JP2007131898A - Metal coating method and foamed body - Google Patents

Metal coating method and foamed body Download PDF

Info

Publication number
JP2007131898A
JP2007131898A JP2005325197A JP2005325197A JP2007131898A JP 2007131898 A JP2007131898 A JP 2007131898A JP 2005325197 A JP2005325197 A JP 2005325197A JP 2005325197 A JP2005325197 A JP 2005325197A JP 2007131898 A JP2007131898 A JP 2007131898A
Authority
JP
Japan
Prior art keywords
silicon
containing polymer
layer
transition metal
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005325197A
Other languages
Japanese (ja)
Other versions
JP4894231B2 (en
Inventor
Masaki Takahashi
昌己 高橋
Kenji Iwata
健二 岩田
Jun Kamata
潤 鎌田
Kenichi Goto
謙一 後藤
Toru Tanaka
徹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Toyota Motor Corp
Original Assignee
Mitsui Chemicals Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Toyota Motor Corp filed Critical Mitsui Chemicals Inc
Priority to JP2005325197A priority Critical patent/JP4894231B2/en
Publication of JP2007131898A publication Critical patent/JP2007131898A/en
Application granted granted Critical
Publication of JP4894231B2 publication Critical patent/JP4894231B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Chemically Coating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To selectively form a metallic layer with an almost uniform film thickness on the desired part in the surface of a continuous foamable molding and the surface of each communicative pore at the inside thereof without using complicated methods such as plating and resist layer formation. <P>SOLUTION: The reducibility of a silicon-containing polymer to a transition metal salt is utilized. Namely, a silicon-containing polymer layer is formed on the surface of a continuous foamable molding and the surface of each communicative pore at the inside thereof, the silicon-containing polymer layer other than the forming scheduled part of a metallic layer is irradiated with ultraviolet rays, thereafter, the silicon-containing polymer layer is brought into contact with a solution or a suspension comprising a transition metal salt in which counter anions can be coordinated on the silicon atoms of the silicon-containing polymer, and a metallic layer is selectively formed on the part not irradiated with the ultraviolet rays. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、金属被覆方法および気孔表面に金属被覆された多孔質発泡体に関する。さらに詳しくは、本発明は、ケイ素含有重合体を利用して、連続気泡性成形物の表面および内部の連通気孔表面の所望部分に選択的に金属を被覆して気孔表面に金属被覆された多孔質発泡体を得る方法に関する。   The present invention relates to a metal coating method and a porous foam metal-coated on the pore surface. More specifically, the present invention uses a silicon-containing polymer to selectively coat the surface of the open-celled molded product and a desired portion of the surface of the internal vent hole with a metal and coat the pore surface with the metal. The present invention relates to a method for obtaining a porous foam.

連通気孔をその内部に有する気孔表面に金属被覆された多孔質発泡体は、通常の金属成形体よりも軽量で、かつ合成樹脂よりも機械的強度が高く、さらに、電気伝導性、熱伝導性、耐食性、耐熱性、防音性、防振性その他の諸特性に優れることから、多くの産業分野で応用研究がなされている。たとえば、飛行機、船舶、自動車などの輸送機器において不慮の衝突時などに衝撃を吸収する衝撃吸収材、触媒材料、フィルタ材、伝熱材、放熱材、燃料電池部品材料、医療分野における人工骨など、金属被覆された発泡体の応用分野は多岐にわたっている。   Porous foam with metal pores on the surface of the pores with continuous air holes inside is lighter than ordinary metal molded products and has higher mechanical strength than synthetic resin. Furthermore, it has electrical and thermal conductivity. Because of its excellent corrosion resistance, heat resistance, soundproofing, vibration proofing and other properties, applied research has been conducted in many industrial fields. For example, shock absorbers, catalyst materials, filter materials, heat transfer materials, heat dissipation materials, fuel cell parts materials, artificial bones in the medical field, etc. that absorb shocks in the event of accidental collisions in transportation equipment such as airplanes, ships, and automobiles The fields of application of metal-coated foams are diverse.

従来から、金属被覆された発泡体の製造方法の1つとして、合成樹脂、ガラス、セラミックス、紙、これらの2種以上を含む複合材料などからなる非導電性の連続気泡性成形物において、表面およびその内部に存在する連通気孔表面に金属層を形成する方法が知られている。   Conventionally, as one of the methods for producing a metal-coated foam, a non-conductive open-cell molded article made of synthetic resin, glass, ceramics, paper, a composite material containing two or more of these, In addition, a method of forming a metal layer on the surface of the continuous air hole existing inside is known.

この方法においては、合成樹脂からなる連続気泡性成形物を用いるのが一般的である。連続気泡性成形物とは、その内部に連続気泡からなる連通気孔を有する発泡体である。そして、連続気泡性樹脂成形物内部の連通気孔表面に金属層を形成する場合は、めっき技術を利用するのが一般的である。たとえば、連続気泡性樹脂成形物の連通気孔表面に、グラファイト、カーボンブラックその他の導電性物質を含む導電層を化学めっきなどの無電解めっきにより形成した後、この連続気泡性樹脂成形物を電解めっき浴に浸漬し、電解めっきを行って金属層を形成する方法が知られている(たとえば、特許文献1参照)。   In this method, it is common to use an open-cell molded product made of a synthetic resin. An open-cell molded product is a foam having continuous vents made of open cells inside. And when forming a metal layer in the surface of the continuous ventilation hole inside an open cell resin molding, it is common to utilize a plating technique. For example, after forming a conductive layer containing graphite, carbon black, or other conductive material on the surface of the continuous air hole of the open cell resin molding by electroless plating such as chemical plating, the open cell resin molding is electroplated. A method of forming a metal layer by dipping in a bath and performing electrolytic plating is known (for example, see Patent Document 1).

また、連続気泡性樹脂成形物の連通気孔表面に、特許文献1と同様にして導電層を形成し、次いで該連通気孔内に少なくとも表面が導電性を有する微小中空体または樹脂粒子を充填した後、この連続気泡性樹脂成形物を電解めっき浴に浸漬して電解めっきを行い、連通気孔表面および微小中空体または樹脂粒子の表面に金属層を形成し、さらに微小中空体または樹脂粒子を熱分解させることによって、連通気孔内に金属層を形成する方法が知られている(たとえば、特許文献2参照)。   Further, after forming a conductive layer on the surface of the continuous air hole of the open-celled resin molded article in the same manner as in Patent Document 1, and then filling the continuous air hole with a micro hollow body or resin particles having at least a surface conductivity. Then, this open cell resin molding is immersed in an electroplating bath and electroplated to form a metal layer on the surface of the continuous air vent and the surface of the micro hollow body or resin particles, and further the thermal decomposition of the micro hollow body or resin particles By doing so, a method of forming a metal layer in the continuous air hole is known (for example, see Patent Document 2).

これらの方法では、連続気泡性樹脂成形体の表面および連通気孔表面の全面に金属層が形成されるので、連続気泡性樹脂成形物が本来有する柔軟性、絶縁性などの好ましい特性が損なわれるという欠点がある。その結果、これらの方法で製造される金属被覆された発泡体の適用範囲が限定される。表面および連通気孔表面の所望部分のみに選択的に金属層を形成するには、たとえば、金属層を形成しない部分にレジスト層を形成するという工程を付加する必要がある。また、これらの方法では、金属層の形成を電解めっきによって行うので、ほぼ一定の膜厚を有する金属層の形成が困難であり、得られる金属被覆された発泡体の特性が不均一になるという欠点がある。特に、連通気孔の表面は凹凸が入り混じった複雑な形状を呈することから、金属層の層厚を均一に制御するのは電解めっきでは非常に困難である。さらに、電解めっきは、通電条件、温度条件、めっき浴中の成分濃度管理などを厳格に行う必要があり、それ自体が煩雑な工程である。   In these methods, since the metal layer is formed on the entire surface of the open cell resin molded body and the surface of the open air vent, preferable properties such as flexibility and insulation inherent in the open cell resin molded product are impaired. There are drawbacks. As a result, the scope of application of the metal-coated foam produced by these methods is limited. In order to selectively form the metal layer only on a desired portion of the surface and the surface of the continuous air hole, for example, it is necessary to add a step of forming a resist layer on a portion where the metal layer is not formed. Further, in these methods, since the metal layer is formed by electrolytic plating, it is difficult to form a metal layer having a substantially constant film thickness, and the characteristics of the obtained metal-coated foam are non-uniform. There are drawbacks. In particular, since the surface of the continuous air hole has a complicated shape with unevenness mixed therein, it is very difficult to control the thickness of the metal layer uniformly by electrolytic plating. Furthermore, the electroplating is a complicated process because it is necessary to strictly control energization conditions, temperature conditions, component concentration in the plating bath, and the like.

上記のようなめっき技術を利用する方法以外にも、合成樹脂、ガラス、セラミックス、紙、これらの2種以上を含む複合材料などからなる非導電性成形物の表面に、金属層を形成する方法が多く知られている。   In addition to the method using the plating technique as described above, a method of forming a metal layer on the surface of a non-conductive molded article made of synthetic resin, glass, ceramics, paper, a composite material containing two or more of these, and the like There are many known.

たとえば、ジュール効果を利用する方法、電子衝撃を利用する方法、陰極スパッター法などの加熱方法により、真空下で液体金属を蒸発させて非導電性基体または支持体表面に付着させる金属蒸着法が知られている。たとえば、ポリエチレンテレフタレートなどの合成樹脂からなるフィルム上にアルミニウム層を形成するには、この方法が汎用される。   For example, a metal vapor deposition method is known in which a liquid metal is evaporated under vacuum to adhere to a non-conductive substrate or support surface by a method using the Joule effect, a method using electron impact, or a cathode sputtering method. It has been. For example, this method is widely used to form an aluminum layer on a film made of a synthetic resin such as polyethylene terephthalate.

また、プラズマを用いる気相成長法(以後「PCVD法」と称す)により金属層を形成することもできる。   Alternatively, the metal layer can be formed by a vapor phase growth method using plasma (hereinafter referred to as “PCVD method”).

しかしながら、金属蒸着法、PCVD法などによれば、電解めっきを行う場合と同様に非導電性基体の全面に金属層が形成されるので、金属層を形成しない部分へのレジスト層の形成および金属層形成後のレジスト層の除去といった余分な工程が必要になる。また、これらの方法は基体表面に金属層を形成するのには適するが、数十〜数百μm程度の口径を有する連通気孔表面に金属層を形成する場合には、連通気孔表面の凸部によって該凸部後方の凹所における金属層の形成が不充分になるなどの不都合を生じるおそれがある。   However, according to the metal vapor deposition method, the PCVD method, and the like, a metal layer is formed on the entire surface of the non-conductive substrate as in the case of performing electrolytic plating. An extra step such as removal of the resist layer after the layer formation is required. These methods are suitable for forming a metal layer on the surface of the substrate. However, when forming a metal layer on the surface of the continuous air hole having a diameter of about several tens to several hundreds of micrometers, a convex portion on the surface of the continuous air hole is provided. This may cause inconveniences such as insufficient formation of the metal layer in the recess behind the projection.

特開昭57−174484号公報JP-A-57-174484 特公昭47−010524号公報Japanese Examined Patent Publication No. 47-010524

本発明の目的は、めっき、レジスト層形成といった煩雑な方法を用いることなく、連続気泡性成形物の表面およびその内部の連通気孔表面の所望部分に、膜厚がほぼ均一な金属層を選択的に形成できる金属被覆方法および該金属被覆方法によって得られる気孔表面に金属被覆された多孔質発泡体を提供することである。   An object of the present invention is to selectively select a metal layer having a substantially uniform film thickness on a desired portion of the surface of the open-celled molded article and the surface of the continuous air hole without using complicated methods such as plating and resist layer formation. It is an object of the present invention to provide a metal-coating method that can be formed on the surface and a porous foam that is metal-coated on the pore surfaces obtained by the metal-coating method.

本発明者らは、ケイ素含有重合体に関する研究の過程で、遷移金属還元性を有しないと考えられていたケイ素含有重合体が、遷移金属塩のアニオンを選択することにより好適な遷移金属還元性を示し、その表面および/または内部に遷移金属微粒子を析出させることができ、さらに、紫外線を照射した後のケイ素含有重合体が、遷移金属塩のアニオンを選択しても遷移金属還元性を示さないという知見を得た。   In the course of research on silicon-containing polymers, the present inventors have found that a silicon-containing polymer, which has been considered not to have transition metal reducibility, is suitable for transition metal reductivity by selecting an anion of a transition metal salt. Transition metal fine particles can be deposited on the surface and / or inside thereof, and the silicon-containing polymer after irradiation with ultraviolet rays exhibits transition metal reducing properties even when an anion of the transition metal salt is selected. I got the knowledge that there is no.

本発明者らは、この知見を気孔表面に金属被覆された多孔質発泡体の製造に応用することに着目し、鋭意研究を重ねた結果、ケイ素含有重合体と遷移金属塩とを用いることによって、めっき、レジスト層形成などの余分な工程を実施することなく、連続気泡性成形物の表面および連通気孔表面の所望の部分のみに選択的に金属層を形成できることを見出した。   The present inventors paid attention to applying this knowledge to the production of porous foams coated with metal on the pore surface, and as a result of intensive studies, by using silicon-containing polymers and transition metal salts, The present inventors have found that a metal layer can be selectively formed only on a desired portion of the surface of the open-cell molded article and the surface of the continuous air hole without performing extra steps such as plating and resist layer formation.

本発明は、連続気泡性成形物の表面および内部の連通気孔表面に金属層を形成する金属被覆方法であって、
連続気泡性成形物の表面および内部の連通気孔表面にケイ素含有重合体層を形成し、金属層を形成しようとする部分を除くケイ素含有重合体層に紫外線を照射し、次いでそのカウンターアニオンがケイ素含有重合体のケイ素原子に配位し得る遷移金属塩を含む溶液または懸濁液をケイ素含有重合体層に接触させて、ケイ素含有重合体層の紫外線を照射しない部分のみに選択的に遷移金属を還元析出させることを特徴とする金属被覆方法である。
The present invention is a metal coating method for forming a metal layer on the surface of an open-celled molded product and the surface of the internal vent hole,
A silicon-containing polymer layer is formed on the surface of the open-celled molded product and the surface of the internal vent hole, and the silicon-containing polymer layer excluding the portion where the metal layer is to be formed is irradiated with ultraviolet rays. A transition metal salt or a solution containing a transition metal salt capable of coordinating to a silicon atom of the containing polymer is brought into contact with the silicon-containing polymer layer, and the transition metal is selectively applied only to a portion of the silicon-containing polymer layer that is not irradiated with ultraviolet rays It is a metal coating method characterized by carrying out reductive precipitation.

さらに本発明の金属被覆方法は、遷移金属塩が、遷移金属の酢酸塩、フッ化物塩、塩化物塩、炭酸塩、硫酸塩、硝酸塩、水酸化物塩、アルコラート塩、シュウ酸塩およびカルボン酸塩から選ばれる1種または2種以上であることを特徴とする。   Further, in the metal coating method of the present invention, the transition metal salt is a transition metal acetate, fluoride salt, chloride salt, carbonate, sulfate, nitrate, hydroxide salt, alcoholate salt, oxalate salt, or carboxylic acid. It is one type or two or more types selected from salts.

また本発明は、前述のいずれか1つの金属被覆方法により得られる気孔表面に金属被覆された多孔質発泡体である。   Moreover, this invention is the porous foam by which the pore surface obtained by any one metal-coating method mentioned above was metal-coated.

本発明によれば、めっき、レジスト層形成それに伴うレジスト層除去などの煩雑な工程を行うことなく、連続気泡性成形物の表面および内部の連通気孔表面の所望部分のみに金属層を選択的に形成できる金属被覆法が提供される。   According to the present invention, a metal layer is selectively applied only to a desired portion of the surface of the open-celled molded article and the surface of the internal vent hole without performing complicated steps such as plating and resist layer formation accompanying the plating. A metallization process that can be formed is provided.

該金属被覆法においては、ケイ素含有重合体層および金属層は液相中の反応で形成することが可能であるため、連通気孔表面の凹凸に関係なく、連通気孔表面のほぼ全面にほぼ均一な膜厚を有する金属層を形成できる。したがって、得られる気孔表面に金属被覆された多孔質発泡体は、特性が部分的に変化することなく、気孔表面に金属被覆された多孔質発泡体に要求される諸特性を高水準で満たし、たとえば、機械的強度、電気伝導性、熱伝導性などに優れた金属被覆された成形物になる。   In the metal coating method, since the silicon-containing polymer layer and the metal layer can be formed by a reaction in the liquid phase, the surface of the continuous air hole is almost uniform regardless of the unevenness of the surface of the continuous air hole. A metal layer having a film thickness can be formed. Therefore, the porous foam metal-coated on the resulting pore surface satisfies various properties required for the porous foam metal-coated on the pore surface at a high level without partial changes in properties. For example, a metal-coated molded product having excellent mechanical strength, electrical conductivity, thermal conductivity and the like is obtained.

本発明の金属被覆方法は、1)連続気泡性成形物の表面およびその内部に存在する連通気孔表面にケイ素含有重合体層を形成し、2)金属層を形成しようとする部分を除くケイ素含有重合体層に紫外線を照射し、3)そのカウンターアニオンがケイ素含有重合体のケイ素原子に配位し得る遷移金属塩を含む溶液または懸濁液をケイ素含有重合体層に接触させて、ケイ素含有重合体層の紫外線を照射しない部分のみに選択的に遷移金属を還元析出させることを特徴とする。   The metal coating method of the present invention comprises: 1) forming a silicon-containing polymer layer on the surface of the open-celled molded article and the surface of the continuous vents existing therein; and 2) including silicon excluding the portion where the metal layer is to be formed. The polymer layer is irradiated with ultraviolet rays, and 3) a silicon-containing polymer layer is contacted with a solution or suspension containing a transition metal salt whose counter anion can coordinate to a silicon atom of the silicon-containing polymer. The transition metal is selectively reduced and deposited only on the portion of the polymer layer that is not irradiated with ultraviolet rays.

連続気泡性成形物(連続気泡性発泡体)としては、内部に連通気孔を有する発泡性成形物であればその材質は特に制限されず、たとえば、合成樹脂、ガラス、セラミックス、紙、これらの2種以上を含む複合体などの連続気泡性成形物が挙げられる。これらの中でも、合成樹脂の連続気泡性成形物が好ましい。合成樹脂としては発泡可能なものであれば特に制限されず、たとえば、ポリウレタン、フェノール樹脂、シリコーン樹脂、エポキシ樹脂、ユリア樹脂などの熱硬化性樹脂、ポリスチレン、ポリアクリロニトリル、ポリ塩化ビニル、ポリエチレン、ポリプロピレンなどの熱可塑性樹脂が挙げられ、得ようとする気孔表面に金属被覆された多孔質発泡体の用途に応じて樹脂種を選択できる。また、該成形物の形状も特に制限されず、たとえば、直方体、立方体、板状物またはシート状物、球状物などの種々の形状を採ることができる。さらに、2またはそれ以上の任意形状の部品を組み合わせてなる組成品の形態を採ることもできる。   The material of the open-celled molded product (open-celled foam) is not particularly limited as long as it is a foamable molded product having continuous air holes therein. For example, synthetic resin, glass, ceramics, paper, and the like. An open-cell shaped molded article such as a composite containing more than seeds can be mentioned. Among these, an open-cell molded product of synthetic resin is preferable. The synthetic resin is not particularly limited as long as it can be foamed. For example, thermosetting resins such as polyurethane, phenol resin, silicone resin, epoxy resin, urea resin, polystyrene, polyacrylonitrile, polyvinyl chloride, polyethylene, polypropylene The resin type can be selected according to the use of the porous foam metal-coated on the pore surface to be obtained. Further, the shape of the molded product is not particularly limited, and various shapes such as a rectangular parallelepiped, a cube, a plate-like object, a sheet-like object, and a spherical object can be adopted. Furthermore, it can also take the form of the composition formed by combining two or more arbitrarily shaped parts.

また本発明の金属被覆方法は、ケイ素含有重合体は公知のものを使用することができるが、ケイ素含有重合体がその分子中にSi−H結合および/またはSi−Si結合を少なくとも1個含有するケイ素含有重合体であることが好ましい。このようなケイ素含有重合体は溶媒に対する溶解度が比較的小さく、溶媒に少量溶解する溶解特性を有するので、標準的な形状および寸法を有する連続発泡性成形物の表面およびその内部の連通気孔表面にケイ素含有重合体の薄層を形成するのに有利であり、ケイ素含有重合体層の薄層を操作性良くかつ効率的に形成できる。この点ではSi−H結合および/またはSi−Si結合を有するポリシランおよびポリカルボシランがより好ましい。   In the metal coating method of the present invention, a known silicon-containing polymer can be used, but the silicon-containing polymer contains at least one Si-H bond and / or Si-Si bond in its molecule. A silicon-containing polymer is preferred. Since such a silicon-containing polymer has a relatively low solubility in a solvent and has a solubility characteristic of being dissolved in a small amount in a solvent, it can be applied to the surface of a continuous foaming molded product having a standard shape and size and to the surface of a continuous vent hole inside thereof. It is advantageous for forming a thin layer of a silicon-containing polymer, and a thin layer of a silicon-containing polymer layer can be formed efficiently and efficiently. In this respect, polysilane and polycarbosilane having a Si—H bond and / or a Si—Si bond are more preferable.

これらの中でもポリシランが好ましく、その具体例としては、一般式
(RSi)n …(1)
(式中、RおよびRはそれぞれ独立に水素原子、置換もしくは無置換のアルキル基、アルケニル基、アルキニル基、アリール基または複素環基を示す。nは5〜100,000の整数を示す。)で表されるポリシラン(以後「ポリシラン(1)」と称す)が挙げられる。ポリシラン(1)においても、RおよびRのいずれかまたは両方が水素原子であるものが特に好ましい。このようなポリシランおよびポリカルボシランは、紫外線照射前後で遷移金属還元性が顕著に変化するので、連通気孔表面のみに選択的に遷移金属層を析出させる上では特に好ましい。
Among these, polysilane is preferable, and specific examples thereof include a general formula (R 1 R 2 Si) n (1)
(In the formula, R 1 and R 2 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heterocyclic group. N represents an integer of 5 to 100,000. .) (Hereinafter referred to as “polysilane (1)”). Also in polysilane (1), those in which either or both of R 1 and R 2 are hydrogen atoms are particularly preferred. Such polysilanes and polycarbosilanes are particularly preferable in that the transition metal layer is selectively deposited only on the surface of the continuous air holes because the transition metal reducibility changes remarkably before and after the ultraviolet irradiation.

さらに本発明に用いるケイ素含有重合体の重量平均分子量は、該重合体が溶媒に可溶であって、基体である連続気泡性成形物の表面およびその内部の連通気孔表面に薄膜を形成できれば特に限定されないが、合成の容易さ、溶媒への溶解性、成膜性などを考慮すると、500〜6,000,000の範囲が好ましい。   Further, the weight-average molecular weight of the silicon-containing polymer used in the present invention is such that the polymer is soluble in a solvent, and a thin film can be formed on the surface of the open-cell molded product as a substrate and the surface of the continuous vent hole inside thereof. Although not limited, the range of 500 to 6,000,000 is preferable in view of ease of synthesis, solubility in a solvent, film formability, and the like.

上記一般式(1)において、ケイ素原子に結合するRおよびRで示されるアルキル基としては、たとえば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ヘキシル基などの炭素数1〜6程度の直鎖または分岐鎖状アルキル基が挙げられ、炭素数1〜4のものが好ましい。アルキル基の置換基としては、炭素数1〜4の直鎖または分岐鎖状のアルコキシ基、ニトロ基、アミノ基、水酸基、ハロゲン原子などが挙げられる。アルケニル基としては、たとえば、ビニル基、アリル基、1−プロペニル基、イソプロペニル基、1−ブテニル基、2−ブテニル基、1−ペンテニル基などの炭素数2〜6の直鎖または分岐鎖状アルケニル基が挙げられ、炭素数2〜4のものが好ましい。アルキニル基としては、たとえば、エチニル基、プロパルギル基、1−ペンチニル基などの炭素数2〜6の直鎖または分岐鎖状アルキニル基が挙げられる。アリール基としては、たとえば、フェニル基、トリル基、キシリル基などが挙げられる。複素環基としては、たとえば、置換あるいは無置換のチエニル基、置換あるいは無置換のピロール基、キノリル基、フラニル基、ピラニル基などが挙げられる。 In the general formula (1), examples of the alkyl group represented by R 1 and R 2 bonded to the silicon atom include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a tert-butyl group. , A linear or branched alkyl group having about 1 to 6 carbon atoms such as a pentyl group and a hexyl group, and those having 1 to 4 carbon atoms are preferred. Examples of the substituent of the alkyl group include a linear or branched alkoxy group having 1 to 4 carbon atoms, a nitro group, an amino group, a hydroxyl group, and a halogen atom. Examples of the alkenyl group include straight chain or branched chain having 2 to 6 carbon atoms such as vinyl group, allyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, and 1-pentenyl group. An alkenyl group is mentioned, A C2-C4 thing is preferable. As an alkynyl group, C2-C6 linear or branched alkynyl groups, such as an ethynyl group, a propargyl group, and 1-pentynyl group, are mentioned, for example. Examples of the aryl group include a phenyl group, a tolyl group, and a xylyl group. Examples of the heterocyclic group include a substituted or unsubstituted thienyl group, a substituted or unsubstituted pyrrole group, a quinolyl group, a furanyl group, and a pyranyl group.

ポリシラン(1)のnで示される重合度は5〜10,000であり、好ましくは10〜5000である。ポリシラン(1)は、重合度が異なる2種以上のポリシラン(1)の混合物であってもよい。   The degree of polymerization represented by n of the polysilane (1) is 5 to 10,000, preferably 10 to 5000. The polysilane (1) may be a mixture of two or more polysilanes (1) having different degrees of polymerization.

ケイ素含有重合体は、1種を単独で使用できまたは2種以上を併用できる。
ケイ素含有重合体は、ウルツ(Wurtz)法、メタロセン法などの既知の合成法で合成できるが、高純度の窒素雰囲気下で製造するのが望ましい。
A silicon-containing polymer can be used individually by 1 type, or can use 2 or more types together.
The silicon-containing polymer can be synthesized by a known synthesis method such as a Wurtz method or a metallocene method, but is preferably produced in a high-purity nitrogen atmosphere.

ケイ素含有重合体の溶液または懸濁液を調製するための溶媒としては、ケイ素含有重合体を溶解または懸濁し得る溶媒であれば特に制限なく公知のものをいずれも使用できるが、たとえば、ベンゼン、トルエン、キシレンなどの置換あるいは無置換の芳香族溶媒、テトラヒドロフランなどのエーテル系溶媒などが挙げられる。また、ケイ素含有重合体の溶液または懸濁液におけるケイ素含有量重合体の含有量も特に制限されず、ケイ素含有重合体の種類、溶媒の種類、連続気泡性成形物の材質、連通気孔の孔径、作業性など応じて適宜選択すればよいが、たとえば、溶液または懸濁液全量の0.1〜20重量%程度にすればよい。   As the solvent for preparing the solution or suspension of the silicon-containing polymer, any known solvent can be used without particular limitation as long as it can dissolve or suspend the silicon-containing polymer. For example, benzene, Examples thereof include substituted or unsubstituted aromatic solvents such as toluene and xylene, and ether solvents such as tetrahydrofuran. Further, the content of the silicon-containing polymer in the solution or suspension of the silicon-containing polymer is not particularly limited, and the type of the silicon-containing polymer, the type of the solvent, the material of the open-cell molded product, the pore diameter of the continuous vent However, it may be appropriately selected depending on workability and the like, for example, about 0.1 to 20% by weight of the total amount of the solution or suspension.

本発明において、連続気泡性成形物の表面およびその内部の連通気孔表面にケイ素含有重合体層を形成する方法としては特に制限はないが、たとえば、ケイ素含有重合体の溶液または懸濁液中に連続気泡性成形物を浸漬し、連続気泡性成形物にケイ素含有重合体の溶液または懸濁液を付着させ、これを常圧または減圧下で、常温または加熱下に溶媒を揮散させ、ケイ素含有重合体層を形成する方法が挙げられる。ケイ素含有重合体層の膜厚は特に制限されないが、好ましくは0.05〜5μm程度にすればよい。   In the present invention, there is no particular limitation on the method for forming the silicon-containing polymer layer on the surface of the open-celled molded product and on the surface of the continuous air hole inside thereof. For example, in the solution or suspension of the silicon-containing polymer Immerse the open-celled molded product, attach a solution or suspension of the silicon-containing polymer to the open-celled molded product, and volatilize the solvent at normal temperature or reduced pressure at normal temperature or under heating to contain silicon. The method of forming a polymer layer is mentioned. The thickness of the silicon-containing polymer layer is not particularly limited, but is preferably about 0.05 to 5 μm.

このようにして、連続気泡性成形物の表面およびその内部の連通気孔表面に、ケイ素含有重合体の薄層が形成される。   In this way, a thin layer of a silicon-containing polymer is formed on the surface of the open-cell molded product and the surface of the continuous air hole inside.

本発明の方法では、このケイ素含有重合体層が形成された連続気泡性成形物に、紫外線を照射する。紫外線の照射は、たとえば、任意のパターンが形成されたフォトマスクを用いて行われる。フォトマスクにより紫外線が照射されなかった部分(非照射部)では、ケイ素原子に遷移金属塩のカウンターアニオンが配位するので金属層が形成され、フォトマスクにより紫外線が遮られず、照射された部分(照射部)ではケイ素原子へのアニオンの配位が起こらないので金属層が形成されない。紫外線の光源としては常用のものをいずれも使用でき、たとえば、高圧水銀灯、低圧水銀灯、ハロゲンランプなどが挙げられる。紫外線の波長、紫外線の強度、照射時間などは、ケイ素含有重合体の種類、連続気泡性成形物の材質などに応じて適宜選択すればよい。   In the method of the present invention, the open-cell molded product having the silicon-containing polymer layer formed thereon is irradiated with ultraviolet rays. Irradiation with ultraviolet rays is performed using, for example, a photomask on which an arbitrary pattern is formed. In the part that was not irradiated with ultraviolet light by the photomask (non-irradiated part), the metal layer was formed because the counter anion of the transition metal salt was coordinated to the silicon atom, and the irradiated part was not blocked by the photomask. In (irradiation part), since anion coordination to silicon atoms does not occur, a metal layer is not formed. Any ultraviolet light source can be used, and examples thereof include a high pressure mercury lamp, a low pressure mercury lamp, and a halogen lamp. What is necessary is just to select suitably the wavelength of an ultraviolet-ray, the intensity | strength of an ultraviolet-ray, irradiation time, etc. according to the kind of silicon-containing polymer, the material of an open-cell molded product, etc.

次に、ケイ素含有重合体層が形成され、さらに紫外線を照射した後の連続気泡性成形物に、遷移金属塩の溶液または懸濁液を接触させる。ここで使用する遷移金属は、ケイ素含有重合体のケイ素原子に配位し得るカウンターアニオンを有する遷移金属塩である。ケイ素原子に配位しうる遷移金属塩のカウンターアニオンは、アニオン中心の原子のポーリング(Pauling)電気陰性度が好ましくはBr(臭素)の値を超えるものである。このようなカウンターアニオンを含む遷移金属塩を用いることによって、金属層の形成、金属層の膜厚調整などが一層容易になる。遷移金属塩の具体例としては、遷移金属の酢酸塩、フッ化物塩、塩化物塩、炭酸塩、硫酸塩、硝酸塩、水酸化物塩、アルコラート塩、シュウ酸塩、カルボン酸塩などが挙げられる。これらの中でも、酢酸塩などのカルボン酸塩、アルコラート塩、フッ化物塩などが好ましい。また遷移金属としては特に制限はないが、たとえば、銅、ニッケル、鉄、コバルト、チタン、クロムなどが挙げられ、入手容易性、価格などの点から、銅、ニッケル、コバルト、クロムなどが好ましい。遷移金属塩は1種を単独で使用できまたは2種以上を併用できる。   Next, the solution or suspension of the transition metal salt is brought into contact with the open-celled molded article after the silicon-containing polymer layer is formed and further irradiated with ultraviolet rays. The transition metal used here is a transition metal salt having a counter anion that can coordinate to the silicon atom of the silicon-containing polymer. The counter anion of the transition metal salt that can coordinate to the silicon atom has a Pauling electronegativity of the atom at the center of the anion preferably exceeding the value of Br (bromine). By using such a transition metal salt containing a counter anion, formation of the metal layer, adjustment of the film thickness of the metal layer, etc. are further facilitated. Specific examples of transition metal salts include transition metal acetates, fluoride salts, chloride salts, carbonates, sulfates, nitrates, hydroxide salts, alcoholate salts, oxalate salts, carboxylate salts, and the like. . Among these, carboxylates such as acetates, alcoholate salts, fluoride salts and the like are preferable. The transition metal is not particularly limited, and examples thereof include copper, nickel, iron, cobalt, titanium, and chromium, and copper, nickel, cobalt, chromium, and the like are preferable from the viewpoint of availability and price. A transition metal salt can be used individually by 1 type, or can use 2 or more types together.

遷移金属塩の溶液または懸濁液は、遷移金属塩を溶媒に溶解または懸濁させることにより調製できる。ここで使用される溶媒としては特に制限されないが、遷移金属塩を溶解しかつケイ素含有重合体をできるだけ溶解しない溶媒が好ましく、たとえば、アセトニトリルなどのニトリル類、メタノール、エタノール、2−プロパノールなどの低級アルコール類などが挙げられる。溶媒は必要に応じて2種以上を併用できる。遷移金属塩の溶液または懸濁液中の遷移金属塩含有量は特に制限されず広い範囲から適宜選択できるが、好ましくは溶液または懸濁液全量の0.01〜10重量%である。   A solution or suspension of the transition metal salt can be prepared by dissolving or suspending the transition metal salt in a solvent. The solvent used here is not particularly limited, but a solvent that dissolves the transition metal salt and does not dissolve the silicon-containing polymer as much as possible is preferable. For example, nitriles such as acetonitrile, lower solvents such as methanol, ethanol, and 2-propanol Examples include alcohols. Two or more solvents can be used in combination as required. The transition metal salt content in the transition metal salt solution or suspension is not particularly limited and can be appropriately selected from a wide range, but is preferably 0.01 to 10% by weight of the total amount of the solution or suspension.

連続気泡性成形物と遷移金属塩の溶液または懸濁液との接触は、たとえば、遷移金属塩の溶液または懸濁液中に連続気泡性成形物を浸漬することにより行われ、非照射部には遷移金属層が形成される。金属層の膜厚は、たとえば、遷移金属塩の種類(特にカウンターアニオンの種類)、遷移金属塩含有量、浸漬時間などを適宜変更することによって調整できる。なお、この接触操作は、窒素ガス、アルゴンガスなどの非酸化性雰囲気中で行うのが好ましい。浸漬終了後、連続気泡性成形物を遷移金属塩の溶液または懸濁液中から取り出し、必要に応じて溶媒などで洗浄し、乾燥させることにより、気孔表面に金属被覆された多孔質発泡体が得られる。ここで用いる溶媒は、遷移金属塩を溶解または懸濁させるのと同じ溶媒でも良い。   The contact between the open-celled molded product and the transition metal salt solution or suspension is performed, for example, by immersing the open-celled molded product in the transition metal salt solution or suspension. Forms a transition metal layer. The film thickness of the metal layer can be adjusted, for example, by appropriately changing the type of transition metal salt (particularly the type of counter anion), transition metal salt content, immersion time, and the like. In addition, it is preferable to perform this contact operation in non-oxidizing atmospheres, such as nitrogen gas and argon gas. After the immersion, the open-celled molded product is taken out of the transition metal salt solution or suspension, washed with a solvent or the like as necessary, and dried to obtain a porous foam metal-coated on the pore surface. can get. The solvent used here may be the same solvent in which the transition metal salt is dissolved or suspended.

この気孔表面に金属被覆された多孔質発泡体は、たとえば、内部の連通気孔表面の全面のみに選択的に金属層が形成されたものでもよく、表面の一部と連通気孔表面の全面に金属層が形成されたものでもよく、連通気孔表面の一部のみに金属層を形成したものでもよい。金属層を形成する部分は、得ようとする気孔表面に金属被覆された多孔質発泡体の用途などに応じて適宜選択すればよい。   The porous foam coated with metal on the pore surface may have, for example, a metal layer selectively formed only on the entire surface of the internal vent hole. A layer may be formed, or a metal layer may be formed only on a part of the surface of the continuous air hole. What is necessary is just to select suitably the part which forms a metal layer according to the use etc. of the porous foam by which the pore surface to obtain is metal-coated.

本発明の金属被覆方法により得られる気孔表面に金属被覆された多孔質発泡体は、その内部の連通気孔表面の所望部分に、連通気孔表面の凹凸に関係なく、ほぼ均一な膜厚の金属層が形成されることから、特性のばらつきがほとんどなく、良好な機械的強度、熱伝導性、電気伝導性などを有し、軽量であり、広範な産業分野において種々の用途に適用し得る。   The porous foam metal-coated on the pore surface obtained by the metal-coating method of the present invention has a metal layer having a substantially uniform film thickness on a desired portion of the surface of the continuous vent hole, regardless of irregularities on the surface of the continuous vent hole. Therefore, it has almost no variation in characteristics, has good mechanical strength, thermal conductivity, electrical conductivity, etc., is lightweight, and can be applied to various uses in a wide range of industrial fields.

以下に実施例を挙げ、本発明を具体的に説明する。以下において、「部」は「重量部」を意味する。   The present invention will be specifically described with reference to examples. Hereinafter, “part” means “part by weight”.

(実施例1)
連通気孔を有する乾燥したポリウレタン発泡体シートを、ポリ(ヒドロフェニル)シラン(CSiH)m(式(1)においてR=C、R=H、m=30〜100すなわち重合度30〜100のポリ(ヒドロフェニル)シランの混合物)1部のトルエン(9部)溶液に浸漬した後、60℃で3時間減圧乾燥し、該ポリウレタン発泡体の表面および連通気孔表面にポリシラン層を形成した。
Example 1
A dried polyurethane foam sheet having continuous air holes is made of poly (hydrophenyl) silane (C 6 H 5 SiH) m (R 1 = C 6 H 5 , R 2 = H, m = 30 to 100 in the formula (1)). That is, a mixture of poly (hydrophenyl) silane having a polymerization degree of 30-100 is immersed in 1 part of toluene (9 parts) solution, and then dried under reduced pressure at 60 ° C. for 3 hours to form the surface of the polyurethane foam and the surface of the continuous pores. A polysilane layer was formed.

このポリシラン層形成ポリウレタン発泡体の表裏両表面の一部のみに、フォトマスクを用いて254nmの紫外線を1.2J照射した。紫外線照射後のポリウレタン発泡体を、窒素雰囲気下に、酢酸銅(I)0.3部をアセトニトリル99.7部に懸濁させた懸濁液に72時間浸漬し、懸濁液中から取り出してアセトニトリルで60秒間洗浄し、減圧下60℃で24時間乾燥して、表面の紫外線非照射部および非照射部の連通気孔表面と照射部表面から0.5mm以上の深部の連通気孔表面に厚さ約0.1μmの銅層が形成された気孔表面に金属被覆された多孔質発泡体を得た。   Only a part of both the front and back surfaces of this polysilane layer-forming polyurethane foam was irradiated with 1.2 J of ultraviolet light at 254 nm using a photomask. The polyurethane foam after UV irradiation was immersed in a suspension of 0.3 part of copper (I) acetate in 99.7 parts of acetonitrile in a nitrogen atmosphere for 72 hours, taken out from the suspension. Wash with acetonitrile for 60 seconds, and dry at 60 ° C. under reduced pressure for 24 hours. Thickness on the surface of the non-irradiated part of the surface and the surface of the non-irradiated part of the continuous vent hole and the surface of the continuous vent hole deeper than 0.5 mm from the surface of the irradiated part A porous foam having a metal-coated porous surface on which a copper layer of about 0.1 μm was formed was obtained.

本発明の金属被覆方法により得られる気孔表面に金属被覆された多孔質発泡体は、たとえば、飛行機、船舶、自動車などの輸送機器分野における衝撃吸収材、エンジン構成部品材料、電気・電子機器分野における触媒材料、電極材料、セパレータ材料などの電池関連材料、医療分野における人工骨材料などに使用でき、さらに分野を問わず、フィルタ材料、伝熱材料、放熱材料などとして使用できる。   The porous foam metal-coated on the pore surface obtained by the metal coating method of the present invention is, for example, in the field of transportation equipment such as airplanes, ships and automobiles, in the field of shock absorbers, engine component materials, and electrical / electronic equipment. It can be used for battery-related materials such as catalyst materials, electrode materials, separator materials, artificial bone materials in the medical field, and can be used as filter materials, heat transfer materials, heat dissipation materials, etc., regardless of the field.

Claims (3)

連続気泡性成形物の表面および内部の連通気孔表面に金属層を形成する金属被覆方法であって、
連続気泡性成形物の表面および内部の連通気孔表面にケイ素含有重合体層を形成し、金属層を形成しようとする部分を除くケイ素含有重合体層に紫外線を照射し、次いでそのカウンターアニオンがケイ素含有重合体のケイ素原子に配位し得る遷移金属塩を含む溶液または懸濁液をケイ素含有重合体層に接触させて、ケイ素含有重合体層の紫外線が照射されない部分のみに選択的に遷移金属を還元析出させることを特徴とする金属被覆方法。
A metal coating method for forming a metal layer on the surface of an open-celled molded product and on the surface of the internal vent hole,
A silicon-containing polymer layer is formed on the surface of the open-celled molded product and the surface of the internal vent hole, and the silicon-containing polymer layer excluding the portion where the metal layer is to be formed is irradiated with ultraviolet rays. A transition metal salt or a solution containing a transition metal salt capable of coordinating to a silicon atom of the containing polymer is brought into contact with the silicon-containing polymer layer, so that the transition metal is selectively applied only to a portion of the silicon-containing polymer layer that is not irradiated with ultraviolet rays. A metal coating method characterized by reducing and precipitating.
遷移金属塩が、遷移金属の酢酸塩、フッ化物塩、塩化物塩、炭酸塩、硫酸塩、硝酸塩、水酸化物塩、アルコラート塩、シュウ酸塩およびカルボン酸塩から選ばれる1種または2種以上であることを特徴とする請求項1記載の金属被覆方法。   The transition metal salt is one or two selected from the transition metal acetate, fluoride, chloride, carbonate, sulfate, nitrate, hydroxide, alcoholate, oxalate and carboxylate The metal coating method according to claim 1, which is as described above. 請求項1乃至請求項2の金属被覆方法により得られる発泡体。   A foam obtained by the metal coating method according to claim 1.
JP2005325197A 2005-11-09 2005-11-09 Metal coating method and foam Expired - Fee Related JP4894231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005325197A JP4894231B2 (en) 2005-11-09 2005-11-09 Metal coating method and foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005325197A JP4894231B2 (en) 2005-11-09 2005-11-09 Metal coating method and foam

Publications (2)

Publication Number Publication Date
JP2007131898A true JP2007131898A (en) 2007-05-31
JP4894231B2 JP4894231B2 (en) 2012-03-14

Family

ID=38153792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005325197A Expired - Fee Related JP4894231B2 (en) 2005-11-09 2005-11-09 Metal coating method and foam

Country Status (1)

Country Link
JP (1) JP4894231B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174484A (en) * 1981-04-20 1982-10-27 Sumitomo Electric Ind Ltd Production of metallic porous body of micropore sized foam structure
JP2000349417A (en) * 1999-06-02 2000-12-15 Shin Etsu Chem Co Ltd Manufacture of wiring board
JP2002365805A (en) * 2001-03-26 2002-12-18 Nippon Paint Co Ltd Metallic pattern forming method
JP2005068459A (en) * 2003-08-20 2005-03-17 Sharp Corp Method of producing mirror for optical waveguide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174484A (en) * 1981-04-20 1982-10-27 Sumitomo Electric Ind Ltd Production of metallic porous body of micropore sized foam structure
JP2000349417A (en) * 1999-06-02 2000-12-15 Shin Etsu Chem Co Ltd Manufacture of wiring board
JP2002365805A (en) * 2001-03-26 2002-12-18 Nippon Paint Co Ltd Metallic pattern forming method
JP2005068459A (en) * 2003-08-20 2005-03-17 Sharp Corp Method of producing mirror for optical waveguide

Also Published As

Publication number Publication date
JP4894231B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
Olivera et al. Plating on acrylonitrile–butadiene–styrene (ABS) plastic: a review
CN1223702C (en) Plating method of metal film on surface of polymer
Huang et al. Stabilization of the thermal decomposition process of self-reducible copper ion ink for direct printed conductive patterns
JP7191390B2 (en) METHOD OF MANUFACTURING METAL FOAM
Langner et al. Large Multipurpose Exceptionally Conductive Polymer Sponges Obtained by Efficient Wet‐Chemical Metallization
US20120177821A1 (en) Composition of nanoparticles
EP3796766B1 (en) Composite material
Gu et al. Graded porous inorganic materials derived from self-assembled block copolymer templates
JP2009102432A (en) Copper compound
JP6063065B2 (en) Method for synthesizing reduced graphene oxide on substrate from seed rack
CN103724046A (en) SiC foam and preparation method thereof
US11612933B2 (en) Preparation method for metal foam
JP4894231B2 (en) Metal coating method and foam
WO2019183044A1 (en) Graphene-mediated metallization of polymer films
US20190352779A1 (en) Electroless nickel plating of silicone rubber
Sun et al. Effects of temperature on Ni coating on poly (ethylene terephthalate) substrate modified with primer
Chen et al. Tough bonding of metallic layers to hydrocarbon surfaces by depositing Ag films
TW201817914A (en) Electroless nickel plating method
Liao et al. Electroless deposition of pure copper film on carbon fabric substrate using hydrazine as reducing agent
JP2005035984A (en) Copper compound, method for producing copper foil by using the same
Gui et al. Effect of plating time on structural properties of Ni-plating coating on Nylon 12 powders
EP3409814A1 (en) Method for forming circuit on substrate
JP7118496B2 (en) Composite
US20200147692A1 (en) Preparation method for metal foam
KR20200002454A (en) Composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees