JP2013019994A - Optical system, imaging device having the optical system, and manufacturing method of the optical system - Google Patents

Optical system, imaging device having the optical system, and manufacturing method of the optical system Download PDF

Info

Publication number
JP2013019994A
JP2013019994A JP2011151823A JP2011151823A JP2013019994A JP 2013019994 A JP2013019994 A JP 2013019994A JP 2011151823 A JP2011151823 A JP 2011151823A JP 2011151823 A JP2011151823 A JP 2011151823A JP 2013019994 A JP2013019994 A JP 2013019994A
Authority
JP
Japan
Prior art keywords
lens
lens group
positive
cemented
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011151823A
Other languages
Japanese (ja)
Other versions
JP5761605B2 (en
Inventor
Haruo Sato
治夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2011151823A priority Critical patent/JP5761605B2/en
Publication of JP2013019994A publication Critical patent/JP2013019994A/en
Application granted granted Critical
Publication of JP5761605B2 publication Critical patent/JP5761605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a small optical system of smaller number of constituent elements, which has high performance and less coma aberration, especially sagittal coma aberration, and spherical aberration, an imaging device having this optical system, and a manufacturing method of the optical system.SOLUTION: The optical system OS mounted in a single lens reflex camera 1 or the like COMPRISES: a first lens group Ga having a positive refractive power; a second lens group Gb having a negative refractive power; a third lens group Gc; and a fourth lens group Gd having a positive refractive power. The first lens group Ga has at least one positive lens component La, the second lens group Gb has a cemented negative lens Lbn formed by cementing a positive lens Lbnp and a negative lens Lbnn and having a convex surface toward the object side, the third lens group Gc has a cemented lens Lc formed by cementing a negative lens Lcn having a concave surface toward the object side and a positive lens Lcp, and the fourth lens group Gd has a cemented positive lens Ldp1 formed by cementing a positive lens Ldpp having a convex surface toward the object side and a negative lens Ldpn having a concave surface toward the image side, and a positive lens component Ldp2.

Description

本発明は、光学系、この光学系を有する撮像装置、及び、光学系の製造方法に関する。   The present invention relates to an optical system, an imaging apparatus having the optical system, and a method for manufacturing the optical system.

従来、所謂変形ガウス型レンズは多数提案されている(例えば、特許文献1参照)。   Conventionally, many so-called modified Gaussian lenses have been proposed (see, for example, Patent Document 1).

特開2009−251398号公報JP 2009-251398 A

しかしながら、従来のガウス型レンズはコマ収差の補正が不十分で、特にサジタルコマ収差の改善は困難であった。   However, the conventional Gaussian lens has insufficient correction of coma, and it has been particularly difficult to improve sagittal coma.

本発明は、このような課題に鑑みてなされたものであり、小型で、構成枚数が少なく、高性能で、コマ収差、特にサジタルコマ収差、球面収差の少ない光学系、この光学系を有する撮像装置、及び、光学系の製造方法を提供することを目的とする。   The present invention has been made in view of such a problem, and is an optical system that is small in size, has a small number of components, has high performance, has low coma aberration, particularly sagittal coma aberration, and spherical aberration, and an imaging apparatus having the optical system. And it aims at providing the manufacturing method of an optical system.

前記課題を解決するために、本発明に係る光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、第3レンズ群と、正の屈折力を有する第4レンズ群と、を有し、第1レンズ群は、少なくとも1枚の正レンズ成分を有し、第2レンズ群は、正レンズと負レンズとが接合され、物体側に凸面を向けた負の屈折力を有する接合負レンズを有し、第3レンズ群は、物体側に凹面を向けた負レンズと正レンズとの接合による接合レンズを有し、第4レンズ群は、物体側に凸面を向けた正レンズと像側に凹面を向けた負レンズとが接合され、正の屈折力を有する接合正レンズと、正レンズ成分と、を有し、以下の条件式を満足することを特徴とする。
0.00 < Ncp−Ncn < 0.40
0.01 < Dd1/Dd0 < 0.80
但し、
Ncp:第3レンズ群中の接合レンズ中の正レンズの媒質のd線に対する屈折率
Ncn:第3レンズ群中の接合レンズ中の負レンズの媒質のd線に対する屈折率
Dd1:第4レンズ群中の接合正レンズとその像側に位置する正レンズ成分との軸上空気間隔
Dd0:第4レンズ群の最も物体側のレンズ面から最も像側のレンズ面までの光軸上の長さ(第4レンズ群の総厚)
In order to solve the above problems, an optical system according to the present invention includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, A third lens group and a fourth lens group having a positive refractive power; the first lens group has at least one positive lens component; and the second lens group includes a positive lens and a negative lens. And a cemented negative lens having negative refractive power with a convex surface facing the object side, and the third lens group includes a cemented lens formed by cementing a negative lens with a concave surface facing the object side and a positive lens. The fourth lens group includes a positive lens having a positive refractive power and a positive lens having a convex surface facing the object side and a negative lens having a concave surface facing the image side, and a positive lens component. And satisfying the following conditional expression.
0.00 <Ncp-Ncn <0.40
0.01 <Dd1 / Dd0 <0.80
However,
Ncp: refractive index with respect to d-line of medium of positive lens in cemented lens in third lens group Ncn: refractive index with respect to d-line of medium of negative lens in cemented lens in third lens group Dd1: fourth lens group The axial air space between the cemented positive lens in the middle and the positive lens component located on the image side Dd0: the length on the optical axis from the lens surface closest to the object side to the lens surface closest to the image side in the fourth lens group ( Total thickness of the fourth lens group)

また、この光学系は、以下の条件式を満足することが好ましい。
0.0 < fd/f0 < 5.0
但し、
fd:第4レンズ群の焦点距離
f0:無限遠合焦時の全系の焦点距離
In addition, this optical system preferably satisfies the following conditional expression.
0.0 <fd / f0 <5.0
However,
fd: focal length of the fourth lens unit f0: focal length of the entire system when focusing on infinity

また、この光学系は、以下の条件式を満足することが好ましい。
0.00 < Ndpp−Ndpn < 0.40
但し、
Ndpp:第4レンズ群中の接合正レンズ中の正レンズの媒質のd線に対する屈折率
Ndpn:第4レンズ群中の接合正レンズ中の負レンズの媒質のd線に対する屈折率
In addition, this optical system preferably satisfies the following conditional expression.
0.00 <Ndpp-Ndpn <0.40
However,
Ndpp: Refractive index with respect to d-line of medium of positive lens in cemented positive lens in fourth lens group Ndpn: Refractive index with respect to d-line of medium of negative lens in cemented positive lens in fourth lens group

また、この光学系は、以下の条件式を満足することが好ましい。
−1.000 <(rd2−rd1)/(rd2+rd1)< −0.000
但し、
rd1:第4レンズ群中の接合正レンズの最も物体側の面の曲率半径
rd2:第4レンズ群中の接合正レンズの最も像側の面の曲率半径
In addition, this optical system preferably satisfies the following conditional expression.
-1,000 <(rd2-rd1) / (rd2 + rd1) <-0.000
However,
rd1: radius of curvature of the most object side surface of the cemented positive lens in the fourth lens group rd2: radius of curvature of the most image side surface of the cemented positive lens in the fourth lens group

また、この光学系は、以下の条件式を満足することが好ましい。
0.0 < (−fbn)/f0 < 5.0
但し、
fbn:第2レンズ群中の接合負レンズの合成の焦点距離
f0:無限遠合焦時の全系の焦点距離
In addition, this optical system preferably satisfies the following conditional expression.
0.0 <(− fbn) / f0 <5.0
However,
fbn: focal length of the composite of the cemented negative lens in the second lens group f0: focal length of the entire system when focusing on infinity

また、この光学系は、以下の条件式を満足することが好ましい。
0.0 < fap/f0 < 10.0
但し、
fap:第1レンズ群中の最も像側に位置する正レンズ成分の焦点距離
f0:無限遠合焦時の全系の焦点距離
In addition, this optical system preferably satisfies the following conditional expression.
0.0 <fap / f0 <10.0
However,
fap: focal length of the positive lens component located closest to the image side in the first lens group f0: focal length of the entire system when focusing on infinity

また、この光学系は、Fナンバーを決定する開口絞りを、第2レンズ群と第3レンズ群との間、または第3レンズ群と第4レンズ群との間に有することが好ましい。   Further, this optical system preferably has an aperture stop for determining the F number between the second lens group and the third lens group, or between the third lens group and the fourth lens group.

また、この光学系は、第1レンズ群または第2レンズ群に、少なくとも1面の非球面を有することが好ましい。   In the optical system, it is preferable that the first lens group or the second lens group has at least one aspheric surface.

また、この光学系は、第4レンズ群に、少なくとも1面の非球面を有することが好ましい。   In the optical system, it is preferable that the fourth lens group has at least one aspheric surface.

また、この光学系において、第4レンズ群中の正レンズ成分は、物体側に凸面を向けた正レンズであることが好ましい。   In this optical system, the positive lens component in the fourth lens group is preferably a positive lens having a convex surface facing the object side.

また、本発明に係る撮像装置は、上述の光学系のいずれかを有することを特徴とする。   In addition, an imaging apparatus according to the present invention includes any one of the above-described optical systems.

また、本発明に係る光学系の製造方法は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、第3レンズ群と、正の屈折力を有する第4レンズ群と、を有する光学系の製造方法であって、第1レンズ群として、少なくとも1枚の正レンズ成分を配置し、第2レンズ群として、正レンズと負レンズとが接合され、物体側に凸面を向けた負の屈折力を有する接合負レンズを配置し、第3レンズ群として、物体側に凹面を向けた負レンズと正レンズとの接合による接合レンズを配置し、第4レンズ群として、物体側に凸面を向けた正レンズと像側に凹面を向けた負レンズとが接合され、正の屈折力を有する接合正レンズと、正レンズ成分と、を配置し、以下の条件式を満足することを特徴とする。
0.00 < Ncp−Ncn < 0.40
0.01 < Dd1 / Dd0 < 0.80
但し、
Ncp:第3レンズ群中の接合レンズ中の正レンズの媒質のd線に対する屈折率
Ncn:第3レンズ群中の接合レンズ中の負レンズの媒質のd線に対する屈折率
Dd1:第4レンズ群中の接合正レンズとその像側に位置する正レンズ成分との軸上空気間隔
Dd0:第4レンズ群の最も物体側のレンズ面から最も像側のレンズ面までの光軸上の長さ(第4レンズ群の総厚)
The optical system manufacturing method according to the present invention includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens. And a fourth lens group having a positive refractive power, wherein at least one positive lens component is disposed as the first lens group, and a positive lens is disposed as the second lens group. A lens and a negative lens are cemented, a cemented negative lens having a negative refractive power with a convex surface facing the object side is arranged, and a negative lens with a concave surface facing the object side and a positive lens are cemented as a third lens group And a positive lens having a positive refractive power, in which a positive lens having a convex surface facing the object side and a negative lens having a concave surface facing the image side are cemented as a fourth lens group, and a positive lens And satisfying the following conditional expression: .
0.00 <Ncp-Ncn <0.40
0.01 <Dd1 / Dd0 <0.80
However,
Ncp: refractive index with respect to d-line of medium of positive lens in cemented lens in third lens group Ncn: refractive index with respect to d-line of medium of negative lens in cemented lens in third lens group Dd1: fourth lens group The axial air space between the cemented positive lens in the middle and the positive lens component located on the image side Dd0: the length on the optical axis from the lens surface closest to the object side to the lens surface closest to the image side in the fourth lens group ( Total thickness of the fourth lens group)

本発明によれば、小型で、構成枚数が少なく、高性能で、コマ収差、特にサジタルコマ収差、球面収差の少ない光学系、この光学系を有する撮像装置、及び、光学系の製造方法を提供することができる。   According to the present invention, there are provided an optical system that is small in size, has a small number of components, has high performance, and has low coma, particularly sagittal coma and spherical aberration, an imaging apparatus having the optical system, and a method for manufacturing the optical system. be able to.

第1実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure in the infinite point focusing state of the optical system which concerns on 1st Example. 第1実施例に係る光学系の無限遠合焦状態における諸収差図である。FIG. 6 is a diagram illustrating various aberrations of the optical system according to Example 1 in an infinitely focused state. 第2実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure in the infinite point focusing state of the optical system which concerns on 2nd Example. 第2実施例に係る光学系の無限遠合焦状態における諸収差図である。FIG. 10 is a diagram illustrating various aberrations of the optical system according to Example 2 in a focused state at infinity. 第3実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure in the infinite point focusing state of the optical system which concerns on 3rd Example. 第3実施例に係る光学系の無限遠合焦状態における諸収差図である。FIG. 11 is a diagram illustrating various aberrations of the optical system according to Example 3 in an infinitely focused state. 光学系を搭載する一眼レフカメラの断面図を示す。A sectional view of a single-lens reflex camera equipped with an optical system is shown. 光学系の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of an optical system.

以下、本発明の好ましい実施形態について図面を参照して説明する。図1に示すように、本実施形態に係る光学系OSは、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群Gaと、負の屈折力を有する第2レンズ群Gbと、第3レンズ群Gcと、正の屈折力を有する第4レンズ群Gdと、を有して構成される。また、第1レンズ群Gaは、少なくとも1枚の正レンズ成分Lapを有し、第2レンズ群Gbは、正レンズLbnpと負レンLpnnとが接合され、物体側に凸面を向けた負の屈折力を有する接合負レンズLbnを有し、第3レンズ群Gcは、物体側に凹面を向けた負レンズLcnと正レンズLcpとの接合による接合レンズLcを有し、第4レンズ群Gdは、物体側に凸面を向けた正レンズLdppと像側に凹面を向けた負レンズLdpnとが接合され、正の屈折力を有する接合正レンズLdp1と、正レンズ成分Ldp2と、を有する。なお、以降の説明において、「レンズ成分」とは、1枚の単レンズ(レンズ要素)、若しくは、2枚以上の単レンズ(レンズ要素)を接合した接合レンズを指すものとする。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the optical system OS according to this embodiment includes a first lens group Ga having a positive refractive power and a second lens group having a negative refractive power in order from the object side along the optical axis. Gb, a third lens group Gc, and a fourth lens group Gd having a positive refractive power are configured. The first lens group Ga has at least one positive lens component Lap, and the second lens group Gb has a negative refraction with a positive lens Lbnp and a negative lens Lpnn cemented with a convex surface facing the object side. The third lens group Gc has a cemented negative lens Lc having a concave surface facing the object side and a positive lens Lcp. The fourth lens group Gd has a cemented negative lens Lbn having power. A positive lens Ldpp having a convex surface facing the object side and a negative lens Ldpn having a concave surface facing the image side are cemented, and includes a cemented positive lens Ldp1 having a positive refractive power and a positive lens component Ldp2. In the following description, “lens component” refers to a single lens (lens element) or a cemented lens in which two or more single lenses (lens elements) are cemented.

本実施形態に係る光学系OSは、基本的に正負負正に代表される、所謂ガウス型、クセノター型等の光学系の欠点であるコマ収差、特にサジタルコマ収差を、色収差、像面湾曲及び非点収差を悪化させること無く、改善したものである。以下、このような光学系OSを構成するための条件について説明する。   The optical system OS according to the present embodiment has coma aberration, particularly sagittal coma aberration, which is a defect of so-called Gaussian type and xenota type optical systems, which are basically represented by positive, negative, positive, negative, chromatic aberration, curvature of field and non-existence. This is an improvement without deteriorating the point aberration. Hereinafter, conditions for configuring such an optical system OS will be described.

本実施形態に係る光学系OSは、次の条件式(1)を満足することが望ましい。   The optical system OS according to the present embodiment desirably satisfies the following conditional expression (1).

0.00 < Ncp−Ncn < 0.40 (1)
但し、
Ncp:第3レンズ群Gc中の接合レンズLc中の正レンズLcpの媒質のd線に対する屈折率
Ncn:第3レンズ群Gc中の接合レンズLc中の負レンズLcnの媒質のd線に対する屈折率
0.00 <Ncp-Ncn <0.40 (1)
However,
Ncp: refractive index with respect to d-line of medium of positive lens Lcp in cemented lens Lc in third lens group Gc Ncn: refractive index with respect to d-line of medium of negative lens Lcn in cemented lens Lc in third lens group Gc

条件式(1)は、第3レンズ群Gc中の、物体側に凹面を向けた接合レンズLcを構成する正レンズLcp及び負レンズLcnの媒質のd線(波長λ=587.6nm)における屈折率の差を規定する条件である。この条件をはずれた場合、ペッツバール和の最適値の設定が損なわれ、結果的に像面湾曲が悪化する。   Conditional expression (1) indicates that refraction at the d-line (wavelength λ = 587.6 nm) of the medium of the positive lens Lcp and the negative lens Lcn constituting the cemented lens Lc with the concave surface facing the object side in the third lens group Gc. It is a condition that defines the difference in rate. If this condition is not met, the setting of the optimum Petzval sum is impaired, resulting in a worsening of field curvature.

この条件式(1)の上限値を上回る場合、屈折率差が著しく大きくなることを意味している。この場合でも、ペッツバール和が最適な値から悪化し、結果的に像面湾曲の補正が悪化し好ましくない。また、球面収差の補正能力も低下し、最適な色収差のための硝材の選択ができなくなり好ましくない。なお、条件式(1)の上限値を0.35に設定すると、より上述の諸収差の補正が有利になる。また、条件式(1)の上限値を0.30に設定すると、より上述の諸収差の補正が有利になる。また、条件式(1)の上限値を0.25に設定することによって、本願の効果を最大限に発揮できる。   If the upper limit value of the conditional expression (1) is exceeded, it means that the refractive index difference is remarkably increased. Even in this case, the Petzval sum is deteriorated from the optimum value, and as a result, the correction of the field curvature is deteriorated. In addition, the ability to correct spherical aberration also decreases, which makes it impossible to select a glass material for optimal chromatic aberration. If the upper limit value of conditional expression (1) is set to 0.35, the above-described correction of various aberrations becomes more advantageous. Further, when the upper limit value of conditional expression (1) is set to 0.30, the above-described correction of various aberrations becomes more advantageous. Moreover, by setting the upper limit value of conditional expression (1) to 0.25, the effect of the present application can be maximized.

また、条件式(1)の下限値を下回る場合、屈折率差が著しく小さくなり、ついには正レンズLcpの屈折率より負レンズLcnの屈折率のほうが大きくなってしまう。この場合、正負の屈折率の高低が逆になり、ペッツバール和を小さく抑えることが困難になる。従って、ペッツバール和が最適な値から大きく逸脱し、結果的に像面湾曲の補正、非点収差の補正が悪化し好ましくない。なお、条件式(1)の下限値を0.01に設定すると、像面湾曲及び非点収差等の諸収差の補正に有利となる。また、条件式(1)の下限値を0.03に設定すると、像面湾曲及び非点収差等の諸収差の補正に有利となる。また、条件式(1)の下限値を0.04に設定することによって、本願の効果を最大限に発揮できる。   If the lower limit of conditional expression (1) is not reached, the difference in refractive index is remarkably reduced. Finally, the refractive index of the negative lens Lcn becomes larger than the refractive index of the positive lens Lcp. In this case, the positive and negative refractive indexes are reversed, and it is difficult to keep the Petzval sum small. Accordingly, the Petzval sum deviates greatly from the optimum value, and as a result, correction of curvature of field and correction of astigmatism are deteriorated, which is not preferable. If the lower limit value of conditional expression (1) is set to 0.01, it is advantageous for correction of various aberrations such as field curvature and astigmatism. Setting the lower limit of conditional expression (1) to 0.03 is advantageous for correcting various aberrations such as field curvature and astigmatism. Further, by setting the lower limit value of conditional expression (1) to 0.04, the effect of the present application can be maximized.

また、本実施形態に係る光学系OSは、次の条件式(2)を満足することが望ましい。   Moreover, it is desirable that the optical system OS according to the present embodiment satisfies the following conditional expression (2).

0.01 < Dd1/Dd0 < 0.80 (2)
但し、
Dd1:第4レンズ群Gd中の接合正レンズLdp1とその像側に位置する正レンズ成分Ldp2との軸上空気間隔
Dd0:第4レンズ群Gdの最も物体側のレンズ面から最も像側のレンズ面までの光軸上の長さ(第4レンズ群Gdの総厚)
0.01 <Dd1 / Dd0 <0.80 (2)
However,
Dd1: On-axis air space between the cemented positive lens Ldp1 in the fourth lens group Gd and the positive lens component Ldp2 located on the image side Dd0: the lens closest to the image side from the lens surface closest to the object side in the fourth lens group Gd Length on the optical axis to the surface (total thickness of the fourth lens group Gd)

条件式(2)は第4レンズ群Gd中の接合正レンズLdp1とその像側に位置する正レンズ成分Ldp2との軸上空気間隔Dd1の最適を規定する条件である。この空気間隔Dd1は、接合正レンズLdp1と正レンズ成分Ldp2とで形成される空気レンズの形状および屈折力に関係している。したがって、軸上空気間隔Dd1を最適値にすることは、諸収差の良好な補正に効果がある。   Conditional expression (2) is a condition that prescribes the optimum on-axis air distance Dd1 between the cemented positive lens Ldp1 in the fourth lens group Gd and the positive lens component Ldp2 located on the image side thereof. The air distance Dd1 is related to the shape and refractive power of the air lens formed by the cemented positive lens Ldp1 and the positive lens component Ldp2. Therefore, setting the on-axis air interval Dd1 to an optimum value is effective in correcting various aberrations.

この条件式(2)の上限値を上回る場合、軸上空気間隔Dd1が大きくなりすぎて、接合正レンズLdp1と正レンズ成分Ldp2との間にできる凸形状の空気レンズの屈折力が低下し、収差補正能力が低下する。特に球面収差、コマ収差が悪化し好ましくない。また、後玉径の増大、周辺光量低下を招き好ましくない。なお、条件式(2)の上限値を0.70に設定すると、より上述の諸収差の補正が有利になる。また、条件式(2)の上限値を0.60に設定すると、より上述の諸収差の補正が有利になる。また、条件式(2)の上限値を0.50に設定することによって、本願の効果を最大限に発揮できる。   When the upper limit value of the conditional expression (2) is exceeded, the axial air distance Dd1 becomes too large, and the refractive power of the convex air lens formed between the cemented positive lens Ldp1 and the positive lens component Ldp2 decreases, Aberration correction capability decreases. Particularly, spherical aberration and coma are deteriorated, which is not preferable. In addition, the rear lens diameter increases and the peripheral light amount decreases, which is not preferable. If the upper limit value of conditional expression (2) is set to 0.70, the above-described correction of various aberrations becomes more advantageous. If the upper limit value of conditional expression (2) is set to 0.60, the above-mentioned correction of various aberrations becomes more advantageous. Further, by setting the upper limit value of conditional expression (2) to 0.50, the effects of the present application can be maximized.

また、条件式(2)の下限値を下回る場合、軸上空気間隔Dd1が小さくなりすぎて、接合正レンズLdp1と正レンズ成分Ldp2との間にできる凸形状の空気レンズの径が、レンズの干渉で小さくなってしまう。レンズ当たり(レンズの干渉する位置)の径を増大させるには、接合正レンズLdp1の像側の面の曲率半径と正レンズ成分Ldp2の物体側の面の曲率半径を近い値にする必要がある。したがって、やはり接合正レンズLdp1と正レンズ成分Ldp2との間にできる空気レンズの形状が、最適値を大きく逸脱することによって、球面収差、コマ収差等の諸収差の補正が悪化し、好ましくない。なお、条件式(2)の下限値を0.10に設定すると、球面収差等の諸収差の補正に有利となる。また、条件式(2)の下限値を0.25に設定すると、球面収差等の諸収差の補正に有利となる。また、条件式(2)の下限値を0.31に設定することによって、本願の効果を最大限に発揮できる。   When the lower limit of conditional expression (2) is not reached, the axial air interval Dd1 becomes too small, and the diameter of the convex air lens formed between the cemented positive lens Ldp1 and the positive lens component Ldp2 is It becomes small by interference. In order to increase the diameter per lens (position where the lens interferes), it is necessary to make the curvature radius of the image side surface of the cemented positive lens Ldp1 and the curvature radius of the object side surface of the positive lens component Ldp2 close to each other. . Accordingly, when the shape of the air lens formed between the cemented positive lens Ldp1 and the positive lens component Ldp2 deviates greatly from the optimum value, correction of various aberrations such as spherical aberration and coma aberration deteriorates, which is not preferable. Note that setting the lower limit of conditional expression (2) to 0.10 is advantageous for correcting various aberrations such as spherical aberration. Setting the lower limit value of conditional expression (2) to 0.25 is advantageous for correcting various aberrations such as spherical aberration. Further, by setting the lower limit value of conditional expression (2) to 0.31, the effect of the present application can be maximized.

また、本実施形態に係る光学系OSは、次の条件式(3)を満足することが望ましい。   In addition, it is desirable that the optical system OS according to the present embodiment satisfies the following conditional expression (3).

0.0 < fd/f0 < 5.0 (3)
但し、
fd:第4レンズ群Gdの焦点距離
f0:無限遠合焦時の全系の焦点距離
0.0 <fd / f0 <5.0 (3)
However,
fd: focal length of the fourth lens group Gd f0: focal length of the entire system when focusing on infinity

条件式(3)は、第4レンズ群Gdの焦点距離の大小、言い換えれば屈折力の大小を規定する条件である。   Conditional expression (3) is a condition that defines the magnitude of the focal length of the fourth lens group Gd, in other words, the magnitude of the refractive power.

この条件式(3)の上限値を上回る場合、この第4レンズ群Gdの焦点距離が著しく長くなり、正の屈折力が弱くなることを意味している。この場合、サジタルコマ収差、像面湾曲、非点収差の補正が悪化し好ましくない。また、バックフォーカス確保も困難になるので好ましくない。なお、条件式(3)の上限値を4.0に設定すると、より上述の諸収差の補正が有利になる。また、条件式(3)の上限値を2.0に設定すると、より上述の諸収差の補正が有利になる。また、条件式(3)の上限値を1.0に設定することによって、本願の効果を最大限に発揮できる。   If the upper limit value of the conditional expression (3) is exceeded, it means that the focal length of the fourth lens group Gd becomes extremely long and the positive refractive power becomes weak. In this case, sagittal coma aberration, field curvature, and astigmatism correction are deteriorated, which is not preferable. Further, it is not preferable because it is difficult to secure the back focus. If the upper limit value of conditional expression (3) is set to 4.0, the above-described correction of various aberrations becomes more advantageous. If the upper limit value of conditional expression (3) is set to 2.0, the above-described correction of various aberrations becomes more advantageous. In addition, the effect of the present application can be maximized by setting the upper limit value of conditional expression (3) to 1.0.

また、条件式(3)の下限値を下回る場合、第4レンズ群Gdの焦点距離が著しく短くなり、正の屈折力が著しく強くなることを意味している。その場合、結果的に球面収差、サジタルコマ収差、メリジオナルコマ収差の補正が悪化し好ましくない。また偏芯に対する敏感度も増し好ましくない。なお、条件式(3)の下限値を0.1に設定すると、球面収差等の諸収差の補正に有利となる。また、条件式(3)の下限値を0.3に設定すると、球面収差等の諸収差の補正に有利となる。また、条件式(3)の下限値を0.4に設定することによって、本願の効果を最大限に発揮できる。   On the other hand, if the lower limit value of conditional expression (3) is not reached, it means that the focal length of the fourth lens group Gd is remarkably shortened and the positive refractive power is remarkably increased. In this case, the correction of spherical aberration, sagittal coma aberration, and meridional coma aberration deteriorates as a result, which is not preferable. Also, the sensitivity to eccentricity increases, which is not preferable. Note that setting the lower limit of conditional expression (3) to 0.1 is advantageous for correcting various aberrations such as spherical aberration. Setting the lower limit of conditional expression (3) to 0.3 is advantageous for correcting various aberrations such as spherical aberration. Further, by setting the lower limit value of conditional expression (3) to 0.4, the effect of the present application can be maximized.

また、本実施形態に係る光学系OSは、次の条件式(4)を満足することが望ましい。   In addition, it is desirable that the optical system OS according to the present embodiment satisfies the following conditional expression (4).

0.00 < Ndpp−Ndpn < 0.40 (4)
但し、
Ndpp:第4レンズ群Gd中の接合正レンズLdp1中の正レンズLdppの媒質のd線に対する屈折率
Ndpn:第4レンズ群Gd中の接合正レンズLdp1中の負レンズLdpnの媒質のd線に対する屈折率
0.00 <Ndpp-Ndpn <0.40 (4)
However,
Ndpp: refractive index with respect to the d-line of the medium of the positive lens Ldpp in the cemented positive lens Ldp1 in the fourth lens group Gd Ndpn: with respect to the d-line of the medium of the negative lens Ldpn in the cemented positive lens Ldp1 in the fourth lens group Gd Refractive index

条件式(4)は、第4レンズ群Gd中の、接合正レンズLdp1中の正レンズLdppと負レンズLdpnのd線(波長λ=587.6nm)における屈折率の差を規定する条件である。この条件をはずれた場合、ペッツバール和が最適値の設定が損なわれ、結果的に像面湾曲が悪化する。   Conditional expression (4) is a condition that defines the difference in refractive index between the positive lens Ldpp in the cemented positive lens Ldp1 and the negative lens Ldpn in the fourth lens group Gd (wavelength λ = 587.6 nm). . If this condition is not met, the setting of the optimum value for the Petzval sum will be impaired, resulting in a worsening of field curvature.

この条件式(4)の上限値を上回る場合、屈折率差が著しく大きくなることを意味している。この場合でも、ペッツバール和が最適な値から悪化し、結果的に像面湾曲の補正が悪化し好ましくない。また、球面収差の補正能力も低下し、最適な色収差のための硝材の選択ができなくなり好ましくない。なお、条件式(4)の上限値を0.35に設定すると、より上述の諸収差の補正が有利になる。また、条件式(4)の上限値を0.33に設定すると、より上述の諸収差の補正が有利になる。また、条件式(4)の上限値を0.30に設定することによって、本願の効果を最大限に発揮できる。   If the upper limit value of the conditional expression (4) is exceeded, it means that the refractive index difference is remarkably increased. Even in this case, the Petzval sum is deteriorated from the optimum value, and as a result, the correction of the field curvature is deteriorated. In addition, the ability to correct spherical aberration also decreases, which makes it impossible to select a glass material for optimal chromatic aberration. If the upper limit value of conditional expression (4) is set to 0.35, the above-described correction of various aberrations becomes more advantageous. If the upper limit value of conditional expression (4) is set to 0.33, the above-described correction of various aberrations becomes more advantageous. Further, by setting the upper limit value of conditional expression (4) to 0.30, the effect of the present application can be maximized.

また、条件式(4)の下限値を下回る場合、屈折率差が著しく小さくなり、ついには正レンズLdppの屈折率より負レンズLdpnの屈折率のほうが大きくなってしまう。この場合、正負の屈折率の高低が逆になり、ペッツバール和を小さく抑えることが困難になる。従って、ペッツバール和が最適な値から大きく逸脱し、結果的に像面湾曲の補正、非点収差の補正が悪化し好ましくない。なお、条件式(4)の下限値を0.01に設定すると、像面湾曲及び非点収差等の諸収差の補正に有利となる。また、条件式(4)の下限値を0.03に設定すると、像面湾曲及び非点収差等の諸収差の補正に有利となる。また、条件式(4)の下限値を0.04に設定することによって、本願の効果を最大限に発揮できる。   Further, when the lower limit of conditional expression (4) is not reached, the difference in refractive index becomes remarkably small, and finally the refractive index of the negative lens Ldpn becomes larger than the refractive index of the positive lens Ldpp. In this case, the positive and negative refractive indexes are reversed, and it is difficult to keep the Petzval sum small. Accordingly, the Petzval sum deviates greatly from the optimum value, and as a result, correction of curvature of field and correction of astigmatism are deteriorated, which is not preferable. When the lower limit value of conditional expression (4) is set to 0.01, it is advantageous for correction of various aberrations such as field curvature and astigmatism. Setting the lower limit of conditional expression (4) to 0.03 is advantageous for correcting various aberrations such as field curvature and astigmatism. In addition, by setting the lower limit value of conditional expression (4) to 0.04, the effect of the present application can be maximized.

また、本実施形態に係る光学系OSは、次の条件式(5)を満足することが望ましい。   In addition, it is desirable that the optical system OS according to the present embodiment satisfies the following conditional expression (5).

−1.000 <(rd2−rd1)/(rd2+rd1)< −0.000 (5)
但し、
rd1:第4レンズ群Gd中の接合正レンズLdp1の最も物体側の面の曲率半径
rd2:第4レンズ群Gd中の接合正レンズLdp1の最も像側の面の曲率半径
-1,000 <(rd2-rd1) / (rd2 + rd1) <− 0.000 (5)
However,
rd1: radius of curvature of the most object side surface of the cemented positive lens Ldp1 in the fourth lens group Gd rd2: radius of curvature of the most image side surface of the cemented positive lens Ldp1 in the fourth lens group Gd

条件式(5)は、第4レンズ群Gd中の像側に凹面を向けた接合正レンズLdp1全体での形状因子の逆数を規定する条件である。この条件は球面収差とサジタルコマ収差の補正に大きく関わっている。この条件式(5)に設定されている値が負であると言うことは、この像側に凹面を向けた接合正レンズLdp1全体の形状が、正レンズ成分でありながら、像側に凹面を向けた負メニスカス形状であることを示している。この形状と、その像側に位置する正レンズ成分Ldp2との間にできる空気レンズの存在によって、良好にサジタルコマ収差、メリジオナルコマ収差、球面収差の良好な補正が可能になる。   Conditional expression (5) is a condition that defines the reciprocal of the form factor of the entire cemented positive lens Ldp1 with the concave surface facing the image side in the fourth lens group Gd. This condition is greatly related to correction of spherical aberration and sagittal coma. When the value set in the conditional expression (5) is negative, the shape of the entire cemented positive lens Ldp1 with the concave surface facing the image side is a positive lens component, but the concave surface is formed on the image side. It shows a negative meniscus shape. Due to the presence of an air lens formed between this shape and the positive lens component Ldp2 located on the image side, it is possible to satisfactorily correct sagittal coma, meridional coma, and spherical aberration.

条件式(5)の上限値を上回る場合、接合正レンズLdp1が負メニスカス形状から大きく形状を変え、物体側に凸面を向けた正メニスカス形状か、または物体側に凹面を向けた負メニスカス形状になる。どちらの形状に至っても、サジタルコマ収差、メリジオナルコマ収差の補正が悪化し、良好に補正しようとすると、球面収差の補正も悪化し好ましくない。なお、条件式(5)の上限値を−0.001に設定すると、より上述の諸収差の補正が有利になる。また、条件式(5)の上限値を−0.010に設定すると、より上述の諸収差の補正が有利になる。また、条件式(5)の上限値を−0.015に設定することによって、本願の効果を最大限に発揮できる。   When the upper limit value of conditional expression (5) is exceeded, the cemented positive lens Ldp1 is greatly changed from the negative meniscus shape to a positive meniscus shape with a convex surface facing the object side, or a negative meniscus shape with a concave surface facing the object side. Become. Regardless of which shape is reached, the correction of sagittal coma and meridional coma is deteriorated, and correction of spherical aberration is also undesirably deteriorated when trying to correct it satisfactorily. If the upper limit value of conditional expression (5) is set to -0.001, the above-described correction of various aberrations becomes more advantageous. Further, when the upper limit value of conditional expression (5) is set to -0.010, the above-described correction of various aberrations becomes more advantageous. Further, by setting the upper limit value of conditional expression (5) to −0.015, the effect of the present application can be maximized.

また、条件式(5)の下限値を下回る場合、接合正レンズLdp1が、負メニスカス形状から大きく形状を変え、物体側に平面を向けた平凸形状または、物体側に平面を向けた平凹形状になる。そのため、上述の空気レンズも最適な形状を示さなくなり、ついには存在しなくなる。したがって、空気レンズが負メニスカス形状を維持しないので、サジタルコマ収差、メリジオナルコマ収差の補正、および球面収差の補正が悪化し好ましくない。なお、条件式(5)の下限値を−0.800に設定すると、上述の諸収差の補正に有利となる。また、条件式(5)の下限値を−0.600に設定すると、上述の諸収差の補正に有利となる。また、条件式(5)の下限値を−0.500に設定することによって、本願の効果を最大限に発揮できる。   When the lower limit value of conditional expression (5) is not reached, the cemented positive lens Ldp1 is greatly changed from the negative meniscus shape, and is a plano-convex shape with the plane facing the object side or a plano-concave shape with the plane facing the object side Become a shape. For this reason, the above-described air lens also does not exhibit an optimum shape and finally does not exist. Therefore, since the air lens does not maintain the negative meniscus shape, sagittal coma aberration, meridional coma aberration correction, and spherical aberration correction are deteriorated, which is not preferable. If the lower limit value of conditional expression (5) is set to −0.800, it is advantageous for correcting the above-mentioned various aberrations. Setting the lower limit of conditional expression (5) to −0.600 is advantageous for correcting the above-mentioned various aberrations. In addition, the effect of the present application can be maximized by setting the lower limit value of conditional expression (5) to −0.500.

また、本実施形態に係る光学系OSは、次の条件式(6)を満足することが望ましい。   In addition, it is desirable that the optical system OS according to the present embodiment satisfies the following conditional expression (6).

0.0 < (−fbn)/f0 < 5.0 (6)
但し、
fbn:第2レンズ群Gb中の接合負レンズLbnの合成の焦点距離
f0:無限遠合焦時の全系の焦点距離
0.0 <(− fbn) / f0 <5.0 (6)
However,
fbn: focal length of the combined negative lens Lbn in the second lens group Gb f0: focal length of the entire system when focusing on infinity

条件式(6)は第2レンズ群Gb中の接合負レンズLbnの合成の焦点距離を規定する条件である。   Conditional expression (6) is a condition that defines the combined focal length of the cemented negative lens Lbn in the second lens group Gb.

この条件式(6)の上限値を上回る場合、接合負レンズLbnの負の屈折力が弱くなることを意味している。この場合、像面湾曲、非点収差の補正が悪化し好ましくない。なお、条件式(6)の上限値を3.8に設定すると、より上述の諸収差の補正が有利になる。また、条件式(6)の上限値を1.8に設定すると、より上述の諸収差の補正が有利になる。また、条件式(6)の上限値を1.3に設定することによって、本願の効果を最大限に発揮できる。   When the upper limit value of the conditional expression (6) is exceeded, it means that the negative refractive power of the cemented negative lens Lbn is weakened. In this case, correction of field curvature and astigmatism deteriorates, which is not preferable. If the upper limit value of conditional expression (6) is set to 3.8, the above-described correction of various aberrations becomes more advantageous. If the upper limit value of conditional expression (6) is set to 1.8, the above-described correction of various aberrations becomes more advantageous. Further, by setting the upper limit value of conditional expression (6) to 1.3, the effect of the present application can be maximized.

また、条件式(6)の下限値を下回る場合、接合負レンズLbnの負の屈折力が強くなることを意味している。その場合、結果的にコマ収差、球面収差、歪曲収差の補正が悪化し好ましくない。なお、条件式(6)の下限値を0.1に設定すると、球面収差等の諸収差の補正に有利となる。また、条件式(6)の下限値を0.2に設定すると、球面収差等の諸収差の補正に有利となる。また、条件式(6)の下限値を0.4に設定することによって、本願の効果を最大限に発揮できる。   On the other hand, if the lower limit value of conditional expression (6) is not reached, it means that the negative refractive power of the cemented negative lens Lbn becomes stronger. In that case, correction of coma aberration, spherical aberration, and distortion is deteriorated as a result, which is not preferable. Note that setting the lower limit of conditional expression (6) to 0.1 is advantageous for correcting various aberrations such as spherical aberration. Setting the lower limit of conditional expression (6) to 0.2 is advantageous for correcting various aberrations such as spherical aberration. Further, by setting the lower limit value of conditional expression (6) to 0.4, the effects of the present application can be maximized.

また、本実施形態に係る光学系OSは、次の条件式(7)を満足することが望ましい。   Moreover, it is desirable that the optical system OS according to the present embodiment satisfies the following conditional expression (7).

0.0 < fap/f0 < 10.0 (7)
但し、
fap:第1レンズ群Ga中の最も像側に位置する正レンズ成分Lapの焦点距離
f0:無限遠合焦時の全系の焦点距離
0.0 <fap / f0 <10.0 (7)
However,
fap: focal length of the positive lens component Lap located closest to the image side in the first lens group Ga f0: focal length of the entire system when focusing on infinity

条件式(7)は第1レンズ群Ga中の最も像側に位置する正レンズ成分Lapの最適な焦点距離を規定する条件である。   Conditional expression (7) defines the optimum focal length of the positive lens component Lap located closest to the image side in the first lens group Ga.

この条件式(7)の上限値を上回る場合、正レンズ成分Lapの屈折力が弱くなることを意味している。この場合、球面収差の補正が悪化し好ましくない。また、前玉径の増大を招き好ましくない。なお、条件式(7)の上限値を7.0に設定すると、より上述の諸収差の補正が有利になる。また、条件式(7)の上限値を3.3に設定すると、より上述の諸収差の補正が有利になる。また、条件式(7)の上限値を2.2に設定することによって、本願の効果を最大限に発揮できる。   When the upper limit value of the conditional expression (7) is exceeded, it means that the refractive power of the positive lens component Lap becomes weak. In this case, correction of spherical aberration is deteriorated, which is not preferable. Moreover, the front ball diameter is increased, which is not preferable. If the upper limit value of conditional expression (7) is set to 7.0, the above-described correction of various aberrations becomes more advantageous. If the upper limit value of conditional expression (7) is set to 3.3, the above-described correction of various aberrations becomes more advantageous. Further, by setting the upper limit of conditional expression (7) to 2.2, the effect of the present application can be maximized.

また、条件式(7)の下限値を下回る場合、正レンズ成分Lapの屈折力が強くなることを意味している。その場合、結果的にコマ収差、球面収差、歪曲収差の補正が悪化し好ましくない。なお、条件式(7)の下限値を0.1に設定すると、球面収差等の諸収差の補正に有利となる。また、条件式(7)の下限値を0.2に設定すると、球面収差等の諸収差の補正に有利となる。また、条件式(7)の下限値を0.4に設定することによって、本願の効果を最大限に発揮できる。   Further, when the lower limit value of conditional expression (7) is not reached, it means that the refractive power of the positive lens component Lap is increased. In that case, correction of coma aberration, spherical aberration, and distortion is deteriorated as a result, which is not preferable. Note that setting the lower limit of conditional expression (7) to 0.1 is advantageous for correcting various aberrations such as spherical aberration. Setting the lower limit of conditional expression (7) to 0.2 is advantageous for correcting various aberrations such as spherical aberration. In addition, by setting the lower limit value of conditional expression (7) to 0.4, the effects of the present application can be maximized.

また、本実施形態に係る光学系OSは、第2レンズ群Gbと第3レンズ群Gcとの間、または第3レンズ群Gcと第4レンズ群Gdとの間にこの光学系OSのFナンバーを決定する開口絞りSを有することが、倍率色収差、歪曲収差の良好な補正のために好ましい。   Further, the optical system OS according to the present embodiment has an F number of the optical system OS between the second lens group Gb and the third lens group Gc, or between the third lens group Gc and the fourth lens group Gd. It is preferable to have an aperture stop S for determining the magnification chromatic aberration and distortion.

また、このような光学系OSにおいて、第1レンズ群Gaまたは第2レンズ群Gbに、少なくとも1面の非球面を有することが、下方コマ収差、サジタルコマ収差、球面収差の補正が良好になり好ましい。   In such an optical system OS, it is preferable that the first lens group Ga or the second lens group Gb has at least one aspherical surface, because correction of downward coma, sagittal coma, and spherical aberration is improved. .

また、このような光学系OSにおいて、第4レンズ群Gdに、少なくとも1面の非球面を有することが、上方コマ収差、サジタルコマ収差、球面収差、歪曲収差等の補正を良好にするので好ましい。   In such an optical system OS, it is preferable that the fourth lens group Gd has at least one aspherical surface because correction of upper coma, sagittal coma, spherical aberration, distortion and the like is improved.

なお、開口絞りSを挟んで前後に1面ずつの非球面を有することは、球面収差、サジタルコマ収差、メリジオナルコマ収差等の大口径に起因する収差を補正するのに有効である。   It should be noted that having one aspherical surface before and after the aperture stop S is effective in correcting aberrations caused by a large aperture such as spherical aberration, sagittal coma aberration, meridional coma aberration.

また、このような光学系OSにおいて、第4レンズ群Gd中の像側の正レンズ成分Ldp2は、物体側に凸面を向けた正レンズであることが望ましい。直前にある像側に凹面を向けた正レンズ成分(接合正レンズ)Ldp1と相まって、凸形状の空気レンズを作ることができ、球面収差、サジタルコマ収差の補正に有利となる。   In such an optical system OS, the image-side positive lens component Ldp2 in the fourth lens group Gd is preferably a positive lens having a convex surface directed toward the object side. Combined with the positive lens component (junction positive lens) Ldp1 with the concave surface facing the image side just before, a convex air lens can be made, which is advantageous for correction of spherical aberration and sagittal coma aberration.

また、本実施形態に係る光学系OSにおいて、第1レンズ群Gaを構成する正レンズ成分Lap(後述する第2実施例における正レンズ成分Lapaも含む)、並びに、第4レンズ群Gdを構成する像側の正レンズ成分Ldp2は、図1、図3及び図5においては単レンズで構成されているが、2枚以上の単レンズを接合した接合レンズで構成しても良い。   Further, in the optical system OS according to the present embodiment, a positive lens component Lap (including a positive lens component Lapa in a second example described later) that constitutes the first lens group Ga, and a fourth lens group Gd are constructed. The image-side positive lens component Ldp2 is formed of a single lens in FIGS. 1, 3, and 5, but may be formed of a cemented lens in which two or more single lenses are cemented.

図7に、上述の光学系OSを備える撮像装置として、一眼レフカメラ1(以後、単にカメラと記す)の略断面図を示す。このカメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2(光学系OS)で集光されて、クイックリタ−ンミラ−3を介して焦点板4に結像される。そして、焦点板4に結像された光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へと導かれる。これにより、撮影者は、物体(被写体)像を、接眼レンズ6を介して正立像として観察することができる。   FIG. 7 shows a schematic cross-sectional view of a single-lens reflex camera 1 (hereinafter simply referred to as a camera) as an imaging apparatus including the above-described optical system OS. In this camera 1, light from an object (subject) (not shown) is collected by the taking lens 2 (optical system OS) and focused on the focusing screen 4 via the quick return mirror-3. The light imaged on the focusing screen 4 is reflected a plurality of times in the pentaprism 5 and guided to the eyepiece lens 6. Thus, the photographer can observe the object (subject) image as an erect image through the eyepiece 6.

また、撮影者によって不図示のレリ−ズボタンが押されると、クイックリタ−ンミラ−3が光路外へ退避し、撮影レンズ2で集光された不図示の物体(被写体)の光は撮像素子7上に被写体像を形成する。これにより、物体(被写体)からの光は、当該撮像素子7により撮像され、物体(被写体)画像として不図示のメモリに記録される。このようにして、撮影者は本カメラ1による物体(被写体)の撮影を行うことができる。なお、図7に記載のカメラ1は、撮影レンズ2を着脱可能に保持するものでも良く、撮影レンズ2と一体に成形されるものでも良い。また、カメラ1は、いわゆる一眼レフカメラでも良く、クイックリタ−ンミラ−等を有さないコンパクトカメラ若しくはミラ−レスの一眼レフカメラでも良い。   When the release button (not shown) is pressed by the photographer, the quick return mirror 3 is retracted out of the optical path, and the light of the object (subject) (not shown) condensed by the taking lens 2 is captured by the image sensor 7. A subject image is formed on the top. Thereby, the light from the object (subject) is captured by the image sensor 7 and recorded as an object (subject) image in a memory (not shown). In this way, the photographer can shoot an object (subject) with the camera 1. The camera 1 shown in FIG. 7 may be one that holds the photographing lens 2 in a detachable manner, or may be formed integrally with the photographing lens 2. Further, the camera 1 may be a so-called single-lens reflex camera, or a compact camera without a quick return mirror or a mirrorless single-lens reflex camera.

ここで、本カメラ1に撮影レンズ2として上述した光学系OSを搭載することにより、その特徴的なレンズ構成によって、球面収差、サジタルコマフレアー、像面湾曲、コマ収差の少ない大口径レンズを実現している。これにより本カメラ1は、球面収差、サジタルコマ収差、像面湾曲、メリジオナルコマ収差の少なく、大口径を有し、広角撮影可能な撮像装置を実現することができる。   Here, by mounting the above-described optical system OS as the photographing lens 2 on the camera 1, a large-aperture lens with less spherical aberration, sagittal coma flare, field curvature, and coma is realized by its characteristic lens configuration. doing. As a result, the camera 1 can realize an image pickup apparatus that has a large aperture and is capable of wide-angle shooting with less spherical aberration, sagittal coma aberration, field curvature, and meridional coma aberration.

また、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である   In addition, the contents described below can be employed as appropriate within a range that does not impair the optical performance.

本実施形態では、4群構成の光学系OSを示したが、以上の構成条件等は、5群、6群等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたは前群後群間等にレンズ群を追加した構成、若しくは各レンズ群の間にレンズ群を追加した構成でも構わない。   In the present embodiment, an optical system OS having a four-group configuration is shown, but the above-described configuration conditions and the like can also be applied to other group configurations such as a fifth group and a sixth group. In addition, a configuration in which a lens or a lens group is added on the most object side, a configuration in which a lens group is added between the lens or the front and rear groups on the most image side, or a configuration in which a lens group is added between each lens group I do not care.

また、本実施形態では全体(全群)繰り出しによって無限遠物体から近距離物体に対して合焦するが、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。すなわち、第1レンズ群Ga等を用いる方式や第3レンズ群Gc、第4レンズ群Gdを用いたリヤフォーカスでも良い。この場合、前記合焦レンズ群はオートフォーカスにも適用でき、オートフォーカス用の(超音波モーター等を用いた)モーター駆動にも適している。   In this embodiment, the entire (all groups) feed is used to focus on an object at a short distance from an object at infinity. A focusing lens group that performs focusing from an object to a short-distance object may be used. That is, a method using the first lens group Ga or the like, or a rear focus using the third lens group Gc and the fourth lens group Gd may be used. In this case, the focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like).

また、レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ぶれによって生じる像ぶれを補正する防振レンズ群としても良い。特に、第3レンズ群Gc、第4レンズ群Gdの少なくとも一枚を防振レンズ群とするのが好ましい。   Also, by moving the lens group or partial lens group so that it has a component in the direction perpendicular to the optical axis, or rotating (swinging) in the in-plane direction including the optical axis, image blur caused by camera shake is corrected. An anti-vibration lens group may be used. In particular, it is preferable that at least one of the third lens group Gc and the fourth lens group Gd is an anti-vibration lens group.

また、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を妨げるので好ましい。また、光軸方向に像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモ−ルド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。   Further, the lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface. It is preferable that the lens surface is a spherical surface or a flat surface because lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to errors in processing and assembly adjustment is prevented. Further, even when the image plane is shifted in the optical axis direction, it is preferable because there is little deterioration in the drawing performance. When the lens surface is an aspheric surface, the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin on the glass surface. Any of the aspherical surfaces may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、開口絞りSは光学系OSの中央近傍に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。   The aperture stop S is preferably arranged near the center of the optical system OS. However, the role of the aperture stop may be substituted by a lens frame without providing a member as an aperture stop.

さらに、各レンズ面には、フレアやゴ−ストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。   Further, each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength range in order to reduce flare and ghost and achieve high optical performance with high contrast.

以下、本実施形態に係る光学系OSの製造方法の概略を、図8を参照して説明する。この光学系OSの製造方法は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群Gaと、負の屈折力を有する第2レンズ群Gbと、第3レンズ群Gcと、正の屈折力を有する第4レンズ群Gdと、を配置する。具体的には、第1レンズ群Gaとして、少なくとも1枚の正レンズ成分Lapを配置し(ステップS100)、第2レンズ群Gbとして、正レンズLbnpと負レンズLbnnとが接合され、物体側に凸面を向けた負の屈折力を有する接合負レンズLbnを配置し(ステップS200)、第3レンズ群Gcとして、物体側に凹面を向けた負レンズLcnと正レンズLcpとの接合による接合レンズLcを配置し(ステップS300)、第4レンズ群Gdとして、物体側に凸面を向けた正レンズLdppと像側に凹面を向けた負レンズLdpnとが接合され、正の屈折力を有する接合正レンズLdp1と、正レンズ成分Ldp2と、を配置する(ステップS400)。このとき、各群は、上述の条件式(1)及び条件式(2)を満足する。   Hereinafter, an outline of a method for manufacturing the optical system OS according to the present embodiment will be described with reference to FIG. The manufacturing method of the optical system OS includes, in order from the object side along the optical axis, a first lens group Ga having a positive refractive power, a second lens group Gb having a negative refractive power, and a third lens group Gc. And a fourth lens group Gd having a positive refractive power. Specifically, at least one positive lens component Lap is arranged as the first lens group Ga (step S100), and as the second lens group Gb, the positive lens Lbnp and the negative lens Lbnn are cemented to the object side. A cemented negative lens Lbn having a negative refractive power facing the convex surface is disposed (step S200), and a cemented lens Lc formed by cementing the negative lens Lcn having a concave surface facing the object side and the positive lens Lcp is used as the third lens group Gc. (Step S300), and as the fourth lens group Gd, a positive lens Ldpp having a convex surface facing the object side and a negative lens Ldpn having a concave surface facing the image side are cemented, and a cemented positive lens having a positive refractive power Ldp1 and positive lens component Ldp2 are arranged (step S400). At this time, each group satisfies the above-described conditional expression (1) and conditional expression (2).

以上説明したように、本実施形態に係る光学系OSによれば、カメラ等の撮像装置、印刷用レンズ、複写用レンズに好適な、小型で高性能なレンズ、およびそれを用いた撮像装置を提供することができる。   As described above, according to the optical system OS according to the present embodiment, a small and high-performance lens suitable for an imaging device such as a camera, a printing lens, and a copying lens, and an imaging device using the same. Can be provided.

以下、光学系OSの実施例を、図面に基づいて説明する。なお、図1、図3及び図5は、各実施例に係る光学系OS(OS1〜OS3)の構成を示している。   Hereinafter, embodiments of the optical system OS will be described with reference to the drawings. 1, 3 and 5 show the configuration of the optical system OS (OS1 to OS3) according to each embodiment.

各実施例において、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐定数をκとし、n次の非球面係数をAnとしたとき、以下の式(a)で表される。なお、以降の実施例において、「E−n」は「×10-n」を示す。 In each embodiment, the height of the aspheric surface in the direction perpendicular to the optical axis is y, and the distance (sag amount) along the optical axis from the tangential plane of the apex of each aspheric surface to each aspheric surface at height y. Is S (y), r is the radius of curvature of the reference sphere (paraxial radius of curvature), κ is the conic constant, and An is the nth-order aspherical coefficient, and is expressed by the following equation (a). . In the following examples, “E−n” indicates “× 10 −n ”.

S(y)=(y2/r)/[1+{1−κ(y2/r2)}1/2
+A4×y4+A6×y6+A8×y8+A10×y10
+A12×y12+A14×y14+A16×y16 (a)
S (y) = (y 2 / r) / [1+ {1−κ (y 2 / r 2 )} 1/2 ]
+ A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10
+ A12 × y 12 + A14 × y 14 + A16 × y 16 (a)

なお、各実施例において、2次の非球面係数A2は0である。また、各実施例の表中において、非球面には面番号の左側に*を付している。   In each embodiment, the secondary aspheric coefficient A2 is zero. In the table of each example, an aspherical surface is marked with * on the left side of the surface number.

[第1実施例]
図1は、第1実施例に係る光学系OS1の構成を示す図である。この光学系OS1は、光軸に沿って物体側から順に、物体側の面に非球面を有した両凸レンズ(正レンズ成分)Lapよりなる第1レンズ群Gaと、両凸レンズ(正レンズ)Lbnpと両凹レンズ(負レンズ)Lbnnとが接合され、物体側に凸面を向けた負の屈折力を有する接合負レンズLbnよりなる第2レンズ群Gbと、開口絞りSと、両凹レンズ(負レンズ)Lcnと両凸レンズ(正レンズ)Lcpとの接合による接合負レンズLcからなる第3レンズ群Gcと、両凸レンズ(正レンズ)Ldppと両凹レンズ(負レンズ)Ldpnとが接合され、正の屈折力を有する接合正レンズLdp1、及び、物体側の面に非球面を有した両凸レンズ(正レンズ成分)Ldp2を有し、全体で正の屈折力を有する第4レンズ群Gdと、から構成される。なお、この光学系OS1の第4レンズ群Gdと像面との間には、オプティカル・ローパス・フィルター相当のダミーガラスFLが配置されている。
[First embodiment]
FIG. 1 is a diagram illustrating a configuration of an optical system OS1 according to the first example. The optical system OS1 includes, in order from the object side along the optical axis, a first lens group Ga including a biconvex lens (positive lens component) Lap having an aspheric surface on the object side surface, and a biconvex lens (positive lens) Lbnp. And a biconcave lens (negative lens) Lbnn, and a second lens group Gb composed of a cemented negative lens Lbn having a negative refractive power with the convex surface facing the object side, an aperture stop S, and a biconcave lens (negative lens) A third lens group Gc composed of a cemented negative lens Lc formed by cementing Lcn and a biconvex lens (positive lens) Lcp, a biconvex lens (positive lens) Ldpp, and a biconcave lens (negative lens) Ldpn are cemented to have a positive refractive power. And a fourth lens group Gd having a positive refractive power as a whole, including a cemented positive lens Ldp1 having a biconvex lens (positive lens component) Ldp2 having an aspherical surface on the object side surface It is. A dummy glass FL corresponding to an optical low-pass filter is disposed between the fourth lens group Gd of the optical system OS1 and the image plane.

以下の表1に、本第1実施例に係る光学系OS1の諸元の値を掲げる。この表1の全体諸元において、fは焦点距離、FNOはFナンバー、ωは半画角(単位:度)、Yは像高、TLは光学系OS1の全長、及び、Bfはバックフォーカスをそれぞれ表している。なお、全長TLは、この光学系OS1の最も物体側のレンズ面(第1面)から像面までの光軸上の距離を示し、空気換算バックフォーカスBfは、ダミーガラスFLを取り除いたときの、この光学系OS1の最も像側のレンズ面(第14面)から像面までの光軸上の距離を表している。また、レンズデータにおいて、第1欄mは、光線の進行する方向に沿った物体側からの光学面の順序(面番号)を、第2欄rは、各光学面の曲率半径を、第3欄dは、各光学面から次の光学面までの光軸上の距離(面間隔)を、第4欄νd及び第5欄ndは、それぞれd線(波長λ=587.6nm)に対するアッべ数及び屈折率を示している。なお、この表1に示す面番号1〜16は、図1に示す番号1〜16に対応している。また、曲率半径0.0000はレンズ面においては平面を示し、開口絞りSにおいては開口を示す。また、空気の屈折率1.00000は省略してある。また、最終面(第16面)の面間隔は、像面までの光軸上の距離である。また、レンズ群焦点距離は、各レンズ群が開始する面番号(始面)および各レンズ群の焦点距離をそれぞれ示している。   Table 1 below lists values of specifications of the optical system OS1 according to the first example. In the overall specifications of Table 1, f is the focal length, FNO is the F number, ω is the half angle of view (unit: degree), Y is the image height, TL is the total length of the optical system OS1, and Bf is the back focus. Represents each. The total length TL indicates the distance on the optical axis from the most object side lens surface (first surface) of the optical system OS1 to the image plane, and the air conversion back focus Bf is obtained when the dummy glass FL is removed. This represents the distance on the optical axis from the most image side lens surface (14th surface) of the optical system OS1 to the image surface. In the lens data, the first column m indicates the order (surface number) of the optical surfaces from the object side along the traveling direction of the light beam, the second column r indicates the curvature radius of each optical surface, The column d shows the distance (surface interval) on the optical axis from each optical surface to the next optical surface, and the fourth column νd and the fifth column nd show the Ab for the d-line (wavelength λ = 587.6 nm), respectively. Number and refractive index are shown. In addition, the surface numbers 1-16 shown in this Table 1 respond | correspond to the numbers 1-16 shown in FIG. A curvature radius of 0.0000 indicates a plane on the lens surface and an aperture on the aperture stop S. Further, the refractive index of air of 1.0000 is omitted. Further, the surface interval of the final surface (the 16th surface) is a distance on the optical axis to the image surface. The lens group focal length indicates the surface number (starting surface) where each lens group starts and the focal length of each lens group.

ここで、以下の全ての諸元値において掲載されている焦点距離f、曲率半径r、面間隔d、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、これらの符号の説明及び諸元表の説明は以降の実施例においても同様である。   Here, the focal length f, the radius of curvature r, the surface interval d, and other length units listed in all the following specification values are generally “mm”, but the optical system is proportionally enlarged or proportional. Since the same optical performance can be obtained even if the image is reduced, the present invention is not limited to this. The description of these symbols and the description of the specification table are the same in the following embodiments.

(表1)
[全体諸元]
f = 58.0216
FNO= F1.452
ω = 20.79
Y = 21.6
TL = 117.10249
空気換算Bf = 38.72105

[レンズデータ]
m r d νd nd
* 1 41.7829 12.0000 49.53 1.744430
2 -983.2203 0.3000
3 357.3028 6.0000 82.57 1.497820
4 -283.8317 1.5000 56.00 1.568830
5 22.0816 12.0000
6 0.0000 8.5500 開口絞りS
7 -28.7533 1.7000 28.38 1.728250
8 82.6638 8.5000 46.59 1.816000
9 -39.5671 0.1000
10 45.7762 10.4000 40.66 1.883000
11 -48.2606 1.6000 33.73 1.647690
12 42.8602 10.0000
*13 142.6567 5.0500 49.53 1.744430
14 -94.6176 36.0000
15 0.0000 2.0000 63.88 1.516800
16 0.0000 1.4025

[レンズ群焦点距離]
レンズ群 始面 焦点距離
第1レンズ群 1 54.10970
第2レンズ群 3 -40.91000
第3レンズ群 7 -1311.04467
第4レンズ群 10 49.55460
(Table 1)
[Overall specifications]
f = 58.0216
FNO = F1.452
ω = 20.79
Y = 21.6
TL = 117.10249
Air conversion Bf = 38.72105

[Lens data]
m rd νd nd
* 1 41.7829 12.0000 49.53 1.744430
2 -983.2203 0.3000
3 357.3028 6.0000 82.57 1.497820
4 -283.8317 1.5000 56.00 1.568830
5 22.0816 12.0000
6 0.0000 8.5500 Aperture stop S
7 -28.7533 1.7000 28.38 1.728250
8 82.6638 8.5000 46.59 1.816000
9 -39.5671 0.1000
10 45.7762 10.4000 40.66 1.883000
11 -48.2606 1.6000 33.73 1.647690
12 42.8602 10.0000
* 13 142.6567 5.0500 49.53 1.744430
14 -94.6176 36.0000
15 0.0000 2.0000 63.88 1.516800
16 0.0000 1.4025

[Lens focal length]
Lens group Start surface Focal length 1st lens group 1 54.10970
Second lens group 3 -40.91000
Third lens group 7 -1311.04467
Fourth lens group 10 49.55460

この第1実施例に係る光学系OS1において、第1面及び第13面の各レンズ面は非球面形状に形成されている。次の表2に、非球面データ、すなわち円錐定数κ及び各非球面定数A4〜A16の値を示す。   In the optical system OS1 according to the first example, the lens surfaces of the first surface and the thirteenth surface are formed in an aspheric shape. Table 2 below shows the aspheric data, that is, the values of the conic constant κ and the aspheric constants A4 to A16.

(表2)
κ A4 A6 A8 A10
第 1面 -1.0836 2.91667E-06 -9.66089E-10 8.91173E-13 -1.43337E-15
A12 A14 A16
0.14883E-17 -0.79488E-21 0.58104E-25

κ A4 A6 A8 A10
第13面 -51.0569 -9.69256E-07 -2.85815E-09 -3.50912E-12 -1.76023E-14
A12 A14 A16
0.64501E-16 -0.76248E-19 0.00000
(Table 2)
κ A4 A6 A8 A10
First surface -1.0836 2.91667E-06 -9.66089E-10 8.91173E-13 -1.43337E-15
A12 A14 A16
0.14883E-17 -0.79488E-21 0.58104E-25

κ A4 A6 A8 A10
13th surface -51.0569 -9.69256E-07 -2.85815E-09 -3.50912E-12 -1.76023E-14
A12 A14 A16
0.64501E-16 -0.76248E-19 0.00000

次の表3に、この第1実施例に係る光学系OS1に対する各条件式対応値を示す。但し、Ncpは第3レンズ群Gc中の接合レンズLc中の正レンズLcpの媒質のd線に対する屈折率を、Ncnは第3レンズ群Gc中の接合レンズLc中の負レンズLcnの媒質のd線に対する屈折率を、Dd1は第4レンズ群Gdの接合正レンズLdp1とその像側に位置する正レンズ成分Ldp2との軸上空気間隔を、Dd0は第4レンズ群Gdの最も物体側のレンズ面から最も像側のレンズ面までの光軸上の長さ(第4レンズ群Gdの総厚)を、fdは第4レンズ群Gdの焦点距離を、f0は無限遠合焦時の全系の焦点距離を、Ndppは第4レンズ群Gd中の接合正レンズLdp1中の正レンズLdppの媒質のd線に対する屈折率を、Ndpnは第4レンズ群Gd中の接合正レンズLdp1中の負レンズLdpnの媒質のd線に対する屈折率を、rd1は第4レンズ群Gd中の接合正レンズLdp1の最も物体側の面の曲率半径を、rd2は第4レンズ群Gd中の接合正レンズLdp1の最も像側の面の曲率半径を、fbnは第2レンズ群Gb中の接合負レンズLbnの合成の焦点距離を、fapは第1レンズ群Ga中の最も像側に位置する正レンズ成分Lapの焦点距離をそれぞれ示す。これらの符号の説明は以降の実施例においても同様である。   Table 3 below shows values corresponding to the conditional expressions for the optical system OS1 according to the first example. However, Ncp is the refractive index with respect to the d-line of the medium of the positive lens Lcp in the cemented lens Lc in the third lens group Gc, and Ncn is d of the medium of the negative lens Lcn in the cemented lens Lc in the third lens group Gc. Dd1 is the axial air space between the cemented positive lens Ldp1 of the fourth lens group Gd and the positive lens component Ldp2 located on the image side thereof, and Dd0 is the lens closest to the object side of the fourth lens group Gd. The length on the optical axis from the surface to the lens surface closest to the image side (total thickness of the fourth lens group Gd), fd is the focal length of the fourth lens group Gd, and f0 is the entire system at the time of focusing on infinity , Ndpp is the refractive index with respect to the d-line of the medium of the positive lens Ldpp in the cemented positive lens Ldp1 in the fourth lens group Gd, and Ndpn is the negative lens in the cemented positive lens Ldp1 in the fourth lens group Gd. To the d line of the Ldpn medium Rd1 is the curvature radius of the most object side surface of the cemented positive lens Ldp1 in the fourth lens group Gd, and rd2 is the curvature of the most image side surface of the cemented positive lens Ldp1 in the fourth lens group Gd. Fbn represents the combined focal length of the cemented negative lens Lbn in the second lens group Gb, and fap represents the focal length of the positive lens component Lap located closest to the image side in the first lens group Ga. The description of these symbols is the same in the following embodiments.

(表3)
(1)Ncp−Ncn=0.08775
(2)Dd1/Dd0=0.3704
(3)fd/f0=0.8541
(4)Ndpp−Ndpn=0.23531
(5)(rd2−rd1)/(rd2+rd1)=-0.03290
(6)(−fbn)/f0=0.7051
(7)fap/f0=0.9326
(Table 3)
(1) Ncp-Ncn = 0.08775
(2) Dd1 / Dd0 = 0.3704
(3) fd / f0 = 0.8541
(4) Ndpp-Ndpn = 0.25331
(5) (rd2-rd1) / (rd2 + rd1) =-0.03290
(6) (-fbn) /f0=0.7051
(7) fap / f0 = 0.9326

このように、第1実施例に係る光学系OS1は、上記条件式(1)〜(8)を全て満足している。   Thus, the optical system OS1 according to the first example satisfies all the conditional expressions (1) to (8).

図2に、この第1実施例に係る光学系OS1の無限遠合焦状態における球面収差、非点収差、歪曲収差、倍率色収差、及び、コマ収差の諸収差図を示す。各収差図において、FNOはFナンバーを、Yは像高を、ωは半画角[単位:度]を、それぞれ示している。また、各収差図において、dはd線(波長λ=587.6nm)、及び、gはg線(波長λ=435.8nm)に対する収差を表している。また、非点収差図において、実線はサジタル像面を示し、破線はメリジオナル像面を示している。また、コマ収差図は、各半画角ωにおいて、実線はd線及びg線に対するメリジオナルコマ収差を表し、原点より左側の破線はd線に対してメリジオナル方向に発生するサジタルコマ収差、原点より右側の破線はd線に対してサジタル方向に発生するサジタルコマ収差を表している。なお、この収差図の説明は以降の実施例においても同様である。この図2に示す各収差図から明らかなように、この第1実施例に係る光学系OS1では、球面収差、サジタルコマ収差、像面湾曲、非点収差、メリジオナルコマ収差を含め諸収差が良好に補正されており、高い光学性能を有していることが分かる。   FIG. 2 shows various aberration diagrams of spherical aberration, astigmatism, distortion aberration, lateral chromatic aberration, and coma aberration in the infinitely focused state of the optical system OS1 according to the first example. In each aberration diagram, FNO represents an F number, Y represents an image height, and ω represents a half angle of view [unit: degree]. In each aberration diagram, d represents the aberration with respect to the d-line (wavelength λ = 587.6 nm), and g represents the aberration with respect to the g-line (wavelength λ = 435.8 nm). In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. In the coma aberration diagram, at each half angle of view ω, the solid line represents the meridional coma aberration with respect to the d-line and the g-line, and the broken line on the left side from the origin represents the sagittal coma aberration generated in the meridional direction with respect to the d-line. The broken line represents the sagittal coma generated in the sagittal direction with respect to the d line. The description of this aberration diagram is the same in the following examples. As is apparent from the respective aberration diagrams shown in FIG. 2, in the optical system OS1 according to the first example, various aberrations including spherical aberration, sagittal coma, field curvature, astigmatism, and meridional coma are corrected well. It can be seen that it has high optical performance.

[第2実施例]
図3は、第2実施例に係る光学系OS2の構成を示す図である。この光学系OS2は、光軸に沿って物体側から順に、物体側に凸面を向けた正メニスカスレンズLapa、及び、物体側に凸面を向け、物体側の面に非球面を有した正メニスカスレンズ(正レンズ成分)Lapよりなる第1レンズ群Gaと、両凸レンズ(正レンズ)Lbnpと両凹レンズ(負レンズ)Lbnnとが接合され、物体側に凸面を向けた負の屈折力を有する接合負レンズLbnよりなる第2レンズ群Gbと、開口絞りSと、両凹レンズ(負レンズ)Lcnと両凸レンズ(正レンズ)Lcpとの接合によりなる接合負レンズLcからなる第3レンズ群Gcと、両凸レンズ(正レンズ)Ldppと両凹レンズ(負レンズ)Ldpnとが接合され、正の屈折力を有する接合正レンズLdp1、及び、物体側の面に非球面を有した両凸レンズ(正レンズ成分)Ldp2を有し、全体で正の屈折力を有する第4レンズ群Gdと、から構成される。なお、この光学系OS2の第4レンズ群Gdと像面との間には、オプティカル・ローパス・フィルター相当のダミーガラスFLが配置されている
[Second Embodiment]
FIG. 3 is a diagram illustrating a configuration of the optical system OS2 according to the second embodiment. This optical system OS2 includes, in order from the object side along the optical axis, a positive meniscus lens Lapa having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side and an aspheric surface on the object side surface (Positive lens component) The first lens group Ga made of Lap, the biconvex lens (positive lens) Lbnp, and the biconcave lens (negative lens) Lbnn are cemented and have a negative refractive power having a negative refractive power with the convex surface facing the object side. A second lens group Gb composed of a lens Lbn; an aperture stop S; a third lens group Gc composed of a cemented negative lens Lc formed by cementing a biconcave lens (negative lens) Lcn and a biconvex lens (positive lens) Lcp; A convex lens (positive lens) Ldpp and a biconcave lens (negative lens) Ldpn are cemented, a cemented positive lens Ldp1 having a positive refractive power, and a biconvex lens having an aspherical surface on the object side. It has a (positive lens component) LDP2, a fourth lens group Gd having a positive refractive power as a whole, composed. A dummy glass FL equivalent to an optical low-pass filter is disposed between the fourth lens group Gd of the optical system OS2 and the image plane.

以下の表4に、本第2実施例に係る光学系OS2の諸元の値を掲げる。なお、この表4に示す面番号1〜18は、図3に示す番号1〜18に対応している。   Table 4 below lists values of specifications of the optical system OS2 according to the second example. In addition, the surface numbers 1-18 shown in this Table 4 respond | correspond to the numbers 1-18 shown in FIG.

(表4)
[全体諸元]
f = 58.0216
FNO= F1.447
ω = 20.78
Y = 21.6
TL = 116.59449
空気換算Bf = 38.71306

[レンズデータ]
m r d νd nd
1 48.3691 6.0000 52.34 1.755000
2 64.8757 0.2000
* 3 48.5769 8.0000 49.53 1.744430
4 315.5532 1.0000
5 192.0921 5.0000 82.57 1.497820
6 -177.9144 1.5000 58.82 1.518230
7 22.1903 12.0000
8 0.0000 8.5500 開口絞りS
9 -25.4714 1.7000 28.38 1.728250
10 74.9213 8.5000 46.59 1.816000
11 -38.2856 0.1000
12 48.9473 8.0000 40.66 1.883000
13 -81.3767 1.6000 33.73 1.647690
14 46.9021 10.0000
*15 135.5889 5.0500 49.53 1.744430
16 -67.9281 36.0000
17 0.0000 2.0000 63.88 1.516800
18 0.0000 1.3945

[レンズ群焦点距離]
レンズ群 始面 焦点距離
第1レンズ群 1 58.61368
第2レンズ群 5 -48.50394
第3レンズ群 9 -364.73701
第4レンズ群 12 46.87082
(Table 4)
[Overall specifications]
f = 58.0216
FNO = F1.447
ω = 20.78
Y = 21.6
TL = 116.59449
Air conversion Bf = 38.71306

[Lens data]
m rd νd nd
1 48.3691 6.0000 52.34 1.755000
2 64.8757 0.2000
* 3 48.5769 8.0000 49.53 1.744430
4 315.5532 1.0000
5 192.0921 5.0000 82.57 1.497820
6 -177.9144 1.5000 58.82 1.518230
7 22.1903 12.0000
8 0.0000 8.5500 Aperture stop S
9 -25.4714 1.7000 28.38 1.728250
10 74.9213 8.5000 46.59 1.816000
11 -38.2856 0.1000
12 48.9473 8.0000 40.66 1.883000
13 -81.3767 1.6000 33.73 1.647690
14 46.9021 10.0000
* 15 135.5889 5.0500 49.53 1.744430
16 -67.9281 36.0000
17 0.0000 2.0000 63.88 1.516800
18 0.0000 1.3945

[Lens focal length]
Lens group Start surface Focal length 1st lens group 1 58.61368
Second lens group 5 -48.50394
Third lens group 9 -364.73701
Fourth lens group 12 46.87082

この第2実施例に係る光学系OS2において、第3面及び第15面の各レンズ面は非球面形状に形成されている。次の表5に、非球面データ、すなわち円錐定数κ及び各非球面定数A4〜A14の値を示す。   In the optical system OS2 according to the second example, the third and fifteenth lens surfaces are formed in an aspherical shape. Table 5 below shows the aspheric data, that is, the values of the conic constant κ and the aspheric constants A4 to A14.

(表5)
κ A4 A6 A8 A10
第 3面 -1.6299 2.68345E-06 -8.23800E-10 1.14177E-12 -1.24468E-15
A12 A14 A16
0.14554E-17 -0.10321E-20 0.27667E-24

κ A4 A6 A8 A10
第15面 -60.1023 -6.09416E-08 -8.52690E-10 -4.41425E-12 -2.55685E-14
A12 A14 A16
0.86429E-17 0.22562E-18 0.00000
(Table 5)
κ A4 A6 A8 A10
3rd surface -1.6299 2.68345E-06 -8.23800E-10 1.14177E-12 -1.24468E-15
A12 A14 A16
0.14554E-17 -0.10321E-20 0.27667E-24

κ A4 A6 A8 A10
15th surface -60.1023 -6.09416E-08 -8.52690E-10 -4.41425E-12 -2.55685E-14
A12 A14 A16
0.86429E-17 0.22562E-18 0.00000

次の表6に、この第2実施例に係る光学系OS2に対する各条件式対応値を示す。   Table 6 below shows values corresponding to the conditional expressions for the optical system OS2 according to the second example.

(表6)
(1)Ncp−Ncn=0.08775
(2)Dd1/Dd0=0.40568
(3)fd/f0=0.80784
(4)Ndpp−Ndpn=0.23531
(5)(rd2−rd1)/(rd2+rd1)=-0.02134
(6)(−fbn)/f0=0.8360
(7)fap/f0=1.3125
(Table 6)
(1) Ncp-Ncn = 0.08775
(2) Dd1 / Dd0 = 0.40568
(3) fd / f0 = 0.80784
(4) Ndpp-Ndpn = 0.25331
(5) (rd2-rd1) / (rd2 + rd1) =-0.02134
(6) (−fbn) /f0=0.8360
(7) fap / f0 = 1.3125

このように、第2実施例に係る光学系OS2は、上記条件式(1)〜(7)を全て満足している。   Thus, the optical system OS2 according to the second example satisfies all the conditional expressions (1) to (7).

図4に、この第2実施例に係る光学系OS2の無限遠合焦状態における球面収差、非点収差、歪曲収差、倍率色収差、及び、コマ収差の諸収差図を示す。この図4に示す各収差図から明らかなように、この第2実施例に係る光学系OS2では、球面収差、サジタルコマ収差、像面湾曲、非点収差、メリジオナルコマ収差を含め諸収差が良好に補正されており、高い光学性能を有していることが分かる。   FIG. 4 shows various aberration diagrams of spherical aberration, astigmatism, distortion aberration, lateral chromatic aberration, and coma aberration in the infinitely focused state of the optical system OS2 according to the second example. As is apparent from the respective aberration diagrams shown in FIG. 4, in the optical system OS2 according to the second example, various aberrations including spherical aberration, sagittal coma, field curvature, astigmatism, and meridional coma are corrected well. It can be seen that it has high optical performance.

[第3実施例]
図5は、第3実施例に係る光学系OS3の構成を示す図である。この光学系OS3は、光軸に沿って物体側から順に、物体側の面に非球面を有した両凸レンズ(正レンズ成分)Lapよりなる第1レンズ群Gaと、両凸レンズ(正レンズ)Lbnpと両凹レンズ(負レンズ)Lbnnとが接合され、物体側に凸面を向けた負の屈折力を有する接合負レンズLbnよりなる第2レンズ群Gbと、両凹レンズ(負レンズ)Lcnと両凸レンズ(正レンズ)Lcpとの接合によりなる接合正レンズLcからなる第3レンズ群Gcと、開口絞りSと、両凸レンズ(正レンズ)Ldppと両凹レンズ(負レンズ)Ldpnとが接合され、正の屈折力を有する接合正レンズLdp1、及び、像側の面に非球面を有した両凸レンズ(正レンズ成分)Ldp2を有し、全体で正の屈折力を有する第4レンズ群Gdと、から構成される。なお、この光学系OS3の第4レンズ群Gdと像面との間には、オプティカル・ローパス・フィルター相当のダミーガラスFLが配置されている。
[Third embodiment]
FIG. 5 is a diagram illustrating a configuration of the optical system OS3 according to the third embodiment. The optical system OS3 includes, in order from the object side along the optical axis, a first lens group Ga including a biconvex lens (positive lens component) Lap having an aspheric surface on the object side surface, and a biconvex lens (positive lens) Lbnp. And a biconcave lens (negative lens) Lbnn are cemented, a second lens group Gb comprising a cemented negative lens Lbn having a negative refractive power with the convex surface facing the object side, a biconcave lens (negative lens) Lcn and a biconvex lens ( Positive lens) A third lens group Gc composed of a cemented positive lens Lc that is cemented with Lcp, an aperture stop S, a biconvex lens (positive lens) Ldpp, and a biconcave lens (negative lens) Ldpn are cemented, and positive refraction. A fourth lens group Gd having a positive cemented lens Ldp1 having a positive power and a biconvex lens (positive lens component) Ldp2 having an aspherical surface on the image side. It is. A dummy glass FL corresponding to an optical low-pass filter is disposed between the fourth lens group Gd of the optical system OS3 and the image plane.

以下の表7に、本第3実施例に係る光学系OS3の諸元の値を掲げる。なお、この表7に示す面番号1〜16は、図5に示す番号1〜16に対応している。   Table 7 below provides values of specifications of the optical system OS3 according to the third example. In addition, the surface numbers 1-16 shown in this Table 7 respond | correspond to the numbers 1-16 shown in FIG.

(表7)
[全体諸元]
f = 58.0216
FNO= F1.4498
ω = 20.89
Y = 21.6
TL = 118.68947
空気換算Bf = 38.72512

[レンズデータ]
m r d νd nd
* 1 41.5795 12.0000 49.53 1.744430
2 -813.4478 0.3000
3 244.3063 6.0000 82.57 1.497820
4 -235.8932 1.5000 59.42 1.583130
5 21.4783 18.6829
6 -28.4726 1.7000 28.38 1.728250
7 45.3584 11.0000 46.59 1.816000
8 -39.2591 1.0000
9 0.0000 1.0000 開口絞りS
10 46.1192 9.5000 40.66 1.883000
11 -58.1813 1.6000 38.03 1.603420
12 41.2425 10.0000
13 86.1329 5.0000 58.12 1.622990
*14 -174.2894 36.0000
15 0.0000 2.0000 63.88 1.516800
16 0.0000 1.4066

[レンズ群焦点距離]
レンズ群 始面 焦点距離
第1レンズ群 1 53.45815
第2レンズ群 3 -39.67314
第3レンズ群 6 1460.90741
第4レンズ群 10 53.19978
(Table 7)
[Overall specifications]
f = 58.0216
FNO = F1.4498
ω = 20.89
Y = 21.6
TL = 118.68947
Air conversion Bf = 38.72512

[Lens data]
m rd νd nd
* 1 41.5795 12.0000 49.53 1.744430
2 -813.4478 0.3000
3 244.3063 6.0000 82.57 1.497820
4 -235.8932 1.5000 59.42 1.583130
5 21.4783 18.6829
6 -28.4726 1.7000 28.38 1.728250
7 45.3584 11.0000 46.59 1.816000
8 -39.2591 1.0000
9 0.0000 1.0000 Aperture stop S
10 46.1192 9.5000 40.66 1.883000
11 -58.1813 1.6000 38.03 1.603420
12 41.2425 10.0000
13 86.1329 5.0000 58.12 1.622990
* 14 -174.2894 36.0000
15 0.0000 2.0000 63.88 1.516800
16 0.0000 1.4066

[Lens focal length]
Lens group Start surface Focal length First lens group 1 53.45815
Second lens group 3 -39.67314
Third lens group 6 1460.90741
Fourth lens group 10 53.19978

この第3実施例に係る光学系OS3において、第1面及び第14面の各レンズ面は非球面形状に形成されている。次の表8に、非球面データ、すなわち円錐定数κ及び各非球面定数A4〜A14の値を示す。   In the optical system OS3 according to the third example, the lens surfaces of the first surface and the fourteenth surface are formed in an aspheric shape. Table 8 below shows the aspheric data, that is, the values of the conic constant κ and the aspheric constants A4 to A14.

(表8)
κ A4 A6 A8 A10
第 1面 -1.1184 2.85351E-06 -1.04658E-09 8.00265E-13 -1.54291E-15
A12 A14 A16
0.14216E-17 -0.58285E-21 0.000000

κ A4 A6 A8 A10
第14面 -0.1123E+03 1.29475E-06 4.06801E-09 3.95038E-12 1.23421E-14
A12 A14 A16
-0.14579E-15 0.51293E-18 0.00000
(Table 8)
κ A4 A6 A8 A10
1st surface -1.1184 2.85351E-06 -1.04658E-09 8.00265E-13 -1.54291E-15
A12 A14 A16
0.14216E-17 -0.58285E-21 0.000000

κ A4 A6 A8 A10
14th surface -0.1123E + 03 1.29475E-06 4.06801E-09 3.95038E-12 1.23421E-14
A12 A14 A16
-0.14579E-15 0.51293E-18 0.00000

次の表9に、この第3実施例に係る光学系OS3に対する各条件式対応値を示す。   Table 9 below shows values corresponding to the conditional expressions for the optical system OS3 according to the third example.

(表9)
(1)Ncp−Ncn=0.08775
(2)Dd1/Dd0=0.38314
(3)fd/f0=0.91692
(4)Ndpp−Ndpn=0.27958
(5)(rd2−rd1)/(rd2+rd1)=-0.05582
(6)(−fbn)/f0=0.6838
(7)fap/f0=0.9209
(Table 9)
(1) Ncp-Ncn = 0.08775
(2) Dd1 / Dd0 = 0.38314
(3) fd / f0 = 0.91692
(4) Ndpp-Ndpn = 0.27958
(5) (rd2-rd1) / (rd2 + rd1) =-0.05582
(6) (-fbn) /f0=0.6838
(7) fap / f0 = 0.9209

このように、第3実施例に係る光学系OS3は、上記条件式(1)〜(7)を全て満足している。   Thus, the optical system OS3 according to the third example satisfies all the conditional expressions (1) to (7).

図6に、この第3実施例に係る光学系OS3の無限遠合焦状態における球面収差、非点収差、歪曲収差、倍率色収差、及び、コマ収差の諸収差図を示す。この図6に示す各収差図から明らかなように、この第3実施例に係る光学系OS3では、球面収差、サジタルコマ収差、像面湾曲、非点収差、メリジオナルコマ収差を含め諸収差が良好に補正されており、高い光学性能を有していることが分かる。   FIG. 6 shows various aberration diagrams of spherical aberration, astigmatism, distortion aberration, lateral chromatic aberration, and coma aberration in the infinite focus state of the optical system OS3 according to the third example. As is apparent from each aberration diagram shown in FIG. 6, in the optical system OS3 according to the third example, various aberrations including spherical aberration, sagittal coma, field curvature, astigmatism, and meridional coma are corrected well. It can be seen that it has high optical performance.

以上の各実施例によれば、2ω=41.8°程度の包括角を有し、さらに大口径F1.4の口径を有し、高性能で球面収差、サジタルコマ収差、像面湾曲、メリジオナルコマ収差が良好に補正された光学系OSが実現できる。   According to each of the above-described embodiments, it has a comprehensive angle of about 2ω = 41.8 °, further has a large aperture of F1.4, and has high performance, spherical aberration, sagittal coma aberration, field curvature, meridional coma aberration. It is possible to realize an optical system OS in which is corrected well.

なお、以上の各実施例に示す光学系OS1〜OS3を、上述したカメラ1に搭載することにより、上述した効果を奏することは言うまでもない。また、上記各実施例は本発明の一具体例を示しているものであり、本発明はこれらに限定されるものではない。   Needless to say, the above-described effects can be obtained by mounting the optical systems OS <b> 1 to OS <b> 3 shown in the above embodiments in the above-described camera 1. Moreover, each said Example has shown the specific example of this invention, and this invention is not limited to these.

OS(OS1〜OS3) 光学系
Ga 第1レンズ群 Gb 第2レンズ群
Gc 第3レンズ群 Gd 第4レンズ群
Lapa 第1レンズ群中の物体側の正レンズ成分
Lap 第1レンズ群中の像側の正レンズ成分
Lbn 第2レンズ群中の接合負レンズ
Lc 第3レンズ群中の接合レンズ成分
Ldp1 第4レンズ群中の接合正レンズ
Ldp2 第4レンズ群中の像側の正レンズ成分
S 開口絞り 1 一眼レフカメラ(撮像装置)
OS (OS1 to OS3) Optical system Ga First lens group Gb Second lens group Gc Third lens group Gd Fourth lens group Lapa Object-side positive lens component Lap in the first lens group Image side in the first lens group Positive lens component Lbn cemented negative lens Lc in the second lens group cemented lens component Ldp1 in the third lens group cemented positive lens Ldp2 in the fourth lens group positive lens component S on the image side in the fourth lens group Aperture stop 1 Single-lens reflex camera (imaging device)

Claims (12)

光軸に沿って物体側から順に、
正の屈折力を有する第1レンズ群と、
負の屈折力を有する第2レンズ群と、
第3レンズ群と、
正の屈折力を有する第4レンズ群と、を有し、
前記第1レンズ群は、少なくとも1枚の正レンズ成分を有し、
前記第2レンズ群は、正レンズと負レンズとが接合され、物体側に凸面を向けた負の屈折力を有する接合負レンズを有し、
前記第3レンズ群は、物体側に凹面を向けた負レンズと正レンズとの接合による接合レンズを有し、
前記第4レンズ群は、物体側に凸面を向けた正レンズと像側に凹面を向けた負レンズとが接合され、正の屈折力を有する接合正レンズと、正レンズ成分と、を有し、
以下の条件式を満足することを特徴とする光学系。
0.00 < Ncp−Ncn < 0.40
0.01 < Dd1/Dd0 < 0.80
但し、
Ncp:前記第3レンズ群中の前記接合レンズ中の前記正レンズの媒質のd線に対する屈折率
Ncn:前記第3レンズ群中の前記接合レンズ中の前記負レンズの媒質のd線に対する屈折率
Dd1:前記第4レンズ群中の前記接合正レンズとその像側に位置する前記正レンズ成分との軸上空気間隔
Dd0:前記第4レンズ群の最も物体側のレンズ面から最も像側のレンズ面までの光軸上の長さ(前記第4レンズ群の総厚)
In order from the object side along the optical axis,
A first lens group having a positive refractive power;
A second lens group having negative refractive power;
A third lens group;
A fourth lens group having a positive refractive power,
The first lens group has at least one positive lens component;
The second lens group includes a cemented negative lens having a negative refractive power in which a positive lens and a negative lens are cemented and a convex surface is directed to the object side,
The third lens group includes a cemented lens formed by cementing a negative lens with a concave surface facing the object side and a positive lens;
The fourth lens group includes a positive lens having a positive refractive power and a positive lens having a positive refractive power in which a positive lens having a convex surface facing the object side and a negative lens having a concave surface facing the image side are cemented. ,
An optical system satisfying the following conditional expression:
0.00 <Ncp-Ncn <0.40
0.01 <Dd1 / Dd0 <0.80
However,
Ncp: refractive index with respect to d-line of medium of the positive lens in the cemented lens in the third lens group Ncn: refractive index with respect to d-line of medium of the negative lens in the cemented lens in the third lens group Dd1: On-axis air space between the cemented positive lens in the fourth lens group and the positive lens component located on the image side Dd0: Lens closest to the image side from the lens surface closest to the object side in the fourth lens group Length on the optical axis to the surface (total thickness of the fourth lens group)
以下の条件式を満足することを特徴とする請求項1に記載の光学系。
0.0 < fd/f0 < 5.0
但し、
fd:前記第4レンズ群の焦点距離
f0:無限遠合焦時の全系の焦点距離
The optical system according to claim 1, wherein the following conditional expression is satisfied.
0.0 <fd / f0 <5.0
However,
fd: focal length of the fourth lens group f0: focal length of the entire system when focusing on infinity
以下の条件式を満足することを特徴とする請求項1または2に記載の光学系。
0.00 < Ndpp−Ndpn < 0.40
但し、
Ndpp:前記第4レンズ群中の前記接合正レンズ中の前記正レンズの媒質のd線に対する屈折率
Ndpn:前記第4レンズ群中の前記接合正レンズ中の前記負レンズの媒質のd線に対する屈折率
The optical system according to claim 1, wherein the following conditional expression is satisfied.
0.00 <Ndpp-Ndpn <0.40
However,
Ndpp: refractive index with respect to the d-line of the medium of the positive lens in the cemented positive lens in the fourth lens group Ndpn: with respect to the d-line of the medium of the negative lens in the cemented positive lens in the fourth lens group Refractive index
以下の条件式を満足することを特徴とする請求項1〜3のいずれか一項に記載の光学系。
−1.000 <(rd2−rd1)/(rd2+rd1)< −0.000
但し、
rd1:前記第4レンズ群中の前記接合正レンズの最も物体側の面の曲率半径
rd2:前記第4レンズ群中の前記接合正レンズの最も像側の面の曲率半径
The optical system according to claim 1, wherein the following conditional expression is satisfied.
-1,000 <(rd2-rd1) / (rd2 + rd1) <-0.000
However,
rd1: radius of curvature of the most object side surface of the cemented positive lens in the fourth lens group rd2: radius of curvature of the most image side surface of the cemented positive lens in the fourth lens group
以下の条件式を満足することを特徴とする請求項1〜4のいずれか一項に記載の光学系。
0.0 < (−fbn)/f0 < 5.0
但し、
fbn:前記第2レンズ群中の前記接合負レンズの合成の焦点距離
f0:無限遠合焦時の全系の焦点距離
The optical system according to claim 1, wherein the following conditional expression is satisfied.
0.0 <(− fbn) / f0 <5.0
However,
fbn: the focal length of the composite of the cemented negative lens in the second lens group f0: the focal length of the entire system when focusing on infinity
以下の条件式を満足することを特徴とする請求項1〜5のいずれか一項に記載の光学系。
0.0 < fap/f0 < 10.0
但し、
fap:前記第1レンズ群中の最も像側に位置する前記正レンズ成分の焦点距離
f0:無限遠合焦時の全系の焦点距離
The optical system according to claim 1, wherein the following conditional expression is satisfied.
0.0 <fap / f0 <10.0
However,
fap: focal length of the positive lens component located closest to the image side in the first lens group f0: focal length of the entire system when focusing on infinity
Fナンバーを決定する開口絞りを、前記第2レンズ群と前記第3レンズ群との間、または前記第3レンズ群と前記第4レンズ群との間に有することを特徴とする請求項1〜6のいずれか一項に記載の光学系。   2. An aperture stop for determining an F-number is provided between the second lens group and the third lens group, or between the third lens group and the fourth lens group. 7. The optical system according to any one of 6. 前記第1レンズ群または前記第2レンズ群に、少なくとも1面の非球面を有することを特徴とする請求項1〜7のいずれか一項に記載の光学系。   The optical system according to claim 1, wherein the first lens group or the second lens group has at least one aspheric surface. 前記第4レンズ群に、少なくとも1面の非球面を有することを特徴とする請求項1〜8のいずれか一項に記載の光学系。   The optical system according to claim 1, wherein the fourth lens group has at least one aspheric surface. 前記第4レンズ群中の前記正レンズ成分は、物体側に凸面を向けた正レンズであることを特徴とする請求項1〜9のいずれか一項に記載の光学系。   The optical system according to claim 1, wherein the positive lens component in the fourth lens group is a positive lens having a convex surface directed toward the object side. 請求項1〜10のいずれか一項に記載の光学系を有することを特徴とする撮像装置。   An imaging apparatus comprising the optical system according to claim 1. 光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、第3レンズ群と、正の屈折力を有する第4レンズ群と、を有する光学系の製造方法であって、
前記第1レンズ群として、少なくとも1枚の正レンズ成分を配置し、
前記第2レンズ群として、正レンズと負レンズとが接合され、物体側に凸面を向けた負の屈折力を有する接合負レンズを配置し、
前記第3レンズ群として、物体側に凹面を向けた負レンズと正レンズとの接合による接合レンズを配置し、
前記第4レンズ群として、物体側に凸面を向けた正レンズと像側に凹面を向けた負レンズとが接合され、正の屈折力を有する接合正レンズと、正レンズ成分と、を配置し、
以下の条件式を満足することを特徴とする光学系の製造方法。
0.00 < Ncp−Ncn < 0.40
0.01 < Dd1 / Dd0 < 0.80
但し、
Ncp:前記第3レンズ群中の前記接合レンズ中の前記正レンズの媒質のd線に対する屈折率
Ncn:前記第3レンズ群中の前記接合レンズ中の前記負レンズの媒質のd線に対する屈折率
Dd1:前記第4レンズ群中の前記接合正レンズとその像側に位置する前記正レンズ成分との軸上空気間隔
Dd0:前記第4レンズ群の最も物体側のレンズ面から最も像側のレンズ面までの光軸上の長さ(前記第4レンズ群の総厚)
A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group, and a fourth lens group having a positive refractive power in order from the object side along the optical axis. And an optical system manufacturing method comprising:
As the first lens group, at least one positive lens component is disposed,
As the second lens group, a positive lens and a negative lens are cemented, and a cemented negative lens having a negative refractive power with a convex surface facing the object side is disposed,
As the third lens group, a cemented lens formed by cementing a negative lens with a concave surface facing the object side and a positive lens is disposed,
As the fourth lens group, a positive lens having a convex surface facing the object side and a negative lens having a concave surface facing the image side are cemented, and a cemented positive lens having positive refractive power and a positive lens component are arranged. ,
An optical system manufacturing method satisfying the following conditional expression:
0.00 <Ncp-Ncn <0.40
0.01 <Dd1 / Dd0 <0.80
However,
Ncp: refractive index with respect to d-line of medium of the positive lens in the cemented lens in the third lens group Ncn: refractive index with respect to d-line of medium of the negative lens in the cemented lens in the third lens group Dd1: On-axis air space between the cemented positive lens in the fourth lens group and the positive lens component located on the image side Dd0: Lens closest to the image side from the lens surface closest to the object side in the fourth lens group Length on the optical axis to the surface (total thickness of the fourth lens group)
JP2011151823A 2011-07-08 2011-07-08 OPTICAL SYSTEM, IMAGING DEVICE HAVING THE OPTICAL SYSTEM, AND OPTICAL SYSTEM MANUFACTURING METHOD Active JP5761605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011151823A JP5761605B2 (en) 2011-07-08 2011-07-08 OPTICAL SYSTEM, IMAGING DEVICE HAVING THE OPTICAL SYSTEM, AND OPTICAL SYSTEM MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011151823A JP5761605B2 (en) 2011-07-08 2011-07-08 OPTICAL SYSTEM, IMAGING DEVICE HAVING THE OPTICAL SYSTEM, AND OPTICAL SYSTEM MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JP2013019994A true JP2013019994A (en) 2013-01-31
JP5761605B2 JP5761605B2 (en) 2015-08-12

Family

ID=47691512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011151823A Active JP5761605B2 (en) 2011-07-08 2011-07-08 OPTICAL SYSTEM, IMAGING DEVICE HAVING THE OPTICAL SYSTEM, AND OPTICAL SYSTEM MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP5761605B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772937A (en) * 2016-12-19 2017-05-31 福建福光股份有限公司 A kind of 50 millimeters of focusing machine visual lens of 8,000,000 pixel
CN107589517A (en) * 2016-07-08 2018-01-16 黄俊裕 Imaging lens
US9952405B2 (en) 2016-02-18 2018-04-24 Fujifilm Corporation Imaging lens and imaging apparatus
JP2019152683A (en) * 2018-02-28 2019-09-12 キヤノン株式会社 Optical system and image capturing device
CN112305724A (en) * 2019-07-26 2021-02-02 光芒光学股份有限公司 Fixed focus image capture lens

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10307255A (en) * 1997-05-08 1998-11-17 Nikon Corp High-resolution image forming lens system
JP2000089108A (en) * 1998-07-16 2000-03-31 Nikon Corp Lens for reading
JP2007079361A (en) * 2005-09-16 2007-03-29 Tochigi Nikon Corp Imaging optical system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10307255A (en) * 1997-05-08 1998-11-17 Nikon Corp High-resolution image forming lens system
JP2000089108A (en) * 1998-07-16 2000-03-31 Nikon Corp Lens for reading
JP2007079361A (en) * 2005-09-16 2007-03-29 Tochigi Nikon Corp Imaging optical system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9952405B2 (en) 2016-02-18 2018-04-24 Fujifilm Corporation Imaging lens and imaging apparatus
CN107589517A (en) * 2016-07-08 2018-01-16 黄俊裕 Imaging lens
CN106772937A (en) * 2016-12-19 2017-05-31 福建福光股份有限公司 A kind of 50 millimeters of focusing machine visual lens of 8,000,000 pixel
CN106772937B (en) * 2016-12-19 2022-09-16 福建福光股份有限公司 800 ten thousand pixels 50 millimeters tight machine vision camera lens
JP2019152683A (en) * 2018-02-28 2019-09-12 キヤノン株式会社 Optical system and image capturing device
US10983315B2 (en) 2018-02-28 2021-04-20 Canon Kabushiki Kaisha Optical system and imaging apparatus
CN112305724A (en) * 2019-07-26 2021-02-02 光芒光学股份有限公司 Fixed focus image capture lens

Also Published As

Publication number Publication date
JP5761605B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5510634B2 (en) Wide angle lens and optical apparatus having the wide angle lens
JP5510113B2 (en) Photographic lens, optical apparatus equipped with photographic lens, and method of manufacturing photographic lens
JP5402015B2 (en) Rear focus optical system, imaging apparatus, and focusing method of rear focus optical system
JP5544834B2 (en) Wide angle lens and optical apparatus having the wide angle lens
JP6582535B2 (en) Optical system and imaging apparatus having this optical system
JP5396888B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP2012027451A (en) Photographic lens, optical equipment having the photographic lens and photographic lens manufacturing method
JP2015036779A (en) Photographing lens, optical apparatus, and method for manufacturing the photographing lens
JP5712751B2 (en) OPTICAL SYSTEM, IMAGING DEVICE HAVING THE OPTICAL SYSTEM, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP5761605B2 (en) OPTICAL SYSTEM, IMAGING DEVICE HAVING THE OPTICAL SYSTEM, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP2013195560A (en) Optical system, optical device, and method of manufacturing optical system
JP2011102871A (en) Wide angle lens, image pickup device, and method for manufacturing the wide angle lens
JP5716995B2 (en) Optical system and imaging apparatus having this optical system
JP2015215561A (en) Optical system, optical device, and method for manufacturing the optical system
JP2017107067A (en) Zoom lens, optical apparatus and method for manufacturing zoom lens
JP5458586B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP5761604B2 (en) OPTICAL SYSTEM, IMAGING DEVICE HAVING THE OPTICAL SYSTEM, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP5703930B2 (en) OPTICAL SYSTEM, IMAGING DEVICE HAVING THE OPTICAL SYSTEM, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP2011150036A (en) Imaging lens, optical apparatus equipped therewith, and method of manufacturing imaging lens
JP6828252B2 (en) Optical system and optical equipment
JP5987543B2 (en) Zoom lens, optical device
JP5338345B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP5761566B2 (en) OPTICAL SYSTEM, IMAGING DEVICE HAVING THE OPTICAL SYSTEM, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP5316035B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP2014232185A (en) Lens system, optical device, and method of manufacturing lens system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150528

R150 Certificate of patent or registration of utility model

Ref document number: 5761605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250