JP2013024620A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2013024620A
JP2013024620A JP2011157389A JP2011157389A JP2013024620A JP 2013024620 A JP2013024620 A JP 2013024620A JP 2011157389 A JP2011157389 A JP 2011157389A JP 2011157389 A JP2011157389 A JP 2011157389A JP 2013024620 A JP2013024620 A JP 2013024620A
Authority
JP
Japan
Prior art keywords
ultrasonic
fluid
equation
propagation time
propagation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011157389A
Other languages
Japanese (ja)
Other versions
JP5812734B2 (en
Inventor
Shigetada Matsushita
重忠 松下
Michitaka Noguchi
通隆 野口
Keiji Kido
啓二 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kofloc KK
Original Assignee
Kofloc KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kofloc KK filed Critical Kofloc KK
Priority to JP2011157389A priority Critical patent/JP5812734B2/en
Publication of JP2013024620A publication Critical patent/JP2013024620A/en
Application granted granted Critical
Publication of JP5812734B2 publication Critical patent/JP5812734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic flowmeter having constant flow sensitivity irrelevant to a type or temperature of fluid.SOLUTION: In a so-called propagation time difference type ultrasonic flowmeter, annular ultrasonic vibrators 2 and 3 are provided separated at a constant interval L from each other, on an upstream side and a downstream side of a straight measurement tube 1; each of the annular ultrasonic vibrators alternately operates one as an ultrasonic transmitter and the other as an ultrasonic receiver, and measures a time difference ΔT between a downstream-directional ultrasonic propagation time Tand an upstream-directional ultrasonic propagation time Tto calculate a flow rate v. An acoustic velocity cof fluid is represented as a predetermined function f(c) of the propagation speed c of an ultrasonic wave, and the flow rate v of the fluid is calculated by an expression: v=f(c)*c*ΔT/2L incorporating derivatives of the function, using the actually measured propagation speed c and propagation time difference ΔT.

Description

この発明は、全長に亘って同径な測定管に、2個の円環状超音波振動子をその内周面が測定管に接触するように一定距離を隔てて設け、この2個の円環状超音波振動子を一方が超音波送信機、他方が超音波受信機として交互に作動させ、下流方向超音波伝播時間と、上流方向超音波伝播時間の時間差を測定して流速を算出する、いわゆる伝播時間差方式の超音波流量計に関する。   In the present invention, two annular ultrasonic transducers are provided on a measurement tube having the same diameter over the entire length with a certain distance so that the inner peripheral surface thereof is in contact with the measurement tube. The ultrasonic transducer is operated alternately as one ultrasonic transmitter and the other as an ultrasonic receiver, and the flow rate is calculated by measuring the time difference between the downstream ultrasonic propagation time and the upstream ultrasonic propagation time, so-called The present invention relates to a propagation time difference type ultrasonic flowmeter.

一般に、超音波流量計は、配管の外側から流量を測定でき、また測定に伴う圧力損失が全く無い、正逆いずれも流速ゼロから測定可能であるなどの優れた特徴がある。
超音波流量計には、伝播時間差方式とドップラー方式とがあるが、性能の安定した伝播時間差方式が一般的である。
In general, the ultrasonic flowmeter has excellent characteristics such as that the flow rate can be measured from the outside of the pipe, there is no pressure loss accompanying the measurement, and both forward and reverse can be measured from zero flow velocity.
Ultrasonic flowmeters include a propagation time difference method and a Doppler method, but a propagation time difference method with stable performance is generally used.

伝播時間差方式の超音波流量計の一般的な形態としては、図4に示す斜め入射角方式の検出部の構造のように、2個のくさび型超音波振動子を管体の外面において斜めに向かい合わせの位置に設け、この2個の超音波振動子を一方が超音波送信機、他方が超音波受信機として交互に作動させるものであり、発生した超音波は、管内の流体中を流れに対して斜めに伝播する(例えば特許文献1参照)。   As a general form of the propagation time difference type ultrasonic flowmeter, two wedge-type ultrasonic transducers are obliquely arranged on the outer surface of the tubular body as in the structure of the oblique incident angle type detection unit shown in FIG. The two ultrasonic transducers are alternately operated as one ultrasonic transmitter and the other as an ultrasonic receiver. The generated ultrasonic waves flow through the fluid in the pipe. (See, for example, Patent Document 1).

上記のようなくさび型の超音波振動子により管体に対して斜めに超音波を打ち込む方法に対しては、管体の外径が小さくなるにつれ、測定間隔が短くなり、十分な測定精度が得られなかった。   In contrast to the above-described method in which ultrasonic waves are applied obliquely to the tube with a wedge-shaped ultrasonic transducer, the measurement interval is shortened and sufficient measurement accuracy is achieved as the outer diameter of the tube is reduced. It was not obtained.

このため、上流下流の超音波振動子の間隔を十分に取る目的で、図5に示すように管路を上流部および下流部で直角に曲げて、直角部の外面から管体の軸方向に、流速方向と平行に、超音波を伝播させる方法が広く用いられている。
しかし測定管の口径を更に小さくすると、管体の断面積が超音波振動子の振動断面積に比べ非常に小さくなり、管内の流体を伝播する超音波の割合が減少し、測定がますます困難になる。
Therefore, for the purpose of ensuring sufficient spacing between the upstream and downstream ultrasonic transducers, the pipe is bent at a right angle at the upstream and downstream portions as shown in FIG. A method of propagating ultrasonic waves in parallel with the flow velocity direction is widely used.
However, if the diameter of the measuring tube is further reduced, the cross-sectional area of the tube body becomes much smaller than the vibrational cross-sectional area of the ultrasonic transducer, and the proportion of ultrasonic waves propagating through the fluid in the pipe decreases, making measurement more difficult. become.

そこで小口径管における流量測定を可能にするために、円環状の超音波振動子を使用することが行われている(例えば特許文献2参照)。
この超音波振動子は、図1に示すように、2個の円環状超音波振動子を真直ぐな測定管により貫通されるようにして管の外面に接触するように距離を隔てて装填したものである。
この形体を取ることにより、微小口径管においても超音波による流量測定が適用できることになった。
Therefore, in order to make it possible to measure the flow rate in a small-diameter pipe, an annular ultrasonic transducer is used (for example, see Patent Document 2).
As shown in FIG. 1, this ultrasonic transducer is one in which two annular ultrasonic transducers are penetrated by a straight measuring tube and loaded at a distance so as to contact the outer surface of the tube. It is.
By adopting this shape, flow measurement by ultrasonic waves can be applied even to a small diameter tube.

しかもこの方式では、超音波が真直ぐな管の断面全体を伝播するため乱流と層流のような流速分布の影響を受けないので数ミリ以下の測定管に微小流量を流す時にも平均流量が得られる長所がある。   Moreover, in this method, since the ultrasonic wave propagates through the entire cross section of the straight pipe, it is not affected by the flow velocity distribution such as turbulent flow and laminar flow. There are advantages to be gained.

さらに上下流に配置する一対の超音波流量計振動子の距離を十分な長さにとれることから、上流方向と下流方向への伝播時間の差を大きくできて、測定感度を高められるという長所がある。   Furthermore, since the distance between the pair of ultrasonic flowmeter transducers arranged upstream and downstream can be made sufficiently long, the difference in propagation time between the upstream direction and the downstream direction can be increased, and the measurement sensitivity can be increased. is there.

ところで、伝播時間差方式超音波流量計の一般的な測定方法は、先ず上流側振動子から超音波を送信し、下流側振動子で受信する。このときの伝播時間をTとする。次に送受信機を切替えて、下流側から超音波を送信し、上流側で受信する。このときの伝播時間をTとする。 By the way, in a general measurement method of the propagation time difference type ultrasonic flowmeter, first, an ultrasonic wave is transmitted from the upstream vibrator and received by the downstream vibrator. The propagation time of this time is T 1. Next, the transmitter / receiver is switched, and ultrasonic waves are transmitted from the downstream side and received at the upstream side. The propagation time of this time is T 2.

この時、上下流超音波振動子間の距離をL、超音波の伝播速度をc、流体の流速をvとすると以下の式が成立する。   At this time, when the distance between the upstream and downstream ultrasonic transducers is L, the propagation velocity of the ultrasonic wave is c, and the flow velocity of the fluid is v, the following equation is established.

=L/(c+v)、 T=L/(c−v) ・・・・・(1)
そこで、測定した上下流の伝播時間TとTから
=(T+T)/2 ・・・・・(2)
c=L/T ・・・・・(3)

を演算し、(4)式から流体の流速vは、

と表せる。
T 1 = L / (c + v), T 2 = L / (c−v) (1)
Therefore, from the measured upstream and downstream propagation times T 1 and T 2 , T 0 = (T 1 + T 2 ) / 2 (2)
c = L / T 0 (3)

And the flow velocity v of the fluid from the equation (4) is

It can be expressed.

つまり、上下流伝播時間TとTを測定し、そこから伝播時間差ΔTと伝播速度cを演算し、流体の流速vを算出している。 That is, the upstream / downstream propagation times T 1 and T 2 are measured, the propagation time difference ΔT and the propagation velocity c are calculated therefrom, and the fluid flow velocity v is calculated.

特開平8−313317号公報JP-A-8-313317 特開平8−86675号公報JP-A-8-86675

上記したように円環状の超音波振動子を使って測定管を介して超音波を伝播させる構造の場合は、超音波は測定管内の流体だけでなく、測定管自身を介しても伝播するものである。   In the case of a structure in which an ultrasonic wave is propagated through a measurement tube using an annular ultrasonic transducer as described above, the ultrasonic wave propagates not only through the fluid in the measurement tube but also through the measurement tube itself. It is.

そのため、実際、上記伝播速度cの値は、流体の音速とはかけ離れたものとなる。
例えば、測定管を外径6mm、内径4mmのPFA管、流体を水として実測した場合、常温では、水の音速が1.5km/sのところ、伝播速度cは約1.15km/sであった。
Therefore, in actuality, the value of the propagation velocity c is far from the sound velocity of the fluid.
For example, when the measurement tube is a PFA tube having an outer diameter of 6 mm and an inner diameter of 4 mm and the fluid is water, the propagation velocity c is about 1.15 km / s at room temperature when the sound speed of water is 1.5 km / s. It was.

したがって、上記(1)式のように、伝播速度cが流速vによって、c±vに変わるという前提が成立しない。上記(1)式は超音波の伝播が全て流体を介して行われると仮定した場合に限り適用できるものである。
実際、前述の外径6mm、内径4mmのPFA管を用いて実測したところでは、水を介して伝播している超音波の割合は3割以下であった。
Therefore, the assumption that the propagation velocity c changes to c ± v depending on the flow velocity v as in the above equation (1) does not hold. The above equation (1) can be applied only when it is assumed that the propagation of the ultrasonic wave is performed through the fluid.
Actually, the ratio of ultrasonic waves propagating through water was 30% or less when measured using the above-mentioned PFA tube having an outer diameter of 6 mm and an inner diameter of 4 mm.

超音波流量計の基本前提である(1)式が崩れると、測定流体の温度変化や、測定流体の種類が変わると、一定温度の水で校正した流量計の指示値に大きな誤差が発生することになる。   If equation (1), which is the basic premise of an ultrasonic flowmeter, breaks down, a large error will occur in the indicated value of the flowmeter calibrated with water at a constant temperature when the temperature change of the measurement fluid or the type of the measurement fluid changes. It will be.

本発明は、上記した事情に鑑みてなされたものであり、上式(1)における伝播速度cと流速vの関係を正すことにより、流体温度や流体の種類によらず、正確かつ適正な流量測定をなし得る超音波流量計を提供することを目的とする。   The present invention has been made in view of the above circumstances, and by correcting the relationship between the propagation velocity c and the flow velocity v in the above equation (1), an accurate and appropriate flow rate can be obtained regardless of the fluid temperature or the type of fluid. An object of the present invention is to provide an ultrasonic flowmeter capable of measuring.

前記目的を達成するために、本発明の超音波流量計は、2個の円環状超音波振動子を、被測定流体を流す測定管により貫通されて測定管に接触するように距離を隔てて設け、前記2個の円環状超音波振動子を一方が超音波送信機、他方が超音波受信機として交互に作動させ、被測定流体の上流側の超音波振動子を超音波送信機としたときの下流方向超音波伝播時間と、被測定流体の下流側の超音波振動子を超音波送信機としたときの上流方向超音波伝播時間との時間差により流速を算出する超音波流量計において、下流方向超音波伝播時間T、上流方向超音波伝播時間Tを測定する超音波伝播時間測定手段と、前記各測定結果を入力して下記(6)、(7)及び(8)式により伝播時間差ΔT、伝播速度cを算出する第1の演算部と、2個の超音波振動子間の距離L、測定管の外径bと内径a、測定管材のヤング係数Eとポアソン比σ及び測定管内を流れる流体の密度ρと超音波の伝播速度cからGroenwallの式(9)に基づいて演算係数yを算出する第2の演算部と、流体音速cを超音波の伝播速度cの関数として表した(11)式の導関数を計算する第3の演算部と、前記伝播時間差ΔT、前記超音波振動子間の距離L、および前記超音波伝播速度cから下式(12)により流体の流速vを算出する演算を行う第4の演算部とから構成されている。 In order to achieve the above object, the ultrasonic flowmeter of the present invention has two annular ultrasonic transducers separated by a distance so as to be penetrated by a measurement tube through which a fluid to be measured flows and to contact the measurement tube. The two annular ultrasonic transducers are alternately operated as one ultrasonic transmitter and the other as an ultrasonic receiver, and the ultrasonic transducer upstream of the fluid to be measured is used as the ultrasonic transmitter. In the ultrasonic flowmeter that calculates the flow velocity by the time difference between the downstream ultrasonic propagation time and the upstream ultrasonic propagation time when the ultrasonic transducer downstream of the fluid to be measured is an ultrasonic transmitter, The ultrasonic propagation time measuring means for measuring the downstream ultrasonic propagation time T 1 and the upstream ultrasonic propagation time T 2 , and the respective measurement results are input, and the following (6), (7) and (8) are used. A first calculation unit for calculating a propagation time difference ΔT and a propagation speed c; The distance L between the number of ultrasound transducers, outer diameter b and an inner diameter a of the measuring tube, the measuring tube material Young's modulus E and Poisson's ratio σ and the density [rho 1 of the fluid flowing through the measuring tube from the ultrasonic wave propagation velocity c Groenwall A second calculation unit that calculates the calculation coefficient y based on the equation (9), and a third calculation unit that calculates a derivative of the equation (11) in which the fluid sound velocity c 0 is expressed as a function of the ultrasonic propagation velocity c. From a calculation unit and a fourth calculation unit that calculates the flow velocity v of the fluid from the propagation time difference ΔT, the distance L between the ultrasonic transducers, and the ultrasonic propagation velocity c by the following equation (12) It is configured.


ここで、Aの値は、測定管の材質・寸法に固有の部分を抜き出したものである。

Here, the value of A is obtained by extracting a portion specific to the material and dimensions of the measuring tube.

ここで、(9)式を流体音速cについて書き直し、関数f(c)で表す。
ここで、f‘(c)は関数f(c)の導関数である。
Here, Equation (9) is rewritten with respect to the fluid sound velocity c 0 and is expressed by a function f (c).
Here, f ′ (c) is a derivative of the function f (c).

また、この発明の超音波流量計において、
前記Groenwallの式(9)のyの3次項以上を省き、
と近似化し、
前記第4の演算部では、測定管の材質・寸法の固有値となる部分を抜き出した
(20)式の

のAの値と、振動子間距離L及び流体密度ρを設定し、
実測した伝播速度cおよびΔTから(24)式
を演算して流速vを得るようにしても良い。
In the ultrasonic flowmeter of the present invention,
Omitting the third and higher terms of y in the Groenwall equation (9);
And approximate
In the fourth calculation unit, a part that is an eigenvalue of the material and dimensions of the measurement tube is extracted.

Set the value of A, the inter-vibrator distance L and the fluid density ρ 1 ,
From the measured propagation velocity c and ΔT, equation (24)
May be calculated to obtain the flow velocity v.

さらに、この発明の超音波流量計において、
前記第2の演算部において、(20)式

のAの値を使用現場で直接設定入力するのではなく、測定管の材質・寸法は製品型式として固定であり、あらかじめ工場出荷以前に水の温度を変化させ、流体温度t°Cに対応した上記(20)式のA値の特性曲線を作成して、これを演算装置に組み込んでおき、現地で流体温度t°Cを設定入力することにより、その時の温度に対応したA値を取り込めるようにした演算部を設けても良い。
Furthermore, in the ultrasonic flowmeter of the present invention,
In the second calculation unit, equation (20)

Instead of directly setting and inputting the value of A at the site of use, the material and dimensions of the measuring tube are fixed as the product model, and the water temperature was changed in advance before shipment from the factory to support the fluid temperature t ° C. A characteristic curve of the A value in the above equation (20) is created, incorporated in the arithmetic unit, and the fluid temperature t ° C is set and input locally, so that the A value corresponding to the temperature at that time can be captured. You may provide the calculated operation part.

この発明によれば、流速vと流速変化による伝播速度cの変化の関係を定めたことにより、工場出荷時の水による校正精度を、現場での流体の種類や流体温度の変化に対して広く適用できることにより、流体の種類や流体温度の如何によらず、正確かつ適正な流量測定をなし得ることができ、超音波流量計としての実用的価値を高めることができる。   According to the present invention, by defining the relationship between the flow velocity v and the change in the propagation velocity c due to the flow velocity change, the calibration accuracy with water at the time of shipment from the factory can be widened with respect to the type of fluid and the change in fluid temperature. By being applicable, accurate and appropriate flow rate measurement can be performed regardless of the type of fluid and the fluid temperature, and the practical value as an ultrasonic flow meter can be increased.

一実施形態に係る超音波流量計の検出部の構造を示す外観斜視図である。It is an external appearance perspective view which shows the structure of the detection part of the ultrasonic flowmeter which concerns on one Embodiment. 同実施形態超音波流量計の回路構成を示す回路ブロック図である。It is a circuit block diagram which shows the circuit structure of the embodiment ultrasonic flowmeter. 同実施形態超音波流量計の測定動作を説明するためのフロー図である。It is a flowchart for demonstrating the measurement operation | movement of the embodiment ultrasonic flowmeter. 従来の斜め入射角方式の超音波流量計を説明するための概略図である。It is the schematic for demonstrating the conventional ultrasonic flowmeter of an oblique incident angle system. 従来、使用されている90度折り曲げ形検出部を説明するための概略図である。It is the schematic for demonstrating the 90 degree bending shape detection part used conventionally.

以下、実施の形態により、この発明をさらに詳細に説明する。図1はこの発明の一実施形態超音波流量計の超音波振動子の設置状態を示す外観斜視図である。この実施形態超音波流量計では、超音波振動子として、円環式の2個の超音波振動子2,3が流量を測定すべき流体を流す測定管1に、それぞれ内径部分が測定管1の外壁に接するように挿通され、所定の距離Lをおいて設置されている。   Hereinafter, the present invention will be described in more detail with reference to embodiments. FIG. 1 is an external perspective view showing an installation state of an ultrasonic transducer of an ultrasonic flowmeter according to an embodiment of the present invention. In this embodiment of the ultrasonic flowmeter, two annular ultrasonic transducers 2 and 3 are used as ultrasonic transducers in the measurement tube 1 for flowing a fluid whose flow rate is to be measured. It is inserted so as to be in contact with the outer wall, and is installed at a predetermined distance L.

測定管1に、被測定流体が左方から右方に流される場合、図1において、超音波振動子2が上流側に設置される超音波振動子であり、右側の超音波振動子3が下流側に設置され る超音波振動子である。   When the fluid to be measured flows through the measurement tube 1 from left to right, in FIG. 1, the ultrasonic transducer 2 is an ultrasonic transducer installed on the upstream side, and the right ultrasonic transducer 3 is This is an ultrasonic transducer installed on the downstream side.

図2は、この実施形態超音波流量計の基本的な回路構成を示す回路ブロック図である。この実施形態超音波流量計は、上記した上流側超音波振動子2と、下流側超音波振動子3と、これら上流側超音波振動子2及び下流側超音波振動子3の一方を送信機とし、他方を受信機として機能切替を行うための切替回路4と、超音波振動子2,3のいずれかを送信機として駆動するための信号を切替回路4を介して超音波振動子に加える振動子駆動回路5と、受信機用の超音波振動子より切替回路4を介して超音波信号を受信する受信回路6と、振動子駆動回路5より切替回路4を介して送信超音波振動子を指定して、超音波を発信させ、その超音波信号を受信超音波振動子、切替回路4より、受信回路6を経て取込み、流量信号を算出する制御演算を行う制御・演算部7と、を備えている。   FIG. 2 is a circuit block diagram showing a basic circuit configuration of the ultrasonic flowmeter according to this embodiment. In this embodiment, the ultrasonic flowmeter is configured such that the upstream ultrasonic transducer 2, the downstream ultrasonic transducer 3, and one of the upstream ultrasonic transducer 2 and the downstream ultrasonic transducer 3 are connected to the transmitter. The switching circuit 4 for switching the function with the other as a receiver and a signal for driving one of the ultrasonic vibrators 2 and 3 as a transmitter are added to the ultrasonic vibrator via the switching circuit 4 A transducer driving circuit 5, a receiving circuit 6 that receives an ultrasonic signal from an ultrasonic transducer for a receiver through a switching circuit 4, and a transmission ultrasonic transducer from the transducer driving circuit 5 through a switching circuit 4. A control / arithmetic unit 7 for performing a control calculation for calculating the flow rate signal by transmitting the ultrasonic signal from the reception ultrasonic transducer / switching circuit 4 via the reception circuit 6, It has.

もっとも、ここに示す円環式の超音波振動子2,3及び切替回路4,振動子駆動回路5,受信回路6及び制御・演算部7の基本的構成は、従来の伝送時間差式の超音波流量計の構成と、特に代わるものではなく、この実施形態超音波流量計の最も特徴とするところは、制御・演算部7が有する処理機能にある。   However, the basic configurations of the annular ultrasonic transducers 2 and 3 and the switching circuit 4, the transducer driving circuit 5, the receiving circuit 6 and the control / calculation unit 7 shown here are the conventional transmission time difference type ultrasonic transducers. The configuration of the flow meter is not particularly different, and the most characteristic feature of the ultrasonic flow meter of this embodiment is the processing function of the control / calculation unit 7.

この実施形態超音波流量計において、制御・演算部7は、流量測定の開始時に、切替回路4をa接点側に切り替えて、振動子駆動回路5より切替回路4を経て超音波振動子2を送信機として駆動させ、測定管1内を伝播する超音波を超音波振動子3で受信させ、受信回路6を経て取込み、下流側超音波伝播時間Tを計測し記憶する機能を備えている。 In the ultrasonic flowmeter of this embodiment, the control / calculation unit 7 switches the switching circuit 4 to the a contact side at the start of flow measurement, and moves the ultrasonic transducer 2 from the transducer driving circuit 5 via the switching circuit 4. is driven as a transmitter, the ultrasonic waves propagating in the measurement pipe 1 is received by the ultrasonic oscillator 3, via the receiver circuit 6 uptake, it has a function of measuring and storing the downstream ultrasonic wave propagation time T 1 .

同様に、制御・演算部7は、切替回路4をb接点側に切替えて、下流側の超音波振動子3を送信機として機能させ、この超音波振動子2より上流側に向けて送信された超音波を超音波振動子2で受信させ、受信回路6を経て取込み上流側超音波伝播時間Tを計測しし記憶する機能を備えている。 Similarly, the control / arithmetic unit 7 switches the switching circuit 4 to the b-contact side so that the ultrasonic transducer 3 on the downstream side functions as a transmitter, and is transmitted toward the upstream side from the ultrasonic transducer 2. and the ultrasonic wave is received by the ultrasonic oscillator 2, through the reception circuit 6 Shi measures the uptake upstream ultrasonic wave propagation time T 2 has a function of storing.

制御・演算部7は、上記下流側超音波伝播時間T、上流側超音波伝播時間T及び両超音波振動子2,3間の距離Lに基づいて、伝播時間差ΔT、平均伝播時間T、伝播速度cを算出する式
ΔT=T―T ・・・・・(6)
=(T+T)/2 ・・・・・(7)
c=L/T ・・・・・(8)
を算出しており、それぞれを算出する機能を備えている。換言すれば、制御・演算部7は、上記(6)、(7)及び(8)式により伝播時間差ΔT、伝播速度cを算出する第1の演算部としての機能を備えている。
Based on the downstream ultrasonic wave propagation time T 1 , the upstream ultrasonic wave propagation time T 2, and the distance L between the two ultrasonic transducers 2 and 3, the control / calculation unit 7 determines the propagation time difference ΔT and the average propagation time T. 0 , equation for calculating the propagation velocity c ΔT = T 2 −T 1 (6)
T 0 = (T 1 + T 2 ) / 2 (7)
c = L / T 0 (8)
And has a function to calculate each. In other words, the control / calculation unit 7 has a function as a first calculation unit that calculates the propagation time difference ΔT and the propagation speed c by the above equations (6), (7), and (8).

また、制御・演算部7は、測定管1の外径bと内径a、測定管材のヤング係数Eとポアソン比σおよび測定管1を流れる流体の密度ρと超音波の伝播速度cからGroenwallの式(9)、

及び、これに基づいて演算係数yを求める式(10)、

を記憶しており、演算係数yを算出する機能を備えている。この点、制御・演算部7は、演算係数yを算出する第2の演算部としての機能を備えている。
The control / calculation unit 7 also determines the Groenwall from the outer diameter b and inner diameter a of the measuring tube 1, the Young's modulus E and Poisson's ratio σ of the measuring tube, the density ρ 1 of the fluid flowing through the measuring tube 1, and the ultrasonic propagation velocity c. Equation (9)

And an expression (10) for obtaining the calculation coefficient y based on this,

And has a function of calculating the calculation coefficient y. In this regard, the control / calculation unit 7 has a function as a second calculation unit that calculates the calculation coefficient y.

さらに、制御・演算部7は、式(9)を流体音速cについて書き直した下式(11)
を記憶しており、流体音速cを算出する機能を備えている。この点、制御・演算部7は、流体音速cを超音波の伝播速度cの関数として表した式(11)の導関数を計算する第3の演算部としての機能を備えている。
Further, the control / calculation unit 7 rewrites the equation (9) for the fluid sound velocity c 0 as the following equation (11)
Stores the, has a function of calculating the fluid sound speed c 0. In this regard, the control / calculation unit 7 has a function as a third calculation unit that calculates a derivative of Expression (11) in which the fluid sound velocity c 0 is expressed as a function of the ultrasonic propagation velocity c.

さらに、制御・演算部7は、式(11)の関数f(c)を、微分した下式(12)

を記憶しており、つまり、伝播時間差ΔT、超音波振動子間の距離L、伝播速度c、流体音速cの導関数f‘(c)より流体流速vを算出する第4の演算部としての機能を備えている。制御・演算部7が、このような機能を備えることにより、この実施形態超音波流量計では、流体温度、流体物にかかわりなく、流体流速を正確に算出することができる。
なお、ここで、上記の流速vと伝播時間差ΔTの関係式(12)の導出を、下式(13)〜(18)に沿って説明する。
Further, the control / calculation unit 7 differentiates the function f (c) of the equation (11) by the following equation (12)

That is, as a fourth calculation unit that calculates the fluid flow velocity v from the propagation time difference ΔT, the distance L between the ultrasonic transducers, the propagation velocity c, and the derivative f ′ (c) of the fluid sound velocity c 0. It has the function of. Since the control / calculation unit 7 has such a function, the ultrasonic flowmeter of this embodiment can accurately calculate the fluid flow velocity regardless of the fluid temperature and the fluid.
Here, the derivation of the relational expression (12) between the flow velocity v and the propagation time difference ΔT will be described along the following expressions (13) to (18).

まず流速vに対応して伝播速度の微小変化Δcが発生するとして、
=L/(c+Δc)、 T=L/(c―Δc) ・・・・・(13)
が成立する。
この両式から、Δcを求めると、

下式を上式に代入すると

流体の音速cと伝播速度cとの関係は、前記定義で
=f(c) ・・・・・(17)
と表現したので、その微分値は、
Δc=f`(c)Δc ・・・・・(18)
ここでf`(c)は、関数f(c)の導関数である。
First, assuming that a small change Δc in the propagation velocity occurs corresponding to the flow velocity v,
T 1 = L / (c + Δc), T 2 = L / (c−Δc) (13)
Is established.
From these two equations, when Δc is obtained,

Substituting the following equation into the above equation

The relationship between the sound velocity c 0 of fluid and the propagation velocity c is as defined above.
c 0 = f (c) (17)
The differential value is
Δc 0 = f ` (c) Δc (18)
Here, f ` (c) is a derivative of the function f (c).

また、流速vが流体の音速cの変化量に相当するので
v=f`(c)Δc ・・・・・(19)
したがって、(18)式のΔcに(16)式を代入すると
を導出できる。
Since the flow velocity v corresponds to the amount of change in the sound velocity c 0 of the fluid,
v = f ` (c) Δc (19)
Therefore, substituting equation (16) for Δc in equation (18)
Can be derived.

次に、図3に示すフロー図を参照して、実施形態超音波流量計の流速(流量)検出処理動作を説明する。処理が開始されると、先ずステップST1において、制御・演算部7より、切替回路4に対し切替信号を送り、切替回路4の各切替スイッチの接片をa接点に投入する。このa接点ONにより、超音波振動子2が送信機に設定され、超音波振動子3が受信機に設定される。次にステップST2へ移行する。   Next, the flow velocity (flow rate) detection processing operation of the embodiment ultrasonic flowmeter will be described with reference to the flowchart shown in FIG. When the process is started, first, in step ST1, the control / calculation unit 7 sends a switching signal to the switching circuit 4, and the contact pieces of the respective switches of the switching circuit 4 are put into the a contacts. By turning on the contact a, the ultrasonic transducer 2 is set as a transmitter, and the ultrasonic transducer 3 is set as a receiver. Next, the process proceeds to step ST2.

ステップST2においては、制御・演算部7より送信指令が振動子駆動回路5に加えられ、この送信指令を受けて振動子駆動回路5は超音波振動子2を駆動する。これにより超音波振動子2より超音波信号が測定管1の下流方向に送信され超音波振動子3で受信され、切替回路4の接点aより受信回路6を経て、制御・演算部7に取込まれる。これにより、制御・演算部7で超音波振動子2から超音波が送信されてから超音波振動子3で受信されるまでの下流方向超音波伝送時間Tが求められ、記憶される。次にステップST3へ移行する。 In step ST <b> 2, a transmission command is applied from the control / calculation unit 7 to the transducer driving circuit 5, and the transducer driving circuit 5 drives the ultrasonic transducer 2 in response to the transmission command. As a result, an ultrasonic signal is transmitted from the ultrasonic transducer 2 in the downstream direction of the measuring tube 1 and received by the ultrasonic transducer 3, and is received by the control / arithmetic unit 7 from the contact a of the switching circuit 4 via the receiving circuit 6. Is included. As a result, the downstream ultrasonic transmission time T 1 from when the ultrasonic wave is transmitted from the ultrasonic transducer 2 to when it is received by the ultrasonic transducer 3 is obtained and stored by the control / calculation unit 7. Next, the process proceeds to step ST3.

ステップST3においては、制御・演算部7より、切替回路4に対し切替信号を送り、切替回路4の各切替スイッチの接片をb接点に投入する。このb接点ONにより、超音波振動子3が送信機に設定され、超音波振動子2が受信機に設定される。次にステップST4へ移行する。   In step ST3, the control / arithmetic unit 7 sends a switching signal to the switching circuit 4, and the contact piece of each switching switch of the switching circuit 4 is inserted into the b contact. With this b contact ON, the ultrasonic transducer 3 is set as a transmitter and the ultrasonic transducer 2 is set as a receiver. Next, the process proceeds to step ST4.

ステップST4においては、制御・演算部7より送信指令が振動子駆動回路5に加えられ、この送信指令を受けて振動子駆動回路5は超音波振動子3を駆動する。これにより超音波振動子3より超音波信号が測定管1の上流方向に送信され超音波振動子2で受信され、切替回路4の接点bより受信回路6を経て、制御・演算部7に取込まれる。これにより、制御・演算部7で超音波振動子3から超音波が送信されてから超音波振動子2で受信されるまでの上流方向超音波伝送時間Tが求められ、記憶される。次にステップST5へ移行する。 In step ST4, a transmission command is applied from the control / arithmetic unit 7 to the transducer driving circuit 5, and the transducer driving circuit 5 drives the ultrasonic transducer 3 in response to the transmission command. As a result, an ultrasonic signal is transmitted from the ultrasonic transducer 3 in the upstream direction of the measuring tube 1 and received by the ultrasonic transducer 2, and is received by the control / calculation unit 7 from the contact b of the switching circuit 4 via the receiving circuit 6. Is included. Thus, the upstream ultrasonic transmission time T 2 from when the ultrasonic wave is transmitted from the ultrasonic transducer 3 to when it is received by the ultrasonic transducer 2 is obtained and stored by the control / calculation unit 7. Next, the process proceeds to step ST5.

ステップST5においては、式(6)を用いての差、つまり伝播時間差ΔTを算出、記憶する。続いてステップST6へ移行する。ステップST6においては、式(7)を用いて、上流方向超音波伝送時間Tと下流方向超音波伝送時間Tの平均値、つまり平均伝播時間Tを算出記憶する。次に、ステップST7へ移行する。 In step ST5, the difference using equation (6), that is, the propagation time difference ΔT is calculated and stored. Subsequently, the process proceeds to step ST6. In step ST6, using Equation (7), upstream ultrasonic transmission time T 2 and the downstream ultrasonic transmission average time T 1, that is, calculated and stored an average propagation time T 0. Next, the process proceeds to step ST7.

ステップST7においては、2つの超音波振動子2,3間の距離Lが設定されているか否か判定する。新たな測定管1に設定した状態で、まだ、その振動子間距離Lが設定されていない場合は、ステップST8へ移行する。ステップST8においては、今回の振動子間距離Lを制御・演算部7に設定記憶する。設定記憶後、続いてステップST9へ移行する。一方、ステップST7において、振動子間距離Lが、すでに設定されている場合は、判定YESで、ステップST8をスキップしてステップST9へ移行する。   In step ST7, it is determined whether or not the distance L between the two ultrasonic transducers 2 and 3 is set. If the inter-vibrator distance L has not yet been set with the new measurement tube 1 set, the process proceeds to step ST8. In step ST 8, the current inter-vibrator distance L is set and stored in the control / calculation unit 7. After the setting is stored, the process proceeds to step ST9. On the other hand, if the inter-vibrator distance L has already been set in step ST7, the determination is YES, step ST8 is skipped, and the process proceeds to step ST9.

ステップST9においては、式(8)を用いて、すなわち予め設定記憶してある超音波振動子間距離Lを平均伝播時間Tで除算して超音波の伝播速度cを算出、記憶する。次にステップST10へ移行する。 In step ST9, using equation (8), that calculates the propagation speed c of the division to ultrasonic ultrasonic transducer distance L, which is previously set and stored in the mean propagation time T 0, is stored. Next, the process proceeds to step ST10.

ステップST10においては、測定管1の材質・寸法に固有な部分に相当する定数A、流体密度ρが設定されているか否か判定する。新たな測定管1に新たな流体を流し始める前であり、まだ定数A、流体密度ρが設定されていない場合は、判定NOでステップST11へ移行する。 In step ST10, it is determined whether or not the constant A and the fluid density ρ1 corresponding to the parts unique to the material and dimensions of the measuring tube 1 are set. A Before begins to conduct new fluid to the new measuring tube 1, if it is not set yet constants A, fluid density [rho 1 is transitioning determined NO to step ST11.

ステップST11においては、定数A、流体密度ρを制御・演算部7に設定記憶する。設定記憶後、続いてステップST12へ移行する。一方、ステップST10において、すでに定数A、流体密度ρが記憶されている場合は、判定YESでステップST11をスキップしてステップST12へ移行する。 In step ST11, sets stored constant A, the fluid density [rho 1 to the control and operation unit 7. After the setting is stored, the process proceeds to step ST12. On the other hand, in step ST10, if it is already constant A, fluid density [rho 1 is stored, by skipping step ST11 the determination YES the process proceeds to step ST12.

ステップ12においては、超音波振動子間の距離L、測定管の外径bと内径a、測定管材のヤング係数Eとポアソン比σおよび測定管内を流れる流体の密度ρ1と超音波の伝播速度cからGroenwallの式(9)に基づいて、(10)式から、設定された定数A、流体密度ρ、及び伝播速度cを用い、演算係数yを算出、記憶する。次に、ステップST13へ移行する。 In step 12, the distance L between the ultrasonic transducers, the outer diameter b and inner diameter a of the measurement tube, the Young's modulus E and Poisson's ratio σ of the measurement tube, the density ρ1 of the fluid flowing in the measurement tube, and the propagation velocity c of the ultrasonic wave From the equation (9), the calculation coefficient y is calculated and stored from the equation (10) using the set constant A, fluid density ρ 1 , and propagation velocity c. Next, the process proceeds to step ST13.

ステップST13においては、流体音速cを超音波の伝播速度cの関数とした式(11)の導関数を計算する。続いてステップST14へ移行する。
ステップST14においては、式(11)で求めた流体音速c=f(c)を微分して導関数f‘(c)を算出する。次にステップST15へ移行する。ステップST15においては、式(12)を用いて、伝播時間差ΔTと、超音波伝播速度cと、超音波振動子間の距離Lと、導関数f‘(c)とにより、流体速度vを算出する。
In step ST13, computes the derivative of formula (11) where the fluid sound speed c 0 as a function of the propagation speed c of the ultrasonic wave. Subsequently, the process proceeds to step ST14.
In step ST14, the derivative f '(c) is calculated by differentiating the fluid sound velocity c 0 = f (c) obtained by the equation (11). Next, the process proceeds to step ST15. In step ST15, using equation (12), the fluid velocity v is calculated from the propagation time difference ΔT, the ultrasonic wave propagation velocity c, the distance L between the ultrasonic transducers, and the derivative f ′ (c). To do.

次に、上記した、実施形態超音波流量計に対して、簡易な変形を加えて実施できる他の実施形態超音波流量計について説明する。
第1に、上記した流体の音速cと伝播速度cとの関係式、Groenwallの(9)式において、yの3次項以上を省いて実施しても良い。
Next, other embodiment ultrasonic flowmeters that can be implemented with simple modifications to the above-described ultrasonic flowmeters will be described.
First, in the relational expression between the sonic velocity c 0 and the propagation velocity c of the fluid described above, Groenwall's equation (9), the third and higher terms of y may be omitted.

このGroenwallの(9)式に定義されたyの実際値は、測定管1として外径6mm、内径4mmのPFAチューブを利用すると、常温においてy=0.16であった。するとyの3次項は、
y=0.004
となり、1にくらべて無視できる。
したがって、Groenwallの(9)式において、yの3次項以上を省くと


また,yの値の、使用する測定管の材質・寸法によって測定時には一定値となる部分をAとして、

と表すと、yは

と表現できる。
上記(19)式のyに(21)式を代入すると

(22)式を微分すると

式(12)のf’(c)として、(23)式のΔcを代入すると
となる。
The actual value of y defined in the Groenwall equation (9) was y = 0.16 at room temperature when a PFA tube having an outer diameter of 6 mm and an inner diameter of 4 mm was used as the measuring tube 1. Then the third-order term of y is
y = 0.004
It can be ignored compared to 1.
Therefore, in Groenwall's formula (9), if the third-order term of y is omitted,


In addition, the portion of the value of y that becomes a constant value at the time of measurement depending on the material and dimensions of the measuring tube used is A,

Y is

Can be expressed.
Substituting equation (21) for y in equation (19) above

Differentiating equation (22)

Substituting Δc in equation (23) as f ′ (c) in equation (12)
It becomes.

上記ステップST15の処理に相当する第4の演算部において、既知の数値である、流体密度ρ1、測定管の定数A、超音波振動子間の距離Lと実測した伝播速度c及び伝播時間差ΔTから(24)式を用いて流速vを算出する。   In the fourth calculation unit corresponding to the processing of step ST15, from the known values, such as fluid density ρ1, measurement tube constant A, distance L between ultrasonic transducers, measured propagation velocity c, and propagation time difference ΔT. The flow velocity v is calculated using the equation (24).

上記した、実施形態超音波流量計に対して、さらに簡易な変形を加えて実施できる他の実施形態超音波流量計について説明する。
超音波流量計に関し、工場出荷に際しては、水を用いて校正試験を実施するのが一般的である。実際の使用現場で測定液の種類が、工場校正試験の水と異なる場合には、上記(10)式の演算係数yの値が異なるので、出荷時の目盛と食違いが生じる。
Another embodiment ultrasonic flowmeter that can be implemented with further simple modifications to the above-described embodiment ultrasonic flowmeter will be described.
Regarding ultrasonic flowmeters, a calibration test using water is generally performed at the time of shipment from a factory. When the type of the measurement solution is different from the water used in the factory calibration test at the actual use site, the value of the calculation coefficient y in the above equation (10) is different, resulting in a difference between the scale at the time of shipment.

本願発明の他の実施形態として、上記(10)式に現れる測定流体の密度ρを、現地でも設定入力出来るようにしておくことにより、測定流体の種類に依らず、一定精度の測定が可能となる。
さらに実際の使用現場で測定液の温度が、工場校正試験時と異なる場合には、上記(10)式の演算係数yの値が、おもにヤング係数E及びポアソン比σの温度特性によって変化し、流速測定値が校正値からずれて来る。
As another embodiment of the present invention, by making it possible to set and input the density ρ 1 of the measurement fluid appearing in the above equation (10) even in the field, it is possible to measure with a constant accuracy regardless of the type of the measurement fluid. It becomes.
Further, when the temperature of the measurement solution at the actual use site is different from that at the time of the factory calibration test, the value of the calculation coefficient y in the above equation (10) changes mainly depending on the temperature characteristics of the Young's modulus E and the Poisson's ratio σ. The measured flow rate deviates from the calibration value.

本願発明の更に他の実施形態として、測定管の材質・寸法は製品型式として固定であるから、あらかじめ工場出荷以前に流す水の温度を変化させ、流体温度t°Cに対応した上記(20)式のA値の特性曲線を作成して、これを演算・制御部(演算装置)に組込んで記憶しておくことにより、現地で流体温度t°Cを入力するだけで、その時の温度に対応したA値が得られ、このA値を設定入力しておき、これを用いて実測することにより、正確な流量測定を行うことができる。   As still another embodiment of the present invention, since the material and dimensions of the measuring tube are fixed as the product type, the temperature of the water flowing before the factory shipment is changed in advance to correspond to the fluid temperature t ° C. (20) By creating a characteristic curve of the A value of the equation and storing it in the calculation / control unit (calculation device), the fluid temperature t ° C can be input at the site, and the temperature at that time can be obtained. A corresponding A value is obtained, and this A value is set and input, and an actual measurement using this A value enables accurate flow rate measurement.

1 測定管
2 上流側超音波振動子
3 下流側超音波振動子
4 切替回路
5 振動子駆動回路
6 受信回路
7 制御・演算部回路
1 Measurement tube 2 Upstream ultrasonic transducer
3 downstream ultrasonic transducer 4 switching circuit 5 transducer drive circuit 6 receiving circuit 7 control / arithmetic unit circuit

Claims (3)

2個の円環状超音波振動子を、被測定流体を流す測定管により貫通されて測定管に接触するように距離を隔てて設け、前記2個の円環状超音波振動子を一方が超音波送信機、他方が超音波受信機として交互に作動させ、被測定流体の上流側の超音波振動子を超音波送信機としたときの下流方向超音波伝播時間と、被測定流体の下流側の超音波振動子を超音波送信機としたときの上流方向超音波伝播時間との時間差により流速を算出する超音波流量計において、下流方向超音波伝播時間T、上流方向超音波伝播時間Tを測定する超音波伝播時間測定手段と、前記各測定結果を入力して下記(6)、(7)及び(8)式により伝播時間差ΔT、伝播速度cを算出する第1の演算部と、2個の超音波振動子間の距離L、測定管の外径bと内径a、測定管材のヤング係数Eとポアソン比σ及び測定管内を流れる流体の密度ρと超音波の伝播速度cからGroenwallの式(9)に基づいて演算係数yを算出する第2の演算部と、流体音速coを超音波の伝播速度cの関数として表した(11)式の導関数を計算する第3の演算部と、そして、前記伝播時間差ΔT、前記超音波振動子間距離L、および前記超音波伝播速度cから下式(12)により流体の流速vを算出する演算を行う第4の演算部とから構成されることを特徴とする超音波流量計。
ここで、f(c)は関数f(c)の導関数である。
Two annular ultrasonic transducers are provided at a distance so as to be penetrated by a measurement tube through which a fluid to be measured flows and to contact the measurement tube, and one of the two annular ultrasonic transducers is ultrasonic When the transmitter and the other are alternately operated as an ultrasonic receiver, and the ultrasonic transducer upstream of the fluid to be measured is an ultrasonic transmitter, the ultrasonic propagation time in the downstream direction and the downstream of the fluid to be measured In the ultrasonic flowmeter that calculates the flow velocity based on the time difference from the upstream ultrasonic propagation time when the ultrasonic transducer is an ultrasonic transmitter, the downstream ultrasonic propagation time T 1 and the upstream ultrasonic propagation time T 2 are calculated. An ultrasonic propagation time measuring means for measuring the above, a first calculation unit that inputs the measurement results and calculates the propagation time difference ΔT and the propagation velocity c by the following formulas (6), (7), and (8); Distance L between two ultrasonic transducers, outer diameter b and inner diameter of measuring tube A second arithmetic unit for calculating the operation coefficient y based the density [rho 1 of the fluid flowing through the Young's modulus E and Poisson's ratio σ and measuring tube of the measuring tube material from the ultrasonic wave propagation velocity c in equation (9) Groenwall A third calculation unit that calculates a derivative of the equation (11) in which the fluid acoustic velocity co is expressed as a function of the ultrasonic propagation velocity c, and the propagation time difference ΔT, the ultrasonic transducer distance L, and An ultrasonic flowmeter comprising: a fourth calculation unit that performs a calculation for calculating a fluid flow velocity v from the ultrasonic propagation velocity c according to the following equation (12).
Here, f (c) is a derivative of the function f (c).
前記Groenwallの式(9)のyの3次項以上を省き

と近似化し、
前記第4の演算部では、測定管の材質・寸法の固有値となる部分を抜き出した
(20)式の
のAの値と、振動子間距離L及び流体密度ρを設定し、
実測した伝播速度cおよびΔTから(24)式

を演算して流速vを得ることを特徴とする請求項1記載の超音波流量計
In the Groenwall equation (9), the third-order term of y is omitted.

And approximate
In the fourth calculation unit, a part that is an eigenvalue of the material and dimensions of the measurement tube is extracted.
Set the value of A, the inter-vibrator distance L and the fluid density ρ 1 ,
From the measured propagation velocity c and ΔT, equation (24)

The ultrasonic flowmeter according to claim 1, wherein a flow velocity v is obtained by calculating
前記第2の演算部において、(20)式
のAの値を使用現場で直接設定入力するのではなく、測定管の材質・寸法は製品型式として固定であり、あらかじめ工場出荷以前に水の温度を変化させ、流体温度t°Cに対応した上記(20)式のA値の特性曲線を作成して、これを演算装置を組み込んでおき、現地で流体温度t°Cを設定入力することにより、その時の温度に対応したA値を取り込めるようにした演算部を設けたことを特徴とする請求項1または請求項2記載の超音波流量計
In the second calculation unit, equation (20)
Instead of directly setting and inputting the value of A at the site of use, the material and dimensions of the measuring tube are fixed as the product model, and the water temperature was changed in advance before shipment from the factory to support the fluid temperature t ° C. A characteristic curve of the A value of the above equation (20) is created, and an arithmetic unit is incorporated therein, and the A temperature corresponding to the temperature at that time can be captured by setting and inputting the fluid temperature t ° C on site. An ultrasonic flowmeter according to claim 1 or 2, further comprising an arithmetic unit as described above.
JP2011157389A 2011-07-19 2011-07-19 Ultrasonic flow meter Active JP5812734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011157389A JP5812734B2 (en) 2011-07-19 2011-07-19 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011157389A JP5812734B2 (en) 2011-07-19 2011-07-19 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2013024620A true JP2013024620A (en) 2013-02-04
JP5812734B2 JP5812734B2 (en) 2015-11-17

Family

ID=47783157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011157389A Active JP5812734B2 (en) 2011-07-19 2011-07-19 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP5812734B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6532504B2 (en) * 2017-07-07 2019-06-19 株式会社ソニック Ultrasonic flow meter

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09311125A (en) * 1996-05-23 1997-12-02 Mitsubishi Heavy Ind Ltd Acoustic impedance measuring device
JPH10122923A (en) * 1996-10-15 1998-05-15 Tokyo Keiso Co Ltd Ultrasonic flow meter
JPH10318430A (en) * 1997-05-21 1998-12-04 Toshiba Corp Piping device
JP2005106594A (en) * 2003-09-30 2005-04-21 Nippon Flow Cell Kk Ultrasonic flowmeter
JP2006030041A (en) * 2004-07-20 2006-02-02 Fuji Electric Systems Co Ltd Clamp-on type doppler type ultrasonic flow velocity distribution meter
JP2007298275A (en) * 2006-04-11 2007-11-15 National Institute Of Advanced Industrial & Technology Apparatus for measuring flow quantity
JP2008504558A (en) * 2004-06-28 2008-02-14 セレリティ・インコーポレイテッド Ultrasonic liquid flow controller
JP2008304283A (en) * 2007-06-06 2008-12-18 Honda Electronic Co Ltd Ultrasonic flow meter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09311125A (en) * 1996-05-23 1997-12-02 Mitsubishi Heavy Ind Ltd Acoustic impedance measuring device
JPH10122923A (en) * 1996-10-15 1998-05-15 Tokyo Keiso Co Ltd Ultrasonic flow meter
JPH10318430A (en) * 1997-05-21 1998-12-04 Toshiba Corp Piping device
JP2005106594A (en) * 2003-09-30 2005-04-21 Nippon Flow Cell Kk Ultrasonic flowmeter
JP2008504558A (en) * 2004-06-28 2008-02-14 セレリティ・インコーポレイテッド Ultrasonic liquid flow controller
JP2006030041A (en) * 2004-07-20 2006-02-02 Fuji Electric Systems Co Ltd Clamp-on type doppler type ultrasonic flow velocity distribution meter
JP2007298275A (en) * 2006-04-11 2007-11-15 National Institute Of Advanced Industrial & Technology Apparatus for measuring flow quantity
JP2008304283A (en) * 2007-06-06 2008-12-18 Honda Electronic Co Ltd Ultrasonic flow meter

Also Published As

Publication number Publication date
JP5812734B2 (en) 2015-11-17

Similar Documents

Publication Publication Date Title
JP4851936B2 (en) Ultrasonic flow meter
EP2435799B1 (en) Method and apparatus for monitoring multiphase fluid flow
JP2008134267A (en) Ultrasonic flow measurement method
JP2011179940A (en) Ultrasonic flowmeter
JP2001356034A (en) Method and apparatus for ultrasonic flow measurement
JP4535065B2 (en) Doppler ultrasonic flow meter
JP2008304281A (en) Ultrasonic method and program for measuring flow rate and ultrasonic flow meter
JP2007051913A5 (en)
JP4561088B2 (en) Ultrasonic flow meter
JP5812734B2 (en) Ultrasonic flow meter
JPH1048009A (en) Ultrasound temperature current meter
JP5282955B2 (en) Ultrasonic flow meter correction method and ultrasonic flow meter
JP5113343B2 (en) Ultrasonic flow meter
JP6207428B2 (en) Ultrasonic sound velocity measuring device and ultrasonic sound velocity measuring method
JP2010261872A (en) Ultrasonic flowmeter
JP5372831B2 (en) Ultrasonic densitometer
JP2010223855A (en) Ultrasonic flowmeter
JP2008058057A (en) Ultrasonic flowmeter
CN114878018A (en) Method for calibrating an apparatus for ultrasonic measurement, method and apparatus for measuring the temperature of a medium
JP2005106594A (en) Ultrasonic flowmeter
JP2005300244A (en) Ultrasonic flow meter
JP5156918B2 (en) Ultrasonic density meter
Mahadeva et al. Studies of the accuracy of clamp-on transit time ultrasonic flowmeters
JP2001249039A (en) Ultrasonic gas flow-velocity measuring method
JP6283565B2 (en) Ultrasonic flow meter and propagation length abnormality detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140304

RD12 Notification of acceptance of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7432

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150915

R150 Certificate of patent or registration of utility model

Ref document number: 5812734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250