JP2013020943A - Electronic element, conductive polymer composition, and method for producing the same - Google Patents

Electronic element, conductive polymer composition, and method for producing the same Download PDF

Info

Publication number
JP2013020943A
JP2013020943A JP2012101424A JP2012101424A JP2013020943A JP 2013020943 A JP2013020943 A JP 2013020943A JP 2012101424 A JP2012101424 A JP 2012101424A JP 2012101424 A JP2012101424 A JP 2012101424A JP 2013020943 A JP2013020943 A JP 2013020943A
Authority
JP
Japan
Prior art keywords
sulfonic acid
group
polymer composition
conductive polymer
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012101424A
Other languages
Japanese (ja)
Other versions
JP5432319B2 (en
Inventor
Kuo-Liang Yeh
國良 葉
Gakumei Cho
學明 張
Gong Kun Huang
功▲クン▼ 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of JP2013020943A publication Critical patent/JP2013020943A/en
Application granted granted Critical
Publication of JP5432319B2 publication Critical patent/JP5432319B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electronic element, a conductive polymer composition, and a method for producing the same.SOLUTION: The conductive polymer composition contains an organic polymer, a polystyrene sulfonic acid, and a lignin sulfonic acid. The organic polymer has a repeating unit represented by formula (I) [wherein Xand Xare each independently O or S, Y is a Calkylene group or a Calkylidene group, and Ris H, a Calkyl group, a Ccycloalkyl group, or an aryl group].

Description

本発明は、電子素子、導電性高分子組成物およびその製造方法に関するものであって、特に、優れた電気的性質を有する電子素子、導電性高分子組成物およびその製造方法に関するものである。   The present invention relates to an electronic device, a conductive polymer composition, and a method for producing the same, and particularly relates to an electronic device having excellent electrical properties, a conductive polymer composition, and a method for producing the same.

導電性高分子(例えば、ポリアニリン、ポリピロール、ポリチオフェン)は、導電性と塗布可能な性質を有するので、幅広く、静電気防止コーティング、電界コンデンサ、太陽電池および電界発光ディスプレイ等の領域に応用されている。例えば、特許文献1には、ポリ(3,4−ジアルコキシチオフェン)の分散体およびその製造方法、それを用いた静電防止コーティングなどが記載されている。一方、ポリ(3,4−エチレンジオキシチオフェン)(PEDOT)は、現在、導電性高分子のうちで導電性が高い導電性高分子の一つである。高導電度、高熱安定性、薄膜時の透明性がよいので、ポリ3,4−エチレンジオキシチオフェンは最も注目されている導電性高分子である。   Conductive polymers (for example, polyaniline, polypyrrole, polythiophene) have conductivity and properties that can be applied, and thus have been widely applied to areas such as antistatic coatings, electric field capacitors, solar cells, and electroluminescent displays. For example, Patent Document 1 describes a dispersion of poly (3,4-dialkoxythiophene), a production method thereof, an antistatic coating using the same, and the like. On the other hand, poly (3,4-ethylenedioxythiophene) (PEDOT) is one of conductive polymers having high conductivity among conductive polymers. Poly 3,4-ethylenedioxythiophene is a conductive polymer that has attracted the most attention because of its high conductivity, high thermal stability, and good transparency in thin films.

ポリ3,4−エチレンジオキシチオフェンを製造する際には、一般に、スルホン酸化分子ドーパントを加えて、分散性を増加させている。ドーパントは、低分子ドーパントと高分子ドーパントに分けられる。低分子ドーパントは、例えば、ベンゼンスルホン酸、p−トルエンスルホン酸、ナフタリンスルホン酸等である。高分子ドーパントは、例えば、ポリスチレンスルホン酸、ポリエチレンスルホン酸等である。ポリスチレンスルホン酸を例とすると、ドイツのバイエル社(Bayer)が、まず、1991年に、ポリスチレンスルホン酸をポリ3,4−エチレンジオキシチオフェン中にドープしている。ポリスチレンスルホン酸は、この導電性高分子中で二種の作用があり、一つは、電荷平衡のドーパントとなること、もう一つは、ポリ3,4−エチレンジオキシチオフェンの分散を助けることである。バイエル社が開発したポリ3,4−エチレンジオキシチオフェン/ポリスチレンスルホン酸は、ポリ3,4−エチレンジオキシチオフェンの分散性を高め、加工性が増加する。しかし、ポリ3,4−エチレンジオキシチオフェン/ポリスチレンスルホン酸を固体電界コンデンサの電極とする場合、得られた固体電界コンデンサのキャパシタンスは低く、高いキャパシタンスを有するコンデンサを製造することができない。   When producing poly 3,4-ethylenedioxythiophene, a sulfonated molecular dopant is generally added to increase dispersibility. The dopant is divided into a low molecular dopant and a high molecular dopant. Examples of the low molecular dopant include benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, and the like. Examples of the polymer dopant include polystyrene sulfonic acid and polyethylene sulfonic acid. Taking polystyrene sulfonic acid as an example, Bayer, Germany, first doped polystyrene sulfonic acid in poly3,4-ethylenedioxythiophene in 1991. Polystyrene sulfonic acid has two functions in this conductive polymer, one is a charge-balanced dopant, and the other is to help disperse poly 3,4-ethylenedioxythiophene. It is. Poly 3,4-ethylenedioxythiophene / polystyrene sulfonic acid developed by Bayer increases the dispersibility of poly 3,4-ethylenedioxythiophene and increases processability. However, when poly 3,4-ethylenedioxythiophene / polystyrene sulfonic acid is used as an electrode of a solid electric field capacitor, the capacitance of the obtained solid electric field capacitor is low, and a capacitor having a high capacitance cannot be manufactured.

よって、新規の導電性高分子組成物を提供し、従来の技術による問題を解決することが、現在、導電性高分子技術研究における重要な課題である。   Therefore, providing a novel conductive polymer composition and solving the problems caused by the conventional technology is an important issue in conducting polymer research.

特開平7−90060号公報Japanese Patent Laid-Open No. 7-90060

本発明は、電子素子、導電性高分子組成物およびその製造方法を提供することを目的とする。   An object of this invention is to provide an electronic device, a conductive polymer composition, and its manufacturing method.

本発明は、導電性高分子組成物を提供する。導電性高分子組成物は、有機ポリマー、ポリスチレンスルホン酸およびリグニンスルホン酸を含む。有機ポリマーは、式(I):   The present invention provides a conductive polymer composition. The conductive polymer composition includes an organic polymer, polystyrene sulfonic acid, and lignin sulfonic acid. The organic polymer has the formula (I):

Figure 2013020943
Figure 2013020943

[式中、XおよびXは、それぞれ独立して、OまたはS、YはC1−4アルキレン基またはC2−4アルキリデン基、RはHまたはC1−18アルキル基、C5−12シクロアルキル基またはアリール基である]
で示される繰り返し単位を有する。
[Wherein, X 1 and X 2 are each independently O or S, Y is a C 1-4 alkylene group or C 2-4 alkylidene group, R 1 is H or a C 1-18 alkyl group, C 5 -12 is a cycloalkyl group or an aryl group]
It has a repeating unit represented by

本発明は、上記導電性高分子組成物の製造方法をも提供する。導電性高分子組成物の製造方法は、以下の工程を含む:(a)リグニンスルホン酸、ポリスチレンスルホン酸、水および酸化剤の存在下で、モノマーに重合反応を実行する。モノマーは、式(II):   The present invention also provides a method for producing the conductive polymer composition. The method for producing a conductive polymer composition includes the following steps: (a) A monomer is subjected to a polymerization reaction in the presence of lignin sulfonic acid, polystyrene sulfonic acid, water and an oxidizing agent. The monomer has the formula (II):

Figure 2013020943
Figure 2013020943

[式中、XおよびXは、それぞれ独立して、OまたはS、YはC1−4アルキレン基またはC2−4アルキリデン基、RはHまたはC1−18アルキル基、C5−12シクロアルキル基またはアリール基である]で示される構造を有する;(b)純化工程を実行して、酸化剤(さらに、未反応のモノマー、モノマーの二量体、モノマーの三量体、またはモノマーのオリゴマー)を除去して、導電性高分子組成物を得る。 [Wherein, X 1 and X 2 are each independently O or S, Y is a C 1-4 alkylene group or C 2-4 alkylidene group, R 1 is H or a C 1-18 alkyl group, C 5 -12 is a cycloalkyl group or an aryl group]; (b) performing a purification step to carry out an oxidizing agent (in addition, an unreacted monomer, a monomer dimer, a monomer trimer, Alternatively, the monomer oligomer) is removed to obtain a conductive polymer composition.

本発明のある態様によると、本発明は、基板および基板上に形成された導電層を含む電子素子を提供する。導電層は、上記導電性高分子組成物を基板上に塗布して得られる。本発明の別の態様によると、電子素子は、静電気防止塗膜、電界コンデンサ、太陽電池または電界発光ディスプレイである。   According to one aspect of the present invention, the present invention provides an electronic device comprising a substrate and a conductive layer formed on the substrate. The conductive layer is obtained by applying the conductive polymer composition onto a substrate. According to another aspect of the invention, the electronic device is an antistatic coating, an electric field capacitor, a solar cell or an electroluminescent display.

本発明による導電性高分子組成物は、リグニンスルホン酸およびポリスチレンスルホン酸を導電性高分子のドーパントとし、導電性高分子組成物の電荷平衡およびチオフェン高分子分散を促進する以外に、導電性高分子組成物は、固体電界コンデンサへの応用に非常に適し、キャパシタンスを増加させる。   The conductive polymer composition according to the present invention uses lignin sulfonic acid and polystyrene sulfonic acid as dopants for the conductive polymer, and promotes charge balance and thiophene polymer dispersion of the conductive polymer composition. The molecular composition is very suitable for applications in solid state electric capacitors and increases capacitance.

本発明の好ましい例による電界コンデンサ10の断面図である。1 is a cross-sectional view of an electric field capacitor 10 according to a preferred example of the present invention.

本発明は、導電性高分子組成物、その製造方法およびその応用を提供する。導電性高分子組成物の特徴は、リグニンスルホン酸およびポリスチレンスルホン酸を、導電性高分子のドーパントとし、導電性高分子組成物の電荷平衡およびチオフェン高分子分散を促進する以外に、導電性高分子組成物は、固体電界コンデンサへの応用に非常に適し、キャパシタンスを増加させる。   The present invention provides a conductive polymer composition, a production method thereof, and an application thereof. The characteristics of the conductive polymer composition are that, in addition to using lignin sulfonic acid and polystyrene sulfonic acid as dopants for the conductive polymer to promote charge balance and thiophene polymer dispersion of the conductive polymer composition, The molecular composition is very suitable for applications in solid state electric capacitors and increases capacitance.

本発明の導電性高分子組成物は、有機ポリマー、ポリスチレンスルホン酸およびリグニンスルホン酸を含む。本発明のある態様によると、有機ポリマーは、式(I):   The conductive polymer composition of the present invention contains an organic polymer, polystyrene sulfonic acid and lignin sulfonic acid. According to one embodiment of the present invention, the organic polymer has the formula (I):

Figure 2013020943
Figure 2013020943

[式中、XおよびXは、それぞれ独立して、OまたはS、YはC1−4アルキレン基またはC2−4アルキリデン基、RはHまたはC1−18アルキル基、C5−12シクロアルキル基またはアリール基である]で示される繰り返し単位を有する。本発明の別の態様によると、Yはメチレン基、エチリデン基、プロピリデン基またはブチリデン基である。リグニンスルホン酸は、木材を処理した後(例えば、硝酸やアルカリ)、外皮物質を除去して、分離したリグニンを、さらに、亜硫酸塩でスルホン酸化して得られるものである。本発明のある態様によると、使用するリグニンスルホン酸の重量平均分子量は、好ましくは1,000〜1,000,000(より好ましくは2,000〜25,000、さらに好ましくは2,500〜20,000、さらにより好ましくは5,000〜15,000)である。リグニンスルホン酸の硫黄含量は、好ましくは1%〜20%である。本発明の導電性高分子組成物において、ポリスチレンスルホン酸と有機ポリマーとの質量比は、好ましくは0.6〜13である。リグニンスルホン酸と有機ポリマーとの質量比は、好ましくは0.1〜17である。 [Wherein, X 1 and X 2 are each independently O or S, Y is a C 1-4 alkylene group or C 2-4 alkylidene group, R 1 is H or a C 1-18 alkyl group, C 5 A -12 cycloalkyl group or an aryl group]. According to another aspect of the present invention, Y is a methylene group, an ethylidene group, a propylidene group or a butylidene group. Lignin sulfonic acid is obtained by treating wood (for example, nitric acid or alkali), removing the skin material, and further sulfonating the separated lignin with sulfite. According to an embodiment of the present invention, the weight average molecular weight of the lignin sulfonic acid used is preferably 1,000 to 1,000,000 (more preferably 2,000 to 25,000, still more preferably 2,500 to 20). 5,000, even more preferably 5,000 to 15,000). The sulfur content of lignin sulfonic acid is preferably 1% to 20%. In the conductive polymer composition of the present invention, the mass ratio of polystyrene sulfonic acid to organic polymer is preferably 0.6 to 13. The mass ratio of lignin sulfonic acid to organic polymer is preferably 0.1-17.

本発明の別の態様では、本発明による導電性高分子組成物の製造方法は、以下の工程を含む。リグニンスルホン酸、ポリスチレンスルホン酸、水(または、さらに、その他の水溶性溶剤(例えば、メタノール、エタノール、エチレングリコール、アセトン、テトラヒドロフランまたは混合溶剤)を含む)、および酸化剤の存在下で、モノマーに重合反応を実行し、モノマーを有機ポリマーに合成する。モノマーは、式(II):   In another aspect of the present invention, the method for producing a conductive polymer composition according to the present invention includes the following steps. In the presence of lignin sulfonic acid, polystyrene sulfonic acid, water (or in addition, other water-soluble solvents (eg, methanol, ethanol, ethylene glycol, acetone, tetrahydrofuran or mixed solvents)), and in the presence of an oxidizing agent, the monomer A polymerization reaction is performed to synthesize monomers into organic polymers. The monomer has the formula (II):

Figure 2013020943
Figure 2013020943

[式中、XおよびXは、それぞれ独立して、OまたはS、YはC1−4アルキレン基またはC2−4アルキリデン基、RはHまたはC1−18アルキル基、C5−12シクロアルキル基またはアリール基である]で示される。続いて、得られた反応液に純化工程を実行して、酸化剤、未反応のモノマー、モノマーの二量体、モノマーの三量体、またはモノマーのオリゴマーを除去して、導電性高分子組成物を得る。モノマーとリグニンスルホン酸およびポリスチレンスルホン酸との当量比は、好ましくは1:0.5〜1:10である。モノマーと酸化剤との当量比は、好ましくは1:0.5〜1:5である。重合反応の温度は、好ましくは−5℃〜70℃である。使用する酸化剤は、例えば、過硫酸塩(例えば、過硫酸ナトリウム、過硫酸カリウムまたは過硫酸アンモニウム)、三価鉄塩(例えば、p−トルエンスルホン酸鉄(III)、硫酸鉄(III)、塩化鉄(III)または硝酸鉄(III))、二価銅塩(例えば、p−トルエンスルホン酸銅)またはそれらの組み合わせ(例えば、過硫酸ナトリウムとp−トルエンスルホン酸鉄(III)との混合物または過硫酸アンモニウムと硫酸鉄(III)との混合物)である。純化工程は、イオン交換樹脂、遠心分離法、透析法、限外ろ過、ろ過、またはこれらの組み合わせで実行する。このほか、重合反応実行時、同時に、分散工程を実行してもよく、例えば、従来の攪拌機、乳化機、ホモジナイザー、超音波または高圧ホモジナイザーにより実行する。 [Wherein, X 1 and X 2 are each independently O or S, Y is a C 1-4 alkylene group or C 2-4 alkylidene group, R 1 is H or a C 1-18 alkyl group, C 5 -12 is a cycloalkyl group or an aryl group]. Subsequently, a purification step is performed on the obtained reaction liquid to remove the oxidizing agent, unreacted monomer, monomer dimer, monomer trimer, or monomer oligomer, and the conductive polymer composition. Get things. The equivalent ratio of monomer to lignin sulfonic acid and polystyrene sulfonic acid is preferably 1: 0.5 to 1:10. The equivalent ratio of monomer to oxidizing agent is preferably 1: 0.5 to 1: 5. The temperature of the polymerization reaction is preferably −5 ° C. to 70 ° C. Examples of the oxidizing agent used include persulfates (for example, sodium persulfate, potassium persulfate or ammonium persulfate), trivalent iron salts (for example, iron (III) p-toluenesulfonate, iron (III) sulfate, chloride) Iron (III) or iron (III) nitrate), divalent copper salts (for example copper p-toluenesulfonate) or combinations thereof (for example a mixture of sodium persulfate and iron (III) p-toluenesulfonate) A mixture of ammonium persulfate and iron (III) sulfate). The purification step is performed by ion exchange resin, centrifugation, dialysis, ultrafiltration, filtration, or a combination thereof. In addition, the dispersion step may be performed simultaneously with the polymerization reaction. For example, the dispersion step is performed by a conventional stirrer, emulsifier, homogenizer, ultrasonic wave, or high-pressure homogenizer.

このほか、本発明は、基板および基板上に形成された導電層を含む電子素子をも提供する。導電層は、本発明の導電性高分子組成物を基板上に塗布して得られる。電子素子は、例えば、静電気防止塗膜、電界コンデンサ、太陽電池または電界発光ディスプレイである。例えば、図1を参照すると、電子素子は電界コンデンサ10であり、基板は金属酸化物層14である。電界コンデンサ10は、第一金属電極(例えば、アルミニウム)12と、導電層16(本発明の導電性高分子組成物を塗布して得られる)上に設置された第二金属電極(例えば、アルミニウム)18とを含む。第一金属電極12は、その上に金属酸化物層14(例えば、酸化アルミニウム(Al))が形成されている。金属酸化物層14は、複数の凹部20を含んでもよい。金属酸化物層14は、金属電極12に酸化工程を実行して得られる。このほか、導電層16を金属酸化物層14上に形成すると共に、複数の凹部20を充填してもよい。 In addition, the present invention also provides an electronic device including a substrate and a conductive layer formed on the substrate. The conductive layer is obtained by applying the conductive polymer composition of the present invention on a substrate. The electronic element is, for example, an antistatic coating, an electric field capacitor, a solar cell, or an electroluminescent display. For example, referring to FIG. 1, the electronic element is an electric field capacitor 10 and the substrate is a metal oxide layer 14. The electric capacitor 10 includes a first metal electrode (for example, aluminum) 12 and a second metal electrode (for example, aluminum) disposed on the conductive layer 16 (obtained by applying the conductive polymer composition of the present invention). 18). The first metal electrode 12 has a metal oxide layer 14 (for example, aluminum oxide (Al 2 O 3 )) formed thereon. The metal oxide layer 14 may include a plurality of recesses 20. The metal oxide layer 14 is obtained by performing an oxidation process on the metal electrode 12. In addition, the conductive layer 16 may be formed on the metal oxide layer 14 and the plurality of recesses 20 may be filled.

本発明の上記説明およびその他の目的、特徴、長所を理解しやすくするため、以下で幾つかの実施例により、本発明の導電性高分子組成物、その製造方法、およびそれを含む電子装置を説明する。   In order to facilitate understanding of the above description and other objects, features, and advantages of the present invention, a conductive polymer composition of the present invention, a method for producing the same, and an electronic device including the same will be described below according to some examples. explain.

実施例1
3,4−エチレンジオキシチオフェン(EDOT)14.2g(0.1mol)を準備し、1,362.25mLの脱イオン水、ポリスチレンスルホン酸(PSS)102.24g(0.1mol、分子量約75,000、18%水溶液)、および12.07gのリグニンスルホン酸(製品番号BG−NH4、Borregaardにより製造販売、スルホン酸形式はSONH、重量平均分子量は23,281、硫黄含量は5.19%)を加えた。続いて、上記溶液を20℃下で均一に攪拌後、窒素を溶液中に送り、少なくとも30分攪拌し続けた。ここで、溶液中に、過硫酸アンモニウム18.247g(0.08mol)および硫酸鉄0.568g(0.002mol)を加え、20℃下で、16時間反応させた。
Example 1
3.42 g (0.1 mol) of 3,4-ethylenedioxythiophene (EDOT) was prepared, and 1,362.25 mL of deionized water, 102.24 g of polystyrene sulfonic acid (PSS) (0.1 mol, molecular weight of about 75). 1,000, 18% aqueous solution), and 12.07 g of lignin sulfonic acid (product number BG-NH4, manufactured and sold by Borregaard, sulfonic acid form is SO 3 NH 4 , weight average molecular weight is 23,281, sulfur content is 5. 19%). Subsequently, after the solution was uniformly stirred at 20 ° C., nitrogen was fed into the solution and stirring was continued for at least 30 minutes. Here, 18.247 g (0.08 mol) of ammonium persulfate and 0.568 g (0.002 mol) of iron sulfate were added to the solution and reacted at 20 ° C. for 16 hours.

反応後の溶液は、透析膜(MWCO:12,000〜14,000)により、透析純化を実行し、未反応のモノマー、二量体、三量体、オリゴマーおよび酸化剤を除去した。純化後の溶液を、さらに、ホモジナイザーで処理し、導電性高分子組成物(PEDOT−PSS−LGN)溶液(1)を得た。   The solution after the reaction was subjected to dialysis purification using a dialysis membrane (MWCO: 12,000 to 14,000) to remove unreacted monomers, dimers, trimers, oligomers and oxidizing agents. The purified solution was further treated with a homogenizer to obtain a conductive polymer composition (PEDOT-PSS-LGN) solution (1).

続いて、3個のコンデンサを用意し、上記で得られた導電性高分子組成物溶液(1)に5分間浸漬した。取り出した後、110℃で60分間乾燥させた。得られたコンデンサは、それぞれ、LCRメータ(Agilent 4263B)で測定した(測定条件:電圧1,000mV、周波数120Hz)。測定結果を表1に示す。   Subsequently, three capacitors were prepared and immersed in the conductive polymer composition solution (1) obtained above for 5 minutes. After taking out, it was dried at 110 ° C. for 60 minutes. Each of the obtained capacitors was measured with an LCR meter (Agilent 4263B) (measurement conditions: voltage 1,000 mV, frequency 120 Hz). The measurement results are shown in Table 1.

実施例2
リグニンスルホン酸をBG−NH4からBG−Ca(Borregaardにより製造販売、スルホン酸形式はSOCa、重量平均分子量は13,647、硫黄含量は4.66%)に変更したこと以外は、実施例1と同様の製造工程を実行し、導電性高分子組成物(PEDOT−PSS−LGN)溶液(2)を得た。
Example 2
Except that lignin sulfonic acid was changed from BG-NH4 to BG-Ca (manufactured and sold by Borregaard, sulfonic acid form is SO 3 Ca, weight average molecular weight is 13,647, sulfur content is 4.66%) The manufacturing process similar to 1 was performed and the electroconductive polymer composition (PEDOT-PSS-LGN) solution (2) was obtained.

3個のコンデンサを用意し、上記で得られた導電性高分子組成物溶液(2)に5分間浸漬した。取り出した後、110℃で60分間乾燥させた。得られたコンデンサは、それぞれ、LCRメータ(Agilent 4263B)で測定した(測定条件:電圧1,000mV、周波数120Hz)た。測定結果を表1に示す。   Three capacitors were prepared and immersed in the conductive polymer composition solution (2) obtained above for 5 minutes. After taking out, it was dried at 110 ° C. for 60 minutes. Each of the obtained capacitors was measured with an LCR meter (Agilent 4263B) (measurement conditions: voltage 1,000 mV, frequency 120 Hz). The measurement results are shown in Table 1.

実施例3
リグニンスルホン酸をBG−NH4からBG−Na(Borregaardにより製造販売、そのスルホン酸形式はSONa、重量平均分子量は12,151、硫黄含量は4.70%)に変更したこと以外は、実施例1と同様の製造工程を実行し、導電性高分子組成物(PEDOT−PSS−LGN)溶液(3)を得た。
Example 3
Except that lignin sulfonic acid was changed from BG-NH4 to BG-Na (manufactured and sold by Borregaard, the sulfonic acid form is SO 3 Na, the weight average molecular weight is 12,151, the sulfur content is 4.70%) The manufacturing process similar to Example 1 was performed, and the conductive polymer composition (PEDOT-PSS-LGN) solution (3) was obtained.

3個のコンデンサを用意し、上記で得られた導電性高分子組成物溶液(3)に5分間浸漬した。取り出した後、110℃で60分間乾燥させた。得られたコンデンサは、それぞれ、LCRメータ(Agilent 4263B)で測定した(測定条件:電圧1,000mV、周波数120Hz)。測定結果を表1に示す。   Three capacitors were prepared and immersed in the conductive polymer composition solution (3) obtained above for 5 minutes. After taking out, it was dried at 110 ° C. for 60 minutes. Each of the obtained capacitors was measured with an LCR meter (Agilent 4263B) (measurement conditions: voltage 1,000 mV, frequency 120 Hz). The measurement results are shown in Table 1.

実施例4
リグニンスルホン酸をBG−NH4からMCL−H(ITRIにより製造、そのスルホン酸形式はSOH、重量平均分子量は2,071、硫黄含量は6.12%、リグニンスルホン酸MCL−Hの製造方法は:リグニンスルホン酸100質量部を準備し、30質量部のNaSO、および100質量部の1N NaOHを加えると共に、オートクレーブに入れて、150℃下で4時間反応させた。反応完成後、20質量部の硫酸を加え、イオン交換樹脂により、溶液中のイオンを除去する)に変更したこと以外は、実施例1と同様の製造工程を実行し、導電性高分子組成物(PEDOT−PSS−LGN)溶液(4)を得た。
Example 4
Lignin sulfonic acid is produced from BG-NH4 with MCL-H (produced by ITRI, the sulfonic acid form is SO 3 H, the weight average molecular weight is 2,071, the sulfur content is 6.12%, and the production method of lignin sulfonic acid MCL-H Ha: 100 parts by weight of lignin sulfonic acid was prepared, 30 parts by weight of Na 2 SO 3 and 100 parts by weight of 1N NaOH were added, and the mixture was placed in an autoclave and reacted at 150 ° C. for 4 hours. , Except that 20 parts by mass of sulfuric acid was added and the ion exchange resin was used to remove ions in the solution, and the same manufacturing process as in Example 1 was performed, and the conductive polymer composition (PEDOT- PSS-LGN) solution (4) was obtained.

3個のコンデンサを用意し、上記で得られた導電性高分子組成物溶液(4)に5分間浸漬した。取り出した後、110℃で60分間乾燥させた。得られたコンデンサは、それぞれ、LCRメータ(Agilent 4263B)で測定した(測定条件:電圧1,000mV、周波数120Hz)。測定結果を表1に示す。   Three capacitors were prepared and immersed in the conductive polymer composition solution (4) obtained above for 5 minutes. After taking out, it was dried at 110 ° C. for 60 minutes. Each of the obtained capacitors was measured with an LCR meter (Agilent 4263B) (measurement conditions: voltage 1,000 mV, frequency 120 Hz). The measurement results are shown in Table 1.

実施例5
リグニンスルホン酸を12.07gから1.207gに変更したこと以外は、実施例4と同様の製造工程を実行し、導電性高分子組成物(PEDOT−PSS−LGN)溶液(5)を得た。
Example 5
Except having changed lignin sulfonic acid from 12.07g to 1.207g, the manufacturing process similar to Example 4 was performed, and the conductive polymer composition (PEDOT-PSS-LGN) solution (5) was obtained. .

3個のコンデンサ(コンデンサはコンデンサメーカーから用意し、陽極電蝕アルミ箔、隔離紙および陰極アルミ箔を含み、陽極アルミ箔と陰極アルミ箔は、それぞれ、導電用のピンを接続している)を準備し、上記で得られた導電性高分子組成物溶液(5)に5分間浸漬した。取り出した後、110℃で60分間乾燥させた。得られたコンデンサは、それぞれ、LCRメータ(Agilent 4263B)で測定した(測定条件:電圧1,000mV、周波数120Hz)。測定結果を表1に示す。   3 capacitors (capacitors prepared from capacitor manufacturers, including anode electro-corrosion aluminum foil, separator paper and cathode aluminum foil, each of which is connected to conductive pins) Prepared and immersed in the conductive polymer composition solution (5) obtained above for 5 minutes. After taking out, it was dried at 110 ° C. for 60 minutes. Each of the obtained capacitors was measured with an LCR meter (Agilent 4263B) (measurement conditions: voltage 1,000 mV, frequency 120 Hz). The measurement results are shown in Table 1.

実施例6
リグニンスルホン酸を12.07gから60gに変更したこと以外は、実施例4と同様の製造工程を実行し、導電性高分子組成物(PEDOT−PSS−LGN)溶液(6)を得た。
Example 6
Except having changed lignin sulfonic acid from 12.07g to 60g, the manufacturing process similar to Example 4 was performed, and the conductive polymer composition (PEDOT-PSS-LGN) solution (6) was obtained.

3個のコンデンサを用意し、上記で得られた導電性高分子組成物溶液(6)に5分間浸した。取り出した後、110℃で60分間乾燥させた。得られたコンデンサは、それぞれ、LCRメータ(Agilent 4263B)で測定した(測定条件:電圧1,000mV、周波数120Hz)。測定結果を表1に示す。   Three capacitors were prepared and immersed in the conductive polymer composition solution (6) obtained above for 5 minutes. After taking out, it was dried at 110 ° C. for 60 minutes. Each of the obtained capacitors was measured with an LCR meter (Agilent 4263B) (measurement conditions: voltage 1,000 mV, frequency 120 Hz). The measurement results are shown in Table 1.

実施例7
リグニンスルホン酸を12.07gから120gに変更したこと以外は、実施例4と同様の製造工程を実行し、導電性高分子組成物(PEDOT−PSS−LGN)溶液(7)を得た。
Example 7
Except having changed lignin sulfonic acid from 12.07g to 120g, the manufacturing process similar to Example 4 was performed, and the conductive polymer composition (PEDOT-PSS-LGN) solution (7) was obtained.

3個のコンデンサを用意し、上記で得られた導電性高分子組成物溶液(7)に5分間浸漬した。取り出した後、110℃で60分間乾燥させた。得られたコンデンサは、それぞれ、LCRメータ(Agilent 4263B)で測定した(測定条件:電圧1,000mV、周波数120Hz)。測定結果を表1に示す。   Three capacitors were prepared and immersed in the conductive polymer composition solution (7) obtained above for 5 minutes. After taking out, it was dried at 110 ° C. for 60 minutes. Each of the obtained capacitors was measured with an LCR meter (Agilent 4263B) (measurement conditions: voltage 1,000 mV, frequency 120 Hz). The measurement results are shown in Table 1.

実施例8
リグニンスルホン酸を12.07gから240gに変更したこと以外は、実施例4と同様の製造工程を実行し、導電性高分子組成物(PEDOT−PSS−LGN)溶液(8)を得た。
Example 8
Except having changed lignin sulfonic acid from 12.07g to 240g, the manufacturing process similar to Example 4 was performed, and the conductive polymer composition (PEDOT-PSS-LGN) solution (8) was obtained.

3個のコンデンサを用意し、上記で得られた導電性高分子組成物溶液(8)に5分間浸漬した。取り出した後、110℃で60分間乾燥させた。得られたコンデンサは、それぞれ、LCRメータ(Agilent 4263B)で測定した(測定条件:電圧1,000mV、周波数120Hz)。測定結果を表1に示す。   Three capacitors were prepared and immersed in the conductive polymer composition solution (8) obtained above for 5 minutes. After taking out, it was dried at 110 ° C. for 60 minutes. Each of the obtained capacitors was measured with an LCR meter (Agilent 4263B) (measurement conditions: voltage 1,000 mV, frequency 120 Hz). The measurement results are shown in Table 1.

比較例1
3,4−エチレンジオキシチオフェン14.2g(0.1mol)を準備し、2,200mLの脱イオン水、ポリスチレンスルホン酸36.7g(0.2mol、分子量約75,000)を加え、この溶液を20℃で均一に攪拌後、窒素を溶液中に送り、少なくとも30分攪拌し続けた。この溶液中に、過硫酸アンモニウム22.8g(0.1mol)および硫酸鉄2g(0.005mol)を加え、20℃で16時間反応させた。
Comparative Example 1
Prepare 14.2 g (0.1 mol) of 3,4-ethylenedioxythiophene, add 2,200 mL of deionized water, 36.7 g of polystyrene sulfonic acid (0.2 mol, molecular weight of about 75,000), and add this solution. After stirring uniformly at 20 ° C., nitrogen was fed into the solution and stirring was continued for at least 30 minutes. To this solution, 22.8 g (0.1 mol) of ammonium persulfate and 2 g (0.005 mol) of iron sulfate were added and reacted at 20 ° C. for 16 hours.

反応後の溶液は、透析膜(MWCO:12,000〜14,000)により透析純化し、未反応のモノマー、二量体、三量体、オリゴマーおよび酸化剤を除去した。純化後の溶液を、さらに、ホモジナイザーで処理して、導電性高分子組成物(PEDOT−PSS)溶液(9)を得た。   The solution after the reaction was purified by dialysis using a dialysis membrane (MWCO: 12,000 to 14,000) to remove unreacted monomers, dimers, trimers, oligomers and oxidizing agents. The purified solution was further treated with a homogenizer to obtain a conductive polymer composition (PEDOT-PSS) solution (9).

3個のコンデンサを用意し、上記で得られた導電性高分子組成物溶液(9)に5分間浸漬した。取り出した後、110℃で60分間乾燥させた。得られたコンデンサは、それぞれ、LCRメータ(Agilent 4263B)で測定した(測定条件:電圧1,000mV、周波数120Hz)。測定結果を表1に示す。   Three capacitors were prepared and immersed in the conductive polymer composition solution (9) obtained above for 5 minutes. After taking out, it was dried at 110 ° C. for 60 minutes. Each of the obtained capacitors was measured with an LCR meter (Agilent 4263B) (measurement conditions: voltage 1,000 mV, frequency 120 Hz). The measurement results are shown in Table 1.

Figure 2013020943
Figure 2013020943

表1から分かるように、本発明による導電性高分子組成物(リグニンスルホン酸およびポリスチレンスルホン酸を含む)溶液(1)〜(8)で製造されるコンデンサのキャパシタンスは、比較例で得られる導電性高分子組成物(PEDOT−PSS)溶液(9)で製造されるコンデンサのキャパシタンス(0.17〜0.22μF)の2倍以上(本発明の実施例6で得られるコンデンサは15〜17倍に達するものもある)である。   As can be seen from Table 1, the capacitances of the capacitors produced by the conductive polymer composition (including lignin sulfonic acid and polystyrene sulfonic acid) solutions (1) to (8) according to the present invention are the conductivity obtained in the comparative example. 2 times or more of the capacitance (0.17 to 0.22 μF) of the capacitor produced with the conductive polymer composition (PEDOT-PSS) solution (9) (the capacitor obtained in Example 6 of the present invention is 15 to 17 times) Some of them reach this level).

総合すると、本発明による導電性高分子組成物は、リグニンスルホン酸およびポリスチレンスルホン酸を導電性高分子のドーパントとし、導電性高分子組成物の電荷平衡およびチオフェン高分子分散を促進する以外に、導電性高分子組成物は、固体電界コンデンサへの応用に非常に適し、キャパシタンスを増加させる。   In summary, the conductive polymer composition according to the present invention uses lignin sulfonic acid and polystyrene sulfonic acid as dopants for the conductive polymer, and promotes the charge balance and thiophene polymer dispersion of the conductive polymer composition. The conductive polymer composition is very suitable for application in solid state electric capacitors and increases capacitance.

本発明では、好ましい実施例を前述の通り開示したが、これらは例示として、および好ましい実施形態という観点から開示されたものであり、決して開示された実施例に限定するものではない。したがって、本発明の範囲は、添付の特許請求の範囲で示されるものであり、当業者にとっては、本発明の精神と範囲を逸脱することなく、記載された実施形態に様々な変更や修正を行うことができることは明らかである。   In the present invention, preferred examples have been disclosed as described above, but these are disclosed as examples and from the viewpoint of preferred embodiments, and are not limited to the disclosed examples in any way. The scope of the invention is, therefore, indicated by the appended claims, and various changes and modifications can be made to the described embodiments by those skilled in the art without departing from the spirit and scope of the invention. Obviously it can be done.

10:電界コンデンサ
12:第一金属電極
14:金属酸化物層
16:導電層
18:第二金属電極
20:凹部
10: Electric field capacitor 12: First metal electrode 14: Metal oxide layer 16: Conductive layer 18: Second metal electrode 20: Recess

Claims (22)

基板と、前記基板上に導電性高分子組成物を塗布して形成された導電層とを有する電子素子であって、
前記導電性高分子組成物が、有機ポリマーと、ポリスチレンスルホン酸と、リグニンスルホン酸とを含み、
前記有機ポリマーが、式(I):
Figure 2013020943
[式中、XおよびXは、それぞれ独立して、OまたはS、YはC1−4アルキレン基またはC2−4アルキリデン基、RはHまたはC1−18アルキル基、C5−12シクロアルキル基またはアリール基である]
で示される繰り返し単位を有することを特徴とする電子素子。
An electronic device having a substrate and a conductive layer formed by applying a conductive polymer composition on the substrate,
The conductive polymer composition includes an organic polymer, polystyrene sulfonic acid, and lignin sulfonic acid,
Said organic polymer is of formula (I):
Figure 2013020943
[Wherein, X 1 and X 2 are each independently O or S, Y is a C 1-4 alkylene group or C 2-4 alkylidene group, R 1 is H or a C 1-18 alkyl group, C 5 -12 is a cycloalkyl group or an aryl group]
An electronic device comprising a repeating unit represented by:
前記Yが、メチレン基、エチリデン基、プロピリデン基またはブチリデン基である請求項1に記載の電子素子。   The electronic device according to claim 1, wherein Y is a methylene group, an ethylidene group, a propylidene group, or a butylidene group. 前記ポリスチレンスルホン酸と前記有機ポリマーとの質量比が0.6〜13である請求項1または2に記載の電子素子。   The electronic device according to claim 1 or 2, wherein a mass ratio of the polystyrene sulfonic acid to the organic polymer is 0.6 to 13. 前記リグニンスルホン酸と前記有機ポリマーとの質量比が0.1〜17である請求項1〜3のいずれか1項に記載の電子素子。   The electronic device according to any one of claims 1 to 3, wherein a mass ratio of the lignin sulfonic acid to the organic polymer is 0.1 to 17. 前記リグニンスルホン酸の重量平均分子量が1,000〜1,000,000である請求項1〜4のいずれか1項に記載の電子素子。   The electronic device according to any one of claims 1 to 4, wherein the lignin sulfonic acid has a weight average molecular weight of 1,000 to 1,000,000. 前記リグニンスルホン酸の硫黄含量が1%〜20%である請求項1〜5のいずれか1項に記載の電子素子。   The electronic device according to any one of claims 1 to 5, wherein the sulfur content of the lignin sulfonic acid is 1% to 20%. 前記電子素子が、静電気防止塗膜、電界コンデンサ、太陽電池または電界発光ディスプレイである請求項1〜6のいずれか1項に記載の電子素子。   The electronic device according to claim 1, wherein the electronic device is an antistatic coating film, an electric field capacitor, a solar cell, or an electroluminescent display. 前記電子素子が電界コンデンサであり、前記基板が金属酸化物層である請求項1〜7のいずれか1項に記載の電子素子。   The electronic device according to claim 1, wherein the electronic device is an electric field capacitor, and the substrate is a metal oxide layer. 有機ポリマーと、ポリスチレンスルホン酸と、リグニンスルホン酸とを含み、
前記有機ポリマーが、式(I):
Figure 2013020943
[式中、XおよびXは、それぞれ独立して、OまたはS、YはC1−4アルキレン基またはC2−4アルキリデン基、RはHまたはC1−18アルキル基、C5−12シクロアルキル基またはアリール基である]
で示される繰り返し単位を有することを特徴とする導電性高分子組成物。
An organic polymer, polystyrene sulfonic acid, and lignin sulfonic acid,
Said organic polymer is of formula (I):
Figure 2013020943
[Wherein, X 1 and X 2 are each independently O or S, Y is a C 1-4 alkylene group or C 2-4 alkylidene group, R 1 is H or a C 1-18 alkyl group, C 5 -12 is a cycloalkyl group or an aryl group]
It has a repeating unit shown by the conductive polymer composition characterized by the above-mentioned.
前記Yが、メチレン基、エチリデン基、プロピリデン基またはブチリデン基である請求項9に記載の導電性高分子組成物。   The conductive polymer composition according to claim 9, wherein Y is a methylene group, an ethylidene group, a propylidene group, or a butylidene group. 前記ポリスチレンスルホン酸と前記有機ポリマーとの質量比が0.6〜13である請求項9または10に記載の導電性高分子組成物。   The conductive polymer composition according to claim 9 or 10, wherein a mass ratio of the polystyrene sulfonic acid to the organic polymer is 0.6 to 13. 前記リグニンスルホン酸と前記有機ポリマーとの質量比が0.1〜17である請求項9〜11のいずれか1項に記載の導電性高分子組成物。   The conductive polymer composition according to any one of claims 9 to 11, wherein a mass ratio of the lignin sulfonic acid to the organic polymer is 0.1 to 17. 前記リグニンスルホン酸の重量平均分子量が1,000〜1,000,000である請求項9〜12のいずれか1項に記載の導電性高分子組成物。   The conductive polymer composition according to any one of claims 9 to 12, wherein the lignin sulfonic acid has a weight average molecular weight of 1,000 to 1,000,000. 前記リグニンスルホン酸の硫黄含量が1%〜20%である請求項9〜13のいずれか1項に記載の導電性高分子組成物。   The conductive polymer composition according to claim 9, wherein the sulfur content of the lignin sulfonic acid is 1% to 20%. リグニンスルホン酸、ポリスチレンスルホン酸、水および酸化剤の存在下で、モノマーに重合反応を実行する工程と、
純化工程を実行して、前記酸化剤を除去し、前記導電性高分子組成物を得る工程と、
を含み、
前記モノマーが、式(II):
Figure 2013020943
[式中、XおよびXは、それぞれ独立して、OまたはS、YはC1−4アルキレン基またはC2−4アルキリデン基、RはHまたはC1−18アルキル基、C5−12シクロアルキル基またはアリール基である]
で示される構造を有することを特徴とする導電性高分子組成物の製造方法。
Performing a polymerization reaction on the monomers in the presence of lignin sulfonic acid, polystyrene sulfonic acid, water and an oxidizing agent;
Performing a purification step to remove the oxidizing agent to obtain the conductive polymer composition; and
Including
The monomer is represented by formula (II):
Figure 2013020943
[Wherein, X 1 and X 2 are each independently O or S, Y is a C 1-4 alkylene group or C 2-4 alkylidene group, R 1 is H or a C 1-18 alkyl group, C 5 -12 is a cycloalkyl group or an aryl group]
The manufacturing method of the conductive polymer composition characterized by having the structure shown by these.
前記Yが、メチレン基、エチリデン基、プロピリデン基またはブチリデン基である請求項15に記載の導電性高分子組成物の製造方法。   The method for producing a conductive polymer composition according to claim 15, wherein Y is a methylene group, an ethylidene group, a propylidene group, or a butylidene group. 前記リグニンスルホン酸の重量平均分子量が1,000〜1,000,000である請求項15または16に記載の導電性高分子組成物の製造方法。   The method for producing a conductive polymer composition according to claim 15 or 16, wherein the lignin sulfonic acid has a weight average molecular weight of 1,000 to 1,000,000. 前記リグニンスルホン酸の硫黄含量が1%〜20%である請求項15〜17のいずれか1項に記載の導電性高分子組成物の製造方法。   The method for producing a conductive polymer composition according to any one of claims 15 to 17, wherein the lignin sulfonic acid has a sulfur content of 1% to 20%. 前記酸化剤が、過硫酸塩、三価鉄塩、二価銅塩またはその組み合わせである請求項15〜18のいずれか1項に記載の導電性高分子組成物の製造方法。   The method for producing a conductive polymer composition according to any one of claims 15 to 18, wherein the oxidizing agent is a persulfate, a trivalent iron salt, a divalent copper salt, or a combination thereof. 前記モノマーと前記リグニンスルホン酸およびポリスチレンスルホン酸との当量比が1:0.5〜1:10である請求項15〜19のいずれか1項に記載の導電性高分子組成物の製造方法。   The method for producing a conductive polymer composition according to any one of claims 15 to 19, wherein an equivalent ratio of the monomer to the lignin sulfonic acid and polystyrene sulfonic acid is 1: 0.5 to 1:10. 前記モノマーと前記酸化剤との当量比が1:0.5〜1:5である請求項15〜20のいずれか1項に記載の導電性高分子組成物の製造方法。   The method for producing a conductive polymer composition according to any one of claims 15 to 20, wherein an equivalence ratio of the monomer and the oxidizing agent is 1: 0.5 to 1: 5. 前記重合反応の温度が−5℃〜70℃である請求項15〜21のいずれか1項に記載の導電性高分子組成物の製造方法。   The temperature of the said polymerization reaction is -5 degreeC-70 degreeC, The manufacturing method of the conductive polymer composition of any one of Claims 15-21.
JP2012101424A 2011-07-11 2012-04-26 Electronic device, conductive polymer composition and method for producing the same Active JP5432319B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW100124398A TWI511999B (en) 2011-07-11 2011-07-11 Electronic element, conductive polymer composition, and method for fabricating the same
TW100124398 2011-07-11

Publications (2)

Publication Number Publication Date
JP2013020943A true JP2013020943A (en) 2013-01-31
JP5432319B2 JP5432319B2 (en) 2014-03-05

Family

ID=47477733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012101424A Active JP5432319B2 (en) 2011-07-11 2012-04-26 Electronic device, conductive polymer composition and method for producing the same

Country Status (3)

Country Link
JP (1) JP5432319B2 (en)
CN (1) CN102876201B (en)
TW (1) TWI511999B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016092387A (en) * 2014-11-05 2016-05-23 財團法人工業技術研究院Industrial Technology Research Institute Iron salt oxidizer composition, solid electrolytic capacitor, and method for manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104637689B (en) * 2013-11-11 2017-07-07 财团法人工业技术研究院 Electrolyte and its manufacture method, the composition for forming electrolyte and the capacitor comprising the electrolyte
CN113644205A (en) * 2021-07-21 2021-11-12 武汉工程大学 Doping modification method of PEDOT (PEDOT-PSS) hole transport material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191520A (en) * 1998-12-31 2000-07-11 Kazuo Sakuma Microbicide
JP2002281839A (en) * 2001-03-28 2002-10-02 Nippon Paper Industries Co Ltd Agricultural mulching sheet
JP2005039276A (en) * 2003-07-14 2005-02-10 Hc Starck Gmbh Polythiophene having alkylene oxythiathiofoehn unit in electrolytic capacitor
WO2007104716A1 (en) * 2006-03-16 2007-09-20 Basf Se Method for producing paper, paperboard and cardboard having high dry strength
JP2008152955A (en) * 2006-12-14 2008-07-03 Shin Kobe Electric Mach Co Ltd Lead storage battery
JP2008211068A (en) * 2007-02-27 2008-09-11 Seiko Epson Corp Method of manufacturing substrate for electronic device, method of manufacturing organic electroluminescence element, electronic device, and electronic apparatus
JP2008211069A (en) * 2007-02-27 2008-09-11 Seiko Epson Corp Electronic device and substrate for the same, and electronic apparatus
WO2009141209A1 (en) * 2008-05-23 2009-11-26 H.C. Starck Clevios Gmbh Method for producing solid electrolyte capacitors
JP2011108835A (en) * 2009-11-17 2011-06-02 Japan Carlit Co Ltd:The Solid electrolytic capacitor, and method of manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191520A (en) * 1998-12-31 2000-07-11 Kazuo Sakuma Microbicide
JP2002281839A (en) * 2001-03-28 2002-10-02 Nippon Paper Industries Co Ltd Agricultural mulching sheet
JP2005039276A (en) * 2003-07-14 2005-02-10 Hc Starck Gmbh Polythiophene having alkylene oxythiathiofoehn unit in electrolytic capacitor
WO2007104716A1 (en) * 2006-03-16 2007-09-20 Basf Se Method for producing paper, paperboard and cardboard having high dry strength
JP2008152955A (en) * 2006-12-14 2008-07-03 Shin Kobe Electric Mach Co Ltd Lead storage battery
JP2008211068A (en) * 2007-02-27 2008-09-11 Seiko Epson Corp Method of manufacturing substrate for electronic device, method of manufacturing organic electroluminescence element, electronic device, and electronic apparatus
JP2008211069A (en) * 2007-02-27 2008-09-11 Seiko Epson Corp Electronic device and substrate for the same, and electronic apparatus
WO2009141209A1 (en) * 2008-05-23 2009-11-26 H.C. Starck Clevios Gmbh Method for producing solid electrolyte capacitors
JP2011108835A (en) * 2009-11-17 2011-06-02 Japan Carlit Co Ltd:The Solid electrolytic capacitor, and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016092387A (en) * 2014-11-05 2016-05-23 財團法人工業技術研究院Industrial Technology Research Institute Iron salt oxidizer composition, solid electrolytic capacitor, and method for manufacturing the same

Also Published As

Publication number Publication date
TWI511999B (en) 2015-12-11
CN102876201A (en) 2013-01-16
JP5432319B2 (en) 2014-03-05
TW201302840A (en) 2013-01-16
CN102876201B (en) 2015-04-15

Similar Documents

Publication Publication Date Title
KR101561595B1 (en) Method for the production of conductive polymers
TWI450907B (en) Method for the preparation of conductive polymer dispersion, conductive polymer material made therefrom and solid electrolytic capacitor using the material
KR101174515B1 (en) Specific oxidation agents for producing conductive polymers
JPH0379371B2 (en)
KR20150124981A (en) Method for manufacturing solid electrolytic capacitor
JP2018184586A (en) Conductive polymer aqueous solution
JP5758990B2 (en) Novel polyvinyl sulfonic acid, process for producing the same, and use thereof
JP5432319B2 (en) Electronic device, conductive polymer composition and method for producing the same
JP5968485B2 (en) Electrolyte material composition, electrolyte material composition formed from the electrolyte material composition and use thereof
TWI632571B (en) Solid electrolytic capacitor and method of manufacturing same
JP6785390B1 (en) Conductive polymer aqueous dispersion, conductive polymer coating film and its manufacturing method
JP4732101B2 (en) Conductive porous separator, method for producing the same, and electrochemical device
KR101306634B1 (en) Composition containing PEDOT:Dextran Copolymer and Its Manufacturing Method
JP6724526B2 (en) Water-soluble conductive polymer, method for producing the same, aqueous solution of the conductive polymer, and use thereof
KR101656991B1 (en) Production of conductive polymer solution by viscosity control and cured product thereby
JP3076873B2 (en) Supporting electrolyte composition for manufacturing solid electrolytic capacitors
JP2013042118A (en) Electrolyte material formulation, electrolyte material composition formed therefrom, and use thereof
KR101789920B1 (en) Conductive polymer solution improved in stability and cured product thereof
TWI534219B (en) Composition and method for forming electroactive polymer solution or coating comprising conjugated heteroaromatic polymer, electroactive polymer solution, capacitor and antistatic object comprising the electroactive coating, and solid electrolytic capaci
JP2015199787A (en) Conductive polymer solution, method for producing the same, conductive polymer material and solid electrolytic capacitor
JP2019195006A (en) Manufacturing method for thermoelectric conversion material and thermoelectric conversion material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5432319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250