JP2013025965A - Redox flow cell - Google Patents

Redox flow cell Download PDF

Info

Publication number
JP2013025965A
JP2013025965A JP2011158432A JP2011158432A JP2013025965A JP 2013025965 A JP2013025965 A JP 2013025965A JP 2011158432 A JP2011158432 A JP 2011158432A JP 2011158432 A JP2011158432 A JP 2011158432A JP 2013025965 A JP2013025965 A JP 2013025965A
Authority
JP
Japan
Prior art keywords
tank
pipe
electrolyte
battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011158432A
Other languages
Japanese (ja)
Other versions
JP5679520B2 (en
Inventor
Takahiro Kumamoto
貴浩 隈元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011158432A priority Critical patent/JP5679520B2/en
Publication of JP2013025965A publication Critical patent/JP2013025965A/en
Application granted granted Critical
Publication of JP5679520B2 publication Critical patent/JP5679520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a redox flow cell (RF cell) capable of reducing a leakage amount of an electrolyte in a tank.SOLUTION: An RF cell 1 charges and discharges by supplying a battery element 100c comprising a positive electrode, a negative electrode, and a diaphragm 101 with an electrolyte of tanks 106 and 107 via upstream pipes 11 and 21. Takeout ports of the electrolyte (openings 11t and 21t of the upstream pipes 11 and 21) are provided in the upper side of the tanks 106 and 107. The upstream pipes 11 and 21 are provided with low position parts 11L and 21L disposed in positions lower than the takeout ports. The tanks 106 and 107 house housing pipes 10B and 20B having leakage prevention holes 10h and 20h. The RF cell 1 is capable of reducing leakage of the electrolyte in the positive electrode tank 106 by a principle of a siphon via a reversed-u-shaped piping formed by a housing piping 10A and a part of the positive electrode upstream piping 11 at a time of an accident of the upstream piping 11 by having the small leakage prevention hole 10h disposed at the upper side of the tanks 106 and 107.

Description

本発明は、レドックスフロー電池(以下、RF電池と呼ぶ)に関するものである。特に、事故時などにタンク内の電解液の漏出量を低減できるRF電池に関するものである。   The present invention relates to a redox flow battery (hereinafter referred to as an RF battery). In particular, the present invention relates to an RF battery that can reduce the leakage of electrolyte in a tank in the event of an accident.

昨今、地球温暖化への対策として、太陽光発電、風力発電といった新エネルギーの導入が世界的に推進されている。これらの発電出力は、天候に影響されるため、大量に導入が進むと、周波数や電圧の維持が困難になるといった電力系統の運用に際しての問題が予測されている。この問題の対策の一つとして、大容量の蓄電池を設置して、出力変動の平滑化、余剰電力の貯蓄、負荷平準化などを図ることが期待される。   In recent years, introduction of new energy such as solar power generation and wind power generation has been promoted worldwide as a countermeasure against global warming. Since these power generation outputs are affected by the weather, it is predicted that there will be a problem in the operation of the electric power system such that it becomes difficult to maintain the frequency and voltage when the mass introduction is advanced. As one of the countermeasures against this problem, it is expected to install a large-capacity storage battery to smooth the output fluctuation, save surplus power, and level the load.

大容量の蓄電池の一つにRF電池がある。RF電池100は、図6に示す形態のものが知られている(特許文献1など)。具体的には、RF電池100は、正極電極104を内蔵する正極セル102と負極電極105を内蔵する負極セル103との間に隔膜101を介在させた電池要素100cと循環機構(タンク106,107、上流配管108,109、下流配管110,111、ポンプ112,113)とを具え、循環機構を利用して、電池要素100cに正極電解液及び負極電解液を循環供給して充放電を行う。電解液には、代表的には、酸化還元により価数が変化するバナジウムイオンといった金属イオンを含有する水溶液が利用される。なお、図6においてタンク106,107内のイオンは例示である。また、図6において実線矢印は、充電、破線矢印は放電を意味する。   One of the large-capacity storage batteries is an RF battery. The RF battery 100 is known in the form shown in FIG. 6 (Patent Document 1, etc.). Specifically, the RF battery 100 includes a battery element 100c in which a diaphragm 101 is interposed between a positive electrode cell 102 incorporating a positive electrode 104 and a negative electrode cell 103 incorporating a negative electrode 105, and a circulation mechanism (tanks 106, 107, upstream The pipes 108 and 109, the downstream pipes 110 and 111, and the pumps 112 and 113), and using the circulation mechanism, the positive and negative electrode electrolytes are circulated and supplied to the battery element 100c for charging and discharging. As the electrolytic solution, typically, an aqueous solution containing metal ions such as vanadium ions whose valence changes by oxidation-reduction is used. In FIG. 6, the ions in the tanks 106 and 107 are illustrative. In FIG. 6, solid line arrows indicate charging, and broken line arrows indicate discharging.

従来のRF電池100では、電池要素100cに正負の各極の電解液を供給する上流配管108,109の一端が、各極のタンク106,107の底部側(下方側)に取り付けられ、他端が電池要素100cの底部側(下方側)に取り付けられる(特許文献1の図1,図5など)。また、従来のRF電池100では、電池要素100cからの電解液を各極のタンク106,107に戻す下流配管110,111がタンク106,107の上方側に取り付けられる。   In the conventional RF battery 100, one end of the upstream pipes 108 and 109 for supplying the positive and negative electrolytes to the battery element 100c is attached to the bottom side (lower side) of the tank 106 and 107 of each electrode, and the other end is the battery element 100c. Is attached to the bottom side (lower side) (FIGS. 1 and 5 of Patent Document 1). Further, in the conventional RF battery 100, the downstream pipes 110 and 111 for returning the electrolytic solution from the battery element 100c to the tanks 106 and 107 of the respective electrodes are attached to the upper side of the tanks 106 and 107.

特開2001-043884号公報JP 2001-043884 A

従来のRF電池では、上流配管やポンプを破損するなどの事故が生じた場合、正負の各極のタンク内の電解液がほとんど漏出する、という問題がある。   The conventional RF battery has a problem that when an accident such as damage to the upstream piping or the pump occurs, the electrolyte in the positive and negative tanks almost leaks.

RF電池に利用される電解液は、硫酸溶液などの劇物であることから、大量に漏出すると、作業者の安全性を損なったり、環境への影響があったり、周辺設備を汚損したりする恐れがある。また、上記電解液は、導電性を有することから、地絡したり、正極セルと負極セル間やRF電池と周辺設備との間で短絡したりする恐れがある。下流配管の一端をタンクの下方に取り付けた場合にも同様の問題が生じ得る。従って、配管やポンプの破損といった事故が生じた場合であっても、タンクから漏出する電解液量をできる限り低減することが望まれる。   The electrolyte used in the RF battery is a deleterious substance such as a sulfuric acid solution, so if it leaks in large quantities, it will impair the safety of workers, affect the environment, and contaminate surrounding equipment. There is a fear. Moreover, since the said electrolyte solution has electroconductivity, there exists a possibility of making a ground fault or short-circuiting between a positive electrode cell and a negative electrode cell, or between RF battery and peripheral equipment. A similar problem can occur when one end of the downstream pipe is attached below the tank. Therefore, it is desirable to reduce the amount of the electrolyte solution leaking from the tank as much as possible even when an accident such as breakage of the piping or the pump occurs.

そこで、本発明の目的は、事故時などにタンク内の電解液の漏出量を低減できるレドックスフロー電池を提供することにある。   Therefore, an object of the present invention is to provide a redox flow battery that can reduce the leakage of electrolyte in a tank in the event of an accident.

タンク内の電解液を電池要素に供給するにあたり、タンクにおける電解液の取出口を、例えば、タンク内の電解液の液面側、即ち、タンクの上方側に設けることが考えられる。この形態では、上述の事故が生じても、タンクの外部に漏出する電解液を、タンク内の電解液のうち、上記取出口よりも上方に位置する電解液のみにすることができる。つまり、タンク内の電解液の漏出量は、タンクにおける取出口の配置位置によって規制可能であり、当該取出口の配置位置がタンクの底部から高いほど、換言すれば、タンク内の電解液の液面近くであるほど、タンクからの電解液の漏出量を低減できる。   In supplying the electrolytic solution in the tank to the battery element, it is conceivable to provide an outlet for the electrolytic solution in the tank, for example, on the liquid surface side of the electrolytic solution in the tank, that is, on the upper side of the tank. In this form, even if the above-mentioned accident occurs, the electrolyte solution leaking to the outside of the tank can be only the electrolyte solution located above the outlet in the electrolyte solution in the tank. That is, the leakage amount of the electrolyte in the tank can be regulated by the position of the outlet in the tank. In other words, the higher the position of the outlet from the bottom of the tank, in other words, the amount of the electrolyte in the tank. The closer to the surface, the lower the amount of electrolyte leakage from the tank.

しかし、上記取出口をタンクの上方側に設け、更に、下流配管もタンクの上方側に取り付けた場合、下流配管を経てタンクに戻された電解液、つまり、タンクの上方側に戻された電解液を直ちに取出口から電池要素に供給することになる。そのため、タンク内で電解液が十分に対流せず、タンク内の電解液の一部(タンク内の電解液の液面近くの液(タンクの上方側の液))を主として利用し、充放電に実質的に利用されない電解液が生じ得る。電解液の利用率の低下によって、ひいては電池特性の低下を招く。   However, when the outlet is provided on the upper side of the tank and the downstream pipe is also attached to the upper side of the tank, the electrolytic solution returned to the tank via the downstream pipe, that is, the electrolytic solution returned to the upper side of the tank. The liquid is immediately supplied from the outlet to the battery element. Therefore, the electrolyte does not sufficiently convect in the tank, and charge / discharge is mainly performed by using a part of the electrolyte in the tank (liquid near the electrolyte surface in the tank (liquid on the upper side of the tank)). Electrolytes that are not substantially utilized in the process can be produced. A decrease in the utilization factor of the electrolytic solution leads to a decrease in battery characteristics.

そこで、本発明者は、タンク内の電解液の液面側に取出口を設けると共に、取出口近傍の電解液ではなくタンクの底部側の電解液を取り出せるように、タンク内にも配管を配置することを検討した。ここで、図6に示す従来のレドックスフロー電池100のように、上流配管108,109の一部やポンプ112,113を床面などで支持する形態とすると、架台などの支持部材を不要にできる上に、上流配管108,109やポンプ112,113のメンテナンスを行い易い。そこで、タンク内に配管を収納すると共に、上流配管の一部やポンプをタンク内の電解液の底部側に配置した形態を検討した。この形態では、代表的には、収納した配管の一端がタンクの底部側に開口し、上流配管の一部が上記収納した配管の開口部よりも高い位置に配置され、更に他部がタンク内の電解液の液面よりも低い位置に配置される。つまり、上記タンク内に収納した配管と上流配管の一部とが逆U字状に配置される。そのため、この形態では、上述した事故などが生じた場合、上記逆U字状部分を介して、サイフォンの原理により、タンクの外部に電解液が漏出する恐れがある。   Therefore, the present inventor provided an outlet on the liquid surface side of the electrolytic solution in the tank, and arranged piping in the tank so that the electrolytic solution on the bottom side of the tank can be taken out instead of the electrolytic solution in the vicinity of the outlet. Considered to do. Here, as in the conventional redox flow battery 100 shown in FIG. 6, when a part of the upstream pipes 108 and 109 and the pumps 112 and 113 are supported on the floor surface, a support member such as a gantry can be made unnecessary, and the upstream Maintenance of the pipes 108 and 109 and the pumps 112 and 113 is easy. Then, while accommodating piping in a tank, the form which has arrange | positioned some upstream piping and a pump to the bottom part side of the electrolyte solution in a tank was examined. In this form, typically, one end of the stored pipe opens to the bottom side of the tank, a part of the upstream pipe is arranged at a position higher than the opening of the stored pipe, and the other part is in the tank. It is arrange | positioned in the position lower than the liquid level of this electrolyte solution. That is, the pipe accommodated in the tank and a part of the upstream pipe are arranged in an inverted U shape. Therefore, in this embodiment, when the above-described accident or the like occurs, the electrolyte may leak out of the tank through the inverted U-shaped portion due to the siphon principle.

また、タンク内に配置する配管を下流配管に連結し、電池要素からの電解液をタンクの底部側に戻す形態を検討した。具体的には、タンクの上方側に電解液の戻り口(下流配管の開口部)を設け、この戻り口に、タンクに収納した配管を連結し、更に、この収納した配管をタンクの底部側に開口させる。この形態において、上述の取出口をタンクの上方側に設けると、電解液の利用率を高められる。しかし、この形態も、例えば、上述のようにポンプなどを床面などで支持する場合、上流配管の一部がタンク内の電解液の液面よりも低い位置に配置され得る。すると、上記タンク内に収納した配管と上流配管の一部とが電池要素を介して逆U字状に配置される。そのため、この形態も、上述した事故などが生じた場合、上記逆U字状部分を介して、サイフォンの原理により、タンクの外部に電解液が漏出する恐れがある。   In addition, a configuration was considered in which piping arranged in the tank was connected to the downstream piping, and the electrolytic solution from the battery element was returned to the bottom side of the tank. Specifically, an electrolytic solution return port (downstream piping opening) is provided on the upper side of the tank, and a pipe stored in the tank is connected to the return port, and the stored piping is connected to the bottom side of the tank. Open. In this embodiment, when the above-described outlet is provided on the upper side of the tank, the utilization factor of the electrolyte can be increased. However, also in this embodiment, for example, when the pump or the like is supported on the floor as described above, a part of the upstream piping can be disposed at a position lower than the liquid level of the electrolytic solution in the tank. Then, the piping accommodated in the tank and a part of the upstream piping are arranged in an inverted U shape via the battery element. Therefore, in this embodiment, when the above-described accident occurs, the electrolytic solution may leak out of the tank through the inverted U-shaped portion due to the siphon principle.

これらの点を検討した結果、本発明は、(1)上流配管又は下流配管をタンク内の電解液の液面側に開口すること、(2)タンク内に配管を配置すること、(3)このタンク内の配管をタンクの底部側で開口すると共に、上記上流配管又は上記下流配管に連結すること、そして、(4)上記タンク内の配管の特定の位置に貫通孔を設けることを提案する。   As a result of studying these points, the present invention is as follows: (1) opening the upstream pipe or downstream pipe on the liquid surface side of the electrolytic solution in the tank, (2) arranging the pipe in the tank, (3) It is proposed to open the pipe in the tank on the bottom side of the tank, connect to the upstream pipe or the downstream pipe, and (4) provide a through hole at a specific position of the pipe in the tank. .

本発明のレドックスフロー電池:RF電池は、タンク内の電解液を電池要素に供給して充放電を行うものであり、上記タンク内の電解液を上記電池要素に供給する上流配管と、上記電池要素からの電解液を上記タンクに戻す下流配管と、上記上流配管、上記電池要素、及び上記下流配管で構成される電解液流路の一部に設けられ、上記タンク内の電解液の液面よりも低い位置に配置された低位置部とを具える。また、本発明RF電池は、上記タンク内に配置され、上記上流配管又は上記下流配管に連結された収納配管を具える。上記収納配管の一端に連結された上記上流配管又は上記下流配管の一端が上記タンク内の電解液の液面寄りの位置又は上記液面の上方空間に開口している。上記収納配管の他端が上記タンクの底部寄りの位置に開口している。上記収納配管において当該タンク内の電解液の液面寄りの位置に漏出防止孔が設けられている。そして、上記漏出防止孔が上記収納配管の他端側の開口部よりも小さい。   The redox flow battery of the present invention: the RF battery is a battery that supplies and discharges the electrolytic solution in the tank to the battery element, the upstream pipe for supplying the electrolytic solution in the tank to the battery element, and the battery The electrolytic solution in the tank is provided in a part of an electrolyte flow path composed of a downstream pipe for returning the electrolytic solution from the element to the tank, the upstream pipe, the battery element, and the downstream pipe. And a low position portion disposed at a lower position. In addition, the RF battery of the present invention includes a storage pipe disposed in the tank and connected to the upstream pipe or the downstream pipe. One end of the upstream pipe or the downstream pipe connected to one end of the storage pipe opens to a position near the liquid level of the electrolytic solution in the tank or an upper space above the liquid level. The other end of the storage pipe opens at a position near the bottom of the tank. In the storage pipe, a leakage prevention hole is provided at a position near the liquid level of the electrolytic solution in the tank. And the said leak prevention hole is smaller than the opening part of the other end side of the said storage piping.

本発明において「液面寄りの位置」とは、上述した事故などが生じていない状態において、タンクの底部から同タンク内の電解液の液面までの距離をLとするとき、タンクの底部から(L/2)超L未満の位置とする。また、本発明において「底部寄りの位置」とは、タンクの底部から(L/2)以下の位置とする。   In the present invention, the “position near the liquid level” means that when the distance from the bottom of the tank to the liquid level of the electrolytic solution in the tank is L in a state where the above-described accident or the like has not occurred, from the bottom of the tank. (L / 2) Over L In the present invention, the “position close to the bottom” is a position of (L / 2) or less from the bottom of the tank.

収納配管が上流配管に連結されている場合、本発明RF電池は、タンク内の電解液の液面寄りの位置や液面の上方側、つまり、タンクの上方側に当該タンク内の電解液の取出口(上流配管の一端側の開口部)が設けられ、当該取出口からの電解液を電池要素に供給する構成である。収納配管が下流配管に連結されている場合、本発明RF電池は、上記タンクの上方側に電解液の戻り口(下流配管の一端側の開口部)が設けられ、電池要素からの電解液を当該戻り口からタンク内に戻す構成である。また、本発明RF電池は、タンク内に、当該タンクの底部寄りに開口した収納配管を具えると共に、当該タンク内の電解液の液面よりも低い位置に配置された低位置部を有する構成である。上記構成により、本発明RF電池は、収納配管と、タンク外に配置された電解液流路の一部(低位置部を含む部分)とを繋いだ形状が、上に凸な形状(逆U字状、又は逆V字状、或いはΠ字状)となる。つまり、本発明RF電池は、電解液が流通される経路に、逆U字状部分を含む。   When the storage pipe is connected to the upstream pipe, the RF battery of the present invention is located near the liquid level of the electrolytic solution in the tank or above the liquid level, that is, above the tank. An outlet (opening at one end of the upstream pipe) is provided, and the electrolytic solution from the outlet is supplied to the battery element. When the storage pipe is connected to the downstream pipe, the RF battery of the present invention is provided with an electrolyte return port (an opening on one end side of the downstream pipe) on the upper side of the tank so that the electrolyte from the battery element can be removed. It is the structure which returns in the tank from the said return port. In addition, the RF battery of the present invention includes a storage pipe opened near the bottom of the tank in the tank and a low position portion disposed at a position lower than the liquid level of the electrolyte in the tank. It is. With the above configuration, the RF battery of the present invention has an upwardly convex shape (inverted U shape) that connects the storage pipe and a part of the electrolyte flow path disposed outside the tank (including the low position portion). Character shape, inverted V shape, or saddle shape). That is, the RF battery of the present invention includes an inverted U-shaped portion in the path through which the electrolytic solution is circulated.

そのため、本発明RF電池は、収納配管と電池要素とを繋ぐ上流配管や下流配管、上流配管に配置されたポンプなどを損傷するなどの事故が生じた場合に、上述の逆U字状部分を利用したサイフォンの原理によって、タンク内の電解液が収納配管を介してタンクの外部に移動し得る。しかし、本発明RF電池は、収納配管におけるタンク内の電解液の液面寄りの位置、つまり、当該タンクの上方側に漏出防止孔に具えることから、当該タンクから外部に漏出する電解液を、当該タンク内の電解液において漏出防止孔よりも上方に存在する量に規制できる。従って、本発明RF電池は、タンクの底部側の電解液を取り出したり、タンクの底部側に電解液を戻したりすることができる上に、上述の事故時、タンク内の電解液の漏出量を低減することができる。   Therefore, the RF battery of the present invention has the above-mentioned inverted U-shaped portion in the event of an accident such as damage to the upstream pipe, downstream pipe, and the pump arranged in the upstream pipe connecting the storage pipe and the battery element. Due to the siphon principle used, the electrolyte in the tank can move to the outside of the tank via the storage pipe. However, since the RF battery of the present invention is provided with a leakage prevention hole at a position near the liquid level of the electrolytic solution in the tank in the storage pipe, that is, the upper side of the tank, the electrolytic solution leaking from the tank to the outside is provided. The amount of electrolyte present in the tank above the leakage prevention hole can be regulated. Therefore, the RF battery of the present invention can take out the electrolyte solution on the bottom side of the tank, return the electrolyte solution to the bottom side of the tank, and reduce the leakage amount of the electrolyte solution in the tank at the time of the above-mentioned accident. Can be reduced.

また、漏出防止孔の大きさが収納配管においてタンクの底部側に配置される開口部に比較して十分に小さいことで、本発明RF電池は、電池要素に電解液を循環供給する際にポンプの損失を低減できる。   In addition, since the size of the leakage prevention hole is sufficiently smaller than the opening disposed on the bottom side of the tank in the storage pipe, the RF battery of the present invention can be used when circulating the electrolyte solution to the battery element. Loss can be reduced.

かつ、本発明RF電池は、タンク内の電解液の取出口や戻り口が上述のように当該タンクの上方側に開口し、かつ、タンク内の電解液を実際に吸い出す収納配管の他端又はタンク内に実際に電解液を吐き出す収納配管の他端が当該タンクの底部寄りの位置、つまり、タンクの下方側に開口している。この構成により、本発明RF電池は、タンク内の電解液において取出口や戻り口から遠い位置にある電解液を利用可能であり、電解液の利用率を高められる。   And the RF battery of the present invention has an outlet or return port for the electrolyte in the tank that opens above the tank as described above, and the other end of the storage pipe that actually sucks out the electrolyte in the tank or The other end of the storage pipe that actually discharges the electrolytic solution into the tank opens at a position near the bottom of the tank, that is, on the lower side of the tank. With this configuration, the RF battery of the present invention can use the electrolytic solution located far from the outlet and the return port in the electrolytic solution in the tank, and the utilization rate of the electrolytic solution can be increased.

本発明の一形態として、上記収納配管の一端が上記上流配管に連結され、この上流配管の一部に上記低位置部が設けられた形態が挙げられる。或いは、本発明の一形態として、上記収納配管の一端が上記下流配管に連結され、上記上流配管の一部に上記低位置部を具える形態が挙げられる。   As one form of this invention, the form by which the end of the said storage piping was connected with the said upstream piping, and the said low position part was provided in a part of this upstream piping is mentioned. Alternatively, an embodiment of the present invention includes a form in which one end of the storage pipe is connected to the downstream pipe and the low position portion is provided in a part of the upstream pipe.

上記形態はいずれも、収納配管と上流配管に具える低位置部とを繋いで形成される逆U字状部分を具える。しかし、いずれの形態も、上述のように漏出防止孔によってタンク内の電解液の漏出量を規制することができる。   Each of the above forms includes an inverted U-shaped portion formed by connecting a storage pipe and a low position part provided in the upstream pipe. However, in any form, the leakage amount of the electrolytic solution in the tank can be regulated by the leakage prevention hole as described above.

上述の収納配管が上流配管に連結された形態として、上記下流配管の一端が上記タンク内の電解液の液面寄りの位置、又は上記液面の上方空間に開口した形態が挙げられる。上述の収納配管が下流配管に連結された形態として、上記上流配管の一端が上記タンク内の電解液の液面寄りの位置に開口した形態、又は上記上流配管の一端が液面の上方空間に開口しており、この上流配管に、上記タンク内の電解液中に開口した別の収納配管が連結された形態が挙げられる。   Examples of the form in which the above-described storage pipe is connected to the upstream pipe include a form in which one end of the downstream pipe is open to a position near the liquid level of the electrolytic solution in the tank or an upper space above the liquid level. As a form in which the storage pipe is connected to the downstream pipe, one end of the upstream pipe is opened at a position near the liquid level of the electrolytic solution in the tank, or one end of the upstream pipe is in the space above the liquid level. It is open, and the form by which another storage piping opened in the electrolyte solution in the said tank was connected with this upstream piping is mentioned.

前者の形態は、電池要素からタンクの上方側に戻された電解液を、上流配管に連結される収納配管によってタンクの底部側(下方側)から電池要素に供給でき、後者の形態は、下流配管に連結される収納配管によってタンクの底部側(下方側)に戻された電解液を、タンクの上方側から電池要素に供給できる。そのため、上記形態はいずれも、電解液がタンク内で十分に対流できることから、タンク内の電解液全体を十分に活用可能であり、電解液の利用率を高められる。   In the former form, the electrolyte returned from the battery element to the upper side of the tank can be supplied to the battery element from the bottom side (lower side) of the tank by the storage pipe connected to the upstream pipe, and the latter form is used in the downstream form. The electrolyte returned to the bottom side (lower side) of the tank by the storage pipe connected to the pipe can be supplied to the battery element from the upper side of the tank. Therefore, in any of the above embodiments, since the electrolytic solution can be sufficiently convected in the tank, the entire electrolytic solution in the tank can be fully utilized, and the utilization rate of the electrolytic solution can be increased.

本発明の一形態として、上記漏出防止孔の直径をφh、上記収納配管の他端側の開口部の直径をφiとするとき、上記漏出防止孔の直径φhが1mm以上(φi/2)未満である形態が挙げられる。 As one aspect of the present invention, when the diameter of the leakage prevention hole is φ h and the diameter of the opening on the other end side of the storage pipe is φ i , the diameter φ h of the leakage prevention hole is 1 mm or more (φ i The form which is less than / 2) is mentioned.

上記形態は、漏出防止孔が特定の大きさであることで、上述の事故時、タンク内の電解液の漏出量を規制して漏出量を低減でき、充放電時、タンク内の電解液を電池要素に供給する際のポンプの損失を低減できる。   In the above-mentioned form, the leakage prevention hole has a specific size, so that at the time of the accident described above, the leakage amount of the electrolytic solution in the tank can be regulated and the leakage amount can be reduced. The loss of the pump when supplying to the battery element can be reduced.

本発明レドックスフロー電池は、事故時などにタンク内の電解液の漏出量を低減することができる。   The redox flow battery of the present invention can reduce the leakage amount of the electrolyte in the tank at the time of an accident or the like.

図1は、実施形態1のレドックスフロー電池の概略構成図である。FIG. 1 is a schematic configuration diagram of a redox flow battery according to the first embodiment. 図2は、実施形態2のレドックスフロー電池の概略構成図である。FIG. 2 is a schematic configuration diagram of the redox flow battery according to the second embodiment. 図3は、実施形態3のレドックスフロー電池の概略構成図である。FIG. 3 is a schematic configuration diagram of a redox flow battery according to the third embodiment. 図4は、実施形態4のレドックスフロー電池の概略構成図である。FIG. 4 is a schematic configuration diagram of a redox flow battery according to the fourth embodiment. 図5は、実施形態5のレドックスフロー電池の概略構成図である。FIG. 5 is a schematic configuration diagram of a redox flow battery according to the fifth embodiment. 図6は、レドックスフロー電池の動作原理を示す説明図である。FIG. 6 is an explanatory diagram showing the operating principle of the redox flow battery.

以下、図面を参照して、本発明の実施の形態を説明する。図中、同一符号は同一名称物を示す。本発明レドックスフロー電池:RF電池の基本的な構成は、上述した図6に示す従来のRF電池100と同様であり、主たる特徴は、電池要素に正負の各極の電解液を循環供給する経路(主として配管構造)にある。以下、RF電池の基本的な構成については概要のみを説明し、特徴点を中心に説明する。   Embodiments of the present invention will be described below with reference to the drawings. In the figure, the same reference numerals indicate the same names. The redox flow battery of the present invention: The basic configuration of the RF battery is the same as that of the conventional RF battery 100 shown in FIG. 6 described above, and the main feature is a path for circulating and supplying electrolyte solutions of positive and negative electrodes to the battery element. (Mainly piping structure). Hereinafter, only the outline of the basic configuration of the RF battery will be described, and the description will focus on the feature points.

[全体構造]
本発明RF電池は、従来のRF電池100と同様に、電池要素100cを主要構成部材とし、この電池要素100cに正極電解液及び負極電解液を循環供給する循環機構(タンク106,107、配管(詳細は後述する)、ポンプ112,113)を更に具える。そして、本発明RF電池は、交流/直流変換器を介して、発電部(例えば、太陽光発電機、風力発電機、その他、一般の発電所など)と電力系統や需要家などの負荷とに接続され、発電部を電力供給源として充電を行い、負荷を電力提供対象として放電を行う。
[Overall structure]
Like the conventional RF battery 100, the RF battery of the present invention has a battery element 100c as a main constituent member, and a circulation mechanism (tanks 106, 107, piping (for details) for supplying the positive electrode electrolyte and the negative electrode electrolyte to the battery element 100c. Pumps 112 and 113), which will be described later). The RF battery of the present invention is connected to a power generation unit (e.g., a solar power generator, a wind power generator, other general power plants, etc.) and a load such as a power system or a consumer via an AC / DC converter. Connected, charging is performed using the power generation unit as a power supply source, and discharging is performed using the load as a power supply target.

[電池要素]
電池要素100cは、代表的には、正極セル102及び負極セル103と隔膜101とを複数積層させたセルスタックと呼ばれる形態が利用される。正極セル102,負極セル103は、一面に正極電極104(図6)、他面に負極電極105(図6)が配置される双極板(図示せず)と、電解液を供給する給液孔及び電解液を排出する排液孔を有し、かつ上記双極板の外周に形成される枠体(図示せず)とを具えるセルフレームを用いた構成が代表的である。複数のセルフレームを積層することで、上記給液孔及び排液孔は電解液の流路を構成する。セルスタックは、セルフレーム、正極電極104、隔膜101、負極電極105、セルフレーム、…と順に繰り返し積層されて構成される。
[Battery element]
As the battery element 100c, a form called a cell stack in which a plurality of positive electrode cells 102, negative electrode cells 103, and a diaphragm 101 are stacked is typically used. The positive electrode cell 102 and the negative electrode cell 103 include a bipolar plate (not shown) in which the positive electrode 104 (FIG. 6) is disposed on one surface and the negative electrode 105 (FIG. 6) is disposed on the other surface, and a liquid supply hole for supplying an electrolyte solution In addition, a configuration using a cell frame having a drain hole for discharging the electrolyte and a frame (not shown) formed on the outer periphery of the bipolar plate is representative. By laminating a plurality of cell frames, the liquid supply hole and the drainage hole constitute a flow path for the electrolytic solution. The cell stack is configured by repeatedly stacking a cell frame, a positive electrode 104, a diaphragm 101, a negative electrode 105, a cell frame,.

代表的には、正極電極104・負極電極105は、カーボンフェルトからなるもの、隔膜101は、陽イオン交換膜や陰イオン交換膜といったイオン交換膜、双極板は、プラスチックカーボンからなるもの、セルフレームの枠体は、塩化ビニルなどの樹脂からなるものが挙げられる。   Typically, the positive electrode 104 and the negative electrode 105 are made of carbon felt, the diaphragm 101 is an ion exchange membrane such as a cation exchange membrane or an anion exchange membrane, the bipolar plate is made of plastic carbon, a cell frame Examples of the frame include those made of a resin such as vinyl chloride.

[電解液]
正負の各極の電解液は、活物質となる金属イオンを含む溶液が代表的である。正負の各極の活物質に利用される金属イオンの対としては、正極:鉄イオン、負極:クロムイオン、正極及び負極:バナジウムイオン、その他、正極:マンガンイオン、負極:チタンイオン、バナジウムイオン、クロムイオン、亜鉛イオン、及びスズイオンからなる群から選択される少なくとも一種の金属イオンが挙げられる。正極活物質をマンガンイオンとする場合、負極活物質によっては全バナジウム系RF電池よりも起電力が高いRF電池とすることができる。また、正極にマンガンイオンと共にチタンイオンを含有すると、Mn3+の不均化反応に伴うMnO2の析出を抑制することができる。正極及び負極の双方にマンガンイオン及びチタンイオンを含有する形態とすることができる。
[Electrolyte]
The electrolyte solution for each positive and negative electrode is typically a solution containing a metal ion that becomes an active material. As a pair of metal ions used for positive and negative active materials, positive electrode: iron ion, negative electrode: chromium ion, positive electrode and negative electrode: vanadium ion, other positive electrode: manganese ion, negative electrode: titanium ion, vanadium ion, Examples thereof include at least one metal ion selected from the group consisting of chromium ions, zinc ions, and tin ions. When the positive electrode active material is manganese ions, depending on the negative electrode active material, an RF battery having an electromotive force higher than that of all vanadium-based RF batteries can be obtained. Further, when the positive electrode contains manganese ions together with manganese ions, it is possible to suppress the precipitation of MnO 2 accompanying the disproportionation reaction of Mn 3+ . It can be set as the form which contains a manganese ion and a titanium ion in both a positive electrode and a negative electrode.

正負の各極の電解液は、硫酸、リン酸、硝酸、硫酸塩、リン酸塩、及び硝酸塩の少なくとも一種を含む水溶液が好ましい。特に、硫酸アニオン(SO4 2-)を含むものが利用し易い。 The electrolyte solution for each positive and negative electrode is preferably an aqueous solution containing at least one of sulfuric acid, phosphoric acid, nitric acid, sulfate, phosphate, and nitrate. In particular, those containing sulfate anions (SO 4 2− ) are easy to use.

[循環機構]
正極電解液は、正極タンク106に貯留され、負極電解液は、負極タンク107に貯留される。各タンク106,107と、上述のセルスタックに形成される電解液の流路との間はそれぞれ正極上流配管11及び正極下流配管12、負極上流配管21及び負極下流配管22によって接続される。上流配管11,21にはポンプ112,113が取り付けられ、上流配管11,21を介して電池要素100c(セルスタック)に各タンク106,107内の電解液を供給し、下流配管12,22を経て各タンク106,107に電池要素100cからの電解液を戻す。
[Circulation mechanism]
The positive electrode electrolyte is stored in the positive electrode tank 106, and the negative electrode electrolyte is stored in the negative electrode tank 107. The tanks 106 and 107 are connected to the electrolyte flow path formed in the cell stack by a positive electrode upstream pipe 11 and a positive electrode downstream pipe 12, a negative electrode upstream pipe 21 and a negative electrode downstream pipe 22, respectively. Pumps 112 and 113 are attached to the upstream pipes 11 and 21, and the electrolyte solution in the tanks 106 and 107 is supplied to the battery element 100 c (cell stack) via the upstream pipes 11 and 21, and the tanks 106 and 107 pass through the downstream pipes 12 and 22. Return the electrolytic solution from the battery element 100c.

本発明RF電池は、上述の循環機構を利用して、電池要素100cに電解液を圧送し、正負の各極の電解液中の活物質となる金属イオンの価数変化反応に伴って充放電を行う。   The RF battery of the present invention uses the above-described circulation mechanism to pump the electrolyte solution to the battery element 100c, and charge / discharge with the valence change reaction of the metal ion that becomes the active material in the electrolyte solution of each positive and negative electrode I do.

<実施形態1>
図1を参照して、実施形態1のRF電池1に具える配管構造を説明する。RF電池1では、正極側の配管構造と負極側の配管構造とが同じであるため、正極側の配管構造を例に挙げて、詳細に説明する。
<Embodiment 1>
A piping structure provided in the RF battery 1 of Embodiment 1 will be described with reference to FIG. In the RF battery 1, since the positive electrode side piping structure and the negative electrode side piping structure are the same, the positive electrode side piping structure will be described as an example in detail.

正極タンク106と電池要素100cとに取り付けられ、タンク106内の電解液を電池要素100cに供給する正極上流配管11の一端、即ち、正極タンク106側の開口部11tは、タンク106内の電解液の液面寄りの位置:(L/2)超の位置に開口している(ここではタンク106の底部からL未満の位置)。開口部11tにおいて正極タンク106の底部からの位置は、高いほどタンク106から漏出する電解液量を低減し易くなることから、タンク106の底部から(2/3)×L以上の位置、(3/4)×L以上の位置がより好ましい。なお、図1〜図5において、正極タンク106,負極タンク107内の実線は液面、タンク106,107内の一点鎖線は、(L/2)の位置を示す。   One end of the positive electrode upstream pipe 11 attached to the positive electrode tank 106 and the battery element 100c and supplying the electrolytic solution in the tank 106 to the battery element 100c, that is, the opening 11t on the positive electrode tank 106 side is the electrolytic solution in the tank 106. Position close to the liquid level: It opens to a position exceeding (L / 2) (here, a position less than L from the bottom of the tank 106). The position from the bottom of the positive electrode tank 106 in the opening 11t is such that the higher the level, the easier it is to reduce the amount of electrolyte leaking from the tank 106, so that the position of (2/3) × L or more from the bottom of the tank 106, (3 / 4) × L or more is more preferable. 1 to 5, the solid lines in the positive electrode tank 106 and the negative electrode tank 107 indicate the liquid level, and the alternate long and short dash line in the tanks 106 and 107 indicates the position (L / 2).

RF電池1では、図示しない架台などによって、正極タンク106,負極タンク107内の電解液の液面よりも高い位置に電池要素100cが支持されている。この構成により、RF電池1は、充放電運転の停止期間などで、電池要素100c内の電解液を完全に抜き取ることができる。そのため、RF電池1は、電池要素100c内の電解液の残存による自己放電を低減して、放電容量の低下を抑制できる。   In the RF battery 1, the battery element 100c is supported at a position higher than the liquid level of the electrolytic solution in the positive electrode tank 106 and the negative electrode tank 107 by a mount (not shown). With this configuration, the RF battery 1 can completely extract the electrolytic solution in the battery element 100c during a period during which the charge / discharge operation is stopped. Therefore, the RF battery 1 can reduce the self-discharge due to the remaining electrolyte in the battery element 100c, and can suppress the decrease in the discharge capacity.

図1に示す例では、RF電池1は、正極上流配管11の中間部に、正極タンク106内の電解液の液面よりも低い位置に配置される低位置部11Lを具える。詳しくは、正極上流配管11は、その一端の開口位置(正極タンク106側の開口部11t)が上述のようにタンク106内の電解液の液面側(タンク106の上方側)に配置され、かつ、その他端の開口位置(電池要素100c側の開口部11c)も、タンク106の上方寄りに配置される電池要素100cに向かって、タンク106の上方側に配置されている。そして、正極上流配管11の中間部が両端(両開口部11t,11c)よりも低くなるように当該配管11がU字状に屈曲され、このU字状部分が低位置部11Lである。   In the example shown in FIG. 1, the RF battery 1 includes a low position portion 11L disposed at a position lower than the liquid level of the electrolytic solution in the positive electrode tank 106 at an intermediate portion of the positive electrode upstream pipe 11. Specifically, in the positive electrode upstream pipe 11, the opening position of one end thereof (the opening 11t on the positive electrode tank 106 side) is arranged on the liquid surface side (above the tank 106) of the electrolytic solution in the tank 106, as described above. In addition, the opening position of the other end (opening portion 11c on the battery element 100c side) is also arranged on the upper side of the tank 106 toward the battery element 100c arranged on the upper side of the tank 106. The pipe 11 is bent in a U shape so that the middle part of the positive electrode upstream pipe 11 is lower than both ends (both openings 11t and 11c), and this U-shaped portion is the low position portion 11L.

図1に示す例では、低位置部11Lにおいて直線状に配置された最下位置にポンプ112が取り付けられ、この直線状部分とポンプ112とが、正極タンク106と同様に床面(設置面)に支持されている。なお、正極上流配管11の長手方向におけるポンプ112の位置は適宜選択することができ、上述の位置以外の箇所でもよい。   In the example shown in FIG. 1, the pump 112 is attached to the lowest position arranged linearly in the low position portion 11L, and the linear portion and the pump 112 are the floor surface (installation surface) like the positive electrode tank 106. It is supported by. The position of the pump 112 in the longitudinal direction of the positive electrode upstream pipe 11 can be selected as appropriate, and may be a place other than the above-described position.

そして、RF電池1は、正極タンク106内に収納配管10Aが配置されている点を特徴の一つとする。   One feature of the RF battery 1 is that the storage pipe 10A is disposed in the positive electrode tank 106.

収納配管10Aは、少なくとも一部が正極タンク106内の電解液に浸漬される(図1に示す例では全てが浸漬されている)。従って、収納配管10Aの構成材料は、電解液と反応しない材料が好ましく、例えば、ポリ塩化ビニル:PVC、ポリエチレン:PE、ポリプロピレン:PP、ポリテトラフルオロエチレン:PTFEなどが挙げられる。この材料は、上流配管11,21、下流配管12,22にも適用できる。   At least a part of the storage pipe 10A is immersed in the electrolytic solution in the positive electrode tank 106 (in the example shown in FIG. 1, all are immersed). Accordingly, the constituent material of the storage pipe 10A is preferably a material that does not react with the electrolyte, and examples thereof include polyvinyl chloride: PVC, polyethylene: PE, polypropylene: PP, and polytetrafluoroethylene: PTFE. This material can also be applied to the upstream pipes 11 and 21 and the downstream pipes 12 and 22.

収納配管10Aは、その一端が正極上流配管11の正極タンク106側の開口部11tに連結される。つまり、収納配管10Aの一端は、正極タンク106内の電解液の液面寄りの位置:(L/2)超に開口しており、上述のようにこの開口位置が高いほど好ましい。なお、収納配管10Aと正極上流配管11とはそれぞれ独立した配管とし、接続部を介して接合してもよいし、両配管10A,11を連続した一つの配管で構成してもよい。この点は、後述する実施例についても同様である。   One end of the storage pipe 10A is connected to the opening 11t of the positive electrode upstream pipe 11 on the positive electrode tank 106 side. In other words, one end of the storage pipe 10A is opened to a position near the liquid level of the electrolyte in the positive electrode tank 106: (L / 2), and the higher the opening position is, the more preferable as described above. The storage pipe 10A and the positive electrode upstream pipe 11 may be independent pipes, and may be joined via a connecting portion, or the pipes 10A and 11 may be constituted by a single continuous pipe. This also applies to the embodiments described later.

収納配管10Aの他端は、正極タンク106の底部寄りの位置:(L/2)未満の位置に開口している。収納配管10Aの他端の開口位置(開口部10oの配置位置)は、正極タンク106の底部に近いほど、タンク106内の電解液の液面との距離が大きくなり、当該液面から遠い位置の電解液を電池要素100cに供給できる。特に、図1に示すRF電池1のように正極タンク106の上方側(ここではタンク106の液面の上方空間)に正極下流配管12が開口している場合、電池要素100cからタンク106内に戻された電解液は、タンク106の底部から取り出されるまでの間に十分に対流することができる。その結果、RF電池1では、常時、タンク106内の電解液が均一的な状態になり易く、この均一的な電解液を電池要素100cに供給できる。従って、収納配管10Aの他端の開口位置(開口部10oの配置位置)は、正極タンク106の底部からの距離が短いほど(底部に近いほど)好ましく、タンク106の底部から(1/3)×L以下の位置、更に(1/4)×L以上の位置、特に底部近傍がより好ましい。   The other end of the storage pipe 10A is opened at a position near the bottom of the positive electrode tank 106: (L / 2). The opening position of the other end of the storage pipe 10A (positioning position of the opening 10o) is closer to the bottom of the positive electrode tank 106, and the distance from the liquid surface of the electrolytic solution in the tank 106 is larger, and the position farther from the liquid surface. Can be supplied to the battery element 100c. In particular, when the positive electrode downstream pipe 12 is open on the upper side of the positive electrode tank 106 (here, the space above the liquid level of the tank 106) as in the RF battery 1 shown in FIG. 1, the battery element 100c enters the tank 106. The returned electrolyte can be sufficiently convected until it is removed from the bottom of the tank 106. As a result, in the RF battery 1, the electrolyte in the tank 106 tends to be always in a uniform state, and this uniform electrolyte can be supplied to the battery element 100c. Therefore, the opening position of the other end of the storage pipe 10A (positioning position of the opening 10o) is preferably as the distance from the bottom of the positive electrode tank 106 is shorter (closer to the bottom), and (1/3) from the bottom of the tank 106. A position of × L or less, more preferably a position of (1/4) × L or more, particularly in the vicinity of the bottom.

上述のように収納配管10Aは、その両端の位置が上下に離れており、ここでは、L字を上下反転させた形状になっている。そして、RF電池1では、この逆L字状の収納配管10Aと、上述した正極上流配管11の一部(正極上流配管11の正極タンク106側の開口部11tから低位置部11Lの直線状部分までの部分)とが、図1に示すように、逆U字状の配管を形成している点を特徴の一つとする。   As described above, the storage pipe 10A is vertically separated from each other at its both ends. Here, the L-shape is turned upside down. In the RF battery 1, the inverted L-shaped storage pipe 10A and a part of the positive electrode upstream pipe 11 described above (the linear portion of the low position portion 11L from the opening 11t of the positive electrode upstream pipe 11 on the positive electrode tank 106 side). 1), as shown in FIG. 1, one of the features is that an inverted U-shaped pipe is formed.

更に、RF電池1では、収納配管10Aにおいて正極タンク106内の電解液の液面寄りの位置:(L/2)超L未満の位置に漏出防止孔10hを具える点を特徴の一つとする。漏出防止孔10hの配置位置は、正極タンク106の底部からの距離が長いほど(底部から遠いほど)、タンク106内の電解液の漏出量を規制できるため、タンク106内の電解液中においてタンク106の底部から最も高い位置であることが好ましい。ここでは、漏出防止孔10hは、逆L字状の収納配管10Aにおける角部(最も高い位置)に設けられている。   Further, the RF battery 1 is characterized in that a leakage prevention hole 10h is provided at a position near the liquid level of the electrolytic solution in the positive electrode tank 106 in the storage pipe 10A: (L / 2) less than L. . The position of the leakage prevention hole 10h is that the longer the distance from the bottom of the positive electrode tank 106 (the farther from the bottom), the more the leakage of the electrolyte in the tank 106 can be regulated. The highest position from the bottom of 106 is preferable. Here, the leakage prevention hole 10h is provided at a corner (the highest position) in the inverted L-shaped storage pipe 10A.

収納配管10Aの大きさ(断面積)・断面形状は、適宜選択できる。代表的には、収納配管10Aは、全長に亘って断面形状が一様な形態が挙げられる。その他、長手方向の一部に断面形状や断面積が異なる部分を有する形態とすることができる。収納配管10Aの断面形状は、代表的には、円形状、矩形状などが挙げられる。断面円形状であると、電解液の流通抵抗が小さくなり易い。ここでは、収納配管10Aは、全長に亘って一様な断面形状を有し、その断面形状が円形状としている。   The size (cross-sectional area) and cross-sectional shape of the storage pipe 10A can be selected as appropriate. Typically, the storage pipe 10A may have a uniform cross-sectional shape over the entire length. In addition, it can be set as the form which has a part from which cross-sectional shape and cross-sectional area differ in a part of longitudinal direction. Typically, the cross-sectional shape of the storage pipe 10A includes a circular shape, a rectangular shape, and the like. When the cross section is circular, the flow resistance of the electrolytic solution tends to be small. Here, the storage pipe 10A has a uniform cross-sectional shape over its entire length, and the cross-sectional shape is circular.

漏出防止孔10hの大きさ(断面積)・断面形状も、適宜選択できる。例えば、断面形状は、円形状、矩形状の他、矩形以外の多角形状や楕円などの異形状でもよい。漏出防止孔10hの大きさ(断面積)は、収納配管10Aの他端側(正極タンク106の底部側)の開口部10oの大きさ(断面積)よりも小さいものとする。例えば、収納配管10A及び漏出防止孔10hの断面形状が円形状である場合、漏出防止孔10hの直径φhは、収納配管10Aの直径φiよりも小さい(φh<φi)。特に、漏出防止孔10hの直径φhは、1mm以上、収納配管10Aの直径φiの1/2未満であることが好ましく、2mm〜10mm程度が利用し易い。ここでは、漏出防止孔10hの断面形状を円形状とし、直径φhを1mm以上(φi/2)未満としている。 The size (cross-sectional area) and cross-sectional shape of the leakage preventing hole 10h can be selected as appropriate. For example, the cross-sectional shape may be a circular shape, a rectangular shape, or a non-rectangular polygonal shape or an odd shape such as an ellipse. The size (cross-sectional area) of the leakage preventing hole 10h is smaller than the size (cross-sectional area) of the opening 10o on the other end side (the bottom side of the positive electrode tank 106) of the storage pipe 10A. For example, if the cross-sectional shape of the housing pipe 10A and the leakage preventing hole 10h is circular, the diameter phi h leakage prevention hole 10h is smaller than the diameter phi i of the storage pipe 10A (φ h <φ i) . In particular, the diameter phi h leakage prevention hole 10h is, 1 mm or more, preferably less than 1/2 of the diameter phi i of the receiving pipe 10A, about 2mm~10mm is easy to use. Here, the cross-sectional shape of the leakage preventing hole 10h is circular shape, and the above 1mm diameter φ hi / 2) less.

正極下流配管12は、その一端が正極タンク106内の電解液の上方空間に開口し、他端が電池要素100cに取り付けられている。下流配管12(22)の開口部の位置は適宜変更することができ、例えば、タンク106内の電解液の液面寄りの位置、タンク106の底部寄りの位置とすることができる。   One end of the positive electrode downstream pipe 12 opens into the space above the electrolyte in the positive electrode tank 106, and the other end is attached to the battery element 100c. The position of the opening of the downstream pipe 12 (22) can be changed as appropriate. For example, the position near the liquid surface of the electrolyte in the tank 106 and the position near the bottom of the tank 106 can be used.

負極側の配管構造も、上述した正極側の配管構造と同様である。具体的には、負極上流配管21は、その一端が負極タンク107内の電解液の液面寄りの位置:(L/2)超の位置に開口し、その他端が電池要素100cと同位置に開口している。また、負極上流配管21は、負極タンク107側の開口部21tと電池要素100c側の開口部21cとの間(中間部)に負極タンク107内の電解液の液面よりも低い位置(ここでは開口部21tよりも低い位置)に配置される低位置部21Lを具える。この低位置部21Lの直線状部にポンプ113が取り付けられている。負極タンク107内には、逆L字状の収納配管20Aが配置されている。収納配管20Aの一端は負極上流配管21の開口部21tに連結され、他端(開口部20o)は、タンク107の底部寄りの位置:(L/2)以下に開口している。収納配管20Aには、上記一端の近くに漏出防止孔20hが設けられている。そして、逆L字状の収納配管20Aと負極上流配管21の一部とが逆U字状の配管を形成している。負極下流配管22は、負極タンク107の上方側に開口している。   The piping structure on the negative electrode side is the same as the above-described piping structure on the positive electrode side. Specifically, one end of the negative electrode upstream pipe 21 opens at a position near the liquid level of the electrolyte in the negative electrode tank 107: (L / 2), and the other end is at the same position as the battery element 100c. It is open. Further, the negative electrode upstream pipe 21 is located between the opening 21t on the negative electrode tank 107 side and the opening 21c on the battery element 100c side (intermediate portion) at a position lower than the liquid level of the electrolyte in the negative electrode tank 107 (here, A low position portion 21L disposed at a position lower than the opening portion 21t). A pump 113 is attached to the linear portion of the low position portion 21L. In the negative electrode tank 107, an inverted L-shaped storage pipe 20A is arranged. One end of the storage pipe 20A is connected to the opening 21t of the negative electrode upstream pipe 21, and the other end (opening 20o) opens to a position near the bottom of the tank 107: (L / 2) or less. The storage pipe 20A is provided with a leakage prevention hole 20h near the one end. The inverted L-shaped storage pipe 20A and a part of the negative electrode upstream pipe 21 form an inverted U-shaped pipe. The negative electrode downstream pipe 22 opens to the upper side of the negative electrode tank 107.

なお、図1〜図5において、上流配管11,21、下流配管12,22の開口位置(タンク106,107に対する配管11,12,12,22の取り付け位置)は例示である。また、図1〜図5に示す各配管は、直線的に屈曲した形状であるが、湾曲形状でもよいし、屈曲させずに一部を傾斜させて配置してもよい。更に、図1〜図5では、正負の両極のタンク106,107の大きさ及び底部の位置を同じとしているが、異ならせることもできる。   1 to 5, the opening positions of the upstream pipes 11 and 21 and the downstream pipes 12 and 22 (attachment positions of the pipes 11, 12, 12, and 22 to the tanks 106 and 107) are examples. Moreover, although each piping shown in FIGS. 1-5 is the shape bent linearly, a curved shape may be sufficient and you may arrange | position partly inclined without making it bend. Further, in FIGS. 1 to 5, the sizes of the positive and negative tanks 106 and 107 and the position of the bottom are the same, but they may be different.

(効果)
RF電池1は、正極タンク106,負極タンク107内の電解液を取り出す取出口(上流配管11,21の開口部11t,21t)が、当該電解液の液面近くに設けられ、かつ、タンク106,107内にそれぞれ収納配管10A,20Aが配置され、その一端(開口部10o,20o)がタンク106,107の底部近くにそれぞれ開口している。この構成により、RF電池1は、タンク106,107の底部側の電解液を電池要素100cに供給可能である。
(effect)
The RF battery 1 is provided with outlets (openings 11t, 21t of the upstream pipes 11, 21) for taking out the electrolyte solution in the positive electrode tank 106 and the negative electrode tank 107 near the liquid surface of the electrolyte solution, and the tanks 106, 107. The storage pipes 10A and 20A are respectively disposed in the inside, and one ends (openings 10o and 20o) thereof are opened near the bottoms of the tanks 106 and 107, respectively. With this configuration, the RF battery 1 can supply the electrolyte solution on the bottom side of the tanks 106 and 107 to the battery element 100c.

かつ、RF電池1は、収納配管10Aと正極タンク106外の電解液流路(ここでは正極上流配管11)や、収納配管20Aと負極タンク107外の電解液流路(ここでは負極上流配管21)が逆U字状に配置されているものの、収納配管10A,20Aにはそれぞれ、タンク106,107内の電解液の液面近くに漏出防止孔10h,20hをそれぞれ具える。この構成により、RF電池1は、正極上流配管11,負極上流配管21やポンプ112,113が破損したり、電池要素100cと上流配管11,21とが外れるなどの事故が生じた場合でも、タンク106,107内の電解液の漏出をタンク106,107内の電解液の一部のみに制限できる。具体的には、タンク106,107内の電解液のうち、漏出防止孔10h,20hよりも上方に位置する電解液は、収納配管10A(20A)と上流配管11(21)の一部とがつくる逆U字状部分を利用して、ポンプの駆動・停止に係わらず、サイフォンの原理により、タンク106,107外に漏出し得る。しかし、上記電解液が漏出して、漏出防止孔10h,20hが露出されると、上記逆U字状部分は、タンク106,107内の気相を取り込み、電解液が満たされた状態ではなくなることによって、電解液の移動を自動的に停止できる。従って、RF電池1は、上記事故が生じた場合に、タンク106,107内の電解液の漏出量を低減できる。   In addition, the RF battery 1 includes an electrolyte channel outside the storage pipe 10A and the positive electrode tank 106 (here, the positive electrode upstream pipe 11), and an electrolyte solution channel outside the storage pipe 20A and the negative electrode tank 107 (here, the negative electrode upstream pipe 21). ) Are arranged in an inverted U shape, but the storage pipes 10A and 20A are respectively provided with leakage prevention holes 10h and 20h near the liquid surface of the electrolyte in the tanks 106 and 107, respectively. With this configuration, the RF battery 1 can be used in the tanks 106 and 107 even if the positive electrode upstream pipe 11, the negative electrode upstream pipe 21 and the pumps 112 and 113 are damaged or the battery element 100c and the upstream pipes 11 and 21 are disconnected. The leakage of the electrolyte can be limited to only a part of the electrolyte in the tanks 106 and 107. Specifically, of the electrolytes in the tanks 106 and 107, the electrolyte located above the leakage prevention holes 10h and 20h is reversely formed by the storage pipe 10A (20A) and a part of the upstream pipe 11 (21). The U-shaped portion can be used to leak out of the tanks 106 and 107 by the siphon principle regardless of whether the pump is driven or stopped. However, when the electrolyte solution leaks and the leakage prevention holes 10h and 20h are exposed, the inverted U-shaped portion takes in the gas phase in the tanks 106 and 107, and is not in a state filled with the electrolyte solution. The movement of the electrolyte can be automatically stopped. Therefore, the RF battery 1 can reduce the amount of electrolyte leakage in the tanks 106 and 107 when the above accident occurs.

また、RF電池1は、電池要素100cに電解液を供給する収納配管10A(20A)の開口部10o(20o)と、下流配管12(22)の開口部とがほぼ対角位置に配置されている。従って、正極タンク106(負極タンク107)内における電解液の移動量を十分に確保できるため、RF電池1は、当該タンク106(107)内で十分に対流した電解液を電池要素100cに供給することができ、電解液の利用率を高められる。   Further, in the RF battery 1, the opening 10o (20o) of the storage pipe 10A (20A) for supplying the electrolytic solution to the battery element 100c and the opening of the downstream pipe 12 (22) are arranged at substantially diagonal positions. Yes. Accordingly, since the amount of movement of the electrolytic solution in the positive electrode tank 106 (negative electrode tank 107) can be sufficiently secured, the RF battery 1 supplies the electrolytic solution sufficiently convected in the tank 106 (107) to the battery element 100c. It is possible to increase the utilization rate of the electrolytic solution.

[実施形態2]
図2を参照して、実施形態2のRF電池2を説明する。実施形態2のRF電池2は、実施形態1のRF電池1と基本的な構成は同様である。具体的には、RF電池2は、正負の両極の配管構造が対称的な構造であり、正極タンク106,負極タンク107からの電解液の取出口(上流配管11,21の開口部11t,21t)がタンク106,107内の電解液の液面寄りの位置に設けられている。タンク106,107にはそれぞれ、漏出防止孔10h,20hが設けられた収納配管10B,20Bを具える。また、RF電池2は、上流配管11,21の一部に低位置部11L,21Lを具え、収納配管10Bと正極上流配管11(低位置部11L)の一部とで逆U字状の配管、収納配管20Bと負極上流配管21(低位置部21L)の一部とで逆U字状の配管を形成している。RF電池2では、収納配管10B,20Bの形状が実施形態1のRF電池1と異なる。以下、この相違点を中心に説明し、実施形態1のRF電池1と重複する構成及び効果は、詳細な説明を省略する。また、実施形態2についても、正極側の配管構造を例に挙げて詳細に説明する。
[Embodiment 2]
With reference to FIG. 2, the RF battery 2 of Embodiment 2 will be described. The basic configuration of the RF battery 2 of the second embodiment is the same as that of the RF battery 1 of the first embodiment. Specifically, the RF battery 2 has a structure in which both positive and negative electrode piping structures are symmetrical, and the electrolyte solution outlets from the positive electrode tank 106 and the negative electrode tank 107 (openings 11t, 21t of the upstream pipes 11, 21). ) Is provided at a position near the liquid level of the electrolytic solution in the tanks 106 and 107. The tanks 106 and 107 include storage pipes 10B and 20B provided with leakage prevention holes 10h and 20h, respectively. In addition, the RF battery 2 includes low positions 11L and 21L in a part of the upstream pipes 11 and 21, and an inverted U-shaped pipe between the storage pipe 10B and a part of the positive electrode upstream pipe 11 (low position 11L). The storage pipe 20B and a part of the negative electrode upstream pipe 21 (low position portion 21L) form an inverted U-shaped pipe. In the RF battery 2, the shape of the storage pipes 10B and 20B is different from that of the RF battery 1 of the first embodiment. Hereinafter, this difference will be mainly described, and detailed description of configurations and effects that are the same as those of the RF battery 1 of Embodiment 1 will be omitted. Further, the second embodiment will also be described in detail by taking the positive electrode side piping structure as an example.

RF電池2に具える正極タンク106には、収納配管10Bが収納され、収納配管10Bの一端がタンク106内の電解液の液面寄りの位置:(L/2)超の位置に開口し、他端がタンク106の底部寄りの位置:(L/2)以下の位置に開口している。また、収納配管10Bには、正極タンク106内の電解液の液面寄りの位置:(L/2)超の位置に小さな漏出防止孔10hが設けられている。   In the positive electrode tank 106 included in the RF battery 2, the storage pipe 10B is stored, and one end of the storage pipe 10B opens to a position near the liquid level of the electrolytic solution in the tank 106: (L / 2), The other end opens at a position near the bottom of the tank 106: (L / 2) or less. In addition, the storage pipe 10B is provided with a small leakage prevention hole 10h at a position near the liquid level of the electrolyte in the positive electrode tank 106: (L / 2).

そして、実施形態2のRF電池2では、収納配管10Bが上に凸な形状となっており、正極タンク106の底部から最も高い位置(凸部分の頂点)に漏出防止孔10hを具える。つまり、RF電池2では、漏出防止孔10hの配置位置が正極電解液の取出口である正極上流配管11の正極タンク106側の開口部11tよりも高い。   In the RF battery 2 of the second embodiment, the storage pipe 10B has a convex shape, and the leakage prevention hole 10h is provided at the highest position (the apex of the convex portion) from the bottom of the positive electrode tank 106. That is, in the RF battery 2, the arrangement position of the leakage prevention hole 10h is higher than the opening 11t on the positive electrode tank 106 side of the positive electrode upstream pipe 11 that is the outlet for the positive electrode electrolyte.

負極側も同様であり、収納配管20Bが上に凸な形状となっており、この凸部分の頂点に漏出防止孔20hを具え、漏出防止孔20hの配置位置が負極上流配管21の負極タンク107側の開口部21tよりも高い。   The same applies to the negative electrode side, and the storage pipe 20B has an upwardly convex shape, and the leakage prevention hole 20h is provided at the apex of the convex part, and the arrangement position of the leakage prevention hole 20h is the negative electrode tank 107 of the negative electrode upstream pipe 21. It is higher than the opening 21t on the side.

実施形態2のRF電池2では、上述の事故時、正極タンク106,負極タンク107内の電解液の液面から漏出防止孔10h,20hが露出するまでに漏出する電解液量が実施形態1に比較して、少ない。従って、RF電池2は、タンク106,107内の電解液の漏出量をより低減できる。   In the RF battery 2 of the second embodiment, the amount of the electrolyte that leaks out until the leakage prevention holes 10h and 20h are exposed from the liquid level of the electrolyte in the positive electrode tank 106 and the negative electrode tank 107 in the case of the accident described above in the first embodiment. There are few compared. Therefore, the RF battery 2 can further reduce the leakage amount of the electrolytic solution in the tanks 106 and 107.

なお、図2に示す例も、収納配管10B(20B)の開口部10o(20o)と、下流配管12(22)における正極タンク106(負極タンク107)側の開口部との位置が遠くなるように、両開口部をほぼ対角位置に配置しており、電解液の利用率が高い。   2, the position of the opening 10o (20o) of the storage pipe 10B (20B) and the position of the opening on the positive electrode tank 106 (negative electrode tank 107) side in the downstream pipe 12 (22) are far from each other. In addition, both openings are arranged at substantially diagonal positions, and the utilization rate of the electrolytic solution is high.

[実施形態3]
図3を参照して、実施形態3のRF電池3を説明する。実施形態3のRF電池3も、実施形態1のRF電池1と基本的な構成は同様であり、電解液の取出口である上流配管11,21の開口部11t,21tの位置及び収納配管10C,20Cの形状が異なる。以下、この相違点を中心に説明し、実施形態1のRF電池1と重複する構成及び効果は、詳細な説明を省略する。また、実施形態3についても、正極側の配管構造を例に挙げて詳細に説明する。
[Embodiment 3]
With reference to FIG. 3, the RF battery 3 of Embodiment 3 will be described. The basic configuration of the RF battery 3 of the third embodiment is the same as that of the RF battery 1 of the first embodiment, and the positions of the openings 11t and 21t of the upstream pipes 11 and 21 serving as the outlet for the electrolyte and the storage pipe 10C. , The shape of 20C is different. Hereinafter, this difference will be mainly described, and detailed description of configurations and effects that are the same as those of the RF battery 1 of Embodiment 1 will be omitted. Further, Embodiment 3 will also be described in detail by taking the positive electrode side piping structure as an example.

RF電池3では、正極タンク106に収納される収納配管10Cが直線状であり、その一端がタンク106内の電解液の液面寄りの位置:(L/2)超の位置(ここでは、液面よりも上方に位置するタンク106の上方空間)に開口し、他端がタンク106の底部寄りの位置:(L/2)以下の位置に開口している。また、収納配管10Cにおいて正極タンク106内の電解液の液面寄りの位置:(L/2)超の位置に小さな漏出防止孔10hが設けられている。   In the RF battery 3, the storage pipe 10C stored in the positive electrode tank 106 is linear, and one end of the storage battery 10C is close to the liquid level of the electrolyte in the tank 106: a position exceeding (L / 2) (here, the liquid (The upper space of the tank 106 located above the surface), and the other end is opened at a position near the bottom of the tank 106: (L / 2) or less. Further, in the storage pipe 10C, a small leakage prevention hole 10h is provided at a position near the liquid level of the electrolyte in the positive electrode tank 106: (L / 2).

そして、実施形態3のRF電池3では、正極上流配管11において正極タンク106に接続される箇所の近傍が上に凸な形状となっており、この凸部分の一端側が低位置部11Lに連なっている。つまり、RF電池3では、漏出防止孔10hの配置位置が正極電解液の取出口である正極上流配管11の正極タンク106側の開口部11tよりも低い。   In the RF battery 3 of the third embodiment, the vicinity of the portion connected to the positive electrode tank 106 in the positive electrode upstream pipe 11 has a convex shape upward, and one end side of this convex portion is connected to the low position portion 11L. Yes. That is, in the RF battery 3, the arrangement position of the leakage prevention hole 10h is lower than the opening 11t on the positive electrode tank 106 side of the positive electrode upstream pipe 11 that is the outlet for the positive electrode electrolyte.

負極側も同様であり、直線状の収納配管20Cの一端が負極タンク107の上面に開口し、タンク107内の電解液の液面近くに漏出防止孔20hが配置され、負極上流配管21の一部が上に凸な形状となっている。そして、漏出防止孔20hの配置位置が負極上流配管21の負極タンク107側の開口部21tよりも低い。   The same applies to the negative electrode side, and one end of the straight storage pipe 20C is opened on the upper surface of the negative electrode tank 107, and a leakage prevention hole 20h is disposed near the liquid surface of the electrolyte in the tank 107. The part has a convex shape. The arrangement position of the leakage prevention hole 20h is lower than the opening 21t on the negative electrode tank 107 side of the negative electrode upstream pipe 21.

実施形態3のRF電池3では、正極タンク106,負極タンク107内の電解液の取出口(開口部11t,21t)をタンク106,107のより上方側(ここでは、タンク106,107内の電解液の液面よりも上方側)に設けることができながら、タンク106,107の底部側の電解液を電池要素100cに供給することができる。このように収納配管10A〜10C,20A〜20Cを利用することで、タンク106,107周辺の空きスペースに応じて、電解液の取出口を適宜な位置に設けられながら、タンク106,107内の電解液を満遍なく利用できる。また、RF電池3は、収納配管10C,20Cと上流配管11,21とによりつくられる逆U字状部分を有するものの、漏出防止孔10h,20hを有することで、上述の事故時、タンク106,107内の電解液の漏出量を低減できる。   In the RF battery 3 of Embodiment 3, the electrolyte outlets (openings 11t, 21t) in the positive electrode tank 106 and the negative electrode tank 107 are located above the tanks 106, 107 (here, the liquid level of the electrolyte in the tanks 106, 107). The electrolyte solution on the bottom side of the tanks 106 and 107 can be supplied to the battery element 100c. By using the storage pipes 10A to 10C and 20A to 20C in this way, the electrolyte solution in the tanks 106 and 107 is evenly distributed while the outlets for the electrolyte solution are provided at appropriate positions according to the empty space around the tanks 106 and 107. Available. Further, although the RF battery 3 has an inverted U-shaped portion formed by the storage pipes 10C and 20C and the upstream pipes 11 and 21, the RF battery 3 has the leak prevention holes 10h and 20h so that the tanks 106 and 107 The amount of leakage of the electrolyte can be reduced.

[実施形態4]
図4を参照して、実施形態4のRF電池4を説明する。実施形態4のRF電池4も、実施形態1〜3のRF電池1〜3と同様に、正極タンク106,負極タンク107の底部寄りの位置に開口する収納配管30A,40Aを具える。但し、実施形態4のRF電池4は、収納配管30A,40Aがそれぞれ、正極下流配管12,負極下流配管22に連結されている点が実施形態1〜3と異なる。この相違点以外の構成は、実施形態3と類似するため、RF電池4の説明は、この相違点を中心に行い、実施形態3のRF電池3と重複する構成及び効果は、詳細な説明を省略する。また、実施形態4についても、正極側の配管構造を例に挙げて詳細に説明する。
[Embodiment 4]
The RF battery 4 of Embodiment 4 will be described with reference to FIG. Similarly to the RF batteries 1 to 3 of the first to third embodiments, the RF battery 4 of the fourth embodiment also includes storage pipes 30A and 40A that open to positions near the bottoms of the positive electrode tank 106 and the negative electrode tank 107. However, the RF battery 4 of the fourth embodiment is different from the first to third embodiments in that the storage pipes 30A and 40A are connected to the positive electrode downstream pipe 12 and the negative electrode downstream pipe 22, respectively. Since the configuration other than this difference is similar to that of the third embodiment, the description of the RF battery 4 will be centered on this difference, and the configuration and effects overlapping with those of the RF battery 3 of the third embodiment will be described in detail. Omitted. Further, Embodiment 4 will also be described in detail by taking the positive electrode side piping structure as an example.

正極下流配管12は、実施形態1〜3と同様に、その一端が正極タンク106内の電解液の上方空間に開口し、他端が電池要素100cに取り付けられている。収納配管30Aは、実施形態3の収納配管10Cと同様に直線状であり、その一端がタンク106内の電解液の液面寄りの位置:(L/2)超の位置(ここでは、液面よりも上方に位置するタンク106の上方空間)に配置された正極下流配管12の開口部12tに連結されている。収納配管30Aの他端は、タンク106の底部寄りの位置:(L/2)以下の位置に開口している。また、収納配管30Aにおいて正極タンク106内の電解液の液面寄りの位置:(L/2)超の位置に、収納配管30Aの他端側の開口部30oよりも小さい漏出防止孔30hが設けられている。   As in the first to third embodiments, one end of the positive electrode downstream pipe 12 opens into the space above the electrolytic solution in the positive electrode tank 106, and the other end is attached to the battery element 100c. The storage pipe 30A is linear like the storage pipe 10C of the third embodiment, and one end of the storage pipe 30A is close to the liquid level of the electrolyte in the tank 106: a position exceeding (L / 2) (here, the liquid level And connected to the opening 12t of the positive electrode downstream pipe 12 disposed in the upper space of the tank 106 located above the tank 106. The other end of the storage pipe 30A opens at a position closer to the bottom of the tank 106: (L / 2) or less. In addition, a leakage prevention hole 30h smaller than the opening 30o on the other end side of the storage pipe 30A is provided at a position near the liquid level of the electrolyte in the positive electrode tank 106 in the storage pipe 30A: (L / 2). It has been.

正極上流配管11は、実施形態3と同様に、その一端が、正極タンク106の上方空間に開口し、その他端が電池要素100cに取り付けられており、その中間部に低位置部11Lを具える。また、正極上流配管11の一端側の開口部11tには、別の収納配管10Dが連結されている。収納配管10Dは、その一端がタンク106内の電解液中に開口している。ここでは、収納配管10Dは、上述の正極下流配管12に連結される収納配管30Aよりもその長さが短く、その一端側の開口部10oがタンク106内の電解液の液面寄りの位置に配置されている。従って、正極下流配管12に連結される収納配管30Aの開口部30oと、正極上流配管11に連結される短い収納配管10Dの開口部10oとは、電解液で形成される矩形のほぼ対角位置に配置される。   Similarly to the third embodiment, the positive electrode upstream pipe 11 has one end opened to the upper space of the positive electrode tank 106, the other end attached to the battery element 100c, and a low position portion 11L provided in the middle. . Further, another storage pipe 10D is connected to the opening 11t on one end side of the positive electrode upstream pipe 11. One end of the storage pipe 10D opens into the electrolyte in the tank 106. Here, the storage pipe 10D is shorter in length than the storage pipe 30A connected to the positive electrode downstream pipe 12 described above, and the opening 10o on one end side thereof is located near the liquid level of the electrolyte in the tank 106. Has been placed. Therefore, the opening 30o of the storage pipe 30A connected to the positive electrode downstream pipe 12 and the opening 10o of the short storage pipe 10D connected to the positive electrode upstream pipe 11 are substantially diagonal positions of a rectangle formed by the electrolyte. Placed in.

そして、収納配管30Aと、正極下流配管12と電池要素100cと正極上流配管11の一部(低位置部11Lを含む部分)とが逆U字状に配置される。   The storage pipe 30A, the positive electrode downstream pipe 12, the battery element 100c, and a part of the positive electrode upstream pipe 11 (part including the low position portion 11L) are arranged in an inverted U shape.

負極側の配管構造も、上述した正極側の配管構造と同様であり、負極下流配管22における負極タンク107側の開口部22tに、直線状の収納配管40Aの一端が連結されている。収納配管40Aは、その他端の開口部40oが負極タンク107の底部寄りの位置に配置され、タンク107内の電解液の液面寄りの位置に小さい漏出防止孔40hを具える。負極上流配管21は、そのタンク107側の開口部21tに短い収納配管20Dが連結され、この収納配管20Dの他端側の開口部20oは、タンク107内の電解液の液面寄りの位置に配置されている。また、負極上流配管21は、低位置部21Lを具える。そして、収納配管40Aと負極下流配管22と電池要素100cと負極上流配管21の一部(低位置部21Lを含む部分)とが逆U字状に配置される。   The piping structure on the negative electrode side is the same as the above-described piping structure on the positive electrode side, and one end of the linear storage piping 40A is connected to the opening 22t on the negative electrode tank 107 side in the negative electrode downstream piping 22. The storage pipe 40A has an opening 40o at the other end disposed at a position near the bottom of the negative electrode tank 107, and includes a small leakage prevention hole 40h at a position near the liquid surface of the electrolytic solution in the tank 107. The negative upstream pipe 21 has a short storage pipe 20D connected to an opening 21t on the tank 107 side, and the opening 20o on the other end side of the storage pipe 20D is located at a position near the liquid surface of the electrolyte in the tank 107. Is arranged. Further, the negative electrode upstream pipe 21 includes a low position portion 21L. The storage pipe 40A, the negative electrode downstream pipe 22, the battery element 100c, and a part of the negative electrode upstream pipe 21 (part including the low position portion 21L) are arranged in an inverted U shape.

実施形態4のRF電池4では、正極タンク106,負極タンク107内の電解液の取出口(開口部11t,21t)、及び電池要素100cからの電解液の戻り口(開口部12t,22t)の双方がタンク106,107の上方側(ここでは、タンク106,107内の電解液の液面よりも上方側)に設けられている。しかし、このRF電池4は、収納配管10D,20D,30A,40Aを具えることで、タンク106,107内の液面側の電解液を電池要素100cに供給でき、かつ、電池要素100cからの電解液をタンク106,107の底部側に戻すことができる。また、RF電池4は、収納配管30A,40Aと、タンク106,107外に配置される電解液流路(下流配管12,22、電池要素100c、上流配管11,21)の一部とでつくられる逆U字状部分を有するものの、漏出防止孔30h,40hを有することで、上述の事故時、タンク106,107内の電解液の漏出量を低減できる。   In the RF battery 4 of the fourth embodiment, the electrolyte tank outlets (openings 11t, 21t) in the positive electrode tank 106, the negative electrode tank 107, and the electrolyte solution return ports (openings 12t, 22t) from the battery element 100c. Both are provided above the tanks 106 and 107 (here, above the liquid level of the electrolytic solution in the tanks 106 and 107). However, the RF battery 4 includes the storage pipes 10D, 20D, 30A, and 40A, so that the liquid surface side electrolyte in the tanks 106 and 107 can be supplied to the battery element 100c, and the electrolyte from the battery element 100c. Can be returned to the bottom side of the tanks 106,107. The RF battery 4 is reversely formed by the storage pipes 30A, 40A and a part of the electrolyte flow path (downstream pipes 12, 22, battery element 100c, upstream pipes 11, 21) disposed outside the tanks 106, 107. Although having a U-shaped portion, the leakage prevention holes 30h and 40h can reduce the amount of electrolyte leakage in the tanks 106 and 107 in the event of the above-mentioned accident.

[実施形態5]
その他、図5に示す実施形態5のRF電池5のように、上流配管11(21)を正極タンク106(負極タンク107)内の電解液の液面寄りの位置((2/L)超L未満)に開口し、この上流配管11(21)の開口部11t(21t)に収納配管が連結されない形態とすることができる。この形態は、収納配管が少なく、部品点数や組立工程を低減することができる。なお、実施形態5のRF電池5における基本的な構成は、実施形態4のRF電池4と同様であり(但し、上流配管11(21)の形状は実施形態1のRF電池1と同様)、詳細な説明を省略する。
[Embodiment 5]
In addition, as in the RF battery 5 of the fifth embodiment shown in FIG. 5, the upstream pipe 11 (21) is positioned closer to the electrolyte surface in the positive electrode tank 106 (negative electrode tank 107) ((2 / L) And the storage pipe is not connected to the opening 11t (21t) of the upstream pipe 11 (21). This form has few storage piping, and can reduce a number of parts and an assembly process. The basic configuration of the RF battery 5 of Embodiment 5 is the same as that of the RF battery 4 of Embodiment 4 (however, the shape of the upstream pipe 11 (21) is the same as that of the RF battery 1 of Embodiment 1), Detailed description is omitted.

<変形例1>
上述した実施形態1〜5はいずれも、正負の両極の配管構造が対称的な構造である形態を説明したが、各極の配管構造を異ならせることができる。例えば、正負のいずれか一方の極では収納配管を有していない形態としたり、正負のいずれか一方の極では、実施形態1の配管構造とし、他方の極では、実施形態2の配管構造を具える形態としたりすることができる。
<Modification 1>
In any of the first to fifth embodiments described above, the configuration in which the positive and negative electrode structures are symmetrical is described. However, the electrode structures of each electrode can be different. For example, either one of the positive and negative poles does not have a storage pipe, the positive or negative pole has the pipe structure of Embodiment 1, and the other pole has the pipe structure of Embodiment 2. It can be made into a form.

<変形例2>
上述した実施形態1〜5はいずれも、電池要素100cが正極タンク106,負極タンク107内の電解液の液面と同等以上の位置に配置された形態を説明したが、電池要素100cの配置位置を変更することができる。例えば、両極のタンク106,107の底部と同様の位置(床面など)に配置した形態とすることができる。より具体的には、図1〜図5に示す例において、正極上流配管11,負極上流配管12のうち、ポンプ112,113が取り付けられた直線状の部分の端部に電池要素100cを接続した形態などとすることができる。この形態は、電池要素100cを支持する架台が不要である。
<Modification 2>
In each of the first to fifth embodiments described above, the battery element 100c has been described in a form in which the battery element 100c is disposed at a position equal to or higher than the liquid level of the electrolyte in the positive electrode tank 106 and the negative electrode tank 107. Can be changed. For example, it can be configured to be disposed at the same position (floor surface or the like) as the bottoms of the bipolar tanks 106 and 107. More specifically, in the example shown in FIGS. 1 to 5, the battery element 100c is connected to the end of the straight portion where the pumps 112 and 113 are attached, of the positive electrode upstream piping 11 and the negative electrode upstream piping 12, etc. It can be. This form does not require a stand for supporting the battery element 100c.

本発明は、上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することができる。例えば、上流配管などに設けられる低位置部は、当該上流配管などが接続されるタンク内の液面よりも低い位置に配置されればよく、必ずしも床面上に配置される部分を有する必要はない。床面上に設置した適宜な架台面上に低位置部を配置してもよい。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, the low position portion provided in the upstream pipe or the like only needs to be disposed at a position lower than the liquid level in the tank to which the upstream pipe or the like is connected, and it is not always necessary to have a portion disposed on the floor surface. Absent. You may arrange | position a low position part on the appropriate mount surface installed on the floor surface.

本発明レドックスフロー電池は、太陽光発電、風力発電などの新エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などを目的とした大容量の蓄電池に好適に利用することができる。その他、本発明レドックスフロー電池は、一般的な発電所や工場などに併設されて、瞬低・停電対策や負荷平準化を目的とした大容量の蓄電池としても好適に利用することができる。   The redox flow battery of the present invention has a large capacity for the purpose of stabilizing fluctuations in power generation output, storing electricity when surplus of generated power, load leveling, etc., for power generation of new energy such as solar power generation and wind power generation. It can utilize suitably for a storage battery. In addition, the redox flow battery of the present invention can be suitably used as a large-capacity storage battery that is installed in a general power plant or factory, for the purpose of instantaneous voltage drop / power failure countermeasures and load leveling.

1,2,3,4,5,100 レドックスフロー電池
10A,10B,10C,10D,30A 収納配管 10h,30h 漏出防止孔 10o,30o 開口部
11 正極上流配管 11t,12t 正極タンク側の開口部
11c 電池要素側の開口部 11L 低位置部 12 正極下流配管
20A,20B,20C,20D,40A 収納配管 20h,40h 漏出防止孔 20o,40o 開口部
21 負極上流配管 21t,22t 負極タンク側の開口部
21c 電池要素側の開口部 21L 低位置部 22 負極下流配管
100c 電池要素 101 隔膜 102 正極セル 103 負極セル 104 正極電極
105 負極電極 106 正極タンク 107 負極タンク 108,109 上流配管
110,111 下流配管 112,113 ポンプ
1,2,3,4,5,100 Redox flow battery
10A, 10B, 10C, 10D, 30A Housing piping 10h, 30h Leakage prevention hole 10o, 30o Opening
11 Cathode upstream piping 11t, 12t Cathode tank side opening
11c Battery element side opening 11L Low position 12 Positive downstream piping
20A, 20B, 20C, 20D, 40A Housing piping 20h, 40h Leak prevention hole 20o, 40o Opening
21 Negative electrode upstream piping 21t, 22t Negative tank side opening
21c Battery element side opening 21L Low position 22 Negative electrode downstream piping
100c Battery element 101 Diaphragm 102 Positive electrode cell 103 Negative electrode cell 104 Positive electrode
105 Negative electrode 106 Positive tank 107 Negative tank 108,109 Upstream piping
110,111 Downstream piping 112,113 Pump

Claims (6)

タンク内の電解液を電池要素に供給して充放電を行うレドックスフロー電池であって、
前記タンク内の電解液を前記電池要素に供給する上流配管と、
前記電池要素からの電解液を前記タンクに戻す下流配管と、
前記タンク内に配置され、前記上流配管又は前記下流配管に連結された収納配管と、
前記上流配管、前記電池要素、及び前記下流配管で構成される電解液流路の一部に設けられ、前記タンク内の電解液の液面よりも低い位置に配置された低位置部とを具え、
前記収納配管の一端に連結された前記上流配管又は前記下流配管の一端は、前記タンク内の電解液の液面寄りの位置又は前記液面の上方空間に開口し、
前記収納配管の他端は、前記タンクの底部寄りの位置に開口し、
前記収納配管において前記タンク内の電解液の液面寄りの位置に漏出防止孔が設けられており、
前記漏出防止孔は、前記収納配管の他端側の開口部よりも小さいことを特徴とするレドックスフロー電池。
A redox flow battery that supplies and discharges the electrolyte in the tank to the battery element,
An upstream pipe for supplying the electrolytic solution in the tank to the battery element;
Downstream piping for returning the electrolyte from the battery element to the tank;
A storage pipe disposed in the tank and connected to the upstream pipe or the downstream pipe;
A low position portion provided in a part of an electrolyte flow path constituted by the upstream pipe, the battery element, and the downstream pipe, and disposed at a position lower than a liquid level of the electrolyte in the tank. ,
One end of the upstream pipe or the downstream pipe connected to one end of the storage pipe opens to a position near the liquid level of the electrolytic solution in the tank or a space above the liquid level,
The other end of the storage pipe opens to a position near the bottom of the tank,
A leakage prevention hole is provided at a position near the liquid level of the electrolytic solution in the tank in the storage pipe,
The redox flow battery, wherein the leakage prevention hole is smaller than an opening on the other end side of the storage pipe.
前記収納配管の一端は、前記上流配管に連結され、
前記上流配管の一部に前記低位置部が設けられていることを特徴とする請求項1に記載のレドックスフロー電池。
One end of the storage pipe is connected to the upstream pipe,
2. The redox flow battery according to claim 1, wherein the low position portion is provided in a part of the upstream pipe.
前記下流配管の一端は、前記タンク内の電解液の液面寄りの位置、又は前記液面の上方空間に開口していることを特徴とする請求項2に記載のレドックスフロー電池。   3. The redox flow battery according to claim 2, wherein one end of the downstream pipe is opened to a position near the liquid level of the electrolytic solution in the tank or to a space above the liquid level. 前記収納配管の一端は、前記下流配管に連結され、
前記上流配管の一部に前記低位置部が設けられていることを特徴とする請求項1に記載のレドックスフロー電池。
One end of the storage pipe is connected to the downstream pipe,
2. The redox flow battery according to claim 1, wherein the low position portion is provided in a part of the upstream pipe.
前記上流配管の一端は、前記液面の上方空間に開口しており、前記タンク内の電解液中に開口した別の収納配管が連結されている、又は前記タンク内の電解液の液面寄りの位置に開口していることを特徴とする請求項4に記載のレドックスフロー電池。   One end of the upstream pipe opens to the space above the liquid level, and another storage pipe opened in the electrolytic solution in the tank is connected, or close to the liquid level of the electrolytic solution in the tank 5. The redox flow battery according to claim 4, wherein the redox flow battery is opened at a position of. 前記漏出防止孔の直径をφh、前記収納配管の他端側の開口部の直径をφiとするとき、前記漏出防止孔の直径φhは、1mm以上(φi/2)未満であることを特徴とする請求項1〜5のいずれか1項に記載のレドックスフロー電池。 When the diameter of the leakage prevention hole is φ h and the diameter of the opening on the other end of the storage pipe is φ i , the diameter φ h of the leakage prevention hole is 1 mm or more and less than (φ i / 2). The redox flow battery according to any one of claims 1 to 5, wherein
JP2011158432A 2011-07-19 2011-07-19 Redox flow battery, Active JP5679520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011158432A JP5679520B2 (en) 2011-07-19 2011-07-19 Redox flow battery,

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011158432A JP5679520B2 (en) 2011-07-19 2011-07-19 Redox flow battery,

Publications (2)

Publication Number Publication Date
JP2013025965A true JP2013025965A (en) 2013-02-04
JP5679520B2 JP5679520B2 (en) 2015-03-04

Family

ID=47784095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011158432A Active JP5679520B2 (en) 2011-07-19 2011-07-19 Redox flow battery,

Country Status (1)

Country Link
JP (1) JP5679520B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015228364A (en) * 2014-05-02 2015-12-17 昭和電工株式会社 Redox flow battery
CN108644953A (en) * 2018-06-01 2018-10-12 安徽江航爱唯科环境科技有限公司 Add water humidifier in one kind
CN113169357A (en) * 2018-10-05 2021-07-23 Ess技术有限公司 Power delivery system and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124755U (en) * 1991-04-26 1992-11-13 住友電気工業株式会社 Electrolyte circulating battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124755U (en) * 1991-04-26 1992-11-13 住友電気工業株式会社 Electrolyte circulating battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015228364A (en) * 2014-05-02 2015-12-17 昭和電工株式会社 Redox flow battery
CN108644953A (en) * 2018-06-01 2018-10-12 安徽江航爱唯科环境科技有限公司 Add water humidifier in one kind
CN113169357A (en) * 2018-10-05 2021-07-23 Ess技术有限公司 Power delivery system and method

Also Published As

Publication number Publication date
JP5679520B2 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
WO2014045337A1 (en) Redox flow battery
JP6403009B2 (en) Redox flow battery system and operating method of redox flow battery
US9118064B2 (en) Redox flow battery
JP2012164530A (en) Electrolyte circulation type battery
JP5769071B2 (en) Redox flow battery
JP2021507498A (en) Fluid battery system
JP2011233372A (en) Redox flow battery
JP5679520B2 (en) Redox flow battery,
TW201911635A (en) Redox flow battery operation method and redox flow battery
JP2012160344A (en) Tank of electrolyte circulation battery, and electrolyte circulation battery
JPWO2018105091A1 (en) Redox flow battery
TW201931656A (en) Redox flow battery
KR101760983B1 (en) Flow battery and method of preventing mix of the electrolyte
JP2012099416A (en) Redox flow battery
JP5769010B2 (en) Redox flow battery
JP5741846B2 (en) Redox flow battery
CN107195942B (en) Electrolyte storage tank, flow battery, box-type flow battery system and flow battery charging and discharging control method
CN203192914U (en) Oxidation-reduction flow battery
CN103779588B (en) Redox flow battery
US10193178B2 (en) Redox flow battery frame body, redox flow battery, and cell stack
AU2018316335B2 (en) Method for Operating Redox Flow Battery
US20200136162A1 (en) Redox flow battery system and method for operating redox flow battery system
KR20160115472A (en) Redox flow battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5679520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141228

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250