JP2007079361A - Imaging optical system - Google Patents

Imaging optical system Download PDF

Info

Publication number
JP2007079361A
JP2007079361A JP2005269672A JP2005269672A JP2007079361A JP 2007079361 A JP2007079361 A JP 2007079361A JP 2005269672 A JP2005269672 A JP 2005269672A JP 2005269672 A JP2005269672 A JP 2005269672A JP 2007079361 A JP2007079361 A JP 2007079361A
Authority
JP
Japan
Prior art keywords
group
lens
optical system
rear group
imaging optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005269672A
Other languages
Japanese (ja)
Inventor
Mitsuru Fukuda
充 福田
Yoji Tanaka
要司 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tochigi Nikon Corp
Nikon Corp
Original Assignee
Tochigi Nikon Corp
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tochigi Nikon Corp, Nikon Corp filed Critical Tochigi Nikon Corp
Priority to JP2005269672A priority Critical patent/JP2007079361A/en
Publication of JP2007079361A publication Critical patent/JP2007079361A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging optical system equipped with a mechanism achieving variable power, where at least chromatic aberration and distortion aberration are excellently corrected, and which has high resolving power and wide image size. <P>SOLUTION: In the imaging optical system, a front group F1 having positive or negative refractive power, an aperture stop S, and a rear group F2 having positive refractive power are arranged in order from an object side, and the imaging optical system has an aberration variation compensating function for negating the variation of the caused aberration by widening an air distance d8 on an optical axis between the front group F1 and the rear group F2 when imaging magnification is increased from a low-magnification side (1-POS) to a high-magnification side (4-POS) by moving both the front group F1 and the rear group F2 to the object side. Assuming that the focal distance of the front group F1 is fF1, the focal distance of the rear group F2 is fF2, and the focal distance of the entire system of the optical system on the lowest-magnification side is fAm, the imaging optical system satisfies following expressions, 40<¾fF1¾/fF2<60, 25<¾fF1¾/fAm<45 and 0.5<fF2/fAm<1.1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、物体面と像面との距離を変化させることにより変倍可能な機構を備えた撮像光学系に関し、特にパターン検査、画像認識装置及び形状計測装置等に用いられるラインCCDカメラに好適な撮像光学系に関する。   The present invention relates to an imaging optical system having a mechanism capable of scaling by changing the distance between an object plane and an image plane, and is particularly suitable for a line CCD camera used for a pattern inspection, an image recognition apparatus, a shape measurement apparatus, and the like. The present invention relates to an imaging optical system.

近年、パターン検査、画像認識装置及び形状計測装置等においては、撮像素子(デバイス)の高精細化に伴い、使用する撮像光学系に対する高性能化が要求されている。具体的には、解像力の向上をはじめとして、デバイスの大型化に伴うイメージサイズの拡大、歪曲収差の大幅な低減、高レベルでの色収差の補正、さらに、高速読み取りを可能にするため光学系に対する明るさの確保などが要求されている。   In recent years, pattern inspection, image recognition apparatuses, shape measurement apparatuses, and the like have been required to have higher performance with respect to imaging optical systems to be used with higher definition of imaging elements (devices). Specifically, the resolution of the optical system has been increased to enable higher resolution by increasing the image size as the device becomes larger, greatly reducing distortion, correcting chromatic aberration at a high level, and improving the resolution. Securing brightness is required.

ところで、撮影光学系における撮像倍率を変化させる方法として、ズーミングや、フォーカシングが知られている。ズーミングとは、物体(被検物)と像(CCD面等)との距離を固定したまま、撮像光学系の焦点距離を変化させて、撮像倍率を変化させる方法である。また、フォーカシングとは、いわゆる変倍を指し撮像光学系の焦点距離を殆ど固定したまま(多少は変化させる)、物体(被検物)と像(CCD面等)との距離を変化させて、撮像倍率を変化させる方法である(例えば、特許文献1及び特許文献2を参照)。   Incidentally, zooming and focusing are known as methods for changing the imaging magnification in the photographic optical system. Zooming is a method of changing the imaging magnification by changing the focal length of the imaging optical system while fixing the distance between the object (test object) and the image (CCD surface or the like). Focusing refers to so-called zooming, and the distance between an object (test object) and an image (CCD surface, etc.) is changed while the focal length of the imaging optical system is almost fixed (changed somewhat) This is a method of changing the imaging magnification (see, for example, Patent Document 1 and Patent Document 2).

しかしながら、ズーミングの方法を利用した撮影光学系では、物体と像との距離が固定されているため、上記のような高性能化に応えるためには、レンズ径を大型化したり、レンズ構成枚数を増加したりすることで対処しなければならず、装置の大きさ制限や製造コストに影響を与えてしまうという問題があった。また、一般に、パターン検査、画像認識装置及び形状計測装置等では、読み取りの最中に撮像倍率を変化させることは極めて稀であるため、ズーミングの方法を利用した撮像光学系を用いる必要性は薄かった。そこで、従来、上記のような装置には、フォーカシングの手法を利用した撮影光学系を用いることが考えられている。
特開平5−273465号公報 特開2000−275516号公報
However, since the distance between the object and the image is fixed in the photographing optical system using the zooming method, in order to meet the above-mentioned high performance, the lens diameter is increased or the number of lens components is increased. It has to be dealt with by increasing the number, and there is a problem that the size of the apparatus is limited and the manufacturing cost is affected. In general, pattern inspection, image recognition devices, shape measurement devices, and the like rarely change the imaging magnification during reading. Therefore, it is not necessary to use an imaging optical system using a zooming method. It was. Thus, conventionally, it has been considered to use a photographing optical system using a focusing technique for the above-described apparatus.
JP-A-5-273465 JP 2000-275516 A

しかしながら、上記のような装置に用いることを考えた場合、特許文献1に記載の撮像光学系は、撮像倍率の変化に伴う歪曲収差の変動が大きく、周辺光量も少ないため、ラインCCDなどの読み取り用の高精細な撮像素子には適さないものであった。また、本発明者による特許文献2に記載の撮像光学系は、歪曲収差が大きく、高解像力を達成するためには色収差やコマ収差の補正が不足し、不向きであった。   However, when considering use in the above-described apparatus, the imaging optical system described in Patent Document 1 has a large variation in distortion due to a change in imaging magnification and a small amount of peripheral light. It was not suitable for a high-definition image pickup device. In addition, the imaging optical system disclosed in Patent Document 2 by the present inventor has a large distortion and is not suitable for achieving high resolution because of insufficient correction of chromatic aberration and coma.

本発明は、このような問題に鑑みてなされたものであり、少なくとも色収差と歪曲収差とが良好に補正され、高い解像力と広いイメージサイズを有する、変倍可能な機構を備えた撮像光学系を提供することを目的とする。   The present invention has been made in view of such problems, and an imaging optical system including a mechanism capable of zooming, having at least chromatic aberration and distortion corrected well, high resolution, and a wide image size. The purpose is to provide.

このような目的を達成するため、本発明の撮像光学系は、物体側から順に、正または負の屈折力を有する前群と、開口絞りと、正の屈折力を有する後群とを配置し、前記前群及び前記後群を共に物体側に移動させて撮像倍率を上げる場合に、前記前群と前記後群との光軸上空気間隔を広げて、発生する収差を打ち消す収差変動補償機能を有し、前記前群の焦点距離をfF1とし、前記後群の焦点距離をfF2とし、最低倍率側での光学系全系の焦点距離をfAmとしたとき、次式40<|fF1|/fF2<60、25<|fF1|/fAm<45、及び、0.5<fF2/fAm<1.1を満足するように構成されている。   In order to achieve such an object, the imaging optical system of the present invention includes, in order from the object side, a front group having a positive or negative refractive power, an aperture stop, and a rear group having a positive refractive power. An aberration variation compensation function that cancels out the generated aberration by widening the air space on the optical axis between the front group and the rear group when moving both the front group and the rear group to the object side to increase the imaging magnification. When the focal length of the front group is fF1, the focal length of the rear group is fF2, and the focal length of the entire optical system on the lowest magnification side is fAm, the following formula 40 <| fF1 | / fF2 <60, 25 <| fF1 | / fAm <45, and 0.5 <fF2 / fAm <1.1 are satisfied.

以上説明したように、本発明によれば、少なくとも色収差と歪曲収差が良好に補正され、高い解像力と広いイメージサイズを有する、変倍可能な機構を備えた撮像光学系を提供できる。   As described above, according to the present invention, it is possible to provide an imaging optical system including a mechanism capable of zooming, having at least good correction of chromatic aberration and distortion, high resolution, and a wide image size.

以下、本発明に係る好ましい実施形態について説明する。本発明に係る撮像光学系は、物体側から順に、正または負の屈折力を有する前群と、開口絞りと、正の屈折力を有する後群とを配置している。そして、前群及び後群を共に物体側に移動させ、低倍率側から高倍率側に撮像倍率を上げる場合に、前群と後群との光軸上空気間隔を広げて、発生する収差(コマ収差や像面湾曲)の変動を打ち消す収差変動補償機能(フローティングとも称される)を有している。なお、本発明に係る撮像光学系では、無限遠での使用を前提としておらず、有限距離での使用を前提としている。   Hereinafter, preferred embodiments according to the present invention will be described. The imaging optical system according to the present invention includes a front group having a positive or negative refractive power, an aperture stop, and a rear group having a positive refractive power in order from the object side. When both the front group and the rear group are moved to the object side, and the imaging magnification is increased from the low magnification side to the high magnification side, the air gap on the optical axis between the front group and the rear group is widened to generate aberration ( It has an aberration fluctuation compensation function (also called floating) that cancels fluctuations in coma and curvature of field. The imaging optical system according to the present invention is not premised on use at infinity, but premised on use at a finite distance.

上記構成を有する本発明に係る撮像光学系では、前群の焦点距離をfF1とし、後群の焦点距離をfF2とし、最低倍率側での光学系全系の焦点距離をfAmとしたとき、次式(1)〜(3)を満足することが必要である。   In the imaging optical system according to the present invention having the above-described configuration, when the focal length of the front group is fF1, the focal length of the rear group is fF2, and the focal length of the entire optical system on the lowest magnification side is fAm, It is necessary to satisfy the expressions (1) to (3).

40 < |fF1|/fF2 < 60 …(1)
25 < |fF1|/fAm < 45 …(2)
0.5< fF2 /fAm < 1.1 …(3)
40 <| fF1 | / fF2 <60 (1)
25 <| fF1 | / fAm <45 (2)
0.5 <fF2 / fAm <1.1 (3)

上記の条件式(1)は、前群の焦点距離fF1と、後群の焦点距離をfF2との比について、適切な範囲を規定している。条件式(1)の上限を上回ると、前群の屈折力が弱くなりすぎ、撮像倍率の変化に伴うコマ収差や像面湾曲の変動を補正することが困難となってしまう。逆に、条件式(1)の下限を下回ると、前群で発生した球面収差などの諸収差を後群で補正することが困難となってしまう。   The conditional expression (1) defines an appropriate range for the ratio of the focal length fF1 of the front group and the focal length fF2 of the rear group. If the upper limit of conditional expression (1) is exceeded, the refractive power of the front group will be too weak, and it will be difficult to correct coma and field curvature fluctuations associated with changes in imaging magnification. On the other hand, if the lower limit of conditional expression (1) is not reached, it becomes difficult to correct various aberrations such as spherical aberration occurring in the front group in the rear group.

また、上記の条件式(2)は、前群の焦点距離をfF1と、最低倍率での光学系全体の焦点距離fAmとの比について、適切な範囲を規定している。条件式(2)の上限を上回ると、光学系全系の屈折力に比べ、前群の屈折力が弱過ぎてしまう。その結果、ある一定の撮像光学系全系の屈折力を得るためには、後群の屈折力を強くする必要が生じ、特に高倍率での諸収差の補正が困難になってしまう。さらに、前群の径方向の大きさにも影響を与えてしまい、好ましくない。逆に、条件式(2)の下限を下回ると、前群に強い屈折力がかかることとなり、前出の条件式(1)を満足するため、後群により強い屈折力をかける必要があり、その結果、前記前群及び前記後群を共に物体側に移動させて、低倍率側から高倍率側に撮像倍率を上げるに伴い、発生する諸収差の変動が大きくなってしまう。   Conditional expression (2) defines an appropriate range for the ratio of the focal length fF1 of the front group to the focal length fAm of the entire optical system at the minimum magnification. If the upper limit of conditional expression (2) is exceeded, the refractive power of the front group will be too weak compared to the refractive power of the entire optical system. As a result, in order to obtain a certain refractive power of the entire imaging optical system, it is necessary to increase the refractive power of the rear group, and it becomes difficult to correct various aberrations particularly at a high magnification. Furthermore, it affects the radial size of the front group, which is not preferable. Conversely, if the lower limit of conditional expression (2) is not reached, a strong refractive power is applied to the front group, and in order to satisfy the above-described conditional expression (1), it is necessary to apply a strong refractive power to the rear group. As a result, when the front group and the rear group are both moved to the object side and the imaging magnification is increased from the low magnification side to the high magnification side, the fluctuations in the various aberrations that occur will increase.

また、上記の条件式(3)は、後群の焦点距離fF2と、最低倍率側での光学系全系の焦点距離fAmとの比について、適切な範囲を規定している。条件式(3)の上限を上回ると、撮像倍率の変化に伴う後群の移動量が増加するため、好ましくない。逆に、条件式(3)の下限を下回ると、撮像倍率の変化に伴う諸収差の変動、主に負の球面収差を補正しきれず、好ましくない。   The conditional expression (3) defines an appropriate range for the ratio between the focal length fF2 of the rear group and the focal length fAm of the entire optical system on the lowest magnification side. If the upper limit of conditional expression (3) is exceeded, the amount of movement of the rear group accompanying a change in imaging magnification increases, which is not preferable. On the other hand, if the lower limit of conditional expression (3) is not reached, fluctuations in various aberrations accompanying changes in imaging magnification, mainly negative spherical aberration, cannot be corrected, which is not preferable.

本発明に係る撮像光学系では、前記前群及び前記後群を共に物体側に移動させて、低倍率側から高倍率側に撮像倍率を上げる場合、前群の光軸上の移動量をF1dとし、後群の光軸上の移動量をF2dとしたとき、次式(4)を満足することが好ましい。   In the imaging optical system according to the present invention, when both the front group and the rear group are moved to the object side and the imaging magnification is increased from the low magnification side to the high magnification side, the movement amount on the optical axis of the front group is set to F1d. When the movement amount on the optical axis of the rear group is F2d, it is preferable that the following expression (4) is satisfied.

1.0 < F1d/F2d <1.1 …(4)             1.0 <F1d / F2d <1.1 (4)

上記条件式(4)は、本発明に係る撮像光学系において、前記前群及び前記後群を共に物体側に移動させて撮像倍率を上げる場合の前群と後群との最適な移動量の比を規定している。条件式(4)の上限を上回ると、前群の移動量が多くなり、明るさに不利な(有効径が増大する)光学系となってしまい、好ましくない。逆に、条件式(4)の下限を下回ると、屈折力の強い後群の移動量が多くなり、諸収差の変動がさらに大きくなってしまい、好ましくない。   Conditional expression (4) indicates that, in the imaging optical system according to the present invention, the optimum amount of movement between the front group and the rear group when the imaging magnification is increased by moving both the front group and the rear group to the object side. The ratio is specified. Exceeding the upper limit of conditional expression (4) is not preferable because the amount of movement of the front group increases, resulting in an optical system that is disadvantageous to brightness (in which the effective diameter increases). On the other hand, if the lower limit of conditional expression (4) is not reached, the amount of movement of the rear group having a strong refractive power increases, and fluctuations in various aberrations further increase, which is not preferable.

なお、本発明に係る撮像光学系では、後群は、主に球面収差や軸上色収差を補正する機能を有する後群第1レンズ群と、正の屈折力を有する後群第2レンズ群と、主に非点収差や倍率色収差を補正する機能を有する後群第3レンズ群とで構成され、後群第1レンズ群の焦点距離をfF2−1とし、後群第2レンズ群の焦点距離をfF2−2とし、後群第3レンズ群の焦点距離をfF2−3としたとき、次式(5)を満足することが好ましい。   In the imaging optical system according to the present invention, the rear group includes a rear group first lens group mainly having a function of correcting spherical aberration and axial chromatic aberration, and a rear group second lens group having a positive refractive power. The rear lens group third lens unit mainly has a function of correcting astigmatism and lateral chromatic aberration. The focal length of the rear lens group first lens unit is fF2-1, and the focal length of the rear lens group second lens unit. Is set to fF2-2 and the focal length of the rear third lens group is set to fF2-3, it is preferable that the following expression (5) is satisfied.

なお、本実施形態では、後群第1レンズ群は、少なくとも1枚の負の屈折力を有するレンズと、少なくとも1枚の正の屈折力を有するレンズとを備え、負の屈折力を有して構成されることが望ましい。後群第2レンズ群は、少なくとも1枚の正の屈折力を有するレンズを備え、正の屈折力を有して構成されることが望ましい。後群第3レンズ群は、少なくとも1枚の正の屈折力を有するレンズと、少なくとも1枚の負の屈折力を有するレンズとを備え、負の屈折力を有して構成されることが望ましい。   In this embodiment, the rear group first lens group includes at least one lens having negative refractive power and at least one lens having positive refractive power, and has negative refractive power. It is desirable to be configured. The rear group second lens group preferably includes at least one lens having a positive refractive power and has a positive refractive power. The rear group third lens group preferably includes at least one lens having a positive refractive power and at least one lens having a negative refractive power, and has a negative refractive power. .

0.5<|{(1/fF2−1)+(1/fF2−3)}/(1/fF2−2)|<1.0…(5)     0.5 <| {(1 / fF2-1) + (1 / fF2-3)} / (1 / fF2-2) | <1.0 (5)

本発明に係る撮像光学系は、後群の内部での収差補正が可能となって、光学系全系で高い解像力を得ることができるため、上記のように、後群を物体側から順に負正負の屈折力配置とすることが望ましい。上記条件式(5)は、このような後群の屈折力配置における最適なバランスを規定している。条件式(5)の上限を上回ると、後群内部の正の屈折力に対して負の屈折力が強くなり過ぎてしまい、撮像倍率の変化に伴う諸収差の変動が大きくなってしまう。逆に、条件式(5)の下限を下回ると、強い正の屈折力における諸収差の補正過剰となってしまい、光学系全系で高解像力を得ることが困難となってしまい、好ましくない。   Since the imaging optical system according to the present invention can correct aberrations in the rear group and can obtain high resolution in the entire optical system, as described above, the rear group is negative in order from the object side. It is desirable to have positive and negative refractive power arrangement. Conditional expression (5) defines an optimum balance in such a rear group refractive power arrangement. If the upper limit of conditional expression (5) is exceeded, the negative refractive power becomes too strong with respect to the positive refractive power inside the rear group, and fluctuations in various aberrations accompanying changes in the imaging magnification become large. On the other hand, if the lower limit of conditional expression (5) is not reached, it will be overcorrected for various aberrations with a strong positive refractive power, making it difficult to obtain high resolution in the entire optical system, which is not preferable.

ここで、後群第2レンズ群は、正の屈折力を有する後群第2レンズ群第1レンズと、正の屈折力を有する後群第2レンズ群第2レンズとで構成されている。そして、前記後群第2レンズ群第2レンズは、この後群第2レンズ群第2レンズの焦点距離をfF2−22とし、前記後群第2レンズ群第2レンズの物体側曲率半径をr1F2−22とし、前記後群第2レンズ群第2レンズの像側曲率半径をrF2−22としたとき、次式(6)及び(7)を満足することが好ましい。   Here, the rear group second lens group includes a rear group second lens group first lens having a positive refractive power and a rear group second lens group second lens having a positive refractive power. The rear lens group second lens group second lens has a focal length of the rear lens group second lens group second lens of fF2-22, and the object side curvature radius of the rear lens group second lens group second lens is r1F2. It is preferable that the following expressions (6) and (7) are satisfied, where −22 and the image-side radius of curvature of the second lens in the rear group second lens group is rF2-22.

3.0 < fF2−22/fF2 <5.0 …(6)
0.2 < r1F2−22/r2F2−22 <0.5 …(7)
3.0 <fF2-22 / fF2 <5.0 (6)
0.2 <r1F2-22 / r2F2-22 <0.5 (7)

上記条件式(6)は、後群内部における後群第2レンズ群第2レンズの適切な屈折力を規定している。条件式(6)の上限を上回ると、後群第3レンズの屈折力を相対的に強くしなければならないが、これを行うと歪曲収差の補正が困難となってしまうため、好ましくない。逆に、条件式(6)の下限を下回ると、撮像倍率の変化に伴うコマ収差や球面収差の変動が大きくなってしまうため、好ましくない。   Conditional expression (6) defines an appropriate refractive power of the second lens in the rear group second lens group inside the rear group. If the upper limit of conditional expression (6) is exceeded, the refractive power of the third lens in the rear group must be made relatively strong, but this is not preferable because it becomes difficult to correct distortion. On the other hand, if the lower limit of conditional expression (6) is not reached, fluctuations in coma and spherical aberration due to changes in imaging magnification become large, which is not preferable.

また、上記条件式(7)は、後群第2レンズ群第2レンズにおける最適な形状を規定している。条件式(7)の上限を上回ると、後群第2レンズ群第2レンズの屈折力が弱く、所望の収差(特に、歪曲収差)補正が困難となってしまうため、好ましくない。逆に、条件式(7)の下限を下回ると、歪曲収差の補正過剰となってしまい、後群第3レンズ群の負の屈折力が強くなってしまう。その結果、撮像倍率の変化に際し、コマ収差等における変動が補正困難となってしまい、好ましくない。   The conditional expression (7) defines the optimum shape of the second lens in the rear group second lens group. Exceeding the upper limit of conditional expression (7) is not preferable because the refractive power of the second lens in the second lens group in the rear group is weak and correction of desired aberrations (particularly distortion) becomes difficult. On the other hand, if the lower limit of conditional expression (7) is not reached, distortion will be overcorrected, and the negative refractive power of the rear third lens group will increase. As a result, when the imaging magnification changes, fluctuations in coma and the like are difficult to correct, which is not preferable.

本発明に係る撮像光学系では、前記前群及び前記後群を共に物体側に移動させて、低倍率側から高倍率側に撮像倍率を上げる場合に、前群と後群の移動比率が一定であることが望ましい。このように、一定の比率で各レンズ群を移動させることにより、レンズ鏡筒の機構も簡素化できてコスト削減にも繋がり、好ましい。   In the imaging optical system according to the present invention, when both the front group and the rear group are moved to the object side and the imaging magnification is increased from the low magnification side to the high magnification side, the movement ratio between the front group and the rear group is constant. It is desirable that Thus, by moving each lens group at a constant ratio, the lens barrel mechanism can be simplified, which leads to cost reduction.

また、本発明に係る撮像光学系では、前群の最も物体側には正の屈折力を有するレンズを配置し、後群第3レンズ群の最も像面側には該像面側が凹面であるレンズを配置することが望ましい。これは、負側に大きく発生する歪曲収差を良好に補正することができるからである。   In the imaging optical system according to the present invention, a lens having positive refractive power is disposed on the most object side of the front group, and the image surface side of the rear group third lens group is a concave surface on the most image side. It is desirable to place a lens. This is because it is possible to satisfactorily correct distortion aberration that occurs largely on the negative side.

さらに、本発明に係る撮像光学系では、貼り合わせレンズのうち少なくとも1つは、正レンズのアッベ数が、負レンズのアッベ数より小さいことが望ましい。このような構成により、前群及び後群において、他の貼り合わせレンズで色消し過剰になった色収差を、適度な補正状態に戻すことができ、光学系全体として最適な色消し状態とすることが可能となる。   Furthermore, in the imaging optical system according to the present invention, it is desirable that at least one of the bonded lenses has a positive lens whose Abbe number is smaller than that of the negative lens. With such a configuration, in the front group and the rear group, it is possible to return the chromatic aberration that has been excessively achromatized by other cemented lenses to an appropriate correction state, and to make the entire optical system an optimal achromatic state. Is possible.

以上のような構成を満足することにより、本発明では、小型で簡単な構成でありながら、有限距離光学系での低倍率側から高倍率側への撮像倍率の変化に伴う諸収差の変動を抑え、優れた結像性能を有した撮像光学系を提供することができる。   By satisfying the above configuration, in the present invention, although the configuration is small and simple, fluctuations in various aberrations accompanying the change in imaging magnification from the low magnification side to the high magnification side in the finite distance optical system are reduced. It is possible to provide an imaging optical system that suppresses and has excellent imaging performance.

以下に図面を参照して本発明に係る各実施例について説明する。   Embodiments according to the present invention will be described below with reference to the drawings.

(第1実施例)
図1〜図5を用いて、本発明に係る第1実施例に撮像光学系について説明する。図1は、第1実施例に係る撮像光学系のレンズ断面図を示す。第1実施例に係る撮像光学系は、物体側から順に、前群F1と、開口絞りSと、正の屈折力を有する後群F2とが配置されている。なお、図1では、物点を符号Oで、像面を符号Iで示している(以下の実施例も同様)。
(First embodiment)
The imaging optical system according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a lens cross-sectional view of an imaging optical system according to the first example. In the imaging optical system according to the first example, a front group F1, an aperture stop S, and a rear group F2 having a positive refractive power are arranged in order from the object side. In FIG. 1, an object point is indicated by a symbol O, and an image plane is indicated by a symbol I (the same applies to the following examples).

前群F1は、物体側から順に、両凸レンズからなり、正の屈折力を有する前群第1レンズ群F1−1と、両凹レンズと物体側に凸面を向けた正メニスカスレンズとの貼り合わせレンズからなり、負の屈折力を有する前群第2レンズ群F1−2と、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズとの貼り合わせレンズからなり、負の屈折力を有する前群第3レンズ群とから構成される。   The front group F1 is composed of a biconvex lens in order from the object side, and is a cemented lens of a front group first lens group F1-1 having a positive refractive power and a biconcave lens and a positive meniscus lens having a convex surface facing the object side. A first lens unit F1-2 having a negative refractive power, and a cemented lens of a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side. And a front third lens group having a refractive power of 5.

後群F2は、物体側から順に、像側に凸面を向けた負メニスカスレンズと像側に凸面を向けた正メニスカスレンズとの貼り合わせレンズからなり、負の屈折力を有する後群第1レンズ群F2−1と、両凸レンズと物体側に凸面を向けた正メニスカスレンズとからなり、正の屈折力を有する後群第2レンズ群F2−2と、両凸レンズと両凹レンズとの貼り合わせレンズからなり、負の屈折力を有する後群第2レンズ群F2−3とから構成される。   The rear group F2 includes, in order from the object side, a cemented lens of a negative meniscus lens having a convex surface facing the image side and a positive meniscus lens having a convex surface facing the image side, and has a negative refractive power. A rear lens group second lens unit F2-2 having a positive refractive power, and a cemented lens of a biconvex lens and a biconcave lens, comprising a group F2-1, a biconvex lens and a positive meniscus lens having a convex surface facing the object side And a rear-group second lens unit F2-3 having negative refractive power.

上記構成の第1実施例に係る撮像光学系では、前群F1及び後群F2を共に物体側に光軸上移動させて、低倍率側(1−POS)から高倍率側(4−POS)に撮像倍率を上げる場合に、前群F1及び後群F2の頂点間隔(光軸上空気間隔)を広げて、発生する収差の変動を打ち消すようになっている。なお、開口絞りSは、後群F2と共に光軸上を移動する。   In the imaging optical system according to the first example having the above-described configuration, both the front group F1 and the rear group F2 are moved on the optical axis to the object side, and the low magnification side (1-POS) to the high magnification side (4-POS). When the imaging magnification is increased, the apex interval (air interval on the optical axis) of the front group F1 and the rear group F2 is widened to cancel the aberration variation that occurs. The aperture stop S moves on the optical axis together with the rear group F2.

表1は、第1実施例に係る撮像光学系を構成する各レンズの諸元値を示している。図1に示す諸元の表において、第1欄mは物体側からの各光学面の番号(以下、面番号と称する)、第2欄rは各光学面の曲率半径、第3欄dは各光学面から次の光学面(又は像面)までの光軸上の距離(以下、面間隔と称する)、第4欄νdはアッベ数、第5欄neはe線(波長546.07nm)に対する屈折率、第6欄ngはg線(波長435.83nm)に対する屈折率をそれぞれ表している。   Table 1 shows the specification values of the lenses constituting the imaging optical system according to the first example. In the specification table shown in FIG. 1, the first column m is the number of each optical surface from the object side (hereinafter referred to as surface number), the second column r is the radius of curvature of each optical surface, and the third column d is The distance on the optical axis from each optical surface to the next optical surface (or image surface) (hereinafter referred to as the surface interval), the fourth column νd is the Abbe number, and the fifth column ne is the e-line (wavelength 546.07 nm) The sixth column ng represents the refractive index for g-line (wavelength 435.83 nm).

表中では、面番号9が開口絞りSを示す。また、物点と面番号1の面間隔d0、面番号8に示す面間隔(すなわち面番号8と面番号9との面間隔)d8及び面番号19に示す面間隔(すなわち面番号19と像面Iとの面間隔)Bfは、変倍に伴う移動により変化するため、低倍率状態(1−POS)、第1中間倍率状態(2−POS)、第2中間倍率状態(3−POS)及び高倍率状態(4−POS)におけるこれらの値を示す。さらに、表中では、Fno(実効)は、実効Fナンバーを、Bfはバックフォーカスを、βは撮像倍率を示す。また、上記の条件式(1)〜(7)に対応する値、すなわち条件対応値も以下に示す。   In the table, the surface number 9 indicates the aperture stop S. Further, the surface distance d0 between the object point and the surface number 1, the surface distance indicated by the surface number 8 (namely, the surface distance between the surface number 8 and the surface number 9) d8 and the surface distance indicated by the surface number 19 (namely, the surface number 19 and the image). Since the surface spacing (Bf with respect to the surface I) Bf changes due to movement accompanying zooming, the low magnification state (1-POS), the first intermediate magnification state (2-POS), and the second intermediate magnification state (3-POS) And these values in the high magnification state (4-POS). Further, in the table, Fno (effective) indicates an effective F number, Bf indicates a back focus, and β indicates an imaging magnification. The values corresponding to the conditional expressions (1) to (7), that is, the condition corresponding values are also shown below.

なお、長さの単位は特記の無い場合は「mm」が使われている。但し、光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるので、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。また、空気の屈折率1.00000は、省略してある。以上の表の説明は、他の実施例においても同様である。   The unit of length is “mm” unless otherwise specified. However, since the optical system can obtain the same optical performance even when proportionally enlarged or proportionally reduced, the unit is not limited to “mm”, and other appropriate units can be used. Also, the refractive index of air of 1.00000 is omitted. The description of the above table is the same in other embodiments.

Figure 2007079361
Figure 2007079361

表1に示す諸元の表から分かるように、本実施例に係る撮像光学系では、上記条件式(1)〜(7)を全て満たすことが分かる。   As can be seen from the table of specifications shown in Table 1, it can be seen that the imaging optical system according to the present example satisfies all the conditional expressions (1) to (7).

図2〜図5は、本実施例に係る撮像光学系の諸収差図(球面収差、非点収差、歪曲収差、倍率色収差及びコマ収差)である。図2は低倍率状態(1−POS)での諸収差を示す図、図3は第1中間倍率状態(2−POS)での諸収差を示す図、図4は第2中間倍率状態(3−POS)での諸収差を示す図、図5は高倍率状態(4−POS)での諸収差を示す図である。   2 to 5 are graphs showing various aberrations (spherical aberration, astigmatism, distortion aberration, lateral chromatic aberration, and coma aberration) of the imaging optical system according to the present example. FIG. 2 is a diagram showing various aberrations in a low magnification state (1-POS), FIG. 3 is a diagram showing various aberrations in a first intermediate magnification state (2-POS), and FIG. 4 is a second intermediate magnification state (3 FIG. 5 is a diagram illustrating various aberrations in a high magnification state (4-POS).

なお、各収差図では、eはe線(波長546.07nm)、gはg線(波長435.83nm)の収差曲線をそれぞれ示す。なお、非点収差図では、実線はサジタル像面、点線はタンジェンシャル像面をそれぞれ示す。また、球面収差図ではNAは開口数を示し、非点収差図、歪曲収差図及びコマ収差ではYは像高を示す。以上、収差図の説明は他の実施例においても同様である。   In each aberration diagram, e represents an aberration curve of the e-line (wavelength 546.07 nm), and g represents an aberration curve of the g-line (wavelength 435.83 nm). In the astigmatism diagram, the solid line represents the sagittal image plane, and the dotted line represents the tangential image plane. In the spherical aberration diagram, NA indicates the numerical aperture, and in the astigmatism diagram, distortion diagram, and coma aberration, Y indicates the image height. The description of the aberration diagrams is the same in the other examples.

図2〜図5に示す各収差図から明らかであるように、第1実施例に係る撮像光学系では、低倍率状態(1−POS)から高倍率状態(4−POS)までの各倍率状態において、諸収差が良好に補正され、優れた結像性能が確保されていることが分かる。   As apparent from the respective aberration diagrams shown in FIGS. 2 to 5, in the imaging optical system according to the first example, each magnification state from the low magnification state (1-POS) to the high magnification state (4-POS). It can be seen that various aberrations are corrected well and excellent imaging performance is secured.

(第2実施例)
図6〜図10を用いて、本発明に係る第2実施例に係る撮像光学系について説明する。図6は、第2実施例に係る撮像光学系のレンズ断面図を示す。第2実施例に係る撮像光学系は、物体側から順に、前群F1と、開口絞りSと、正の屈折力を有する後群F2とが配置されている。
(Second embodiment)
The imaging optical system according to the second embodiment of the present invention will be described with reference to FIGS. FIG. 6 is a lens cross-sectional view of the imaging optical system according to the second example. In the imaging optical system according to the second example, a front group F1, an aperture stop S, and a rear group F2 having a positive refractive power are arranged in order from the object side.

前群F1は、物体側から順に、両凸レンズからなり、正の屈折力を有する前群第1レンズ群F1−1と、両凹レンズと物体側に凸面を向けた正メニスカスレンズとの貼り合わせレンズからなり、負の屈折力を有する前群第2レンズ群F1−2と、両凸レンズと両凹レンズとの貼り合わせレンズからなり、正の屈折力を有する前群第3レンズ群とから構成される。   The front group F1 is composed of a biconvex lens in order from the object side, and is a cemented lens of a front group first lens group F1-1 having a positive refractive power and a biconcave lens and a positive meniscus lens having a convex surface facing the object side. A front lens group second lens unit F1-2 having a negative refractive power, a cemented lens of a biconvex lens and a biconcave lens, and a front lens group third lens unit having a positive refractive power. .

後群F2は、物体側から順に、両凹レンズと両凸レンズとの貼り合わせレンズからなり、負の屈折力を有する後群第1レンズ群F2−1と、両凸レンズと物体側に凸面を向けた正メニスカスレンズとからなり、正の屈折力を有する後群第2レンズ群F2−2と、両凸レンズと両凹レンズとの貼り合わせレンズからなり、負の屈折力を有する後群第2レンズ群F2−3とから構成される。   The rear group F2 is composed of a cemented lens composed of a biconcave lens and a biconvex lens in order from the object side, and has a rear group first lens group F2-1 having negative refractive power and a convex surface facing the biconvex lens and the object side. Rear group second lens group F2 comprising a positive meniscus lens and having a positive refractive power, a rear group second lens group F2-2 having a positive refractive power, and a cemented lens of a biconvex lens and a biconcave lens, and having a negative refractive power -3.

上記構成の第2実施例に係る撮像光学系では、前群F1及び後群F2を共に物体側に光軸上移動させて、低倍率側(1−POS)から高倍率側(4−POS)に撮像倍率を上げる場合に、前群F1及び後群F2の頂点間隔(光軸上空気間隔)を広げて、発生する収差の変動を打ち消すようになっている。なお、開口絞りSは、後群F2と共に光軸上を移動する。   In the imaging optical system according to the second example having the above-described configuration, both the front group F1 and the rear group F2 are moved on the optical axis to the object side, and the low magnification side (1-POS) to the high magnification side (4-POS). When the imaging magnification is increased, the apex interval (air interval on the optical axis) of the front group F1 and the rear group F2 is widened to cancel the aberration variation that occurs. The aperture stop S moves on the optical axis together with the rear group F2.

表2は、第2実施例に係る撮像光学系を構成する各レンズの諸元値を示している。なお、表中では、面番号9が開口絞りSを示す。また、物点と面番号1の面間隔d0、面番号8に示す面間隔(すなわち面番号8と面番号9との面間隔)d8及び面番号19に示す面間隔(すなわち面番号19と像面Iとの面間隔)Bfは、変倍に伴う移動により変化するため、低倍率状態(1−POS),第1中間倍率状態(2−POS),第2中間倍率状態(3−POS)及び高倍率状態(4−POS)におけるこれらの値を示す。   Table 2 shows the specification values of the lenses constituting the imaging optical system according to the second example. In the table, the surface number 9 indicates the aperture stop S. Further, the surface distance d0 between the object point and the surface number 1, the surface distance indicated by the surface number 8 (namely, the surface distance between the surface number 8 and the surface number 9) d8 and the surface distance indicated by the surface number 19 (namely, the surface number 19 and the image). Since the surface spacing (Bf with respect to the surface I) Bf changes due to movement accompanying zooming, the low magnification state (1-POS), the first intermediate magnification state (2-POS), and the second intermediate magnification state (3-POS) And these values in the high magnification state (4-POS).

Figure 2007079361
Figure 2007079361

表2に示す諸元の表から分かるように、本実施例に係る撮像光学系では、上記条件式(1)〜(7)を全て満たすことが分かる。   As can be seen from the table of specifications shown in Table 2, it can be seen that the imaging optical system according to the present example satisfies all the conditional expressions (1) to (7).

図7〜図10は、本実施例に係る撮像光学系の諸収差図(球面収差、非点収差、歪曲収差、倍率色収差及びコマ収差)である。図7は低倍率状態(1−POS)での諸収差を示す図,図8は第1中間倍率状態(2−POS)での諸収差を示す図、図9は第2中間倍率状態(3−POS)での諸収差を示す図、図10は高倍率状態(4−POS)での諸収差を示す図である。   7 to 10 are graphs showing various aberrations (spherical aberration, astigmatism, distortion, lateral chromatic aberration, and coma aberration) of the imaging optical system according to the present example. 7 is a diagram showing various aberrations in the low magnification state (1-POS), FIG. 8 is a diagram showing various aberrations in the first intermediate magnification state (2-POS), and FIG. 9 is a diagram showing the second intermediate magnification state (3 FIG. 10 is a diagram showing various aberrations in (-POS), and FIG. 10 is a diagram showing various aberrations in a high magnification state (4-POS).

図7〜図10に示す各収差図から明らかであるように、第2実施例に係る撮像光学系では、低倍率状態(1−POS)から高倍率状態(4−POS)までの各倍率状態において、諸収差が良好に補正され、優れた結像性能が確保されていることが分かる。   As is apparent from the aberration diagrams shown in FIGS. 7 to 10, in the imaging optical system according to the second example, each magnification state from the low magnification state (1-POS) to the high magnification state (4-POS). It can be seen that various aberrations are corrected well and excellent imaging performance is secured.

(第3実施例)
図11〜図15を用いて、本発明に係る第3実施例に係る撮像光学系について説明する。図11は、第3実施例に係る撮像光学系のレンズ断面図を示す。第3実施例に係る撮像光学系は、物体側から順に、前群F1と、開口絞りSと、正の屈折力を有する後群F2とが配置されている。
(Third embodiment)
The imaging optical system according to the third embodiment of the present invention will be described with reference to FIGS. FIG. 11 is a lens cross-sectional view of the imaging optical system according to the third example. In the imaging optical system according to the third example, a front group F1, an aperture stop S, and a rear group F2 having a positive refractive power are arranged in order from the object side.

前群F1は、物体側から順に、両凸レンズからなり、正の屈折力を有する前群第1レンズ群F1−1と、両凹レンズと物体側に凸面を向けた正メニスカスレンズとの貼り合わせレンズからなり、負の屈折力を有する前群第2レンズ群F1−2と、両凸レンズと両凹レンズとの貼り合わせレンズからなり、負の屈折力を有する前群第3レンズ群とから構成される。   The front group F1 is composed of a biconvex lens in order from the object side, and is a cemented lens of a front group first lens group F1-1 having a positive refractive power and a biconcave lens and a positive meniscus lens having a convex surface facing the object side. A front lens group second lens unit F1-2 having a negative refractive power, a cemented lens of a biconvex lens and a biconcave lens, and a front lens group third lens unit having a negative refractive power. .

後群F2は、物体側から順に、両凹レンズと両凸レンズとの貼り合わせレンズからなり、負の屈折力を有する後群第1レンズ群F2−1と、両凸レンズと物体側に凸面を向けた正メニスカスレンズとからなり、正の屈折力を有する後群第2レンズ群F2−2と、両凸レンズと両凹レンズとの貼り合わせレンズからなり、負の屈折力を有する後群第2レンズ群F2−3とから構成される。   The rear group F2 is composed of a cemented lens composed of a biconcave lens and a biconvex lens in order from the object side, and has a rear group first lens group F2-1 having negative refractive power and a convex surface facing the biconvex lens and the object side. Rear group second lens group F2 comprising a positive meniscus lens and having a positive refractive power, a rear group second lens group F2-2 having a positive refractive power, and a cemented lens of a biconvex lens and a biconcave lens, and having a negative refractive power -3.

上記構成の第3実施例に係る撮像光学系では、前群F1及び後群F2を共に物体側に光軸上移動させて、低倍率側(1−POS)から高倍率側(4−POS)に撮像倍率を上げる場合に、前群F1及び後群F2の頂点間隔(光軸上空気間隔)を広げて、発生する収差の変動を打ち消すようになっている。なお、開口絞りSは、後群F2と共に光軸上を移動する。   In the imaging optical system according to the third example having the above-described configuration, both the front group F1 and the rear group F2 are moved on the optical axis to the object side, and the low magnification side (1-POS) to the high magnification side (4-POS). When the imaging magnification is increased, the apex interval (air interval on the optical axis) of the front group F1 and the rear group F2 is widened to cancel the aberration variation that occurs. The aperture stop S moves on the optical axis together with the rear group F2.

表3は、第3実施例に係る撮像光学系を構成する各レンズの諸元値を示している。なお、表中では、面番号9が開口絞りSを示す。また、物点と面番号1の面間隔d0、面番号8に示す面間隔(すなわち面番号8と面番号9との面間隔)d8及び面番号19に示す面間隔(すなわち面番号19と像面Iとの面間隔)Bfは、変倍に伴う移動により変化するため、低倍率状態(1−POS)、第1中間倍率状態(2−POS)、第2中間倍率状態(3−POS)及び高倍率状態(4−POS)におけるこれらの値を示す。   Table 3 shows the specification values of the lenses constituting the imaging optical system according to the third example. In the table, the surface number 9 indicates the aperture stop S. Further, the surface distance d0 between the object point and the surface number 1, the surface distance indicated by the surface number 8 (namely, the surface distance between the surface number 8 and the surface number 9) d8, and the surface distance indicated by the surface number 19 (namely, the surface number 19 and the image). Since the surface spacing (Bf with respect to the surface I) Bf changes due to movement accompanying zooming, the low magnification state (1-POS), the first intermediate magnification state (2-POS), and the second intermediate magnification state (3-POS) And these values in the high magnification state (4-POS).

Figure 2007079361
Figure 2007079361

表3に示す諸元の表から分かるように、本実施例に係る撮像光学系では、上記条件式(1)〜(7)を全て満たすことが分かる。   As can be seen from the table of specifications shown in Table 3, it can be seen that the imaging optical system according to the present example satisfies all the conditional expressions (1) to (7).

図12〜図15は、本実施例に係る撮像光学系の諸収差図(球面収差、非点収差、歪曲収差、倍率色収差及びコマ収差)である。図12は低倍率状態(1−POS)での諸収差を示す図、図13は第1中間倍率状態(2−POS)での諸収差を示す図、図14は第2中間倍率状態(3−POS)での諸収差を示す図、図15は高倍率状態(4−POS)での諸収差を示す図である。   12 to 15 are graphs showing various aberrations (spherical aberration, astigmatism, distortion, lateral chromatic aberration, and coma aberration) of the image pickup optical system according to the present example. 12 shows various aberrations in the low magnification state (1-POS), FIG. 13 shows various aberrations in the first intermediate magnification state (2-POS), and FIG. 14 shows the second intermediate magnification state (3). FIG. 15 is a diagram illustrating various aberrations in the high magnification state (4-POS).

図12〜図15に示す各収差図から明らかであるように、第3実施例に係る撮像光学系では、低倍率状態(1−POS)から高倍率状態(4−POS)までの各倍率状態において、諸収差が良好に補正され、優れた結像性能が確保されていることが分かる。   As is apparent from the aberration diagrams shown in FIGS. 12 to 15, in the imaging optical system according to the third example, each magnification state from the low magnification state (1-POS) to the high magnification state (4-POS). It can be seen that various aberrations are corrected well and excellent imaging performance is secured.

以上のような本発明は、上記実施形態に限定されるものではなく、本発明に係る要旨を逸脱しない範囲であれば適宜改良可能である。   The present invention as described above is not limited to the above-described embodiment, and can be appropriately improved as long as it does not depart from the gist of the present invention.

本発明に係る第1実施例に係る撮像光学系のレンズ断面図を示す図である。It is a figure which shows lens sectional drawing of the imaging optical system which concerns on 1st Example based on this invention. 第1実施例の低倍率状態(1−POS)における撮像光学系の諸収差図(球面収差、非点収差、歪曲収差)である。FIG. 6 is a diagram illustrating various aberrations (spherical aberration, astigmatism, distortion) of the imaging optical system in the low magnification state (1-POS) of the first example. 第1実施例の第1中間倍率状態(2−POS)における撮像光学系の諸収差図(球面収差、非点収差、歪曲収差)である。FIG. 6 is a diagram illustrating various aberrations (spherical aberration, astigmatism, distortion) of the imaging optical system in the first intermediate magnification state (2-POS) of the first example. 第1実施例の第2中間倍率状態(3−POS)における撮像光学系の諸収差図(球面収差、非点収差、歪曲収差)である。FIG. 6 is a diagram illustrating various aberrations (spherical aberration, astigmatism, distortion) of the imaging optical system in the second intermediate magnification state (3-POS) of the first example. 第1実施例の高倍率状態(4−POS)における撮像光学系の諸収差図(球面収差、非点収差、歪曲収差)である。FIG. 6 is a diagram illustrating various aberrations (spherical aberration, astigmatism, distortion) of the imaging optical system in the high magnification state (4-POS) of the first example. 本発明に係る第2実施例に係る撮像光学系のレンズ断面図を示す図である。It is a figure which shows lens sectional drawing of the imaging optical system which concerns on 2nd Example based on this invention. 第2実施例の低倍率状態(1−POS)における撮像光学系の諸収差図(球面収差、非点収差、歪曲収差)である。FIG. 12 is a diagram illustrating various aberrations (spherical aberration, astigmatism, distortion) of the imaging optical system in the low magnification state (1-POS) of the second example. 第2実施例の第1中間倍率状態(2−POS)における撮像光学系の諸収差図(球面収差、非点収差、歪曲収差)である。FIG. 12 is a diagram illustrating various aberrations (spherical aberration, astigmatism, distortion) of the imaging optical system in the first intermediate magnification state (2-POS) of the second example. 第2実施例の第2中間倍率状態(3−POS)における撮像光学系の諸収差図(球面収差、非点収差、歪曲収差)である。FIG. 12 is a diagram illustrating various aberrations (spherical aberration, astigmatism, distortion) of the imaging optical system in the second intermediate magnification state (3-POS) of the second example. 第2実施例の高倍率状態(4−POS)における撮像光学系の諸収差図(球面収差、非点収差、歪曲収差)である。FIG. 12 is a diagram illustrating various aberrations (spherical aberration, astigmatism, distortion) of the imaging optical system in the high magnification state (4-POS) of the second example. 本発明に係る第3実施例に係る撮像光学系のレンズ断面図を示す図である。It is a figure which shows lens sectional drawing of the imaging optical system which concerns on 3rd Example based on this invention. 第3実施例の低倍率状態(1−POS)における撮像光学系の諸収差図(球面収差、非点収差、歪曲収差)である。FIG. 12 is a diagram illustrating various aberrations (spherical aberration, astigmatism, distortion) of the imaging optical system in the low magnification state (1-POS) of the third example. 第3実施例の第1中間倍率状態(2−POS)における撮像光学系の諸収差図(球面収差、非点収差、歪曲収差)である。FIG. 10 is a diagram illustrating various aberrations (spherical aberration, astigmatism, distortion) of the imaging optical system in the first intermediate magnification state (2-POS) of the third example. 第3実施例の第2中間倍率状態(3−POS)における撮像光学系の諸収差図(球面収差、非点収差、歪曲収差)である。FIG. 12 is a diagram illustrating various aberrations (spherical aberration, astigmatism, distortion) of the imaging optical system in the second intermediate magnification state (3-POS) of the third example. 第3実施例の高倍率状態(4−POS)における撮像光学系の諸収差図(球面収差、非点収差、歪曲収差)である。FIG. 12 is a diagram illustrating various aberrations (spherical aberration, astigmatism, distortion) of the imaging optical system in the high magnification state (4-POS) of the third example.

符号の説明Explanation of symbols

F1 前群 S 開口絞り F2 後群
O 物点 I 像面
F1 front group S aperture stop F2 rear group
O Object point I Image plane

Claims (4)

物体側から順に、正または負の屈折力を有する前群と、開口絞りと、正の屈折力を有する後群とを配置し、
前記前群及び前記後群を共に物体側に移動させて撮像倍率を上げる場合に、前記前群と前記後群との光軸上空気間隔を広げて、発生する収差の変動を打ち消す収差変動補償機能を有し、
前記前群の焦点距離をfF1とし、前記後群の焦点距離をfF2とし、最低倍率側での光学系全系の焦点距離をfAmとしたとき、次式
40 < |fF1|/fF2 < 60
25 < |fF1|/fAm < 45
0.5< fF2 /fAm < 1.1
を満足することを特徴とする撮像光学系。
In order from the object side, a front group having positive or negative refractive power, an aperture stop, and a rear group having positive refractive power are arranged,
When the front group and the rear group are both moved toward the object side to increase the imaging magnification, the air gap on the optical axis between the front group and the rear group is widened to cancel the aberration variation that occurs. Has function,
When the focal length of the front group is fF1, the focal length of the rear group is fF2, and the focal length of the entire optical system on the lowest magnification side is fAm,
40 <| fF1 | / fF2 <60
25 <| fF1 | / fAm <45
0.5 <fF2 / fAm <1.1
An imaging optical system characterized by satisfying
前記前群及び前記後群を共に物体側に移動させて撮像倍率を上げる場合に、前記前群の光軸上の移動量をF1dとし、前記後群の光軸上の移動量をF2dとしたとき、次式
1.0 < F1d/F2d <1.1
を満足することを特徴とする請求項1に記載の撮像光学系。
When both the front group and the rear group are moved toward the object side to increase the imaging magnification, the movement amount on the optical axis of the front group is F1d, and the movement amount on the optical axis of the rear group is F2d. When
1.0 <F1d / F2d <1.1
The imaging optical system according to claim 1, wherein:
前記後群は、主に球面収差や軸上色収差を補正する機能を有する後群第1レンズ群と、正の屈折力を有する後群第2レンズ群と、主に非点収差や倍率色収差を補正する機能を有する後群第3レンズ群とで構成され、
前記後群第1レンズ群の焦点距離をfF2−1とし、前記後群第2レンズ群の焦点距離をfF2−2とし、前記後群第3レンズ群の焦点距離をfF2−3としたとき、次式
0.5<|{(1/fF2−1)+(1/fF2−3)}/(1/fF2−2)|<1.0
を満足することを特徴とする請求項1又は2に記載の撮像光学系。
The rear group mainly includes a rear group first lens group having a function of correcting spherical aberration and axial chromatic aberration, a rear group second lens group having a positive refractive power, and mainly astigmatism and lateral chromatic aberration. It is composed of a rear group third lens group having a function of correcting,
When the focal length of the rear group first lens group is fF2-1, the focal length of the rear group second lens group is fF2-2, and the focal length of the rear group third lens group is fF2-3, 0.5 <| {(1 / fF2-1) + (1 / fF2-3)} / (1 / fF2-2) | <1.0
The imaging optical system according to claim 1, wherein:
前記後群第2レンズ群は、正の屈折力を有する後群第2レンズ群第1レンズと、正の屈折力を有する後群第2レンズ群第2レンズとで構成され、
前記後群第2レンズ群第2レンズは、この後群第2レンズ群第2レンズの焦点距離をfF2−22とし、前記後群の焦点距離をfF2とし、前記後群第2レンズ群第2レンズの物体側曲率半径をr1F2−22とし、前記後群第2レンズ群第2レンズの像側曲率半径をrF2−22としたとき、次式
3.0 < fF2−22/fF2 <5.0
0.2 < r1F2−22/r2F2−22 <0.5
を満足することを特徴とする請求項3に記載の撮像光学系。
The rear group second lens group includes a rear group second lens group first lens having positive refractive power, and a rear group second lens group second lens having positive refractive power,
The rear lens group second lens group second lens has a rear lens group second lens group second lens focal length of fF2-22, the rear group focal length of fF2, and the rear group second lens group second lens. When the object side radius of curvature of the lens is r1F2-22, and the image side radius of curvature of the second lens in the rear group second lens group is rF2-22,
3.0 <fF2-22 / fF2 <5.0
0.2 <r1F2-22 / r2F2-22 <0.5
The imaging optical system according to claim 3, wherein:
JP2005269672A 2005-09-16 2005-09-16 Imaging optical system Pending JP2007079361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005269672A JP2007079361A (en) 2005-09-16 2005-09-16 Imaging optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005269672A JP2007079361A (en) 2005-09-16 2005-09-16 Imaging optical system

Publications (1)

Publication Number Publication Date
JP2007079361A true JP2007079361A (en) 2007-03-29

Family

ID=37939704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005269672A Pending JP2007079361A (en) 2005-09-16 2005-09-16 Imaging optical system

Country Status (1)

Country Link
JP (1) JP2007079361A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019994A (en) * 2011-07-08 2013-01-31 Nikon Corp Optical system, imaging device having the optical system, and manufacturing method of the optical system
KR20190100775A (en) * 2018-02-21 2019-08-29 한남대학교 산학협력단 Optical system having fixed magnification according to change of object distance and apparatus having the same
CN115128783A (en) * 2022-07-06 2022-09-30 闽都创新实验室 Double telecentric optical system capable of replacing front group and shared rear group

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019994A (en) * 2011-07-08 2013-01-31 Nikon Corp Optical system, imaging device having the optical system, and manufacturing method of the optical system
KR20190100775A (en) * 2018-02-21 2019-08-29 한남대학교 산학협력단 Optical system having fixed magnification according to change of object distance and apparatus having the same
KR102016605B1 (en) 2018-02-21 2019-08-30 한남대학교 산학협력단 Optical system having fixed magnification according to change of object distance and apparatus having the same
CN115128783A (en) * 2022-07-06 2022-09-30 闽都创新实验室 Double telecentric optical system capable of replacing front group and shared rear group
CN115128783B (en) * 2022-07-06 2024-02-02 闽都创新实验室 Double telecentric optical system with replaceable front group and shared rear group

Similar Documents

Publication Publication Date Title
US7253972B2 (en) Telephoto lens system
JP4996151B2 (en) Macro lens
JP5277324B2 (en) Microscope objective lens
JP4639635B2 (en) A telephoto lens with a large aperture ratio
US8199408B2 (en) Immersion microscope objective lens
JP5358227B2 (en) Inner zoom type and inner focus type zoom lens
JP6558103B2 (en) Large aperture wide angle lens
JP2005352060A (en) Small-size wide-angle lens with large aperture and camera equipped with same
JP5571255B2 (en) Objective optical system and endoscope apparatus using the same
JP2016139087A (en) Imaging optical system
JP2012058682A (en) Macro lens
JP2018005099A (en) Large-aperture lens
JP2007133071A (en) Microscope objective lens of liquid immersion system
JP2016045314A (en) Rear conversion lens
JP2001337265A (en) Photographing lens utilizing floating
JP2014126652A (en) Imaging optical system
JP2019008251A (en) Endoscope objective optical system
JPWO2009044836A1 (en) Zoom eyepiece system
JP2007079361A (en) Imaging optical system
JP2005316052A (en) Image forming optical system
JP4361304B2 (en) Macro lens
JP2007010700A (en) Imaging lens
JP2013104994A (en) Inner focus type large-diameter telephotographic macro lens with vibration-proof function
JP4674407B2 (en) Wide converter lens
JP2000275516A (en) Image pickup lens