JPH04124755U - Electrolyte circulating battery - Google Patents

Electrolyte circulating battery

Info

Publication number
JPH04124755U
JPH04124755U JP1991029599U JP2959991U JPH04124755U JP H04124755 U JPH04124755 U JP H04124755U JP 1991029599 U JP1991029599 U JP 1991029599U JP 2959991 U JP2959991 U JP 2959991U JP H04124755 U JPH04124755 U JP H04124755U
Authority
JP
Japan
Prior art keywords
electrolyte
storage tank
battery
battery cell
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1991029599U
Other languages
Japanese (ja)
Other versions
JP2557947Y2 (en
Inventor
敏夫 重松
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP1991029599U priority Critical patent/JP2557947Y2/en
Publication of JPH04124755U publication Critical patent/JPH04124755U/en
Application granted granted Critical
Publication of JP2557947Y2 publication Critical patent/JP2557947Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

(57)【要約】 【目的】 この考案は、電池システムの故障部分を、安
全かつ作業性よく取替えることができるように改良され
た電解液循環型電池を得ることを最も主要な特徴とす
る。 【構成】 正極セルと負極セルとを含む電池セルと、上
記電池セルに循環供給される電解液を貯蔵する電解液貯
蔵用タンクと、を備える。上記電池セルと上記電解液貯
蔵用タンクとの間には、上記電解液貯蔵用タンクから上
記電解液を上記電池セルに送り込む電解液供給用管路が
連結されている。上記電池セルで反応した上記電解液
は、電解液戻し用管路を通って、上記電解液貯蔵用タン
クに戻される。上記電解液戻し用管路の一端は上記電池
セルに接続され、上記電解液戻し用管路の他端の環流口
は、上記電解液貯蔵用タンク内の上記電解液の中に潜入
している。当該電池は、さらに、その一端が上記電解液
戻し用管路に接続され、かつその他端が上記電解液貯蔵
用タンク内の気相部に接続されたバイパス管路を備え
る。
(57) [Summary] [Purpose] The main feature of this invention is to obtain an electrolyte circulation type battery that is improved so that a failed part of a battery system can be replaced safely and with good workability. [Structure] The battery cell includes a battery cell including a positive electrode cell and a negative electrode cell, and an electrolytic solution storage tank that stores an electrolytic solution that is circulated and supplied to the battery cell. An electrolyte supply pipe line for feeding the electrolyte from the electrolyte storage tank to the battery cell is connected between the battery cell and the electrolyte storage tank. The electrolytic solution reacted in the battery cell is returned to the electrolytic solution storage tank through the electrolytic solution return conduit. One end of the electrolyte return pipe is connected to the battery cell, and a circulation port at the other end of the electrolyte return pipe is submerged into the electrolyte in the electrolyte storage tank. . The battery further includes a bypass conduit, one end of which is connected to the electrolyte return conduit, and the other end connected to the gas phase section in the electrolyte storage tank.

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】 この考案は、一般に電解液循環型電池に関するものであり、より特定的には、 安全かつ作業性に優れるように改良された電解液循環型電池に関する。0001 This invention relates generally to circulating electrolyte batteries, and more specifically to: This invention relates to an electrolyte circulation type battery that has been improved to be safe and workable.

【0002】0002

【従来の技術】[Conventional technology]

電気エネルギーは、そのままの形態では貯蔵が困難であるため、貯蔵可能なエ ネルギー形態に変換しなければならない。他方、安定した電力供給を行なうには 、電力需要に合わせて供給(すなわち発電)を行なう必要がある。このため、電 力会社は、常に最大需要に見合った発電設備を建設し、需要に即応して発電を行 なっている。しかしながら、図3に電力需要曲線Aで示すように、昼間および夜 間では、電力の需要に大きな差が存在する。同様の現象は、週、月および季節間 でも生じている。 Electrical energy is difficult to store in its raw form, so it is difficult to store it in its raw form. must be converted into energy form. On the other hand, in order to provide a stable power supply, , it is necessary to supply (that is, generate electricity) in accordance with the electricity demand. For this reason, electricity Power companies always construct power generation facilities that meet maximum demand and generate power in immediate response to demand. It has become. However, as shown by electricity demand curve A in Figure 3, There are large differences in electricity demand between the two countries. Similar phenomena occur between weeks, months and seasons. But it is happening.

【0003】 そこで、電力を効率よく貯蔵することが可能であれば、オフピーク時余剰電力 (図3のXで示した部分に相当する)を貯蔵し、ピーク時にこれを放出すれば図 3のYで示した部分を賄うことができ、需要の変動に対応することができ、常に ほぼ一定の電力(図3の破線Zに相当する量)のみを発電すればよいことになる 。このようなロードレベリングを達成することができれば、発電設備を軽減する ことが可能となり、かつエネルギーの節約ならびに石油等の燃料節減にも大きく 寄与することができる。0003 Therefore, if it is possible to store electricity efficiently, surplus electricity during off-peak hours can be (corresponding to the part indicated by X in Figure 3) and release it at the peak time. It can cover the portion indicated by Y in 3, it can respond to fluctuations in demand, and it can always It is only necessary to generate approximately constant power (the amount corresponding to the broken line Z in Figure 3). . If such load leveling can be achieved, the power generation equipment will be reduced. This makes it possible to save energy and fuel such as oil. can contribute.

【0004】 そこで、従来より種々の電力貯蔵法が提案されている。たとえば揚水発電が既 に実施されているが、揚水発電では設備が消費地から遠く隔たった所に設置され ており、したがって送変電損失を伴うこと、ならびに環境面での立地の制約があ ることなどの問題がある。それゆえに、揚水発電に代わる新しい電力貯蔵技術の 開発が望まれているが、その1つとしてレドックスフロー電池の開発が進められ ている。0004 Therefore, various power storage methods have been proposed in the past. For example, pumped storage power generation is already However, in pumped storage power generation, equipment is installed far away from the consumption area. Therefore, there are transmission and substation losses as well as environmental location constraints. There are other problems. Therefore, new energy storage technologies are needed to replace pumped storage power generation. The development of redox flow batteries is one example that is desired to be developed. ing.

【0005】 図4は、既に提案されているレドックスフロー電池の一例を示す概略構成図で ある。このレドックスフロー電池1は、電池セル2、正極液貯蔵用タンク3およ び負極液貯蔵用タンク4を備え、2個のタンクを用いるため2タンク方式と呼ば れているものである。電池セル2内は、たとえばイオン交換膜からなる隔膜5に より仕切られており、一方側が正極セル2a、他方側が負極セル2bを構成する 。正極セル2aと負極セル2b内には、それぞれ、電極として正極6および負極 7が配置されている。[0005] Figure 4 is a schematic diagram showing an example of a redox flow battery that has already been proposed. be. This redox flow battery 1 includes a battery cell 2, a positive electrode liquid storage tank 3, and It is called a two-tank system because it uses two tanks and a negative electrode liquid storage tank 4. This is what is happening. Inside the battery cell 2, there is a diaphragm 5 made of, for example, an ion exchange membrane. One side constitutes a positive electrode cell 2a and the other side constitutes a negative electrode cell 2b. . In the positive electrode cell 2a and the negative electrode cell 2b, a positive electrode 6 and a negative electrode are respectively provided as electrodes. 7 is placed.

【0006】 図4に示したレドックスフロー電池1では、たとえば鉄イオン、クロムイオン のような原子価が変化するイオンの水溶液をタンク3,4に貯蔵し、これをポン プP1 、P2 で流通型電解セル2に送液し、酸化還元反応により充放電を行なう 。たとえば、正極液としてFe3+/Fe2+塩酸溶液、負極電解液としてCr2+/ Cr3+塩酸溶液を用いると、各酸化還元系の両極6.7における電池反応は、次 式のようになり、起電力は約1Vである。In the redox flow battery 1 shown in FIG. 4, an aqueous solution of ions whose valences change, such as iron ions and chromium ions, is stored in tanks 3 and 4, and distributed by pumps P 1 and P 2 . The liquid is sent to the type electrolytic cell 2, and charged and discharged by an oxidation-reduction reaction. For example, if a Fe 3+ /Fe 2+ hydrochloric acid solution is used as the positive electrode solution and a Cr 2+ /Cr 3+ hydrochloric acid solution is used as the negative electrode electrolyte, the battery reaction at both electrodes 6.7 of each redox system is as follows: The electromotive force is approximately 1V.

【0007】[0007]

【化1】 [Chemical formula 1]

【0008】 電池セル2の正極セル2aと正極電解液貯蔵用タンク3とは、正極電解液供給 用管路11と正極電解液戻し用管路12により連結されている。他方、負極セル 2bと負極電解液貯蔵用タンク4とは、負極電解液供給用管路13と負極電解液 戻し用管路14により連結されている。正極電解液貯蔵用タンク3および負極電 解液貯蔵用タンク4には、それぞれ、反応液として正極電解液および負極電解液 が貯留されており、正極電解液供給用管路11および負極電解液供給用管路13 に設けられた反応液給送手段としてのポンプP1 ,P2 により電池セル2内に供 給される。供給された正極電解液および負極電解液は、正極セル2aおよび負極 セル2b内で反応し、反応の終了した液は、それぞれ、正極電解液戻し用管路1 2および負極電解液戻し用管路14を経て、正極電解液貯蔵用タンク3および負 極電解液貯蔵用タンク4内に戻される。[0008] The positive electrode cell 2a of the battery cell 2 and the positive electrode electrolyte storage tank 3 are connected by a positive electrode electrolyte supply conduit 11 and a positive electrode electrolyte return conduit 12. On the other hand, the negative electrode cell 2b and the negative electrode electrolyte storage tank 4 are connected by a negative electrode electrolyte supply conduit 13 and a negative electrode electrolyte return conduit 14. The positive electrode electrolyte storage tank 3 and the negative electrode electrolyte storage tank 4 each store a positive electrode electrolyte and a negative electrode electrolyte as reaction liquids, and a positive electrode electrolyte supply conduit 11 and a negative electrode electrolyte supply conduit 11 are connected to each other. The reaction liquid is supplied into the battery cell 2 by pumps P 1 and P 2 as reaction liquid feeding means provided in the pipe line 13 . The supplied positive electrode electrolyte and negative electrode electrolyte react in the positive electrode cell 2a and the negative electrode cell 2b, and the reacted solutions are passed through the positive electrode electrolyte return conduit 1 and the negative electrode electrolyte return conduit 1 and 2, respectively. 14, and is returned into the positive electrode electrolyte storage tank 3 and the negative electrode electrolyte storage tank 4.

【0009】 次に、電池セル、電解液貯蔵用タンク、電解液供給用管路および電解液戻し用 管路の接続の様子を、さらに詳細に説明する。ここで、電解液貯蔵用タンクとい うときは、正極電解液貯蔵用タンクまたは負極電解液貯蔵用タンクをいい、電解 液供給用管路というときは正極電解液供給用管路または負極電解液供給管路をい い、電解液戻し用管路というときは正極電解液液戻し用管路または負極電解液戻 し用管路をいうものとする。電解液貯蔵用タンク103内には、電池セル102 に循環供給される電解液104が貯蔵されている。電池セル102と電解液貯蔵 用タンク103との間には、電解液貯蔵用タンク103から電解液104を電池 セル102に送り込む電解液供給用管路111が連結されている。電池セル10 2で反応した電解液は、電解液戻し用管路112を通って電解液貯蔵用タンク1 03に戻される。電解液戻し用管路112の一端は電池セル102に接続され、 電解液戻し用管路112の他端の環流口112aは、電解液貯蔵用タンク103 内の電解液104の中に潜入している。環流口112aを電解液104内に潜入 させているのは、ポンプ動力を低減させるためである。[0009] Next, the battery cells, electrolyte storage tanks, electrolyte supply pipes, and electrolyte return The connection of the pipes will be explained in more detail. Here, the electrolyte storage tank is called When the electrolytic When we refer to the liquid supply pipeline, we mean the positive electrode electrolyte supply pipeline or the negative electrode electrolyte supply pipeline. When referring to the electrolyte return conduit, it refers to the positive electrode electrolyte return conduit or the negative electrode electrolyte return conduit. This shall mean a conduit for service. Inside the electrolyte storage tank 103, there are battery cells 102. An electrolytic solution 104 is stored therein to be circulated and supplied. Battery cell 102 and electrolyte storage The electrolyte 104 is supplied from the electrolyte storage tank 103 to the battery storage tank 103. An electrolytic solution supply conduit 111 that feeds into the cell 102 is connected thereto. battery cell 10 The electrolyte that has reacted in step 2 passes through the electrolyte return pipe 112 to the electrolyte storage tank 1. Returned to 03. One end of the electrolyte return conduit 112 is connected to the battery cell 102, The recirculation port 112a at the other end of the electrolyte return pipe 112 is connected to the electrolyte storage tank 103. The electrolyte 104 is hidden inside. Infiltrate the circulation port 112a into the electrolyte 104 The reason for this is to reduce the pump power.

【0010】0010

【考案が解決しようとする課題】[Problem that the idea aims to solve]

以上のように、従来のレドックスフロー電池では、ポンプ動力の低減の意味か ら、電解液戻し用管路112の環流口112aは電解液に潜入していた。したが って、電池セル102および電解液戻し用管路112内は、常に、電解液で充満 されていた。そのため、電池セル102または電解液戻し用管路112にトラブ ルが生じた場合、あるいは電池セル102の取外し等の作業時に、サイフォン現 象により、電解液貯蔵用タンク103内の電解液104も排出されるということ があり、安全面かつ作業性の面から問題点があった。 As mentioned above, in conventional redox flow batteries, it is possible to reduce the pump power. In addition, the circulation port 112a of the electrolyte return conduit 112 was submerged in the electrolyte. However, Therefore, the battery cells 102 and the electrolyte return conduit 112 are always filled with electrolyte. It had been. Therefore, trouble may occur in the battery cell 102 or the electrolyte return conduit 112. If a siphon occurs or during work such as removing the battery cell 102, Due to this phenomenon, the electrolyte 104 in the electrolyte storage tank 103 is also discharged. There were problems in terms of safety and workability.

【0011】 この考案は上記のような問題点を解決するためになされたもので、安全かつ作 業性に優れるように改良された電解液循環型電池を提供することを目的とする。[0011] This idea was made to solve the problems mentioned above, and was designed to be safe and workable. The purpose of the present invention is to provide an electrolyte circulation type battery that is improved in terms of performance.

【0012】0012

【課題を解決するための手段】[Means to solve the problem]

この考案に係る電解液循環型電池は、正極セルと負極セルとを含む電池セルと 、上記電池セルに循環供給される電解液を貯蔵する電解液貯蔵用タンクとを備え る。上記電池セルと上記電解液貯蔵用タンクとの間には、上記電解液貯蔵用タン クから上記電解液を上記電池セルに送り込む電解液供給用管路が連結されている 。上記電池セルで反応した上記電解液は、電解液戻し用管路を通って上記電解液 貯蔵用タンクに戻されるようになっている。上記電解液戻し用管路の一端は、上 記電池セルに接続され、上記電解液戻し用管路の他端の環流口は、上記電解液貯 蔵用タンク内の上記電解液の中に潜入している。当該電池は、さらに、その一端 が上記電解液戻し用管路に接続され、かつその他端が上記電解液貯蔵用タンク内 の気相部に接続されたバイパス管路を備えている。 The electrolyte circulation type battery according to this invention has a battery cell including a positive electrode cell and a negative electrode cell. , and an electrolyte storage tank for storing electrolyte to be circulated and supplied to the battery cells. Ru. The electrolyte storage tank is provided between the battery cell and the electrolyte storage tank. An electrolyte supply pipe line is connected to the battery cell to send the electrolyte from the cell to the battery cell. . The electrolyte that has reacted in the battery cell passes through the electrolyte return pipe. It is intended to be returned to storage tanks. One end of the electrolyte return pipe is connected to the upper The recirculation port at the other end of the electrolyte return pipe is connected to the battery cell. It has sneaked into the electrolyte in the storage tank. The battery further includes is connected to the electrolyte return pipe, and the other end is connected to the electrolyte storage tank. The system is equipped with a bypass line connected to the gas phase of the system.

【0013】 この考案の好ましい実施態様によれば、上記バイパス管路には、該管路の開閉 を行なうバルブが設けられている。[0013] According to a preferred embodiment of this invention, the bypass pipeline includes an opening/closing mechanism for opening and closing the pipeline. A valve is provided to perform this.

【0014】 この考案のさらに好ましい電解液循環型電池は、当該電池内における電解液の 流量、圧力などを検知し、コンピュータに信号を送るトラブル発見用センサと、 上記トラブル発見用センサの信号に基づいて上記バルブの開閉を操作するバルブ 開閉手段と、をさらに備える。[0014] A more preferable electrolyte circulation type battery of this invention is that the electrolyte in the battery is A sensor for detecting trouble that detects flow rate, pressure, etc. and sends a signal to the computer, A valve that opens and closes the above valve based on the signal from the trouble detection sensor. The device further includes an opening/closing means.

【0015】[0015]

【作用】[Effect]

この考案に係る電解液循環型電池によれば、その一端が上記電解液戻し用管路 に接続され、かつその他端が上記電解液貯蔵用タンク内の気相部に接続されたバ イパス管路を備えているので、システム停止時、バイパス管路を通って電解液貯 蔵用タンク内の上部ガスが電解液戻し用管路内に入り、ひいては電解液供給用管 路内の電解液は電解液貯蔵用タンク内に戻る。 According to the electrolyte circulation type battery according to this invention, one end thereof is connected to the electrolyte return pipe. and the other end is connected to the gas phase in the electrolyte storage tank. Equipped with an bypass line, when the system is stopped, the electrolyte can be stored through the bypass line. The upper gas in the storage tank enters the electrolyte return pipe, which in turn leads to the electrolyte supply pipe. The electrolyte in the path returns to the electrolyte storage tank.

【0016】[0016]

【実施例】【Example】

以下、この考案に係る一実施例を図について説明する。 An embodiment of this invention will be described below with reference to the drawings.

【0017】 図1は、この考案の一実施例に係る電解液循環型電池の、電池セルと電解液貯 蔵用タンクとの接続部分の概略図である。レドックスフロー電池は、電池セル1 02と、電池セル102に循環供給される電解液104を貯蔵する電解液貯蔵用 タンク103とを備えている。電池セル102と電解液貯蔵用タンク103との 間には、電解液貯蔵用タンク103から電解液104を電池セル102に送り込 む電解液供給用管路111が連結されている。電解液供給用管路111内にはポ ンプPが設けられている。電池セル102で反応した電解液は、電解液戻し用管 路112を通って電解液貯蔵用タンク103に戻されるようになっている。電解 液戻し用管路112の一端は電池セル102に接続され、電解液戻し用管路11 2の他端の環流口112aは、電解液貯蔵用タンク103内の電解液104の中 に潜入している。電解液戻し用管路112には、バイパス管路100の一端が接 続され、バイパス管路100の他端は電解液貯蔵用タンク103の気相部103 aに接続されている。バイパス管路100には、該管路の開閉を行なうバルブ1 01が設けられている。[0017] Figure 1 shows the battery cell and electrolyte storage of an electrolyte circulation type battery according to an embodiment of this invention. It is a schematic diagram of a connection part with a storage tank. Redox flow battery has battery cell 1 02, and an electrolyte storage device for storing electrolyte 104 that is circulated and supplied to the battery cells 102. A tank 103 is provided. Between the battery cell 102 and the electrolyte storage tank 103 In the meantime, electrolyte 104 is sent from electrolyte storage tank 103 to battery cell 102. An electrolyte supply conduit 111 is connected thereto. There is a port in the electrolyte supply conduit 111. A pump P is provided. The electrolyte that has reacted in the battery cell 102 is transferred to an electrolyte return tube. The electrolyte is returned to the electrolyte storage tank 103 through a passage 112. electrolytic One end of the liquid return pipe 112 is connected to the battery cell 102, and the electrolyte return pipe 11 The recirculation port 112a at the other end of 2 is connected to the inside of the electrolyte 104 in the electrolyte storage tank 103. is infiltrating. One end of the bypass pipe 100 is connected to the electrolyte return pipe 112. The other end of the bypass line 100 is connected to the gas phase part 103 of the electrolyte storage tank 103. connected to a. The bypass pipeline 100 includes a valve 1 that opens and closes the pipeline. 01 is provided.

【0018】 次に、動作について説明する。 電池システム運転中は、バイパス管路100に設けられたバルブ101は閉と なっている。運転中、電解液104は、ポンプPによって、電解液貯蔵用タンク 103から出て、電解液供給用管路111内に入り、電池セル102を通って、 電解液戻し用管路112内に入り、環流口112aから電解液貯蔵用タンク10 3に戻る。電池システム運転中は、電解液は上述のようにして、循環する。[0018] Next, the operation will be explained. While the battery system is in operation, the valve 101 provided in the bypass pipeline 100 is closed. It has become. During operation, the electrolyte 104 is pumped into the electrolyte storage tank by the pump P. 103, enters the electrolyte supply conduit 111, passes through the battery cell 102, Enter the electrolyte return conduit 112 and enter the electrolyte storage tank 10 from the circulation port 112a. Return to 3. During battery system operation, the electrolyte is circulated as described above.

【0019】 次に、電池システムを停止させる場合の動作について説明する。 まず、ポンプPを停止する。バルブ101を開とする。この手順により、電池 セル102および配管内に充満されていた電解液104は、電解液貯蔵用タンク の電解液104の液面位置レベルまで戻る。[0019] Next, the operation when stopping the battery system will be explained. First, pump P is stopped. Let's open the valve 101. This step will remove the battery The electrolyte 104 filled in the cell 102 and the piping is transferred to an electrolyte storage tank. The liquid surface level of the electrolytic solution 104 is returned to the level shown in FIG.

【0020】 この状態、すなわち配管および電池セル102が電解液で充満されていない状 態で、電池の配管等の故障部分を取替え、また電池セル102の取外し等の作業 を行なうと、作業性はよくなり、また安全となる。[0020] In this state, the pipes and the battery cell 102 are not filled with electrolyte. In the current state, work such as replacing malfunctioning parts such as battery piping and removing battery cells 102 is carried out. Doing so will improve work efficiency and make it safer.

【0021】 図2は、この考案の他の実施例の概略図である。 なお、図2に示す実施例は、以下の点を除いて、図1に示す実施例と同様であ るので、相当する部分には同一の番号を付し、その説明を繰り返さない。[0021] FIG. 2 is a schematic diagram of another embodiment of the invention. The embodiment shown in FIG. 2 is similar to the embodiment shown in FIG. 1 except for the following points. Therefore, corresponding parts are given the same numbers and their explanations will not be repeated.

【0022】 図2に示す実施例が図1に示す実施例と異なる点は、次のとおりである。 すなわち、電解液戻し用管路112内に、管路内を流れる電解液の流量、圧力 などを検知するセンサ120が設けられている。センサ120にはコンピュータ 121が接続されており、センサ120が検知した情報は信号に変えられてコン ピュータ121に送られる。コンピュータ121はこの信号に基づいてバルブ開 閉手段122に指示し、バルブ101の操作を行なわせる。以上のように構成さ れるレドックスフロー電池では、自動的にバルブ操作が行なわれるので、トラブ ルに対して、より正確に、かつより迅速に対処できるようになる。[0022] The embodiment shown in FIG. 2 differs from the embodiment shown in FIG. 1 in the following points. That is, the flow rate and pressure of the electrolyte flowing through the electrolyte return pipe 112 are A sensor 120 is provided to detect the following. The sensor 120 has a computer 121 is connected, and the information detected by sensor 120 is converted into a signal and sent to the computer. The data is sent to the computer 121. The computer 121 opens the valve based on this signal. The closing means 122 is instructed to operate the valve 101. configured as above With redox flow batteries, the valves are operated automatically, so there is no trouble. problems can be dealt with more accurately and quickly.

【0023】 なお、上記実施例では、電解液循環型電池としてレドックスフロー電池を例示 したが、この発明はこれに限られるものでない。[0023] In addition, in the above example, a redox flow battery is exemplified as an electrolyte circulation type battery. However, the invention is not limited to this.

【0024】[0024]

【考案の効果】[Effect of the idea]

以上説明したとおり、この考案に係る電解液循環型電池によれば、システム停 止時に、配管内の電解液等を電解液貯蔵用タンク内に戻すことができる。その結 果、故障部分の取替え等の作業が安全かつ能率よく行なえるという効果を奏する 。 As explained above, according to the electrolyte circulation type battery according to this invention, system stoppage is possible. When the system is shut down, the electrolyte in the piping can be returned to the electrolyte storage tank. The result As a result, work such as replacing failed parts can be carried out safely and efficiently. .

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本考案の一実施例に係るレドックスフロー電池
の、電解液貯蔵用タンクと電池セルとの接続部分の概略
図である。
FIG. 1 is a schematic diagram of a connecting portion between an electrolyte storage tank and a battery cell in a redox flow battery according to an embodiment of the present invention.

【図2】この考案の他の実施例の概略図である。FIG. 2 is a schematic diagram of another embodiment of the invention.

【図3】電力需要曲線を示す図である。FIG. 3 is a diagram showing a power demand curve.

【図4】従来のレドックスフロー電池の一例を示す概略
構成図である。
FIG. 4 is a schematic configuration diagram showing an example of a conventional redox flow battery.

【図5】従来のレドックスフロー電池の、電池セルと電
解液貯蔵用タンクとの接合部分の概略図である。
FIG. 5 is a schematic diagram of a joint portion between a battery cell and an electrolyte storage tank in a conventional redox flow battery.

【符号の説明】[Explanation of symbols]

100 バイパス管路 101 バルブ 102 電池セル 103 電解液貯蔵用タンク 103a 電解液貯蔵用タンクの気相部 104 電解液 111 電解液供給用管路 112 電解液戻し用管路 112a 環流口 100 Bypass pipeline 101 Valve 102 Battery cell 103 Electrolyte storage tank 103a Gas phase part of electrolyte storage tank 104 Electrolyte 111 Electrolyte supply pipe line 112 Electrolyte return conduit 112a Circulation port

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 正極セルと負極セルとを含む電池セル
と、前記電池セルに循環供給される電解液を貯蔵する電
解液貯蔵用タンクと、前記電池セルと前記電解液貯蔵用
タンクとの間に連結され、前記電解液貯蔵用タンクから
前記電解液を前記電池セルに送り込む電解液供給用管路
と、前記電池セルで反応した前記電解液を前記電解液貯
蔵用タンクに戻すための電解液戻し用管路と、を備え、
前記電解液戻し用管路の一端は前記電池セルに接続さ
れ、該電解液戻し用管路の他端の環流口は、前記電解液
貯蔵用タンク内の前記電解液の中に潜入しており、当該
電池はさらに、その一端が前記電解液戻し用管路に接続
され、かつその他端が前記電解液貯蔵用タンク内の気相
部に接続されたバイパス管路を備える、電解液循環型電
池。
1. A battery cell including a positive electrode cell and a negative electrode cell, an electrolyte storage tank that stores an electrolyte that is circulated and supplied to the battery cell, and between the battery cell and the electrolyte storage tank. an electrolyte supply conduit connected to the electrolyte storage tank for feeding the electrolyte from the electrolyte storage tank to the battery cell; and an electrolyte for returning the electrolyte reacted in the battery cell to the electrolyte storage tank. A return conduit;
One end of the electrolyte return pipe is connected to the battery cell, and a circulation port at the other end of the electrolyte return pipe is submerged into the electrolyte in the electrolyte storage tank. , the battery further includes a bypass pipe line, one end of which is connected to the electrolyte return pipe line, and the other end of which is connected to a gas phase section in the electrolyte storage tank, an electrolyte circulation type battery. .
【請求項2】 当該電池内における電解液の流量、圧力
などを検知し、コンピュータに信号を送るトラブル発見
用センサと、前記トラブル発見用センサの信号に基づい
て前記バルブの開閉を操作するバルブ開閉手段と、をさ
らに備える、請求項1に記載の電解液循環型電池。
2. A trouble-finding sensor that detects the flow rate, pressure, etc. of electrolyte in the battery and sends a signal to a computer, and a valve that opens and closes the valve based on the signal from the trouble-finding sensor. The electrolyte circulation type battery according to claim 1, further comprising: means.
JP1991029599U 1991-04-26 1991-04-26 Electrolyte circulation battery Expired - Fee Related JP2557947Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991029599U JP2557947Y2 (en) 1991-04-26 1991-04-26 Electrolyte circulation battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991029599U JP2557947Y2 (en) 1991-04-26 1991-04-26 Electrolyte circulation battery

Publications (2)

Publication Number Publication Date
JPH04124755U true JPH04124755U (en) 1992-11-13
JP2557947Y2 JP2557947Y2 (en) 1997-12-17

Family

ID=31913428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991029599U Expired - Fee Related JP2557947Y2 (en) 1991-04-26 1991-04-26 Electrolyte circulation battery

Country Status (1)

Country Link
JP (1) JP2557947Y2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013025965A (en) * 2011-07-19 2013-02-04 Sumitomo Electric Ind Ltd Redox flow cell
WO2014045337A1 (en) * 2012-09-18 2014-03-27 住友電気工業株式会社 Redox flow battery
JP2014209489A (en) * 2010-01-25 2014-11-06 ラモット アット テル−アヴィヴ ユニヴァーシテイ リミテッドRamot At Tel−Avivuniversity Ltd Energy storage and generation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275591A (en) * 1985-05-30 1986-12-05 Kosaku Kusaba Pump device having bypass valve
JPS63285875A (en) * 1987-05-18 1988-11-22 Chubu Electric Power Co Inc Redox-flow cell
JPH01307174A (en) * 1988-06-03 1989-12-12 Kansai Electric Power Co Inc:The Electrolyte tank for secondary battery of electrolyte circulating type
JPH0298598A (en) * 1988-09-26 1990-04-10 Tokyo Tatsuno Co Ltd Liquid supply device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275591A (en) * 1985-05-30 1986-12-05 Kosaku Kusaba Pump device having bypass valve
JPS63285875A (en) * 1987-05-18 1988-11-22 Chubu Electric Power Co Inc Redox-flow cell
JPH01307174A (en) * 1988-06-03 1989-12-12 Kansai Electric Power Co Inc:The Electrolyte tank for secondary battery of electrolyte circulating type
JPH0298598A (en) * 1988-09-26 1990-04-10 Tokyo Tatsuno Co Ltd Liquid supply device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014209489A (en) * 2010-01-25 2014-11-06 ラモット アット テル−アヴィヴ ユニヴァーシテイ リミテッドRamot At Tel−Avivuniversity Ltd Energy storage and generation system
JP2013025965A (en) * 2011-07-19 2013-02-04 Sumitomo Electric Ind Ltd Redox flow cell
WO2014045337A1 (en) * 2012-09-18 2014-03-27 住友電気工業株式会社 Redox flow battery
US10090541B2 (en) 2012-09-18 2018-10-02 Sumitomo Electric Industries, Ltd. Redox flow battery

Also Published As

Publication number Publication date
JP2557947Y2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
CN100557877C (en) The abnormality determination method of fuel cell system and fuel cell system
CN103733409B (en) System and method for sensing and mitigating hydrogen evolution within a flow battery system
CN102013505B (en) Automotive fuel cell hydrogen circulating system
WO2008118124A1 (en) Vanadium redox battery incorporating multiple electrolyte reservoirs
CN103943876B (en) A kind of flow battery, which is matched somebody with somebody, applies mechanically pipeline structure
CN109713350A (en) The vanadium cell system of included electrolytic cell and the rebalancing method of vanadium cell liquid
CN205790191U (en) A kind of fuel cell power generation subsystem with self-activation function
CN209087993U (en) The vanadium cell system of included electrolytic cell
JPH02195657A (en) Electrolyte circulation type secondary battery
JP3231273B2 (en) Electrolyte flow battery
JPH04124755U (en) Electrolyte circulating battery
CN112848934B (en) Power supply device for electric ship and method for charging electric ship
CN207490021U (en) A kind of integral new-energy passenger fuel cell system with cooling water quality control
CN113540508A (en) Fuel cell system test bench
CN210040419U (en) Pile pipeline system for high-power fuel cell
CN210000133U (en) High-voltage power distribution system of fuel cell hybrid electric vehicle
CN218299835U (en) Hydrogen storage and recycling system of fuel cell
JP2528100Y2 (en) Electrolyte flow battery
CN201868510U (en) Vehicular fuel cell hydrogen circulation system
JP3078186B2 (en) Electrolyte for redox flow battery and method of operation
JPH044567A (en) Redox flow battery
CN220189708U (en) All-vanadium redox flow battery energy storage circulating system capable of sharing capacity and achieving parallel charging and discharging
JPH0530299Y2 (en)
CN112635799B (en) Electrolyte management method and management system of metal fuel cell
CN220086097U (en) High-level water tank liquid adding system of fuel cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970819

LAPS Cancellation because of no payment of annual fees