JP2013026303A - Method of manufacturing ceramic circuit board - Google Patents

Method of manufacturing ceramic circuit board Download PDF

Info

Publication number
JP2013026303A
JP2013026303A JP2011157453A JP2011157453A JP2013026303A JP 2013026303 A JP2013026303 A JP 2013026303A JP 2011157453 A JP2011157453 A JP 2011157453A JP 2011157453 A JP2011157453 A JP 2011157453A JP 2013026303 A JP2013026303 A JP 2013026303A
Authority
JP
Japan
Prior art keywords
glass
powder
circuit board
electrode
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011157453A
Other languages
Japanese (ja)
Inventor
Motohiro Shimizu
基尋 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011157453A priority Critical patent/JP2013026303A/en
Publication of JP2013026303A publication Critical patent/JP2013026303A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a ceramic circuit board comprising a high-definition (L/S=50 μm/50 μm) electrode pattern on the ceramic substrate and having a superior joint strength between a terminal electrode and the ceramic substrate.SOLUTION: The method of manufacturing a ceramic circuit board comprises steps of: coating a receptive layer paste containing first glass ceramic powder and a first organic vehicle on the top surface of a ceramic substrate; drying the receptive paste to form a receptive layer; printing in a predetermined shape a conductive paste containing conductive powder, second glass ceramic powder and a second organic vehicle; and burning the conductive paste to form a terminal electrode, where an electrode pattern can be printed without defect such as deblurring or deformation and a high-definition electrode pattern having a small contraction percentage after firing and superior joint strength can be formed even on a poor liquid-absorbent ceramic substrate.

Description

本発明は、セラミック回路基板の製造方法に関するものである。   The present invention relates to a method for manufacturing a ceramic circuit board.

従来より、半導体素子、発光ダイオード、積層型チップ部品などを搭載するアルミナ基板などのセラミック基板上へ電気的接合を行うための端子電極や回路配線を形成する場合、Agなどの導電性ペーストを用いて、スクリーン印刷などの方法により、セラミック基板上に製膜、焼成することにより導体配線を形成している。   Conventionally, a conductive paste such as Ag has been used to form terminal electrodes and circuit wiring for electrical bonding on a ceramic substrate such as an alumina substrate on which semiconductor elements, light emitting diodes, multilayer chip components, etc. are mounted. Thus, the conductor wiring is formed by film formation and firing on the ceramic substrate by a method such as screen printing.

特許文献1ではセラミック基板上面に導電パターンを形成する回路基板の製造方法において、セラミック基板またはその前駆体基板と導電粒子と分散媒とを含有してなるインクとの間に、樹脂層を設けることでインクのダレやにじみの少ない高精細度な導電パターンを形成する技術が開示されている。   In Patent Document 1, in a method of manufacturing a circuit board in which a conductive pattern is formed on the upper surface of a ceramic substrate, a resin layer is provided between the ceramic substrate or its precursor substrate, and ink containing conductive particles and a dispersion medium. Thus, a technique for forming a high-definition conductive pattern with less ink sag and bleeding is disclosed.

特開2007−84387号公報JP 2007-84387 A

しかしながら、上記特許文献1の製造方法では、基板表面ににじみのない図形の形成は可能であるが、Ag粉末などの導電性ペーストを用いて焼付を行い高精細な図形を形成する場合、樹脂層は脱バインダー工程時に熱分解して消失してしまうため、焼成中に導電性ペーストが著しく収縮してしまうため高精細な図形の形成が困難である。   However, in the manufacturing method of Patent Document 1, it is possible to form a figure without bleeding on the substrate surface. However, when a high-definition figure is formed by baking using a conductive paste such as Ag powder, the resin layer Since the thermal paste decomposes and disappears during the binder removal step, the conductive paste is significantly shrunk during firing, so that it is difficult to form a high-definition figure.

上記課題を解決するために本発明は、セラミック基板の主面に、少なくともガラス成分を含む第一のセラミック粉末と、第一の有機ビヒクルとからなるセラミックペーストを印刷する工程と、前記有機ビヒクルに含まれる有機成分を乾燥させ、前記ガラス成分を主成分とする下地層を形成する工程と、前記下地層の上面に、導電性粉末と、少なくともガラス成分を含む第二のセラミック粉末と、第二の有機ビヒクルとからなる導電ペーストを所定形状に印刷する工程と、前記導電性ペーストを焼付けて端子電極とする工程とを有した回路基板の製造方法とする。   In order to solve the above problems, the present invention includes a step of printing a ceramic paste comprising a first ceramic powder containing at least a glass component and a first organic vehicle on a main surface of a ceramic substrate; A step of drying an organic component contained to form a base layer containing the glass component as a main component; a conductive ceramic powder on the top surface of the base layer; a second ceramic powder containing at least a glass component; A method of manufacturing a circuit board, comprising: a step of printing a conductive paste made of an organic vehicle in a predetermined shape; and a step of baking the conductive paste to form terminal electrodes.

上記の製造方法により、セラミック基板の上面に導電性ペーストを印刷した際に下地の樹脂成分が水分を吸水して、ダレやにじみを抑制することができ、焼付け工程時にはセラミックペーストに含まれるガラス成分と導電ペーストに含まれるガラス成分とが、結着することで、高精細な図形の端子電極を保持することが可能となる。さらにはガラス成分の結着により、セラミック基板と端子電極間の固着強度に優れた回路基板を作製することができる。   According to the above manufacturing method, when the conductive paste is printed on the upper surface of the ceramic substrate, the underlying resin component absorbs moisture and can suppress dripping and blurring. The glass component contained in the ceramic paste during the baking process When the glass component contained in the conductive paste is bonded, it is possible to hold the terminal electrode with a high-definition figure. Furthermore, the circuit board excellent in the adhesive strength between a ceramic substrate and a terminal electrode can be produced by binding of a glass component.

本発明の一実施の形態における回路基板の製造工程図The manufacturing process figure of the circuit board in one embodiment of the present invention 本発明の一実施の形態における回路基板の電極焼付け前の断面模式図1 is a schematic cross-sectional view of a circuit board before baking an electrode according to an embodiment of the present invention. 本発明の一実施の形態における回路基板の電極焼付け後の断面模式図The cross-sectional schematic diagram after the electrode baking of the circuit board in one embodiment of this invention

以下、本発明のセラミック回路基板の製造方法を説明する。   Hereinafter, the manufacturing method of the ceramic circuit board of this invention is demonstrated.

図1は、本発明の一実施の形態における回路基板の製造工程図を示しており、図2は回路基板の電極焼付け前の断面模式図、図3は電極焼付け後の断面模式図である。   FIG. 1 is a manufacturing process diagram of a circuit board according to an embodiment of the present invention, FIG. 2 is a schematic cross-sectional view of the circuit board before electrode baking, and FIG. 3 is a schematic cross-sectional view after electrode baking.

図1に示すように、本発明の回路基板の製造方法は、はじめに第一のガラスセラミック粉末と第一の有機ビヒクルとからなる受容層ペーストをセラミック基板3上に印刷、乾燥して、受容層2の乾燥膜を形成する。   As shown in FIG. 1, in the method of manufacturing a circuit board according to the present invention, first, a receiving layer paste comprising a first glass ceramic powder and a first organic vehicle is printed on a ceramic substrate 3 and dried to obtain a receiving layer. 2 dry film is formed.

なお、受容層2に用いる第一のガラスセラミック粉末および第一の有機ビヒクルは導電性ペーストのダレおよび端子電極焼成時の収縮を抑制できるものであれば特に限定されない。   The first glass ceramic powder and the first organic vehicle used for the receiving layer 2 are not particularly limited as long as they can suppress the sagging of the conductive paste and the shrinkage during terminal electrode firing.

次に、乾燥後の受容層2の上面に、導電性粉末と第二のガラスセラミック粉末と第二の有機ビヒクルとからなる導電性ペースト1をセラミック基板3に所定形状で印刷し乾燥を行う。   Next, the conductive paste 1 made of the conductive powder, the second glass ceramic powder, and the second organic vehicle is printed on the ceramic substrate 3 in a predetermined shape on the upper surface of the receiving layer 2 after drying.

その後セラミック基板3上に形成した受容層2および導電性ペースト1に含まれるバインダー成分を揮発させる脱バインダー工程を施し、焼成工程を経ることで実装用端子電極や回路配線などの電極4とガラス層5を形成する。   Thereafter, a binder removal process for volatilizing the binder component contained in the receiving layer 2 and the conductive paste 1 formed on the ceramic substrate 3 is performed, and the electrode 4 and the glass layer such as the terminal electrode for mounting and the circuit wiring through the baking process. 5 is formed.

このような製造工程を経ることにより、乾燥後の受容層2は樹脂とガラス成分を含んでいるため上面に導電性ペースト1を印刷してもにじみやダレが発生することなく高精細な電極パターンを形成することができるが、受容層2を形成せずセラミック基板3上に導電性ペースト1を形成すると一般的にセラミック基板は吸水性に乏しいため、にじみやダレが発生してしまう。ここで、受容層ペーストおよび導電性ペーストの形成方法は、スクリーン印刷、グラビア印刷、グラビアオフセット印刷、インクジェット印刷などの製膜方法を用いることができる。   Through such a manufacturing process, since the dried receiving layer 2 contains a resin and a glass component, a high-definition electrode pattern is produced without causing bleeding or sagging even when the conductive paste 1 is printed on the upper surface. However, if the conductive paste 1 is formed on the ceramic substrate 3 without forming the receiving layer 2, the ceramic substrate generally has poor water absorption, and bleeding and sagging occur. Here, film formation methods, such as screen printing, gravure printing, gravure offset printing, and inkjet printing, can be used for the formation method of a receiving layer paste and an electrically conductive paste.

電極形成に用いる導電性粉末としては、銀、パラジウム、白金、金、銅のうち少なくとも1種類を含有する金属を用いることができる。   As the conductive powder used for electrode formation, a metal containing at least one of silver, palladium, platinum, gold, and copper can be used.

また、第一のガラスセラミック粉末を所定の軟化点を有するガラス材料とすることによりセラミック基板3と電極4との界面における接着強度を向上させることができる。   Moreover, the adhesive strength in the interface of the ceramic substrate 3 and the electrode 4 can be improved by making the 1st glass ceramic powder into the glass material which has a predetermined softening point.

以下、実施例に基づいて本発明の回路基板の製造方法について詳細に説明する。   Hereinafter, a method for manufacturing a circuit board according to the present invention will be described in detail based on examples.

(表1)の試料番号1に用いた受容層ペーストとしては、エチルセルロースと、α−テルピネオールとからなる樹脂濃度が10重量部の第一の有機ビヒクルと、第一のガラスセラミック粉末としては導電性ペーストを形成する導電性粉末をAg−Pd合金とし、このAg−Pd合金の焼結収縮開始温度よりも、軟化点が90℃低いB−Si−アルカリ土類系ガラスとした。この第一のガラスセラミック粉末を40重量部と、有機ビヒクル60重量部の比率で配合して受容層ペーストを作製した。次いでこの第一のガラスセラミック粉末と第一の有機ビヒクルを混合、分散を行うことにより受容層ペーストを作製した。上記受容層ペーストを、アルミナ基板上に乾燥後の厚さが5μmとなるように、スクリーン印刷法により印刷し、その後120℃で10分間乾燥して、受容層を形成した。   As the receiving layer paste used for Sample No. 1 in Table 1, the first organic vehicle having a resin concentration of 10 parts by weight composed of ethyl cellulose and α-terpineol, and the first glass ceramic powder are conductive. The conductive powder forming the paste was an Ag—Pd alloy, and B—Si-alkaline earth glass having a softening point lower by 90 ° C. than the sintering shrinkage start temperature of this Ag—Pd alloy. A receiving layer paste was prepared by blending 40 parts by weight of the first glass ceramic powder and 60 parts by weight of an organic vehicle. Next, the first glass ceramic powder and the first organic vehicle were mixed and dispersed to prepare a receiving layer paste. The receptor layer paste was printed on an alumina substrate by a screen printing method so that the thickness after drying was 5 μm, and then dried at 120 ° C. for 10 minutes to form a receptor layer.

次に電極の導電性ペーストとしては、Ag−Pd合金粉末を主成分とし、Ag−Pdを100重量部に対し12重量部の第二のガラスセラミック粉末を含有した。なおこの第二のガラスセラミック粉末は上記第一のガラスセラミック粉末と同様にB−Si−アルカリ土類系ガラスとしたが特に限定されるものではなく、後述するように導電性粉末の収縮開始温度とガラスの軟化点との兼ね合いにより適宜選択することができる。   Next, as the conductive paste of the electrode, Ag—Pd alloy powder was the main component, and 12 parts by weight of the second glass ceramic powder was contained with respect to 100 parts by weight of Ag—Pd. The second glass ceramic powder is B-Si-alkaline earth glass similar to the first glass ceramic powder, but is not particularly limited. As will be described later, the shrinkage start temperature of the conductive powder. And the softening point of the glass can be selected as appropriate.

上記乾燥後の受容層上に乾燥後の導電性ペーストの厚みが20μmとなるようにパターン印刷し、120℃で10分間乾燥して、導電性ペーストを形成した。導電性ペーストの焼付けは、アルミナ基板とこの受容層と導電性ペーストを950℃の大気中で一体焼成することにより電極を形成した。   A pattern was printed on the receiving layer after drying so that the thickness of the conductive paste after drying was 20 μm, and dried at 120 ° C. for 10 minutes to form a conductive paste. For the baking of the conductive paste, the alumina substrate, the receiving layer and the conductive paste were integrally baked in the air at 950 ° C. to form an electrode.

同様に試料番号2の第二のガラスセラミック粉末は電極に用いるAg−Pd合金の焼結収縮開始温度よりも、50℃低い軟化点を有するB−Si−アルカリ土類系ガラスに変更したこと以外は、試料番号1と同様とした。試料番号3は導電性ペースト中のAg−Pd合金粉末に対する第二のガラスセラミック粉末の比率を16重量部に変更すること以外は、試料番号1と同様とした。試料番号4は導電性ペースト中のAg−Pd合金粉末に対する第二のガラスセラミック粉末の比率を20重量部に変更すること以外は、試料番号1と同様とした。   Similarly, the second glass ceramic powder of sample number 2 was changed to B-Si-alkaline earth glass having a softening point 50 ° C. lower than the sintering shrinkage start temperature of the Ag—Pd alloy used for the electrode. Was the same as Sample No. 1. Sample No. 3 was the same as Sample No. 1 except that the ratio of the second glass ceramic powder to the Ag—Pd alloy powder in the conductive paste was changed to 16 parts by weight. Sample No. 4 was the same as Sample No. 1 except that the ratio of the second glass ceramic powder to the Ag-Pd alloy powder in the conductive paste was changed to 20 parts by weight.

次に比較例である試料番号5は受容層を形成しないこと以外は、試料番号1と同様とした。試料番号6の第一のガラスセラミック粉末は電極に用いるAg−Pd合金粉末の焼結収縮開始温度よりも110℃低い軟化点を有するB−Si−アルカリ土類系ガラスを用いたこと以外は、試料番号1と同様とした。試料番号7の第一のガラスセラミック粉末は電極に用いるAg−Pd合金粉末の焼結収縮開始温度よりも50℃高い軟化点を有するB−Si−アルカリ土類系ガラスを用いたこと以外は、試料番号1と同様とした。試料番号8の第二のガラスセラミック粉末の含有率を8%に変更したこと以外は、試料番号1と同様とした。試料番号9は導電性ペースト中の第二のガラスセラミック粉末の含有率を23%に変更したこと以外は、試料番号1と同様とした。   Next, Sample No. 5, which is a comparative example, was the same as Sample No. 1 except that no receiving layer was formed. The first glass ceramic powder of Sample No. 6 was used except that B-Si-alkaline earth glass having a softening point 110 ° C. lower than the sintering shrinkage start temperature of the Ag—Pd alloy powder used for the electrode was used. Same as Sample No. 1. The first glass ceramic powder of Sample No. 7 was used except that B-Si-alkaline earth glass having a softening point 50 ° C. higher than the sintering shrinkage start temperature of the Ag—Pd alloy powder used for the electrode was used. Same as Sample No. 1. Sample number 8 was the same as sample number 1 except that the content of the second glass ceramic powder was changed to 8%. Sample No. 9 was the same as Sample No. 1 except that the content of the second glass ceramic powder in the conductive paste was changed to 23%.

以上の試料を用いて導電性ペーストのにじみ評価、電極上に形成するめっきの析出評価、セラミック基板と電極間の固着強度について評価を行った。各評価方法について説明する。   Using the above samples, the bleeding evaluation of the conductive paste, the deposition evaluation of the plating formed on the electrode, and the adhesion strength between the ceramic substrate and the electrode were evaluated. Each evaluation method will be described.

導電性ペーストのにじみ評価は、湾曲部を含むL/S=50/50μmの図形パターンを有する線形形状で18μm、500メッシュのスクリーン版を用いた。回路パターンににじみが認められなかったものを良好として「○」、0.01mm以上のにじみが認められたものを「×」で示した。   For the evaluation of bleeding of the conductive paste, a 18 μm, 500 mesh screen plate having a linear pattern having a L / S = 50/50 μm graphic pattern including a curved portion was used. A case where no blur was observed in the circuit pattern was indicated as “Good”, and a case where a blur of 0.01 mm or more was observed was indicated as “X”.

また、固着強度試験用として2mm□の図形パターン評価サンプルの作製を行った。上記受容層および電極の形成方法に即した方法にて製膜および焼成を行い、焼成後にニッケルおよび金メッキ膜を形成した。引張試験のためのワイヤーを半田付けすることにより評価用のサンプルを作製した。引張試験機(今田製作所製、引張圧縮試験機 SV−5)を用いて、引上速度1.5cm/minの条件にて、基板面に対して垂直方向に引張応力を負荷することにより、セラミック基板と電極間の固着強度を測定した。   In addition, a 2 mm square figure pattern evaluation sample was prepared for the fixation strength test. Film formation and baking were performed by a method in accordance with the method for forming the receiving layer and electrode, and nickel and gold plating films were formed after baking. A sample for evaluation was prepared by soldering a wire for a tensile test. By applying a tensile stress in the direction perpendicular to the substrate surface using a tensile tester (manufactured by Imada Seisakusho, tensile compression tester SV-5) at a pulling speed of 1.5 cm / min, The adhesion strength between the substrate and the electrode was measured.

電極上に形成するめっきの析出評価については、金めっきが電極表面に析出した場合は「○」、めっき未析出の場合は「×」で示した。   With regard to the deposition evaluation of the plating formed on the electrode, “◯” is shown when gold plating is deposited on the electrode surface, and “X” is shown when plating is not deposited.

なお、実施例に示す電極に含まれるAg−Pd合金粉末の比率は80:20とし、このAg−Pd合金粉末を用いてTMA測定を行った結果、焼結収縮開始温度は850℃であった。   The ratio of the Ag—Pd alloy powder contained in the electrode shown in the example was 80:20, and TMA measurement was performed using this Ag—Pd alloy powder. As a result, the sintering shrinkage start temperature was 850 ° C. .

以下に評価結果を(表1)、(表2)および(表3)に示す。   The evaluation results are shown in (Table 1), (Table 2) and (Table 3) below.

Figure 2013026303
Figure 2013026303

(表1)に示すように、受容層を設けていない比較例の試料番号5のみ、0.01mm以上のにじみが生じ、受容層を設けたその他の試料は、0.01mm以上のにじみは生じない結果となった。これは受容層を用いることにより、導電性ペーストに含まれる溶剤成分を受容層が吸収することによりにじみやダレの発生を抑制しているためである。   As shown in (Table 1), only the sample No. 5 of the comparative example having no receiving layer has a blur of 0.01 mm or more, and the other samples having the receiving layer have a blur of 0.01 mm or more. No results. This is because by using the receiving layer, the receiving layer absorbs the solvent component contained in the conductive paste, thereby suppressing bleeding and sagging.

Figure 2013026303
Figure 2013026303

(表2)では第一のセラミック粉末の軟化点の異なるものを用いてセラミック基板と電極間の固着強度の評価を行った。   In (Table 2), the first ceramic powder having a different softening point was used to evaluate the adhesion strength between the ceramic substrate and the electrode.

第一のガラスセラミック粉末の軟化点と、第一のガラスセラミック粉末の軟化点と電極収縮開始温度との温度差が異なる試料番号1、2と、比較例の試料番号6、7を比較すると、ガラスの軟化点が電極の焼結収縮開始温度以下で、かつ電極の焼結収縮開始温度と第一のガラスの軟化点との温度差が90℃以内の場合は26N以上の高い固着強度が得られているのに対し、温度差が90℃を超えた場合やガラスの軟化点が電極の焼結開始温度以上の場合は、19N、3Nと低い結果となった。   When comparing sample numbers 1 and 2 with different temperature differences between the softening point of the first glass ceramic powder and the softening point of the first glass ceramic powder and the electrode shrinkage start temperature, and sample numbers 6 and 7 of the comparative example, When the glass softening point is lower than the electrode sintering shrinkage start temperature and the temperature difference between the electrode sintering shrinkage start temperature and the first glass softening point is within 90 ° C., a high fixing strength of 26 N or more is obtained. On the other hand, when the temperature difference exceeded 90 ° C. or when the softening point of the glass was equal to or higher than the sintering start temperature of the electrode, the results were as low as 19N and 3N.

電極の焼結収縮開始温度と第一のガラスセラミック粉末の軟化点との温度差が90℃を越えた場合、焼結過程における電極とガラスの焼結時の収縮率が大きく異なるため、どちらか一方が優先的に焼結が進行し、過焼結をおこしてしまうために電極形状の維持が困難になり、その結果、基板との拘束が低下してしまい接合強度が低下してしまうものと考えられる。また、第一のガラスセラミック粉末の軟化点が電極の焼結開始温度以上の場合、セラミック基板上において電極中の導電性粒子の焼結過程の拡散に先立ち、ガラスの流動が著しく起こるために、セラミック基板と導電性粒子の拘束が低下してしまい、その結果、セラミック基板と電極間の接合強度が低下してしまうものと考えられる。   If the temperature difference between the sintering shrinkage start temperature of the electrode and the softening point of the first glass ceramic powder exceeds 90 ° C, the shrinkage rate during the sintering of the electrode and glass during the sintering process is significantly different. On the other hand, sintering preferentially proceeds and oversintering occurs, making it difficult to maintain the electrode shape. As a result, the restraint with the substrate decreases and the bonding strength decreases. Conceivable. In addition, when the softening point of the first glass ceramic powder is equal to or higher than the sintering start temperature of the electrode, the glass flow significantly occurs prior to the diffusion of the sintering process of the conductive particles in the electrode on the ceramic substrate. It is considered that the restraint between the ceramic substrate and the conductive particles is lowered, and as a result, the bonding strength between the ceramic substrate and the electrode is lowered.

試料番号1、3、4では、電極中の第二のガラスセラミック粉末の含有比率が12、16、20重量部と増加するにつれ、固着強度も26、31、35Nと増加した。一方、比較例4のガラス含有率8重量部の場合、13Nと固着強度が低い結果となった。   In Sample Nos. 1, 3, and 4, as the content ratio of the second glass ceramic powder in the electrode increased to 12, 16, and 20 parts by weight, the fixing strength increased to 26, 31, and 35N. On the other hand, in the case of the glass content rate of 8 parts by weight in Comparative Example 4, the result was that the fixing strength was low as 13N.

Figure 2013026303
Figure 2013026303

(表3)の、試料番号9の電極中の第二のガラスセラミック粉末の含有比率が23%の場合、電極焼成膜上へのメッキが未析出となった。試料番号9の電極表面を電子顕微鏡を用いて観察したところ、多量のガラスが電極表面に析出していることが判明した。Ag−Pd合金電極膜表面に絶縁体であるガラスが多量に析出したことにより、メッキが形成しなかったことが考えられる。   When the content ratio of the second glass ceramic powder in the electrode of Sample No. 9 in Table 3 was 23%, plating on the electrode fired film was not precipitated. Observation of the electrode surface of Sample No. 9 using an electron microscope revealed that a large amount of glass was deposited on the electrode surface. It is considered that plating did not form because a large amount of glass as an insulator was deposited on the surface of the Ag—Pd alloy electrode film.

本発明にかかる回路基板の製造方法は、小型かつ高性能化が要求されるICやLEDチップ実装のためのセラミック基板において、にじみなく高精細な導電性電極パターンを形成する上で効果を有するものである。   The method of manufacturing a circuit board according to the present invention has an effect in forming a high-definition conductive electrode pattern without bleeding on a ceramic substrate for mounting an IC or LED chip that is required to have a small size and high performance. It is.

1 導電性ペースト
2 受容層
3 セラミック基板
4 電極
5 ガラス層
DESCRIPTION OF SYMBOLS 1 Conductive paste 2 Receiving layer 3 Ceramic substrate 4 Electrode 5 Glass layer

Claims (5)

セラミック基板の上面に第一のガラスセラミック粉末と第一の有機ビヒクルとを含む受容層ペーストを塗布する工程と、
前記受容層ペーストを乾燥させて受容層を形成する工程と、前記受容層の上面に、導電性粉末と第二のガラスセラミック粉末と第二の有機ビヒクルとを含む導電性ペーストを所定の形状に印刷する工程と、
前記導電性ペーストを焼付けて電極とする工程とを有したセラミック回路基板の製造方法。
Applying a receiving layer paste comprising a first glass-ceramic powder and a first organic vehicle to the upper surface of the ceramic substrate;
Forming a receiving layer by drying the receiving layer paste; and forming a conductive paste including a conductive powder, a second glass ceramic powder, and a second organic vehicle on a top surface of the receiving layer in a predetermined shape. Printing process;
A method of manufacturing a ceramic circuit board, comprising: baking the conductive paste to form an electrode.
前記第一のガラスセラミック粉末に含まれるガラス成分の軟化点は前記導電性粉末の焼結開始温度よりも低く、前記ガラス成分と前記導電性粉末の焼結開始温度との温度差を90℃以内とする請求項1に記載のセラミック回路基板の製造方法。 The softening point of the glass component contained in the first glass ceramic powder is lower than the sintering start temperature of the conductive powder, and the temperature difference between the glass component and the sintering start temperature of the conductive powder is within 90 ° C. A method for manufacturing a ceramic circuit board according to claim 1. 前記導電性ペーストは前記第二のガラスセラミック粉末を12〜20重量部含有している請求項1に記載のセラミック回路基板の製造方法。 The method for manufacturing a ceramic circuit board according to claim 1, wherein the conductive paste contains 12 to 20 parts by weight of the second glass ceramic powder. 前記導電性粉末は銀、パラジウム、金、白金、銅のうち少なくとも1種を含有している請求項3に記載のセラミック回路基板の製造方法。 The method for manufacturing a ceramic circuit board according to claim 3, wherein the conductive powder contains at least one of silver, palladium, gold, platinum, and copper. 前記第一のガラスセラミック粉末と前記第二のガラスセラミック粉末は同一成分である請求項4に記載のセラミック回路基板の製造方法。 The method for producing a ceramic circuit board according to claim 4, wherein the first glass ceramic powder and the second glass ceramic powder are the same component.
JP2011157453A 2011-07-19 2011-07-19 Method of manufacturing ceramic circuit board Withdrawn JP2013026303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011157453A JP2013026303A (en) 2011-07-19 2011-07-19 Method of manufacturing ceramic circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011157453A JP2013026303A (en) 2011-07-19 2011-07-19 Method of manufacturing ceramic circuit board

Publications (1)

Publication Number Publication Date
JP2013026303A true JP2013026303A (en) 2013-02-04

Family

ID=47784331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011157453A Withdrawn JP2013026303A (en) 2011-07-19 2011-07-19 Method of manufacturing ceramic circuit board

Country Status (1)

Country Link
JP (1) JP2013026303A (en)

Similar Documents

Publication Publication Date Title
JP2011501444A (en) ELECTRODE PASTE FOR SOLAR CELL AND SOLAR CELL ELECTRODE USING THE SAME
TW200919492A (en) Conductor paste for ceramic substrate and electric circuit
KR20100042766A (en) Conductive paste composition, preparation of electrode using same and solar cell comprising same
KR20080069922A (en) Copper conductor paste, conductor circuit board and electronic part
JP4691809B2 (en) Thick film circuit board and manufacturing method thereof
TWI505758B (en) Method for production of metalized ceramic substrate
JP2010531044A (en) Insulating paste for metal core substrates and electronic devices
JPH05235497A (en) Copper conductive paste
JP2005150120A (en) Thick film conductor paste composition for ltcc tape
JPH0817241A (en) Copper conductive paste and manufacture of copper conductive film
JP5582069B2 (en) Ceramic multilayer substrate
JP2014075403A (en) Conductor paste and ceramic substrate arranged by use thereof
WO2016186185A1 (en) Cu paste composition for forming thick film conductor, and thick film conductor
JP2018152218A (en) Conductive paste, chip electronic component and method for producing the same
JP2013026303A (en) Method of manufacturing ceramic circuit board
JP2000138010A (en) Copper conductor paste
JP6114001B2 (en) Conductive paste, circuit board and electronic device
JPH10283840A (en) Copper conductor paste for aluminum nitride board, and aluminum nitride board
JP2002043757A (en) Multilayer board and manufacturing method
JPH10188671A (en) Copper conductive paste and board printed therewith
JP2007073882A (en) Chip-type electronic component
JP2002043758A (en) Multilayer board and manufacturing method
JP2002362987A (en) Electronic component and method for manufacturing the same
JP2018055767A (en) Lead-free conductive paste
JP4024787B2 (en) Conductive paste for forming conductive portion of ferrite multilayer circuit board and ferrite multilayer circuit board using the conductive paste

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007