The result of the adsorption test is shown in FIG. As is clear from FIG. 4, in Comparative Example 1, the ratio between the raw water concentration and the treated water concentration is approximately 1, and no change is seen in the COD concentration, whereas in Example 1, the COD adsorption capacity is remarkably high. You can see that it has improved. As a result, it has been clarified that the COD adsorption ability of the filter sand can be greatly increased by loading the metal such as iron on the filter sand. Therefore, it is clear that the sand filtration apparatus using such filtration sand can remove the soluble COD component together with the filtration by the filtration layer.

<実施例2、比較例2>
実施例2として、図5に示されるような移床式上向流砂ろ過装置2のろ過層6に上述の鉄を担持させたろ過砂を充填し、下水二次処理水を対象として連続運転を実施した。その際、砂ろ過装置2の逆洗排水を原水の10%混入させて原水流入管7から供給した。この結果、溶解性COD除去率は約40%であることが確認された。一方、比較例2としては、上記移床式上向流砂ろ過装置2に市販のろ過砂を充填し、下水二次処理水を対象として連続運転を実施した。この結果、溶解性CODは除去できなかった。
<Example 2, comparative example 2>
As Example 2, the filtration layer 6 of the moving bed type upward flow sand filtration device 2 as shown in FIG. 5 is filled with the filtration sand carrying the iron described above, and the continuous operation is performed on the sewage secondary treated water. Carried out. At that time, the backwash waste water of the sand filtration device 2 was mixed with 10% of the raw water and supplied from the raw water inflow pipe 7. As a result, it was confirmed that the soluble COD removal rate was about 40%. On the other hand, as Comparative Example 2, the above-mentioned moving bed type upflow sand filtration device 2 was filled with commercially available filtration sand, and continuous operation was carried out for sewage secondary treated water. As a result, soluble COD could not be removed.

ここで、この移床式上向流砂ろ過装置2は、筒状部3の下部が逆コーン状の底部4とされた容器5内にろ過砂が充填されてろ過層(砂層)6が形成されるよう構成されている。原水は原水流入管7からガイドパイプ8および原水分散装置9を介してろ過層6の下部に供給される。原水分散装置9は、複数本(4〜8本)の下面が開放されたパイプである。こうして、原水は原水分散装置9の下部より流出し、ろ過層6を上部へと流れる間にろ過層6によりろ過され、ろ過後の処理水は上部からオーバーフローされて集水トラフ10に流れ、次のプロセスへと送られる。一方、容器5下部にはエアリフト管11が挿入されており、このエアリフト管11に空気を吹き込むことにより、内部の空気+砂+原水の比重と、周囲の砂+水の比重差による循環力の発生により、汚れた砂と原水がエアリフト管11内部を上昇する。この上昇中に、砂は空気と水とにより撹拌洗浄される。上昇した空気と砂と水は分離器12で分離され、砂はサンドウォッシャー13でろ過水と対向流で洗浄され、再びろ過層6へ戻される。水は、洗浄排水となりオリフィスプレート(孔のあいた板)14の孔を通り洗浄排水管15に流れる。   Here, in the moving bed type upward flowing sand filtration device 2, the filtration sand (sand layer) 6 is formed by filling the container 5 in which the lower part of the cylindrical part 3 is the bottom part 4 having an inverted cone shape with the filtration sand. It is comprised so that. The raw water is supplied from the raw water inflow pipe 7 to the lower part of the filtration layer 6 through the guide pipe 8 and the raw water dispersing device 9. The raw water dispersion device 9 is a pipe having a plurality of (4 to 8) lower surfaces opened. Thus, the raw water flows out from the lower part of the raw water dispersing device 9 and is filtered by the filtration layer 6 while flowing through the filtration layer 6 to the upper part, and the treated water after the filtration overflows from the upper part and flows to the water collecting trough 10, Sent to the process. On the other hand, an air lift pipe 11 is inserted in the lower part of the container 5. By blowing air into the air lift pipe 11, the circulation force due to the specific gravity of the internal air + sand + raw water and the specific gravity of the surrounding sand + water is reduced. Due to the occurrence, dirty sand and raw water rise inside the air lift pipe 11. During this ascent, the sand is agitated and washed with air and water. The ascending air, sand and water are separated by the separator 12, and the sand is washed by the sand washer 13 in a counter flow with the filtered water and returned to the filtration layer 6 again. The water flows into the cleaning drainage pipe 15 through the holes of the orifice plate (holed plate) 14 as cleaning drainage.

この移床式上向流砂ろ過装置2において、原水は原水分散装置9から上向きに流れ、ろ過層6を通過するうちにろ過され、処理水となる。一方、ろ過砂はろ過層6を徐々に上から下に流れ、原水分離装置9より下方部分はろ過に寄与していない時間となる。実施例2で、実施例1よりもCOD除去効果が大きく向上したのは、ろ過砂が原水分離装置9よりも下に存在する間に、ろ過砂に吸着されたCOD成分が、速度は遅いながらも生物分解を受け、かつ逆洗排水を混入することによって難分解性のCODを分解可能な微生物群が形成されたためと考えられる。したがって、移床式上向流砂ろ過装置は、CODを除去するろ過に適した装置であると言える。   In this moving bed type upward sand filter 2, the raw water flows upward from the raw water dispersing device 9 and is filtered while passing through the filtration layer 6 to become treated water. On the other hand, the filtration sand gradually flows from the top to the bottom of the filtration layer 6, and the portion below the raw water separator 9 is a time that does not contribute to the filtration. In Example 2, the COD removal effect was greatly improved as compared with Example 1. The reason why the COD component adsorbed on the filter sand while the filter sand was below the raw water separator 9 was slow. It is also considered that a microorganism group capable of decomposing hardly decomposable COD was formed by receiving biodegradation and mixing backwash waste water. Therefore, it can be said that the moving bed type upward sand filter is an apparatus suitable for filtration for removing COD.

本発明では、安価にかつ効果的に溶解性のCOD除去をろ過と同時に行うことができるため、産業上の利用効果が大である。   In the present invention, soluble COD removal can be performed simultaneously with filtration at a low cost and effectively, so that the industrial utilization effect is great.

1 カラム
2 移床式上向流砂ろ過装置
6 ろ過層(砂層)
7 原水流入管
9 原水分散装置
10 集水トラフ
11 エアリフト管
12 分離器
13 サンドウォッシャー
15 洗浄排水管
DESCRIPTION OF SYMBOLS 1 Column 2 Moving bed type upward flow sand filtration apparatus 6 Filtration layer (sand layer)
7 Raw water inflow pipe 9 Raw water disperser 10 Water collection trough 11 Air lift pipe 12 Separator 13 Sand washer 15 Washing drain pipe

Claims (6)

ろ過槽内に充填したろ過砂に原水を通過させてろ過処理を行う砂ろ過装置において、
前記ろ過砂として、金属類を担持させたろ過砂を用いることにより、溶解性CODを除去するようにしたことを特徴とする砂ろ過装置。
In the sand filtration device that passes the raw water through the filtration sand filled in the filtration tank and performs filtration treatment,
A sand filtration apparatus characterized in that soluble COD is removed by using filtration sand carrying metals as the filtration sand.
前記砂ろ過装置は、ろ過槽の下部から供給された原水が上向流となってろ過砂を通過して処理水となる移床式上向流砂ろ過装置である請求項1に記載の砂ろ過装置。   The sand filtration according to claim 1, wherein the sand filtration device is a moving bed type upward flow sand filtration device in which the raw water supplied from the lower part of the filtration tank becomes an upward flow and passes through the filtered sand to become treated water. apparatus. 前記砂ろ過装置から排出される逆洗排水が原水に混入される請求項2に記載の砂ろ過装置。   The sand filtration apparatus according to claim 2, wherein the backwash waste water discharged from the sand filtration apparatus is mixed into raw water. 請求項1〜3のいずれかに記載の砂ろ過装置に用いるろ過砂の製造方法であって、
金属硝酸塩を硝酸溶液に溶解させ、pHを調整する工程と、溶液中に未処理のろ過砂を投入した後、NaOHを添加してpHを再調整する工程と、溶液を撹拌し、その後に遠心分離する工程と、遠心分離により得られた固体分を純水で洗浄し、その後に乾燥させる工程を経ることにより、金属類を担持させたろ過砂を得ることを特徴とするろ過砂の製造方法。
It is a manufacturing method of the filtration sand used for the sand filtration device according to any one of claims 1 to 3,
A step of dissolving a metal nitrate in a nitric acid solution and adjusting the pH, a step of adding untreated filtration sand into the solution and then adding NaOH again to readjust the pH, and stirring the solution followed by centrifugation A method for producing filtration sand, characterized by obtaining filtration sand carrying metals by washing the solid content obtained by centrifugation and washing with pure water and then drying the solid. .
前記純水による洗浄は、上澄み液の電気伝導度が1000μS/cm以下になるまで行われる請求項4に記載のろ過砂の製造方法。   The method for producing filtered sand according to claim 4, wherein the washing with pure water is performed until the electrical conductivity of the supernatant is 1000 μS / cm or less. 前記金属硝酸塩は、硝酸鉄又は硝酸アルミニウムである請求項4又は5に記載のろ過砂の製造方法。   The method for producing filtered sand according to claim 4 or 5, wherein the metal nitrate is iron nitrate or aluminum nitrate.
JP2011165446A 2011-07-28 2011-07-28 Sand filtration device, and method for producing filter sand therefor Pending JP2013027821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011165446A JP2013027821A (en) 2011-07-28 2011-07-28 Sand filtration device, and method for producing filter sand therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011165446A JP2013027821A (en) 2011-07-28 2011-07-28 Sand filtration device, and method for producing filter sand therefor

Publications (1)

Publication Number Publication Date
JP2013027821A true JP2013027821A (en) 2013-02-07

Family

ID=47785423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011165446A Pending JP2013027821A (en) 2011-07-28 2011-07-28 Sand filtration device, and method for producing filter sand therefor

Country Status (1)

Country Link
JP (1) JP2013027821A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111408176A (en) * 2020-03-06 2020-07-14 深圳第三代半导体研究院 Method and device for purifying multidimensional nano material
CN111847579A (en) * 2020-08-27 2020-10-30 益阳方成建筑新材料有限责任公司 Building rubbish is useless regeneration treatment admittedly with wasing waste water circulation processing system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910318A (en) * 1982-07-07 1984-01-19 Shiraishi Chuo Kenkyusho:Kk Filter medium for water treatment and filtering method
JPH10180298A (en) * 1996-12-20 1998-07-07 Shinko Pantec Co Ltd Treatment of waste water and waste water treating device
US5911882A (en) * 1988-05-10 1999-06-15 University Of Washington Removing contaminants from water using iron oxide coated mineral having olivine structure
JP2000070990A (en) * 1998-09-03 2000-03-07 Takuma Co Ltd Method for removing nitrogen and suspended matter in wastewater and removal system therefor
JP2001179009A (en) * 1999-12-24 2001-07-03 Takuma Co Ltd Moving bed type continuous sand filtering method and system therefor
JP2004141752A (en) * 2002-10-23 2004-05-20 Fuji Silysia Chemical Ltd Humic material adsorbing agent and method of removing humic material
JP2006508791A (en) * 2002-12-04 2006-03-16 アイダホ リサーチ ファウンデーション インコーポレイテッド Reaction filtration
JP2010082486A (en) * 2007-06-13 2010-04-15 Toyofumi Miyazaki Ultrafine grain burnt sand biological filter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910318A (en) * 1982-07-07 1984-01-19 Shiraishi Chuo Kenkyusho:Kk Filter medium for water treatment and filtering method
US5911882A (en) * 1988-05-10 1999-06-15 University Of Washington Removing contaminants from water using iron oxide coated mineral having olivine structure
JPH10180298A (en) * 1996-12-20 1998-07-07 Shinko Pantec Co Ltd Treatment of waste water and waste water treating device
JP2000070990A (en) * 1998-09-03 2000-03-07 Takuma Co Ltd Method for removing nitrogen and suspended matter in wastewater and removal system therefor
JP2001179009A (en) * 1999-12-24 2001-07-03 Takuma Co Ltd Moving bed type continuous sand filtering method and system therefor
JP2004141752A (en) * 2002-10-23 2004-05-20 Fuji Silysia Chemical Ltd Humic material adsorbing agent and method of removing humic material
JP2006508791A (en) * 2002-12-04 2006-03-16 アイダホ リサーチ ファウンデーション インコーポレイテッド Reaction filtration
JP2010082486A (en) * 2007-06-13 2010-04-15 Toyofumi Miyazaki Ultrafine grain burnt sand biological filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111408176A (en) * 2020-03-06 2020-07-14 深圳第三代半导体研究院 Method and device for purifying multidimensional nano material
CN111408176B (en) * 2020-03-06 2021-08-17 深圳第三代半导体研究院 Method and device for purifying multidimensional nano material
CN111847579A (en) * 2020-08-27 2020-10-30 益阳方成建筑新材料有限责任公司 Building rubbish is useless regeneration treatment admittedly with wasing waste water circulation processing system

Similar Documents

Publication Publication Date Title
CN104628185B (en) A kind of oil-gas field fracturing returns the treatment process of discharge opeing
Zhou et al. Heavy metal removal from wastewater in fluidized bed reactor
CN105254069B (en) A kind of white tungsten beneficiation wastewater handling process
CN103112991B (en) Coking wastewater treatment system and coking wastewater treatment method
CN102107988B (en) Phenol-amine wastewater treatment and recycling method and device
CN104724874A (en) Sewage pretreatment method
CN106219892A (en) A kind of Powdered Activated Carbon magnetic-coagulation depositing reservoir processes indegradable industrial effluent method and device
CN105036469A (en) Advanced treatment system for dye wastewater
CN102923916A (en) Chemical pharmaceutical wastewater treatment system
CN106542670A (en) A kind of wet desulphurization waste water zero discharge treatment process
JP5049929B2 (en) Water treatment apparatus and water treatment method
CN106865839A (en) A kind of technique using polynary micro-electrolysis stuffing deep-treating organic waste water
JP2013027821A (en) Sand filtration device, and method for producing filter sand therefor
CN205740686U (en) A kind of coking wastewater of iron and steel plant processing means
CN104986898B (en) A kind of method and device of normal temperature ferrite circular treatment heavy metal containing sewage
JPH09122683A (en) Method for anaerobic treatment
CN104817229A (en) Bamboo product waste water treatment system
Martynov et al. Modern trends at natural and wastewater treatment plants reconstruction
CN203065319U (en) Slurry separating tower
CN205442889U (en) Coking wastewater treatment device
CN103466892A (en) Pharmaceutical wastewater treatment process
CN106380047A (en) Water purification system for pigpen
JPH0119959B2 (en)
JP2005007386A (en) Sludge washing method and its apparatus
CN218665664U (en) Acidic cleaning water recycling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150701