JP2013019041A - Method for forming zinc oxide film - Google Patents

Method for forming zinc oxide film Download PDF

Info

Publication number
JP2013019041A
JP2013019041A JP2011155551A JP2011155551A JP2013019041A JP 2013019041 A JP2013019041 A JP 2013019041A JP 2011155551 A JP2011155551 A JP 2011155551A JP 2011155551 A JP2011155551 A JP 2011155551A JP 2013019041 A JP2013019041 A JP 2013019041A
Authority
JP
Japan
Prior art keywords
zinc oxide
polysilazane
zinc
oxide film
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011155551A
Other languages
Japanese (ja)
Other versions
JP6040516B2 (en
Inventor
Koji Ichikawa
浩二 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2011155551A priority Critical patent/JP6040516B2/en
Publication of JP2013019041A publication Critical patent/JP2013019041A/en
Application granted granted Critical
Publication of JP6040516B2 publication Critical patent/JP6040516B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple method capable of forming a zinc oxide film on both conductive base material and non-conductive base material, without requiring a large scale equipment such as a vacuum exhauster and a heating furnace.SOLUTION: The method of forming the zinc oxide film is characterized in the steps of: forming a polysilazane layer 3 on a base material 1 by coating a solution 2 containing polysilazane and drying it; dipping the base material in an aqueous solution 4 containing zinc ion; and precipitating zinc oxide on the layer of SiOand SiNwhich are generated by reaction between polysilazane and water, and the layer of SiONwhich is an intermediate solid solution of both SiOand SiN, or non-reacted polysilazane layer.

Description

本発明は、基材上に酸化亜鉛皮膜を形成する方法に係わり、特には無電解めっきがされる前の被めっき基材に対する前処理方法に関する。   The present invention relates to a method for forming a zinc oxide film on a substrate, and more particularly to a pretreatment method for a substrate to be plated before electroless plating.

酸化亜鉛は、禁制帯幅が約3.3eVの化合物半導体であり、その光学的透明性、圧電性、導電性、発光性、蛍光性、光触媒性等に優れている。また資源的にも豊富であり、タッチパネルや、太陽電池用の透明導電膜、半導体レーザー、光導波路、ガス乃至湿度検知用センサー、表面弾性波素子、発光素子、各種音響素子、薄膜バリスタ、有機系太陽電池の導電パス等のエレクトロニクス分野、光触媒等の化学工業分野等の広い分野で幅広く応用されている。   Zinc oxide is a compound semiconductor having a forbidden band width of about 3.3 eV, and is excellent in optical transparency, piezoelectricity, conductivity, light emission, fluorescence, photocatalytic property, and the like. It is also abundant in resources, such as touch panels, transparent conductive films for solar cells, semiconductor lasers, optical waveguides, sensors for gas or humidity detection, surface acoustic wave elements, light emitting elements, various acoustic elements, thin film varistors, organic systems It is widely applied in a wide range of fields such as electronics fields such as conductive paths of solar cells and chemical industries such as photocatalysts.

従来、酸化亜鉛皮膜の形成方法としては、CVD法、蒸着法、スパッタリング法、MBE法などの乾式法、スプレーピロリシス法、ゾルーゲル法、液相成長法などの湿式法などにより、基材上に成膜する方法が試みられている。しかしながら、スパッタリング法、CVD法、蒸着法、MBE法等の乾式法では、成膜の際に、成膜室の減圧若しくはガス混入、基材の加熱などの処理が必要となり、真空排気装置、基材加熱装置、高周波電源などを含む大規模な作製装置が必要である。さらにこれらの方法では、成膜速度が遅く、組成や膜厚の制御が難しいという欠点がある。   Conventionally, as a method of forming a zinc oxide film, a CVD method, a vapor deposition method, a sputtering method, a dry method such as an MBE method, a wet method such as a spray pyrrolesis method, a sol-gel method, a liquid phase growth method, etc. Attempts have been made to form a film. However, in dry methods such as sputtering, CVD, vapor deposition, and MBE, it is necessary to carry out processing such as depressurization or gas mixing in the film formation chamber and heating of the substrate during film formation. A large-scale manufacturing device including a material heating device, a high-frequency power source, and the like is required. Furthermore, these methods have the disadvantages that the film formation rate is slow and it is difficult to control the composition and film thickness.

また、スプレーパイロリシス法やゾルーゲル法においても、酸化亜鉛皮膜を得るためには、基材に成膜後、300〜900℃で加熱しなければならないため、加熱炉が必要であり、プラスチックなどの低融点材料を基材材料として使用することができないという問題点がある。   Also in the spray pyrolysis method and the sol-gel method, in order to obtain a zinc oxide film, it is necessary to heat at 300 to 900 ° C. after film formation on a base material. There is a problem that a low melting point material cannot be used as a base material.

その他の酸化亜鉛皮膜の製造方法として、例えば、色素増感太陽電池の半導体層として、亜鉛イオンを含有する水溶液から電解めっきにより導電性基材上にスポンジ状の酸化亜鉛皮膜を析出する技術が開示されている(特許文献1)。しかしながら、この方法は電気めっきであるために、酸化亜鉛皮膜を形成すべき基材が良好な導電性を有することが必要であり、プラスチック、ガラス等の非導電性基材上に酸化亜鉛皮膜を形成することはできない。   As another method for producing a zinc oxide film, for example, a technique for depositing a sponge-like zinc oxide film on a conductive substrate by electrolytic plating from an aqueous solution containing zinc ions as a semiconductor layer of a dye-sensitized solar cell is disclosed. (Patent Document 1). However, since this method is electroplating, it is necessary that the substrate on which the zinc oxide film is to be formed has good conductivity, and the zinc oxide film is formed on a non-conductive substrate such as plastic or glass. It cannot be formed.

一方、非導電性基材上に酸化亜鉛皮膜を作成する方法として無電解めっきがある。このめっき方法では、非導電性の基材に対して塩化錫を含む溶液を用いたセンシタイジングにより錫を基板上に吸着させ、塩化パラジウムを含む溶液を用いたアクチベーションによりパラジウム触媒を基材表面に付与させる。その後、硝酸亜鉛にジメチルアミンボラン(DMAB)を添加した浴に、基材を浸すことで、酸化亜鉛皮膜が得られることが知られている(特許文献2)。また特許文献3,4にも酸化亜鉛皮膜を無電解めっきにより作成する技術が開示されているが、これらも浴中にDMABを含んでいる。   On the other hand, there is electroless plating as a method of creating a zinc oxide film on a non-conductive substrate. In this plating method, tin is adsorbed on a substrate by sensitizing using a solution containing tin chloride to a non-conductive substrate, and the palladium catalyst is applied to the substrate surface by activation using a solution containing palladium chloride. To give. Thereafter, it is known that a zinc oxide film can be obtained by immersing the base material in a bath obtained by adding dimethylamine borane (DMAB) to zinc nitrate (Patent Document 2). Patent Documents 3 and 4 also disclose techniques for forming a zinc oxide film by electroless plating, which also contain DMAB in the bath.

しかしながら、この浴にはDMAB金属塩の他に還元剤が含まれている。そのため、浴の安定性に乏しく、浴の組成、温度等の条件を適切に管理できない場合には、めっき浴が分解する可能性がある。   However, this bath contains a reducing agent in addition to the DMAB metal salt. Therefore, the stability of the bath is poor, and the plating bath may be decomposed when conditions such as the composition and temperature of the bath cannot be properly managed.

また、センシタイジング工程で用いる塩化錫が溶液中で酸化すると触媒として失活するためにその取扱が難しいこと、また工数が増大することから、結果として高コストとなるという問題がある。   In addition, when tin chloride used in the sensitizing step is oxidized in a solution, it is deactivated as a catalyst, so that handling thereof is difficult, and man-hours increase, resulting in high costs.

一方、有機薄膜太陽電池の分野で酸化亜鉛を水溶液中で針状に析出させることが検討されている。この場合における針状の酸化亜鉛を得る方法としては硝酸亜鉛に対して、等モル量のヘキサメチレンテトラアミン(HMTA)を加えた溶液を準備し、そこに種結晶となる酸化亜鉛が付着した基材を浸漬することにより、針状の酸化亜鉛を成長させることが出来る。   On the other hand, in the field of organic thin film solar cells, it is studied to deposit zinc oxide in an aqueous solution in the form of needles. As a method for obtaining acicular zinc oxide in this case, a solution in which equimolar amount of hexamethylenetetraamine (HMTA) is added to zinc nitrate is prepared, and a group to which zinc oxide to be a seed crystal is attached is prepared. By immersing the material, acicular zinc oxide can be grown.

この場合において、HMTAは、酸化亜鉛を析出させるためのめっき界面近傍でのpHを増大する役割、もしくは亜鉛イオンを錯形成するための働きを有するものと解されている(非特許文献1)。しかし、HMTAを用いた浴については、基板上で酸化亜鉛が析出するものの、溶液を加温した時点で酸化亜鉛の粒子が析出してしまう。つまり浴の分解が発生するためにめっき浴として用いることが難しいという問題がある。   In this case, HMTA is understood to have a role of increasing pH in the vicinity of the plating interface for depositing zinc oxide or a function of complexing zinc ions (Non-patent Document 1). However, in the bath using HMTA, although zinc oxide is deposited on the substrate, zinc oxide particles are deposited when the solution is heated. That is, there is a problem that it is difficult to use as a plating bath because decomposition of the bath occurs.

特開2004−6235号公報JP 2004-6235 A 特許第3256776号公報Japanese Patent No. 3256676 特開2005−235242号公報JP 2005-235242 A WO2008/126729号公報WO2008 / 126729

L.E.Greene,et.al.,Inorg.Chem.,2006,45 ,7536-7543.L.E.Greene, et.al., Inorg.Chem., 2006,45,7536-7543.

本発明は上記の問題に鑑みてなされたものであって、本発明の主な目的は、真空排気装置や加熱炉などの大規模設備を要することなく、導電性基材にも非導電性基材にも酸化亜鉛皮膜を形成できる簡便な方法を提供することである。   The present invention has been made in view of the above problems, and the main object of the present invention is to provide a non-conductive group on a conductive substrate without requiring large-scale equipment such as a vacuum exhaust apparatus or a heating furnace. It is to provide a simple method capable of forming a zinc oxide film on a material.

上記の課題を達成するための請求項1に記載の発明は、基材上に、ポリシラザンを含有する溶液を塗布し乾燥させてポリシラザン層を形成した後、前記基材を亜鉛イオンを含有する水溶液に浸漬させポリシラザンが水と反応したSiO、Si、及び両方の中間固溶体SiO層、もしくは未反応のポリシラザンの層上に酸化亜鉛を析出させることを特徴とする酸化亜鉛皮膜の形成方法としたものである。 The invention according to claim 1 for achieving the above object is the following: an aqueous solution containing zinc ions after forming a polysilazane layer by applying and drying a solution containing polysilazane on the substrate; Zinc oxide film characterized by depositing zinc oxide on SiO 2 , Si 3 N 4 and both intermediate solid solution SiO x N y layers of polysilazane which has been immersed in water and reacted with water, or unreacted polysilazane layer This is a forming method.

請求項2に記載の発明は、亜鉛イオン源が、硝酸亜鉛であることを特徴とする請求項1に記載の酸化亜鉛皮膜の形成方法としたものである。   The invention according to claim 2 is the method for forming a zinc oxide film according to claim 1, wherein the zinc ion source is zinc nitrate.

請求項3に記載の発明は、前記亜鉛イオンを含有する水溶液の液温が30℃〜90℃の範囲であることを特徴とする請求項1又は請求項2に記載の酸化亜鉛皮膜の形成方法としたものである。   The invention according to claim 3 is the method for forming a zinc oxide film according to claim 1 or 2, wherein the temperature of the aqueous solution containing zinc ions is in the range of 30 ° C to 90 ° C. It is what.

本発明によれば、めっき浴が還元剤を浴中に含まない組成となるため、被めっき物の表面近傍以外で還元剤が作用することによる浴の分解を避けることが出来る。
また、酸化亜鉛をめっき被膜としてその上に析出させる中間層としてポリシラザンを用いることで、基材との密着性に優れた酸化亜鉛皮膜を得ることが可能となる。
さらには、触媒付与工程として、ンシタイジング−アクチベーション法、キャタリスト−アクセレレーター法、アルカリキャタリスト法等の触媒を付与する工程がなくなり、ポリ
シラザンを含む溶液を塗工するのみでよい。
従って、低コストで非導電性基材上にも導電性基材上にも酸化亜鉛被膜を容易に形成することが可能となった。
According to the present invention, since the plating bath has a composition that does not include a reducing agent in the bath, decomposition of the bath due to the action of the reducing agent outside the vicinity of the surface of the object to be plated can be avoided.
Moreover, it becomes possible to obtain the zinc oxide film | membrane excellent in adhesiveness with a base material by using polysilazane as an intermediate | middle layer which deposits zinc oxide on it as a plating film.
Furthermore, as the catalyst application step, there is no step of applying a catalyst such as a sensitizing-activation method, a catalyst-accelerator method, or an alkaline catalyst method, and it is only necessary to apply a solution containing polysilazane.
Accordingly, it has become possible to easily form a zinc oxide film on a non-conductive substrate and a conductive substrate at low cost.

本発明の実施例により作成された皮膜の紫外可視透過率測定結果の一例を示したものである。The example of the ultraviolet-visible transmittance | permeability measurement result of the membrane | film | coat produced by the Example of this invention is shown. (a)〜(e)本発明になる酸化亜鉛皮膜の製造方法を説明する工程図である。(A)-(e) It is process drawing explaining the manufacturing method of the zinc oxide membrane | film | coat which becomes this invention.

本発明は、被めっき物近傍からアンモニアを発生させ、被めっき物近傍のみpHを周囲より増大させると、pH増大領域で酸化亜鉛が析出するという知見に基づく。
以下、それを実現するための工程と無電解めっき浴組成、めっき条件を図2を用いて説明する。
The present invention is based on the knowledge that when ammonia is generated from the vicinity of the object to be plated and the pH is increased from the surroundings only in the vicinity of the object to be plated, zinc oxide is precipitated in the pH increasing region.
Hereinafter, the process for realizing it, the electroless plating bath composition, and the plating conditions will be described with reference to FIG.

本発明に使用する組成物は、被めっき物に塗布するポリシラザン溶液と亜鉛イオンを含有する水溶液である。   The composition used in the present invention is an aqueous solution containing a polysilazane solution and zinc ions applied to an object to be plated.

亜鉛イオンの供給源となる化合物としては、水溶性の亜鉛塩を用いればよく、その具体例として、硝酸亜鉛、硫酸亜鉛、塩化亜鉛、酢酸亜鉛、リン酸亜鉛、ピロリン酸亜鉛、炭酸亜鉛等を挙げることができる。前記化合物は、それぞれ、一種単独又は二種以上混合して用いることができる。なお、水にこれら亜鉛塩を溶かした時にpHが6.0以上に大きくなる場合には、めっき浴中に析出物が発生するため、硫酸、塩酸などを用いてpHを下げてから用いることが望ましい。硝酸亜鉛を単独で用いると、水に溶かした場合にpHも6以下であるため、pHを調整する必要もなく従って、浴中に不要な成分が少なく、純度の高い酸化亜鉛皮膜を形成することが可能となる。   As a compound serving as a source of zinc ions, a water-soluble zinc salt may be used. Specific examples thereof include zinc nitrate, zinc sulfate, zinc chloride, zinc acetate, zinc phosphate, zinc pyrophosphate, and zinc carbonate. Can be mentioned. Each of the compounds can be used alone or in combination of two or more. In addition, when the pH increases to 6.0 or more when these zinc salts are dissolved in water, precipitates are generated in the plating bath. Therefore, use after lowering the pH with sulfuric acid, hydrochloric acid or the like. desirable. When zinc nitrate is used alone, the pH is 6 or less when dissolved in water, so there is no need to adjust the pH. Therefore, there are few unnecessary components in the bath, and a high purity zinc oxide film is formed. Is possible.

本発明においては、水溶液中の亜鉛イオンの濃度は広い範囲で調整できるが、亜鉛濃度が低すぎる場合には亜鉛が析出しなくなる。また、亜鉛濃度が高すぎる場合には亜鉛を含む塩が飽和となり一定量以上溶解しなくなることから、亜鉛イオンの濃度は、0.001mol/l〜0.5mol/l(亜鉛分換算で0.065〜32.7g/l)程度の範囲内にあることが好ましく、0.01mol/l〜0.2mol/l(亜鉛分換算で0.65〜13g/l)程度の範囲内にあることがより好ましい。   In the present invention, the concentration of zinc ions in the aqueous solution can be adjusted in a wide range. However, when the zinc concentration is too low, zinc does not precipitate. In addition, when the zinc concentration is too high, the salt containing zinc becomes saturated and does not dissolve more than a certain amount. Therefore, the concentration of zinc ions is 0.001 mol / l to 0.5 mol / l (0.001 in terms of zinc content). 065-32.7 g / l), preferably 0.01 mol / l to 0.2 mol / l (in terms of zinc content, 0.65 to 13 g / l). More preferred.

被めっき物となる基材1としては、銅、鉄、アルミニウム等の金属材料、NESAガラス、ITOガラス等の導電性ガラス、ソーダライムガラス、無アルカリガラスなどの非導電性ガラス材料、セラミックス材料、プラスチック材料などを挙げることができる。   As the substrate 1 to be plated, a metal material such as copper, iron, and aluminum, a conductive glass such as NESA glass and ITO glass, a non-conductive glass material such as soda lime glass and alkali-free glass, a ceramic material, Examples include plastic materials.

なお、プラスチック材料としては、例えばポリエチレンテレフタレート樹脂(PET樹脂)、ポリエチレンナフタレート(PEN樹脂)等のポリエステル系樹脂、ポリエチレン樹脂、ポリプロピレン系樹脂、メタクリル系樹脂、ポリ乳酸系樹脂、ポリメチルペンテン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリル−(ポリ)スチレン共重合体(AS樹脂)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアリールフタレート系樹脂、シリコーン系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリエーテルイミド系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、アセタール系樹脂、セルロース系樹脂等が挙げられる。   Examples of plastic materials include polyester resins such as polyethylene terephthalate resin (PET resin) and polyethylene naphthalate (PEN resin), polyethylene resins, polypropylene resins, methacrylic resins, polylactic acid resins, and polymethylpentene resins. , Cyclic polyolefin resin, polystyrene resin, acrylonitrile- (poly) styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), polyvinyl chloride resin, poly (meth) acrylic resin Polycarbonate resin, polyester resin, polyamide resin, polyimide resin, polyamideimide resin, polyarylphthalate resin, silicone resin, polysulfone resin, polyphenylene sulfide resin, (Ether sulfone) resins, polyetherimide resins, epoxy resins, polyurethane resins, acetal resins, cellulose resins and the like.

上述の樹脂の中でも、高い耐熱性、強度、耐候性、耐久性、水蒸気バリア性等をバランス良く有したものとして、ポリエステル系樹脂、環状ポリオレフィン系樹脂が挙げられ、これらを使用することが好ましい。   Among the above-mentioned resins, polyester resins and cyclic polyolefin resins are preferably used as those having a good balance of high heat resistance, strength, weather resistance, durability, water vapor barrier properties, and the like.

上記被めっき物となる基材1は、表面をポリシラザン3で被覆する必要がある。
また上記基材1上には、ポリシラザンとの密着性を向上させるために、易接着層が設けられていても良い。
The base material 1 to be plated is required to be coated with polysilazane 3 on the surface.
Moreover, in order to improve adhesiveness with polysilazane, the easily bonding layer may be provided on the said base material 1. FIG.

被めっき物となる基材1に対してのポリシラザン含有溶液2の塗工方式としては、基材に応じた適切な方法を用いてよい。具体例としては、グラビア印刷、マイクログラビア印刷、リバースグラビア印刷、コンマコート、バーコート、スピンコート、ロールコート、フローコート、インクジェット、スプレーコート、ディップコート、フレキソ印刷などにより塗工を行なうことが可能である(図2(b))。   As a method for applying the polysilazane-containing solution 2 to the base material 1 to be plated, an appropriate method according to the base material may be used. Specific examples include gravure printing, microgravure printing, reverse gravure printing, comma coating, bar coating, spin coating, roll coating, flow coating, ink jet, spray coating, dip coating, flexographic printing, etc. (FIG. 2B).

また、グラビア印刷やフレキソ印刷、インクジェット印刷を用いた場合には幾何学模様など所望のパターンを作成することが可能となる。なお、乾燥方法としては、溶剤が乾燥する温度に一定時間保持する加熱乾燥でも良いが、気中放置でもよい。   In addition, when gravure printing, flexographic printing, or inkjet printing is used, a desired pattern such as a geometric pattern can be created. In addition, as a drying method, the heat drying which hold | maintains at the temperature which a solvent dries for a fixed time may be sufficient, but you may leave in the air.

被めっき物となる基材1を被覆するポリシラザン3とは、珪素−窒素結合を持つポリマーで、Si−N、Si−H、N−H等からなり、SiO、Si、及び両方の中間固溶体SiO等のセラミックの前駆体となる無機ポリマーである。 The polysilazane 3 that covers the substrate 1 to be plated is a polymer having a silicon-nitrogen bond, and is made of Si—N, Si—H, NH, or the like, SiO 2 , Si 3 N 4 , and both It is an inorganic polymer which becomes a precursor of a ceramic such as an intermediate solid solution of SiO x N y .

そのポリシラザンとは、下記化学式1で示される化合物である。   The polysilazane is a compound represented by the following chemical formula 1.

ここで、式中のR1、R2、R3のそれぞれは、水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、アルコキシ基などであって、本発明では得られるガスバリア膜としての緻密性からはR1、R2及びR3のすべてが水素原子であるパーヒドロポリシラザンが特に好ましい。 Here, each of R1, R2, and R3 in the formula is a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, an alkoxy group, etc. Perhydropolysilazane in which all of R1, R2 and R3 are hydrogen atoms is particularly preferred from the viewpoint of the denseness as a gas barrier film.

パーヒドロポリシラザンは、直鎖構造と6及び8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600〜2000程度(ポリスチレン換算)であり、液体または固体の物質であり、分子量により異なる。これらは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。   Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. The molecular weight is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), is a liquid or solid substance, and varies depending on the molecular weight. These are marketed in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as a polysilazane-containing coating solution.

なお、ポリシラザンを含有させる溶媒としては、ポリシラザンと容易に反応してしまうようなアルコール系や水分を含有するものを用いることは好ましくない。具体的には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。   In addition, as a solvent to contain polysilazane, it is not preferable to use a solvent containing alcohol or water that easily reacts with polysilazane. Specifically, hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, ethers such as halogenated hydrocarbon solvents, aliphatic ethers and alicyclic ethers can be used.

具体的には、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素、塩化メチレン、クロロホルム等のハロゲン炭化水素、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等がある。これらの溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度等、目的に会わせて選択し、複数の溶剤を混合してもよい。   Specific examples include hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and chloroform, ethers such as dibutyl ether, dioxane and tetrahydrofuran. These solvents may be selected according to the purpose such as the solubility of polysilazane and the evaporation rate of the solvent, and a plurality of solvents may be mixed.

ポリシラザン含有溶液2中のポリシラザン濃度は、目的とするシリカ膜厚や塗布液のポットライフによっても異なるが、0.2〜35質量%程度である。   The polysilazane concentration in the polysilazane-containing solution 2 is about 0.2 to 35% by mass, although it varies depending on the target silica film thickness and the pot life of the coating solution.

ポリシラザンを塗布して、亜鉛水溶液に浸漬した際にポリシラザンが水と反応して、SiO、Si、及び両方の中間固溶体SiO等のセラミックになる。この酸化珪素化合物への転化を促進するために、アミンや金属の触媒を添加することもできる。これらについては、市販品として入手することが可能であり、具体的にはAZエレクトロニックマテリアルズ(株)製 アクアミカ NAX120、NN110、NN120、NN310、NN320、NL110A、NL120A、NP110、NP140、NP344、SP140などが挙げられる。 When polysilazane is applied and immersed in an aqueous zinc solution, the polysilazane reacts with water to become a ceramic such as SiO 2 , Si 3 N 4 , and both intermediate solid solutions SiO x N y . In order to promote the conversion to the silicon oxide compound, an amine or metal catalyst may be added. About these, it is possible to obtain as a commercial item, specifically, AZ Electronic Materials Co., Ltd. product Aquamica NAX120, NN110, NN120, NN310, NN320, NL110A, NL120A, NP110, NP140, NP344, SP140, etc. Is mentioned.

上記の組成を有するポリシラザン組成物を使用して、先ず、基材1に対しポリシラザン含有溶液2を塗布し、次いで亜鉛水溶液4に浸漬するだけで目的とする酸化亜鉛皮膜を形成することができる。   Using the polysilazane composition having the above composition, the target zinc oxide film can be formed by simply applying the polysilazane-containing solution 2 to the substrate 1 and then immersing in the aqueous zinc solution 4.

めっき浴6の液温は、めっき浴の液温を低い条件に設定場合には水酸化亜鉛が析出し、めっき浴の液温を高く設定してめっきを行なった場合には、ポリシラザンと水による珪素化合物への転化反応が加速され転化反応後の化合物と基材との密着が低下してしまう結果、酸化亜鉛皮膜と基材の密着が弱くなる。そのため、40〜90℃程度とすることが好ましい。特に、酸化亜鉛を有するということと、密着性を有するという点で、50〜80℃程度とすることがより好ましい。   When the plating bath 6 is set to a low temperature, zinc hydroxide is precipitated, and when the plating bath is set to a high temperature, the plating bath 6 is made of polysilazane and water. The conversion reaction to the silicon compound is accelerated and the adhesion between the compound after the conversion reaction and the substrate is lowered, resulting in a weak adhesion between the zinc oxide film and the substrate. Therefore, it is preferable to set it as about 40-90 degreeC. In particular, it is more preferably about 50 to 80 ° C. in terms of having zinc oxide and having adhesiveness.

一方、めっき浴6のpHは、特に限定されるものではないが、pHが低い場合には浴の安定性は向上するものの成膜速度が低下し、一方、pHが高い場合には、成膜速度は向上するが浴の安定性が低下して沈殿が生成し易くなり、酸化亜鉛皮膜を得ることが困難となる。   On the other hand, the pH of the plating bath 6 is not particularly limited. However, when the pH is low, the stability of the bath is improved, but the film formation rate is reduced. On the other hand, when the pH is high, the film is formed. Although the speed is improved, the stability of the bath is lowered and precipitation is likely to be generated, making it difficult to obtain a zinc oxide film.

めっき浴6に基材1を浸漬する際には、めっき浴は、無撹拌及び撹拌状態のいずれでも良く、撹拌法としては、公知の攪拌方法を適宜採用できる。なお、本発明においては、めっき時において被めっき物からアンモニア及び水素ガスが発生するため、シリンダーショックや、超音波などを用いた脱泡処理を行うとより好ましい(図2(d))。   When immersing the base material 1 in the plating bath 6, the plating bath may be either unstirred or stirred, and a known stirring method can be appropriately employed as a stirring method. In the present invention, ammonia and hydrogen gas are generated from the object to be plated at the time of plating. Therefore, it is more preferable to perform a defoaming treatment using a cylinder shock or ultrasonic waves (FIG. 2D).

酸化亜鉛皮膜を形成した後は、水洗、乾燥等の通常の無電解めっきで行なわれる後処理の操作を行なうことができる(図2(e))。   After the zinc oxide film is formed, post-treatment operations performed by normal electroless plating such as water washing and drying can be performed (FIG. 2 (e)).

本発明で酸化亜鉛の被膜が生じる理由としては以下と推定している。
まず、DMABを用いる無電解めっきで生成する酸化亜鉛の反応式としては化2〜化5に示す反応機構が知られている。
The reason why a zinc oxide film is formed in the present invention is presumed as follows.
First, reaction mechanisms shown in Chemical Formulas 2 to 5 are known as reaction formulas of zinc oxide generated by electroless plating using DMAB.

化2から化5において、DMABが化3で硝酸イオンを還元させ、このときにOHが生じる。このOHが被めっき物近傍のpHを上昇させた結果、水酸化亜鉛が形成され(化4)、その後溶液の雰囲気である中性付近に戻る時に安定な酸化亜鉛(化5)が得られる。 In Chemical Formula 2 to Chemical Formula 5, DMAB reduces nitrate ions in Chemical Formula 3, and at this time, OH is generated. As a result of this OH increasing the pH in the vicinity of the object to be plated, zinc hydroxide is formed (Chemical Formula 4), and then stable zinc oxide (Chemical Formula 5) is obtained when returning to the vicinity of neutrality which is the atmosphere of the solution. .

一方、本発明になるポリシラザンは水分と反応する際アンモニアを放出する(化6)。
この結果、被めっき物近傍のpHが上昇し、水酸化亜鉛が形成され、その後同様に中性付近で安定な酸化亜鉛が得られると考えている。
これらの点から、めっき浴のpHは1.0〜6.0が好ましく、特に4.0〜6.0が好ましい。
On the other hand, the polysilazane according to the present invention releases ammonia when it reacts with moisture (Chemical Formula 6).
As a result, it is believed that the pH in the vicinity of the object to be plated is increased, zinc hydroxide is formed, and thereafter stable zinc oxide is obtained in the vicinity of neutrality.
From these points, the pH of the plating bath is preferably 1.0 to 6.0, and particularly preferably 4.0 to 6.0.

以下に実施例および比較例を示す。
(実施例1〜12)
まず、被めっき物となる基材1として、易接着層を有するPETフィルム(A4300、東洋紡(株)製)を用いた。次いで、被めっき物処理を行った。被めっき物処理としては、先に準備したPETフィルム上にポリシラザン溶液2(アクアミカNL120A−20、AZエレクトロニクス(株)製)をシンナー(アクアミカシンナー01、AZエレクトロニクス(株)製)で2倍希釈した液を用いてディップコーティング(引き上げ速度 0.5m/min)により膜厚が0.2μmとなるように塗布した後、室温で10分間気中にて乾燥させる処理を行った(図2(b))。
Examples and comparative examples are shown below.
(Examples 1-12)
First, a PET film (A4300, manufactured by Toyobo Co., Ltd.) having an easy adhesion layer was used as the substrate 1 to be plated. Next, the object to be plated was processed. For the treatment of the object to be plated, the polysilazane solution 2 (AQUAMICA NL120A-20, manufactured by AZ Electronics Co., Ltd.) was diluted 2-fold with thinner (AQUAMICA Cinner 01, manufactured by AZ Electronics Co., Ltd.) on the previously prepared PET film. After applying the solution so that the film thickness becomes 0.2 μm by dip coating (pickup speed 0.5 m / min), a treatment for drying in the air at room temperature for 10 minutes was performed (FIG. 2B). ).

ついで、表1.のめっき浴条件において20分間めっきを行った(図2(d))。なお、浴組成中の配合量はmol/lで示した。この表1には処理条件以外に結果についても記載した。   Next, Table 1. Plating was performed for 20 minutes under the plating bath conditions (FIG. 2D). In addition, the compounding quantity in a bath composition was shown by mol / l. Table 1 also shows the results in addition to the processing conditions.

(比較例1〜5)
比較例1〜3については実施例と同様にして被めっき物処理を行った後、浴組成、もしくは浴条件を変更してめっきを行なった。
また比較例4、5については、被めっき物処理を実施例とは異なる処理もしくは処理自体を行わなかったものについてめっきを行なった。なお、比較例4のHMTA塗布とは、0.1Mol/lのHMTA水溶液をPETフィルム上にディップコーティングにより塗工したものである。処理条件及び結果の一覧は表2に記載した。
(Comparative Examples 1-5)
About Comparative Examples 1-3, after performing the to-be-plated object process similarly to the Example, it plated by changing a bath composition or bath conditions.
Moreover, about the comparative examples 4 and 5, it plated about the thing to which the to-be-plated object process did not perform the process different from an Example, or the process itself. In addition, HMTA application | coating of the comparative example 4 is what apply | coated 0.1 mol / l HMTA aqueous solution on a PET film by dip coating. A list of processing conditions and results is listed in Table 2.

評価については、浴安定性として、めっき後の浴に沈殿物が生成しているかどうかを目視で観察し、沈殿物が生成していない場合を○、沈殿が生じた場合を×とした。また、製膜有無については光学顕微鏡を用いて観察し、製膜が一様に出来ている状態を○、製膜が出来ていない状態を×、製膜しているものの、酸化亜鉛と基材の間に剥がれ、膨れがあるものについては△で示した。また、酸化亜鉛の生成を確認するために200〜900nmの範囲で紫外可視分光光度計を用い測定を行った(UV−2550、株式会社島津製作所製)。   As for the evaluation of the bath stability, whether or not a precipitate was generated in the bath after plating was visually observed. In addition, the presence or absence of film formation was observed using an optical microscope. The state where the film was formed uniformly was ○, the state where the film was not formed was ×, the film was formed, but zinc oxide and the substrate Those that peeled and blistered between were marked with Δ. Moreover, in order to confirm the production | generation of a zinc oxide, it measured using the ultraviolet visible spectrophotometer in the range of 200-900 nm (UV-2550, Shimadzu Corporation make).

表1よりポリシラザン塗布を行なった後に、浴組成及び浴条件を1〜12とすることで酸化亜鉛皮膜を製膜することが出来た。図1に酸化亜鉛皮膜を有する皮膜の紫外可視透過率測定結果の一例を示す。   From Table 1, after applying polysilazane, a zinc oxide film could be formed by setting the bath composition and bath conditions to 1-12. FIG. 1 shows an example of the UV-visible transmittance measurement result of a film having a zinc oxide film.

一方、めっき温度が25℃の場合(比較例1)には、白色の皮膜は析出するものの、酸化亜鉛は析出しなかった。また、めっき温度が95℃の場合(比較例2)には、一部に酸化亜鉛被膜が得られるものの、基材と酸化亜鉛皮膜との密着が弱く、酸化亜鉛皮膜の大部分に膨れが発生しており、指でこすった程度で簡単に脱落してしまうものであった。
一方、めっき浴組成にHMTAを含有させた浴(比較例3)では浴の分解が発生した。
また、HMTA水溶液に浸す前処理を行った比較例4、被めっき物処理を行わなかった比較5についてはめっき皮膜が生じなかった。
On the other hand, when the plating temperature was 25 ° C. (Comparative Example 1), although a white film was deposited, zinc oxide was not deposited. In addition, when the plating temperature is 95 ° C. (Comparative Example 2), although a zinc oxide film is obtained in part, the adhesion between the base material and the zinc oxide film is weak, and the bulk of the zinc oxide film occurs. However, it was easy to drop off when it was rubbed with a finger.
On the other hand, in the bath containing HMTA in the plating bath composition (Comparative Example 3), decomposition of the bath occurred.
Moreover, the plating film did not arise about the comparative example 4 which performed the pretreatment immersed in the HMTA aqueous solution, and the comparison 5 which did not perform to-be-plated thing processing.

本発明では被めっき物処理としてポリシラザンを含む溶液を塗工すること、めっき浴としては亜鉛を含む水溶性の塩を用いること、めっき温度を適切に選択することで、基板上に一様に酸化亜鉛を製膜することが出来る(図2(e))。   In the present invention, a solution containing polysilazane is applied as a treatment of an object to be plated, a water-soluble salt containing zinc is used as a plating bath, and a plating temperature is appropriately selected to uniformly oxidize the substrate. Zinc can be formed (FIG. 2E).

1、基材
2、ポリシラザン含有溶液
3、ポリシラザン
4、亜鉛イオン含有めっき液
5、酸化亜鉛皮膜
6、めっき浴
1, base material 2, polysilazane-containing solution 3, polysilazane 4, zinc ion-containing plating solution 5, zinc oxide film 6, plating bath

Claims (3)

基材上に、ポリシラザンを含有する溶液を塗布し乾燥させてポリシラザン層を形成した後、前記基材を亜鉛イオンを含有する水溶液に浸漬させポリシラザンが水と反応したSiO、Si、及び両方の中間固溶体SiO層、もしくは未反応のポリシラザンの層上に酸化亜鉛を析出させることを特徴とする酸化亜鉛皮膜の形成方法。 After applying a polysilazane-containing solution on the substrate and drying to form a polysilazane layer, the substrate is immersed in an aqueous solution containing zinc ions, and the polysilazane reacts with water, SiO 2 , Si 3 N 4 , And a method of forming a zinc oxide film, characterized in that zinc oxide is deposited on both intermediate solid solution SiO x N y layers or unreacted polysilazane layers. 亜鉛イオン源が、硝酸亜鉛であることを特徴とする請求項1に記載の酸化亜鉛皮膜の形成方法。   The method for forming a zinc oxide film according to claim 1, wherein the zinc ion source is zinc nitrate. 前記亜鉛イオンを含有する水溶液の液温が30℃〜90℃の範囲であることを特徴とする請求項1又は請求項2に記載の酸化亜鉛皮膜の形成方法。   The method for forming a zinc oxide film according to claim 1 or 2, wherein the temperature of the aqueous solution containing zinc ions is in the range of 30C to 90C.
JP2011155551A 2011-07-14 2011-07-14 Method for forming zinc oxide film and zinc oxide film forming body Expired - Fee Related JP6040516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011155551A JP6040516B2 (en) 2011-07-14 2011-07-14 Method for forming zinc oxide film and zinc oxide film forming body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011155551A JP6040516B2 (en) 2011-07-14 2011-07-14 Method for forming zinc oxide film and zinc oxide film forming body

Publications (2)

Publication Number Publication Date
JP2013019041A true JP2013019041A (en) 2013-01-31
JP6040516B2 JP6040516B2 (en) 2016-12-07

Family

ID=47690753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011155551A Expired - Fee Related JP6040516B2 (en) 2011-07-14 2011-07-14 Method for forming zinc oxide film and zinc oxide film forming body

Country Status (1)

Country Link
JP (1) JP6040516B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10000665B2 (en) 2014-02-28 2018-06-19 Az Electronic Materials (Luxembourg) S.A.R.L. Hybrid material for optoelectronic applications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335950A (en) * 2000-05-30 2001-12-07 Sekisui Jushi Co Ltd Method for coating and coated product
JP2003170060A (en) * 2001-12-10 2003-06-17 Nippon Light Metal Co Ltd Surface-treated product having photocatalytic function
JP2005047752A (en) * 2003-07-29 2005-02-24 Okuno Chem Ind Co Ltd Method for controlling film structure of zinc oxide film
WO2008117665A1 (en) * 2007-03-27 2008-10-02 Central Research Institute Of Electric Power Industry Method of preventing sulfide corrosion, high-temperature member with resistance to sulfide corrosion, and method of repairing heat-transfer tube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335950A (en) * 2000-05-30 2001-12-07 Sekisui Jushi Co Ltd Method for coating and coated product
JP2003170060A (en) * 2001-12-10 2003-06-17 Nippon Light Metal Co Ltd Surface-treated product having photocatalytic function
JP2005047752A (en) * 2003-07-29 2005-02-24 Okuno Chem Ind Co Ltd Method for controlling film structure of zinc oxide film
WO2008117665A1 (en) * 2007-03-27 2008-10-02 Central Research Institute Of Electric Power Industry Method of preventing sulfide corrosion, high-temperature member with resistance to sulfide corrosion, and method of repairing heat-transfer tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10000665B2 (en) 2014-02-28 2018-06-19 Az Electronic Materials (Luxembourg) S.A.R.L. Hybrid material for optoelectronic applications

Also Published As

Publication number Publication date
JP6040516B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
TWI651432B (en) Novel adhesion promoting agents for metallisation of substrate surfaces
KR102378658B1 (en) Novel adhesion promoting process for metallisation of substrate surfaces
CA1191745A (en) Conditioning of a substrate for electroless direct bond plating in holes and on surfaces of a substrate
KR101927679B1 (en) Method for promoting adhesion between dielectric substrates and metal layers
TW201827645A (en) Electroless copper plating compositions
US20210262095A1 (en) Electroless nickel plating of silicone rubber
EP3126547A1 (en) Composition and process for metallizing nonconductive plastic surfaces
TW201720956A (en) Environmentally friendly stable catalysts for electroless metallization of printed circuit boards and through-holes
US20120177821A1 (en) Composition of nanoparticles
TWI553152B (en) Catalysts for electroless metallization containing five-membered heterocyclic nitrogen compounds
JP6040516B2 (en) Method for forming zinc oxide film and zinc oxide film forming body
TWI617700B (en) Method of electroless plating
KR102427122B1 (en) Method for reducing the optical reflectivity of a copper and copper alloy circuitry and touch screen device
TWI540222B (en) Method of metallization for surface of substrate and substrate manufactured by the same
US8814997B2 (en) Electroless plating pretreatment agent, electroless plating method using same, and electroless plated object
TW201720957A (en) Environmentally friendly stable catalysts for electroless metallization of printed circuit boards and through-holes
CN104805421A (en) Preparation method of shape-controllable nano zinc oxide film
WO2007138795A1 (en) Catalytic agent for electroless plating
JP2013253283A (en) Electroless plating bath
KR20200096961A (en) Coating agent for oxide film formation, oxide film production method, and metal plating structure production method
KR20170040125A (en) Catalyst-containing metal silicon oligomer, method for manufacturing same, and applicaiton for catalyst-containing metal silicon oligomer
CN104204294A (en) Method for promoting adhesion between dielectric substrates and metal layers
JP2011184728A (en) Electroless plating pretreatment agent
JP2019167591A (en) Oxide film and method for manufacturing the same
JP2007131898A (en) Metal coating method and foamed body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160830

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161024

R150 Certificate of patent or registration of utility model

Ref document number: 6040516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees