JP2013021527A - Sensitivity-temperature characteristic adjustment circuit - Google Patents

Sensitivity-temperature characteristic adjustment circuit Download PDF

Info

Publication number
JP2013021527A
JP2013021527A JP2011153639A JP2011153639A JP2013021527A JP 2013021527 A JP2013021527 A JP 2013021527A JP 2011153639 A JP2011153639 A JP 2011153639A JP 2011153639 A JP2011153639 A JP 2011153639A JP 2013021527 A JP2013021527 A JP 2013021527A
Authority
JP
Japan
Prior art keywords
temperature characteristic
sensitivity
adjustment circuit
sensor
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011153639A
Other languages
Japanese (ja)
Inventor
Hideo Nishikawa
英男 西川
Takeshi Omori
猛司 大森
Yuichi Niimura
雄一 新村
Fumihito Kato
史仁 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011153639A priority Critical patent/JP2013021527A/en
Publication of JP2013021527A publication Critical patent/JP2013021527A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Amplifiers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sensitivity-temperature characteristic adjustment circuit that dispenses with a gain readjustment after an adjustment of a sensitivity-temperature characteristic of a sensor.SOLUTION: Selective switching of an equivalent resistance used as a feedback resistance on an operational amplifier 2 by changeover switches Sa, Sb among a plurality of parallel-connected equivalent resistances 5, 6 having different temperature characteristics adjusts a gain-temperature characteristic of a sensitivity-temperature characteristic adjustment circuit 1 to adjust a sensitivity-temperature characteristic of a sensor. Even when the sensitivity-temperature characteristic of the sensor is adjusted, an input resistance value R0 and a feedback resistance value R on the operational amplifier 2 in the adjustment circuit 1 at a reference temperature remain unchanged, and thus a gain value of the sensitivity-temperature characteristic adjustment circuit 1 at the reference temperature remains unchanged. This can reduce the need for a gain adjustment to the sensitivity-temperature characteristic adjustment circuit 1 after the adjustment of the sensitivity-temperature characteristic of the sensor.

Description

本発明は、対象となる物理量に応じた値の電圧信号を出力するセンサの感度温度特性を調整する感度温度特性調整回路に関する。   The present invention relates to a sensitivity temperature characteristic adjustment circuit that adjusts a sensitivity temperature characteristic of a sensor that outputs a voltage signal having a value corresponding to a target physical quantity.

従来より、対象となる物理量に応じた値の電圧信号を出力するセンサと接続されて、このセンサの感度温度特性を調整する感度温度特性調整回路が知られている。例えば、特許文献1に記載されたセンサ用温度特性補正回路装置は、感度温度係数(感度温度特性)調整回路に加えて、センサ部(圧力センサ)の感度を補正する感度調整回路と、感度調整回路のゲイン(増幅率)を切り換えるためのアナログスイッチとを備えている。また、このセンサ用温度特性補正回路装置は、上記の感度温度係数調整回路内のオペアンプの入力抵抗値と帰還抵抗値の比を切り換えることにより、感度温度係数調整回路のゲイン温度特性(増幅率の温度特性)を切り換えるためのアナログスイッチを備えている。   Conventionally, there is known a sensitivity temperature characteristic adjustment circuit that is connected to a sensor that outputs a voltage signal having a value corresponding to a target physical quantity and adjusts the sensitivity temperature characteristic of the sensor. For example, a sensor temperature characteristic correction circuit device described in Patent Document 1 includes a sensitivity adjustment circuit that corrects the sensitivity of a sensor unit (pressure sensor) in addition to a sensitivity temperature coefficient (sensitivity temperature characteristic) adjustment circuit, and a sensitivity adjustment. And an analog switch for switching the gain (amplification factor) of the circuit. In addition, the sensor temperature characteristic correction circuit device switches the ratio of the input resistance value and the feedback resistance value of the operational amplifier in the sensitivity temperature coefficient adjustment circuit described above to change the gain temperature characteristic (amplification factor) of the sensitivity temperature coefficient adjustment circuit. Analog switch for switching temperature characteristics).

上記のセンサ部に物理量(外部からの圧力)が加わると、センサ部から物理量に応じた値の電圧信号が出力される。上記の温度特性補正回路装置は、この電圧信号を、上記の感度調整回路及び感度温度係数調整回路を用いて補正し、補正後の電圧信号を出力する。これにより、センサ部を構成する回路素子のばらつきに起因して、センサ部の感度や感度温度特性が変化した場合でも、ラッチメモリ等からの出力信号でアナログスイッチを切り換えることにより、センサ部の感度をほぼ一定に保てる。   When a physical quantity (external pressure) is applied to the sensor unit, a voltage signal having a value corresponding to the physical quantity is output from the sensor unit. The temperature characteristic correction circuit device corrects the voltage signal using the sensitivity adjustment circuit and the sensitivity temperature coefficient adjustment circuit, and outputs a corrected voltage signal. As a result, even if the sensitivity or sensitivity temperature characteristics of the sensor unit changes due to variations in the circuit elements constituting the sensor unit, the sensitivity of the sensor unit can be changed by switching the analog switch with an output signal from a latch memory or the like. Can be kept almost constant.

特開2003−42870号公報JP 2003-42870 A

しかし、上記のセンサ部の感度温度特性を補正するために、感度温度係数調整回路のゲイン温度特性(抵抗温度係数)をアナログスイッチで切り換えた場合には、この回路内の入力抵抗値と帰還抵抗値の比も変化するため、この回路のゲインの値が変化してしまう。このため、この感度温度係数調整回路を有する温度特性補正回路装置全体のゲインの値が変化してしまう。従って、たとえ事前に感度調整回路によりセンサ部の感度(装置全体のゲイン)の調整が完了していたとしても、その後に感度温度係数調整回路により感度温度特性を補正(調整)した場合には、感度調整回路により装置全体のゲインを再調整する必要がある。   However, when the gain temperature characteristic (resistance temperature coefficient) of the sensitivity temperature coefficient adjustment circuit is switched with an analog switch in order to correct the sensitivity temperature characteristic of the sensor unit, the input resistance value and feedback resistance in this circuit Since the value ratio also changes, the gain value of this circuit changes. For this reason, the gain value of the entire temperature characteristic correction circuit device having this sensitivity temperature coefficient adjustment circuit changes. Therefore, even if adjustment of the sensitivity of the sensor unit (gain of the entire device) is completed in advance by the sensitivity adjustment circuit, if the sensitivity temperature characteristic is corrected (adjusted) by the sensitivity temperature coefficient adjustment circuit after that, It is necessary to readjust the gain of the entire apparatus by the sensitivity adjustment circuit.

本発明は、上記課題を解決するものであり、センサの感度温度特性を調整した場合でも、その後にゲインを再調整する必要のない感度温度特性調整回路を提供することを目的とする。   The present invention solves the above-described problems, and an object of the present invention is to provide a sensitivity temperature characteristic adjustment circuit that does not require readjustment of the gain after adjustment of the sensitivity temperature characteristic of the sensor.

上記課題を解決するために、本発明の感度温度特性調整回路は、対象となる物理量に応じた値の電圧信号を出力するセンサの感度温度特性を調整する感度温度特性調整回路において、前記センサから入力された電圧信号を増幅して出力するオペアンプと、このオペアンプに接続された帰還抵抗部と入力抵抗とを備え、前記帰還抵抗部は、互いに異なる温度特性を有し、並列に接続された、複数の同じ抵抗値を持つ同値抵抗と、これら複数の同値抵抗のうち、前記オペアンプの帰還抵抗として用いる同値抵抗を選択的に切り換えるための切換スイッチとを含むことを特徴とする。ここで、「同値抵抗」とは、基準温度において同じ抵抗値を持つ抵抗を意味する。   In order to solve the above problems, a sensitivity temperature characteristic adjustment circuit of the present invention is a sensitivity temperature characteristic adjustment circuit that adjusts a sensitivity temperature characteristic of a sensor that outputs a voltage signal having a value corresponding to a target physical quantity. An operational amplifier that amplifies and outputs an input voltage signal, and includes a feedback resistor unit and an input resistor connected to the operational amplifier, the feedback resistor unit having different temperature characteristics and connected in parallel. It includes a plurality of equivalent resistors having the same resistance value, and a changeover switch for selectively switching an equivalent resistor used as a feedback resistor of the operational amplifier among the plurality of equivalent resistors. Here, “equivalent resistance” means resistors having the same resistance value at the reference temperature.

この感度温度特性調整回路において、前記帰還抵抗部を複数備え、これら複数の帰還抵抗部が直列に接続されていることが望ましい。   In this sensitivity temperature characteristic adjusting circuit, it is preferable that a plurality of the feedback resistor units are provided, and the plurality of feedback resistor units are connected in series.

本発明の感度温度特性調整回路によれば、並列に接続された、複数の異なる温度特性を有する同値抵抗のうち、オペアンプの帰還抵抗として用いる同値抵抗を切換スイッチで選択的に切り換えることにより、回路のゲイン温度特性を調整して、センサの感度温度特性を調整(補正)するようにした。これにより、この調整回路のゲイン温度特性を調整する(センサの感度温度特性を調整する)ために、オペアンプの帰還抵抗として用いる同値抵抗を切換スイッチで切り換えた場合でも、この調整回路内のオペアンプの(基準温度における)入力抵抗値と帰還抵抗値が変化しないので、基準温度における感度温度特性調整回路の増幅率(ゲインの値)が変化しない。従って、センサの感度温度特性の調整後に、この調整回路のゲインを調整する必要性を減じることができる。   According to the sensitivity temperature characteristic adjusting circuit of the present invention, the equivalent resistance used as the feedback resistance of the operational amplifier among a plurality of equivalent resistances having different temperature characteristics connected in parallel is selectively switched by the changeover switch. The sensitivity temperature characteristic of the sensor is adjusted (corrected) by adjusting the gain temperature characteristic. As a result, in order to adjust the gain temperature characteristic of this adjustment circuit (adjust the sensitivity temperature characteristic of the sensor), even when the equivalent resistance used as the feedback resistance of the operational amplifier is switched by the changeover switch, the operational amplifier in this adjustment circuit Since the input resistance value and the feedback resistance value (at the reference temperature) do not change, the amplification factor (gain value) of the sensitivity temperature characteristic adjustment circuit at the reference temperature does not change. Therefore, it is possible to reduce the necessity of adjusting the gain of the adjusting circuit after adjusting the sensitivity temperature characteristic of the sensor.

本発明の第1の実施形態に係る感度温度特性調整回路の回路構成図。The circuit block diagram of the sensitivity temperature characteristic adjustment circuit which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る感度温度特性調整回路の回路構成図。The circuit block diagram of the sensitivity temperature characteristic adjustment circuit which concerns on the 2nd Embodiment of this invention.

以下、本発明を具体化した実施形態による感度温度特性調整回路について、図面を参照して説明する。
<第1の実施形態>
図1は、本発明の第1の実施形態による感度温度特性調整回路(以下、「調整回路」と略す)の回路構成を示す。この調整回路1は、対象となる物理量に応じた値の電圧信号を出力するセンサ(例えば、外部からの圧力に応じた値の電圧信号を出力する圧力センサ)と電気的に接続されて、このセンサの感度温度特性を調整する回路である。この調整回路1は、センサから入力された電圧信号を増幅して出力するオペアンプ2と、このオペアンプ2に接続された帰還抵抗部3と入力抵抗4とを備え、オペアンプ2と帰還抵抗部3と入力抵抗4とにより構成された反転増幅回路である。
Hereinafter, a sensitivity temperature characteristic adjusting circuit according to an embodiment of the present invention will be described with reference to the drawings.
<First Embodiment>
FIG. 1 shows a circuit configuration of a sensitivity temperature characteristic adjusting circuit (hereinafter abbreviated as “adjusting circuit”) according to a first embodiment of the present invention. The adjustment circuit 1 is electrically connected to a sensor that outputs a voltage signal having a value corresponding to a target physical quantity (for example, a pressure sensor that outputs a voltage signal having a value corresponding to an external pressure). This is a circuit for adjusting the sensitivity temperature characteristic of the sensor. The adjustment circuit 1 includes an operational amplifier 2 that amplifies and outputs a voltage signal input from a sensor, a feedback resistor unit 3 and an input resistor 4 connected to the operational amplifier 2, and the operational amplifier 2, the feedback resistor unit 3, and the like. This is an inverting amplifier circuit composed of an input resistor 4.

上記の帰還抵抗部3は、互いに異なる温度特性を有し、並列に接続された、複数の同じ抵抗値Rを持つ同値抵抗5、6と、これら2つの同値抵抗5、6のうち、オペアンプ2の帰還抵抗として用いる同値抵抗を選択的に切り換えるための切換スイッチSa,Sbを含む。これらの切換スイッチSa,Sbは、例えばMOSFET(Metal−Oxide−Semiconductor Field−Effect Transistor)等で構成されている。なお、上記の「同値抵抗」とは、基準温度において同じ抵抗値を持つ抵抗を意味する。   The feedback resistor section 3 has different temperature characteristics, and is connected in parallel and has a plurality of equivalent resistors 5 and 6 having the same resistance value R. Of these two equivalent resistors 5 and 6, the operational amplifier 2 Changeover switches Sa and Sb for selectively switching the equivalent resistance used as the feedback resistor. These changeover switches Sa and Sb are configured by, for example, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) or the like. The above “equivalent resistance” means a resistor having the same resistance value at the reference temperature.

上記のオペアンプ2の正相(+)側の入力ピンには、基準電圧Vrefが入力される。また、オペアンプ2の逆相(−)側の入力ピンは、入力抵抗4を介して、センサに接続されており、この逆相側の入力ピンには、基準電圧Vrefにセンサからの電圧信号Viを重畳した電圧(Vref+Vi)が入力される。オペアンプ2は、上記の正相側の入力ピンに入力される基準電圧Vrefと、入力抵抗4を介して逆相側の入力ピンに入力される電圧(Vref+Vi)との差分の電圧である入力電圧信号Viを、入力抵抗値と帰還抵抗値との比で決定される電圧増幅率Aで増幅する。そして、この入力電圧信号Viを電圧増幅率Aで増幅した信号を出力電圧信号Vとして出力する。 The reference voltage Vref is input to the positive-phase (+) side input pin of the operational amplifier 2. The negative-phase (−) side input pin of the operational amplifier 2 is connected to the sensor via the input resistor 4. The negative-phase side input pin has a reference voltage Vref and a voltage signal Vi from the sensor. A voltage (Vref + Vi) on which is superimposed is input. The operational amplifier 2 has an input voltage which is a difference voltage between the reference voltage Vref input to the positive phase side input pin and a voltage (Vref + Vi) input to the negative phase side input pin via the input resistor 4. the signal Vi, is amplified by the voltage amplification factor a V which is determined by the ratio of the input resistance and the feedback resistance value. Then, a signal obtained by amplifying the input voltage signal Vi at a voltage amplification factor A V as the output voltage signal V O.

入力抵抗4の抵抗温度係数TCR0、及び帰還抵抗部3内の同値抵抗5の抵抗温度係数TCRaを考慮すると、上記の電圧増幅率A(調整回路1のゲインG)は、切換スイッチSaがオンの場合には、下記の(1)式のように表される。
G=R(1+TCRa・T)/R0(1+TCR0・T)
≒(R/R0){1+(TCRa−TCR0)・T}・・・(1)
ただし、上式におけるR0、Rは、それぞれ入力抵抗4、同値抵抗5の基準温度における抵抗値を表し、Tは、基準温度からの温度差を表す。また、TCRa<<1、TCR0<<1とする。
Considering the resistance temperature coefficient TCR0 of the input resistor 4 and the resistance temperature coefficient TCRa of the equivalent resistor 5 in the feedback resistor unit 3, the voltage amplification factor A V (the gain G of the adjustment circuit 1) is set to turn on the changeover switch Sa. In this case, it is expressed as the following equation (1).
G = R (1 + TCRa · T) / R0 (1 + TCR0 · T)
≒ (R / R0) {1+ (TCRa-TCR0) · T} (1)
However, R0 and R in the above equation represent resistance values at the reference temperature of the input resistor 4 and the equivalent resistor 5, respectively, and T represents a temperature difference from the reference temperature. Further, TCRa << 1 and TCR0 << 1.

また、入力抵抗4の抵抗温度係数TCR0、及び帰還抵抗部3内の同値抵抗6の抵抗温度係数TCRbを考慮すると、上記の電圧増幅率A(調整回路1のゲインG)は、切換スイッチSbがオンの場合には、下記の(2)式のように表される。
G=R(1+TCRb・T)/R0(1+TCR0・T)
≒(R/R0){1+(TCRb−TCR0)・T}・・・(2)
ただし、上式におけるR0、Rは、それぞれ入力抵抗4、同値抵抗5の基準温度における抵抗値を表し、Tは、基準温度からの温度差を表す。また、TCRb<<1、TCR0<<1とする。
Further, considering the resistance temperature coefficient TCR0 of the input resistor 4 and the resistance temperature coefficient TCRb of the equivalent resistor 6 in the feedback resistor unit 3, the voltage amplification factor A V (the gain G of the adjustment circuit 1) is changed by the changeover switch Sb. When is on, it is expressed as the following equation (2).
G = R (1 + TCRb · T) / R0 (1 + TCR0 · T)
≈ (R / R0) {1+ (TCRb−TCR0) · T} (2)
However, R0 and R in the above equation represent resistance values at the reference temperature of the input resistor 4 and the equivalent resistor 5, respectively, and T represents a temperature difference from the reference temperature. Further, TCRb << 1 and TCR0 << 1.

上記の(1)式と(2)式より、切換スイッチSaがオンのときの調整回路1のゲイン温度特性は、{1+(TCRa−TCR0)・T}であり、切換スイッチSbがオンのときの調整回路1のゲイン温度特性は、{1+(TCRb−TCR0)・T}である。本調整回路1は、上記の2種類のゲイン温度特性を用いて、センサの感度温度特性を補正(調整)する。より詳細に言うと、本調整回路1では、切換スイッチSa,Sbで、調整回路1自体のゲイン温度特性を切り換える(変更する)ことにより、センサの感度温度特性を設計値に近づけるように補正することができる。従って、上記の調整回路1のゲイン温度特性({1+(TCRa−TCR0)・T}、又は{1+(TCRb−TCR0)・T})は、センサの感度温度特性に対する補正値でもある。このことから、本調整回路1は、センサの感度温度特性に対する補正値を切換スイッチSa,Sbで変更することができるようにしたものであるとも言える。   From the above equations (1) and (2), the gain temperature characteristic of the adjustment circuit 1 when the changeover switch Sa is on is {1+ (TCRa-TCR0) · T}, and when the changeover switch Sb is on. The gain-temperature characteristic of the adjustment circuit 1 is {1+ (TCRb−TCR0) · T}. The adjustment circuit 1 corrects (adjusts) the sensitivity temperature characteristic of the sensor using the two types of gain temperature characteristics. More specifically, in the adjustment circuit 1, the sensitivity temperature characteristic of the sensor is corrected to be close to the design value by switching (changing) the gain temperature characteristic of the adjustment circuit 1 itself with the changeover switches Sa and Sb. be able to. Therefore, the gain temperature characteristic ({1+ (TCRa−TCR0) · T} or {1+ (TCRb−TCR0) · T}) of the adjustment circuit 1 is also a correction value for the sensitivity temperature characteristic of the sensor. From this, it can be said that the adjustment circuit 1 is configured such that the correction value for the sensitivity temperature characteristic of the sensor can be changed by the changeover switches Sa and Sb.

第1の実施形態の調整回路1によれば、並列に接続された、複数の異なる温度特性を有する同値抵抗5、6のうち、オペアンプ2の帰還抵抗として用いる同値抵抗を切換スイッチSa,Sbで切り換えることにより、調整回路1のゲイン温度特性を調整して、センサの感度温度特性を調整(補正)するようにした。これにより、調整回路1のゲイン温度特性を調整する(センサの感度温度特性を調整する)ために、オペアンプ2の帰還抵抗として用いる同値抵抗5、6を切り換えた場合でも、調整回路1内のオペアンプ2の(基準温度における)入力抵抗値R0と帰還抵抗値Rが変化しないので、基準温度における調整回路1のゲインの値(R/R0)が変化しない。従って、調整回路1のゲイン温度特性の調整(センサの感度温度特性の調整)後に、調整回路1のゲインを調整する必要性を減じることができる。   According to the adjustment circuit 1 of the first embodiment, among the plurality of equivalent resistors 5 and 6 having different temperature characteristics connected in parallel, the equivalent resistor used as the feedback resistor of the operational amplifier 2 is changed by the changeover switches Sa and Sb. By switching, the gain temperature characteristic of the adjustment circuit 1 is adjusted, and the sensitivity temperature characteristic of the sensor is adjusted (corrected). As a result, even when the equivalent resistors 5 and 6 used as feedback resistors of the operational amplifier 2 are switched in order to adjust the gain temperature characteristic of the adjustment circuit 1 (adjust the sensitivity temperature characteristic of the sensor), the operational amplifier in the adjustment circuit 1 Since the input resistance value R0 and the feedback resistance value R of 2 (at the reference temperature) do not change, the gain value (R / R0) of the adjustment circuit 1 at the reference temperature does not change. Accordingly, it is possible to reduce the necessity of adjusting the gain of the adjusting circuit 1 after adjusting the gain temperature characteristic of the adjusting circuit 1 (adjusting the sensitivity temperature characteristic of the sensor).

<第2の実施形態>
図2は、本発明の第2の実施形態による調整回路1の回路構成を示す。本実施形態の調整回路1は、2つの帰還抵抗部31、32を備え、これら2つの帰還抵抗部31、32が直列に接続されている点が、上記第1の実施形態と異なっている。本実施形態における他の構成については、上記第1の実施形態と同様である。
<Second Embodiment>
FIG. 2 shows a circuit configuration of the adjustment circuit 1 according to the second embodiment of the present invention. The adjustment circuit 1 of the present embodiment includes two feedback resistor units 31 and 32, and is different from the first embodiment in that these two feedback resistor units 31 and 32 are connected in series. Other configurations in the present embodiment are the same as those in the first embodiment.

上記の帰還抵抗部31は、互いに異なる温度特性を有し、並列に接続された、複数の同じ抵抗値R1を持つ同値抵抗51、61を有している。また、帰還抵抗部31は、2つの同値抵抗51、61のうち、オペアンプ2の帰還抵抗として用いる同値抵抗を切り換えるための切換スイッチSa1,Sb1を含んでいる。   The feedback resistor section 31 has a plurality of equivalent resistors 51 and 61 having a plurality of the same resistance values R1, which have different temperature characteristics and are connected in parallel. Further, the feedback resistor unit 31 includes changeover switches Sa1 and Sb1 for switching the equivalent resistor used as the feedback resistor of the operational amplifier 2 among the two equivalent resistors 51 and 61.

上記の帰還抵抗部32は、互いに異なる温度特性を有し、並列に接続された、複数の同じ抵抗値R2を持つ同値抵抗52、62を有している。また、帰還抵抗部32は、2つの同値抵抗52、62のうち、オペアンプ2の帰還抵抗として用いる同値抵抗を選択的に切り換えるための切換スイッチSa2,Sb2を含んでいる。   The feedback resistor section 32 has temperature characteristics different from each other, and includes a plurality of equivalent resistors 52 and 62 having the same resistance value R2 connected in parallel. In addition, the feedback resistor section 32 includes changeover switches Sa2 and Sb2 for selectively switching the equivalent resistor used as the feedback resistor of the operational amplifier 2 among the two equivalent resistors 52 and 62.

オペアンプ2は、正相側の入力ピンに入力される基準電圧Vrefと、入力抵抗4を介して逆相側の入力ピンに入力される電圧(Vref+Vi)との差分の電圧である入力電圧信号Viを、入力抵抗値と帰還抵抗値との比で決定される電圧増幅率Aで増幅する。そして、この入力電圧信号Viを電圧増幅率Aで増幅した信号を出力電圧信号Vとして出力する。ただし、図2中の反転増幅回路では、帰還抵抗が、2つの直列に接続された帰還抵抗部31、32から構成されている。このため、その帰還抵抗値Rは、帰還抵抗部31における同値抵抗51又は同値抵抗61の抵抗値R1と、帰還抵抗部32における同値抵抗52又は同値抵抗62の抵抗値R2とを加算した抵抗値(R1+R2)になる。 The operational amplifier 2 has an input voltage signal Vi that is a difference voltage between the reference voltage Vref input to the positive phase side input pin and the voltage (Vref + Vi) input to the negative phase side input pin via the input resistor 4. and amplified by voltage gain a V, which is determined by the ratio of the input resistance and the feedback resistance value. Then, a signal obtained by amplifying the input voltage signal Vi at a voltage amplification factor A V as the output voltage signal V O. However, in the inverting amplifier circuit in FIG. 2, the feedback resistor is composed of two feedback resistor portions 31 and 32 connected in series. Therefore, the feedback resistance value R is a resistance value obtained by adding the resistance value R1 of the equivalent resistance 51 or the equivalent resistance 61 in the feedback resistance section 31 and the resistance value R2 of the equivalent resistance 52 or the equivalent resistance 62 in the feedback resistance section 32. (R1 + R2).

上記の電圧増幅率A(調整回路1のゲインG)は、入力抵抗4の抵抗温度係数TCR0、及び同値抵抗51、52の抵抗温度係数TCRaを考慮すると、切換スイッチSa1、Sa2がオンの場合には、下記の(3)式のように表される。
G={R1(1+TCRa・T)+R2(1+TCRa・T)}/R0(1+TCR0・T)
≒(R/R0){1+(TCRa−TCR0)・T}・・・(3)
ただし、上式におけるR0、R1、R2は、それぞれ入力抵抗4、同値抵抗51、同値抵抗52の基準温度における抵抗値を表し、Tは、基準温度からの温度差を表す。また、R=R1+R2であり、TCRa<<1、TCR0<<1とする。
The voltage amplification factor A V (gain G of the adjustment circuit 1) is determined when the changeover switches Sa1 and Sa2 are turned on in consideration of the resistance temperature coefficient TCR0 of the input resistor 4 and the resistance temperature coefficient TCRa of the equivalent resistors 51 and 52. Is expressed as the following equation (3).
G = {R1 (1 + TCRa · T) + R2 (1 + TCRa · T)} / R0 (1 + TCR0 · T)
≒ (R / R0) {1+ (TCRa-TCR0) · T} (3)
However, R0, R1, and R2 in the above equation represent resistance values at the reference temperature of the input resistor 4, the equivalent resistor 51, and the equivalent resistor 52, respectively, and T represents a temperature difference from the reference temperature. Further, R = R1 + R2, and TCRa << 1 and TCR0 << 1.

また、上記の電圧増幅率A(調整回路1のゲインG)は、入力抵抗4の抵抗温度係数TCR0、及び同値抵抗61、62の抵抗温度係数TCRbを考慮すると、切換スイッチSb1、Sb2がオンの場合には、下記の(4)式のように表される。
G={R1(1+TCRb・T)+R2(1+TCRb・T)}/R0(1+TCR0・T)
≒(R/R0){1+(TCRb−TCR0)・T}・・・(4)
ただし、上式におけるR0、R1、R2は、それぞれ入力抵抗4、同値抵抗61、同値抵抗62の基準温度における抵抗値を表し、Tは、基準温度からの温度差を表す。また、R=R1+R2であり、TCRb<<1、TCR0<<1とする。
The voltage amplification factor A V (the gain G of the adjustment circuit 1) is set so that the changeover switches Sb1 and Sb2 are turned on in consideration of the resistance temperature coefficient TCR0 of the input resistor 4 and the resistance temperature coefficient TCRb of the equivalent resistors 61 and 62. In this case, it is expressed as the following equation (4).
G = {R1 (1 + TCRb · T) + R2 (1 + TCRb · T)} / R0 (1 + TCR0 · T)
≈ (R / R0) {1+ (TCRb−TCR0) · T} (4)
However, R0, R1, and R2 in the above equation represent resistance values at the reference temperature of the input resistor 4, the equivalent resistor 61, and the equivalent resistor 62, respectively, and T represents a temperature difference from the reference temperature. R = R1 + R2, and TCRb << 1 and TCR0 << 1.

また、上記の電圧増幅率A(調整回路1のゲインG)は、入力抵抗4の抵抗温度係数TCR0、及び同値抵抗51、62の抵抗温度係数TCRa、TCRbを考慮すると、切換スイッチSa1、Sb2がオンの場合には、下記の(5)式のように表される。
G={R1(1+TCRa・T)+R2(1+TCRb・T)}/R0(1+TCR0・T)
≒(R/R0)[1+{(R1/R)・TCRa+(R2/R)・TCRb−TCR0}・T]・・・(5)
ただし、上式におけるR0、R1、R2は、それぞれ入力抵抗4、同値抵抗51、同値抵抗62の基準温度における抵抗値を表し、Tは、基準温度からの温度差を表す。また、R=R1+R2であり、TCRa<<1、TCRb<<1、TCR0<<1とする。
The voltage amplification factor A V (the gain G of the adjustment circuit 1) is set so that the changeover switches Sa1 and Sb2 take into account the resistance temperature coefficient TCR0 of the input resistor 4 and the resistance temperature coefficients TCRa and TCRb of the equivalent resistors 51 and 62. When is on, it is expressed as the following equation (5).
G = {R1 (1 + TCRa · T) + R2 (1 + TCRb · T)} / R0 (1 + TCR0 · T)
≈ (R / R0) [1 + {(R1 / R) · TCRa + (R2 / R) · TCRb−TCR0} · T] (5)
However, R0, R1, and R2 in the above equation represent resistance values at the reference temperature of the input resistor 4, the equivalent resistor 51, and the equivalent resistor 62, respectively, and T represents a temperature difference from the reference temperature. R = R1 + R2, and TCRa << 1, TCRb << 1, and TCR0 << 1.

また、上記の電圧増幅率A(調整回路1のゲインG)は、入力抵抗4の抵抗温度係数TCR0、及び同値抵抗61、52の抵抗温度係数TCRa、TCRbを考慮すると、切換スイッチSb1、Sa2がオンの場合には、下記の(6)式のように表される。
G={R1(1+TCRb・T)+R2(1+TCRa・T)}/R0(1+TCR0・T)
≒(R/R0)[1+{(R1/R)・TCRb+(R2/R)・TCRa−TCR0}・T]・・・(6)
ただし、上式におけるR0、R1、R2は、それぞれ入力抵抗4、同値抵抗61、同値抵抗52の基準温度における抵抗値を表し、Tは、基準温度からの温度差を表す。また、R=R1+R2であり、TCRa<<1、TCRb<<1、TCR0<<1とする。
The voltage amplification factor A V (the gain G of the adjustment circuit 1) is set so that the changeover switches Sb1 and Sa2 take into account the resistance temperature coefficient TCR0 of the input resistor 4 and the resistance temperature coefficients TCRa and TCRb of the equivalent resistors 61 and 52. When is on, it is expressed as the following equation (6).
G = {R1 (1 + TCRb · T) + R2 (1 + TCRa · T)} / R0 (1 + TCR0 · T)
≈ (R / R0) [1 + {(R1 / R) · TCRb + (R2 / R) · TCRa−TCR0} · T] (6)
However, R0, R1, and R2 in the above equation represent resistance values at the reference temperature of the input resistor 4, the equivalent resistor 61, and the equivalent resistor 52, respectively, and T represents a temperature difference from the reference temperature. R = R1 + R2, and TCRa << 1, TCRb << 1, and TCR0 << 1.

上記の(3)式より、切換スイッチSa1、Sa2がオンのときの調整回路1のゲイン温度特性は、{1+(TCRa−TCR0)・T}である。上記の(4)式より、切換スイッチSb1、Sb2がオンのときの調整回路1のゲイン温度特性は、{1+(TCRb−TCR0)・T}である。上記の(5)式より、切換スイッチSa1、Sb2がオンのときの調整回路1のゲイン温度特性は、[1+{(R1/R)・TCRa+(R2/R)・TCRb−TCR0}・T]である。上記の(6)式より、切換スイッチSb1、Sa2がオンのときの調整回路1のゲイン温度特性は、[1+{(R1/R)・TCRb+(R2/R)・TCRa−TCR0}・T]である。   From the above equation (3), the gain temperature characteristic of the adjustment circuit 1 when the changeover switches Sa1 and Sa2 are on is {1+ (TCRa−TCR0) · T}. From the above equation (4), the gain temperature characteristic of the adjustment circuit 1 when the changeover switches Sb1 and Sb2 are on is {1+ (TCRb−TCR0) · T}. From the above equation (5), the gain temperature characteristic of the adjustment circuit 1 when the changeover switches Sa1 and Sb2 are on is [1 + {(R1 / R) · TCRa + (R2 / R) · TCRb−TCR0} · T]. It is. From the above equation (6), the gain-temperature characteristic of the adjustment circuit 1 when the changeover switches Sb1 and Sa2 are on is [1 + {(R1 / R) · TCRb + (R2 / R) · TCRa−TCR0} · T] It is.

本調整回路1は、上記の4種類のゲイン温度特性を用いて、センサの感度温度特性を補正(調整)する。より詳細に言うと、本調整回路1では、切換スイッチSa1、Sa2、Sb1、Sb2を用いて、調整回路1自体のゲイン温度特性を切り換える(変更する)ことにより、センサの感度温度特性を設計値に近づけるように補正することができる。従って、上記の調整回路1の4種類のゲイン温度特性は、センサの感度温度特性に対する補正値でもある。このことから、本調整回路1は、センサの感度温度特性に対する補正値を切換スイッチSa1、Sa2、Sb1、Sb2で変更することができるようにしたものであるとも言える。   The adjustment circuit 1 corrects (adjusts) the sensitivity temperature characteristic of the sensor using the above four types of gain temperature characteristics. More specifically, the adjustment circuit 1 uses the changeover switches Sa1, Sa2, Sb1, and Sb2 to switch (change) the gain temperature characteristic of the adjustment circuit 1 itself, thereby changing the sensitivity temperature characteristic of the sensor to the design value. It can correct so that it may approach. Therefore, the four types of gain temperature characteristics of the adjustment circuit 1 are also correction values for the sensitivity temperature characteristics of the sensor. From this, it can be said that the adjustment circuit 1 can change the correction value for the sensitivity temperature characteristic of the sensor with the changeover switches Sa1, Sa2, Sb1, and Sb2.

第2の実施形態の調整回路1によれば、上記第1の実施形態の調整回路1に比べて、切換スイッチSa1、Sa2、Sb1、Sb2により切り換え可能な(調整回路1の)ゲイン温度特性の種類が増すので、センサの感度温度特性に対する補正値の種類も増す。このため、上記第1の実施形態の調整回路1に比べて、センサの感度温度特性に対する補正をより精度良く行うことが可能になる。   According to the adjustment circuit 1 of the second embodiment, the gain temperature characteristic of the adjustment circuit 1 (of the adjustment circuit 1) can be switched by the changeover switches Sa1, Sa2, Sb1, and Sb2 as compared with the adjustment circuit 1 of the first embodiment. As the types increase, the types of correction values for the sensitivity temperature characteristics of the sensor also increase. For this reason, it is possible to perform the correction with respect to the sensitivity temperature characteristic of the sensor more accurately than in the adjustment circuit 1 of the first embodiment.

さらにまた、第2の実施形態の調整回路1によれば、帰還抵抗部31において、並列に接続された、2つの異なる温度特性を有する同値抵抗51、61のうち、オペアンプ2の帰還抵抗として用いる同値抵抗を切換スイッチSa1,Sb1で切り換えるようにした。また、帰還抵抗部32において、並列に接続された、2つの異なる温度特性を有する同値抵抗52、62のうち、オペアンプ2の帰還抵抗として用いる同値抵抗を切換スイッチSa2,Sb2で切り換えるようにした。これらの帰還抵抗として用いる同値抵抗の切り換えにより、調整回路1のゲイン温度特性を調整して、センサの感度温度特性を調整(補正)することができる。これにより、調整回路1のゲイン温度特性を調整する(センサの感度温度特性を調整する)ために、オペアンプ2の帰還抵抗として用いる同値抵抗51、61、52、62を切り換えた場合でも、調整回路1内のオペアンプ2の(基準温度における)入力抵抗値R0と帰還抵抗値R(=R1+R2)が変化しないので、基準温度における調整回路1のゲインの値(R/R0)が変化しない。従って、調整回路1のゲイン温度特性の調整(センサの感度温度特性の調整)後に、調整回路1のゲインを調整する必要性を減じることができる。   Furthermore, according to the adjustment circuit 1 of the second embodiment, the feedback resistor 31 is used as the feedback resistor of the operational amplifier 2 among the two equivalent resistors 51 and 61 having different temperature characteristics connected in parallel. The equivalent resistance is switched by the changeover switches Sa1 and Sb1. In the feedback resistor section 32, among the two equivalent resistors 52 and 62 having different temperature characteristics connected in parallel, the equivalent resistor used as the feedback resistor of the operational amplifier 2 is switched by the changeover switches Sa2 and Sb2. By switching the equivalent resistors used as these feedback resistors, the gain temperature characteristic of the adjustment circuit 1 can be adjusted, and the sensitivity temperature characteristic of the sensor can be adjusted (corrected). Thereby, even when the equivalent resistors 51, 61, 52, 62 used as feedback resistors of the operational amplifier 2 are switched in order to adjust the gain temperature characteristic of the adjustment circuit 1 (adjust the sensitivity temperature characteristic of the sensor), the adjustment circuit Since the input resistance value R0 and the feedback resistance value R (= R1 + R2) of the operational amplifier 2 in 1 do not change, the gain value (R / R0) of the adjustment circuit 1 at the reference temperature does not change. Accordingly, it is possible to reduce the necessity of adjusting the gain of the adjusting circuit 1 after adjusting the gain temperature characteristic of the adjusting circuit 1 (adjusting the sensitivity temperature characteristic of the sensor).

なお、本発明は、上記実施形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変形が可能である。例えば、上記第1及び第2の実施形態では、並列に接続された2つの異なる温度特性を有する同値抵抗のうち、オペアンプの帰還抵抗として用いる同値抵抗を切り換えるようにした。けれども、並列に接続された3つ以上の異なる温度特性を有する同値抵抗のうち、オペアンプの帰還抵抗として用いる同値抵抗を切り換えるようにしてもよい。これにより、上記第1及び第2の実施形態の調整回路に比べて、切り換え可能な(調整回路の)ゲイン温度特性の種類が増すので、センサの感度温度特性に対する補正値の種類も増す。このため、上記第1及び第2の実施形態の調整回路に比べて、センサの感度温度特性に対する補正をより精度良く行うことが可能になる。   In addition, this invention is not restricted to the structure of the said embodiment, A various deformation | transformation is possible in the range which does not change the meaning of invention. For example, in the first and second embodiments, the equivalent resistor used as the feedback resistor of the operational amplifier is switched among the two equivalent resistors having different temperature characteristics connected in parallel. However, among the equivalent resistors having three or more different temperature characteristics connected in parallel, the equivalent resistor used as the feedback resistor of the operational amplifier may be switched. As a result, the types of gain temperature characteristics that can be switched (of the adjustment circuit) are increased compared to the adjustment circuits of the first and second embodiments, and the types of correction values for the sensitivity temperature characteristics of the sensor are also increased. For this reason, it is possible to perform the correction with respect to the sensitivity temperature characteristic of the sensor more accurately than the adjustment circuits of the first and second embodiments.

また、上記第2の実施形態では、オペアンプの帰還抵抗が、2つの直列に接続された帰還抵抗部により構成されている場合の例を示したが、3つ以上の直列に接続された帰還抵抗部により構成されていてもよい。この構成においても、上記第2の実施形態の調整回路に比べて、切り換え可能な(調整回路の)ゲイン温度特性の種類が増すので、センサの感度温度特性に対する補正値の種類も増す。このため、上記第2の実施形態の調整回路に比べて、センサの感度温度特性に対する補正をより精度良く行うことが可能になる。   In the second embodiment, an example in which the feedback resistor of the operational amplifier is configured by two feedback resistor units connected in series is shown. However, three or more feedback resistors connected in series are shown. You may be comprised by the part. Also in this configuration, since the types of gain temperature characteristics that can be switched (of the adjustment circuit) are increased as compared with the adjustment circuit of the second embodiment, the types of correction values for the sensitivity temperature characteristics of the sensor are also increased. For this reason, it is possible to perform the correction with respect to the sensitivity temperature characteristic of the sensor more accurately than the adjustment circuit of the second embodiment.

1 調整回路(感度温度特性調整回路)
2 オペアンプ
3、31、32 帰還抵抗部
4 入力抵抗
5、6、51、52、61、62 同値抵抗
Sa、Sb、Sa1、Sa2、Sb1、Sb2 切換スイッチ
1 Adjustment circuit (Sensitivity temperature characteristic adjustment circuit)
2 Op-amps 3, 31, 32 Feedback resistance unit 4 Input resistors 5, 6, 51, 52, 61, 62 Equivalent resistances Sa, Sb, Sa1, Sa2, Sb1, Sb2 changeover switch

Claims (2)

対象となる物理量に応じた値の電圧信号を出力するセンサの感度温度特性を調整する感度温度特性調整回路において、
前記センサから入力された電圧信号を増幅して出力するオペアンプと、このオペアンプに接続された帰還抵抗部と入力抵抗とを備え、
前記帰還抵抗部は、互いに異なる温度特性を有し、並列に接続された、複数の同じ抵抗値を持つ同値抵抗と、これら複数の同値抵抗のうち、前記オペアンプの帰還抵抗として用いる同値抵抗を選択的に切り換えるための切換スイッチとを含むことを特徴とする感度温度特性調整回路。
In the sensitivity temperature characteristic adjustment circuit that adjusts the sensitivity temperature characteristic of the sensor that outputs a voltage signal of a value according to the target physical quantity,
An operational amplifier that amplifies and outputs the voltage signal input from the sensor, a feedback resistor section connected to the operational amplifier, and an input resistance,
The feedback resistor unit has a plurality of equivalent resistors having different temperature characteristics and connected in parallel, and an equivalent resistor used as a feedback resistor of the operational amplifier is selected from the plurality of equivalent resistors. A sensitivity temperature characteristic adjusting circuit including a changeover switch for automatically switching.
前記帰還抵抗部を複数備え、これら複数の帰還抵抗部が直列に接続されていることを特徴とする請求項1に記載の感度温度特性調整回路。   2. The sensitivity temperature characteristic adjusting circuit according to claim 1, wherein a plurality of the feedback resistor units are provided, and the plurality of feedback resistor units are connected in series.
JP2011153639A 2011-07-12 2011-07-12 Sensitivity-temperature characteristic adjustment circuit Withdrawn JP2013021527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011153639A JP2013021527A (en) 2011-07-12 2011-07-12 Sensitivity-temperature characteristic adjustment circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011153639A JP2013021527A (en) 2011-07-12 2011-07-12 Sensitivity-temperature characteristic adjustment circuit

Publications (1)

Publication Number Publication Date
JP2013021527A true JP2013021527A (en) 2013-01-31

Family

ID=47692519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011153639A Withdrawn JP2013021527A (en) 2011-07-12 2011-07-12 Sensitivity-temperature characteristic adjustment circuit

Country Status (1)

Country Link
JP (1) JP2013021527A (en)

Similar Documents

Publication Publication Date Title
JP2008205560A (en) Variable gain amplifier circuit, filter circuit and semiconductor device
TW201208257A (en) Offset calibration and precision hysteresis for a rail-rail comparator with large dynamic range
JP2017529791A5 (en)
WO2007043122A1 (en) Variable gain amplifier and its control method
JP2007116493A (en) Offset canceller
US20160079943A1 (en) Two Differential Amplifier Configuration
KR20150069936A (en) Offset correction apparatus for differential amplifier and method thereof
US20060197592A1 (en) Variable gain amplifier
JP2011091572A (en) Variable-gain amplifier circuit
KR101377916B1 (en) Operational amplifier
KR100664309B1 (en) Variable gain differential amplifier, variable degeneration impedance controlling device used in the same, and variable degeneration impedance controlling method
JP2010136039A (en) Signal amplifier and magnetic sensor device
JP2007534205A (en) Differential amplifier
JP2010220195A (en) Current conveyor based instrumentation amplifier
JP2006319388A (en) Automatic gain control circuit and sine wave oscillation circuit employing the same
JP2016126550A (en) Constant current circuit and sensor device having the same
JP2013021527A (en) Sensitivity-temperature characteristic adjustment circuit
JP5440521B2 (en) Sensitivity temperature compensation circuit
JP6166124B2 (en) Signal processing circuit
JP2008227712A (en) Variable gain amplifier circuit
JP2012169820A (en) Preamplifier circuit and microphone
JP5538465B2 (en) Sample and hold circuit
JP6327813B2 (en) Variable gain amplifier
JP2019092103A (en) Instrumentation amplifier
JP2005217710A (en) Electronic volume

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007