JP2013017925A - Method and device of photocatalyst reaction type chemical processing - Google Patents

Method and device of photocatalyst reaction type chemical processing Download PDF

Info

Publication number
JP2013017925A
JP2013017925A JP2011151539A JP2011151539A JP2013017925A JP 2013017925 A JP2013017925 A JP 2013017925A JP 2011151539 A JP2011151539 A JP 2011151539A JP 2011151539 A JP2011151539 A JP 2011151539A JP 2013017925 A JP2013017925 A JP 2013017925A
Authority
JP
Japan
Prior art keywords
thin film
photocatalytic
workpiece
reaction
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011151539A
Other languages
Japanese (ja)
Inventor
Hajime Goto
肇 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2011151539A priority Critical patent/JP2013017925A/en
Publication of JP2013017925A publication Critical patent/JP2013017925A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of photocatalyst reaction type chemical processing that can improve the processing speed of a hard-to-work material such as SiC and GaN.SOLUTION: In the method of photocatalyst reaction type chemical processing that brings a photocatalyst thin film 1 into contact with or close proximity to a surface 14 of an object 3 to be processed while interposing a reaction process liquid 5 made of an acid aqueous solution and processes the surface 14 of the object 3 to be processed using an active species generated by irradiating the photocatalyst thin film 1 with light, the surface 14 of the object 3 to be processed is processed under the condition such that a pH of the reaction process liquid 5 is 4.88 or less.

Description

本発明は、光照射型化学的加工方法に係り、特に、光照射によって生成した活性種を用いて被加工物を加工する光触媒反応型化学的加工方法及び装置に関するものである。   The present invention relates to a light irradiation type chemical processing method, and more particularly to a photocatalytic reaction type chemical processing method and apparatus for processing a workpiece using active species generated by light irradiation.

従来、高周波、大電力の制御にはシリコンを用いた電力用半導体素子(パワーデバイス)が利用されてきたが、そのパワーデバイス性能はシリコンの物性から計算される理論上の限界値に近づいており、更なる特性向上を目指すため新たな材料を用いたパワーデバイスが検討されている。   Conventionally, silicon power semiconductor devices (power devices) have been used for high-frequency and high-power control, but the power device performance is approaching theoretical limits calculated from the physical properties of silicon. In order to further improve the characteristics, power devices using new materials are being studied.

そのようなパワーデバイス用の半導体材料として炭化珪素(SiC)や窒化ガリウム(GaN)などが注目されている。SiCやGaNはシリコンに比べ一桁高い絶縁破壊電界を持つため、高耐圧デバイスへ適用できると考えられているほか、耐熱性に優れているため、シリコンよりもはるかに優れた半導体素子特性を持つと期待されている。   Silicon carbide (SiC), gallium nitride (GaN), and the like are attracting attention as semiconductor materials for such power devices. SiC and GaN have a dielectric breakdown electric field that is an order of magnitude higher than that of silicon, so they are considered to be applicable to high-voltage devices, and because they have excellent heat resistance, they have much superior semiconductor element characteristics than silicon. It is expected.

また、GaNは青色発光ダイオード、青紫レーザ、固体照明用光源などの基板材料として注目されてきており、高品質、低コストを伴った量産技術が確立されれば、次世代の大容量記録装置の読み取り装置、照明、光源など幅広い用途が期待されている。   GaN has been attracting attention as a substrate material for blue light-emitting diodes, blue-violet lasers, solid-state lighting sources, etc. If mass production technology with high quality and low cost is established, next-generation large-capacity recording devices A wide range of applications such as reading devices, illumination, and light sources are expected.

SiCやGaNの単結晶基板からデバイスを作製するためには、その表面を最終的にできる限り滑らかに研磨する必要がある。しかしながら、SiCやGaN単結晶基板は化学的に極めて安定であり、かつ、ダイヤモンドに次ぐ硬度を有しており、加工することが困難であることがデバイス開発における重要な課題となっている。   In order to fabricate a device from a single crystal substrate of SiC or GaN, it is necessary to polish the surface as smoothly as possible. However, SiC and GaN single crystal substrates are chemically extremely stable, have hardness next to diamond, and are difficult to process, which is an important issue in device development.

一般的に半導体ウエハ等の研磨対象物の表面を機械的に平坦化するには、ウエハと研磨部材双方を回転させた状態で、ウエハの被研磨面に研磨部材を押付けることで行われる。特にSiCやGaNのような難加工性物質の場合には、機械研磨法では主にダイヤモンド砥粒を用いるため、機械的作用により材料に欠陥が導入され、結晶格子にダメージを与えてしまう。従って、加工変性層のない高精度な表面を作製するためには、格子欠陥を発生させることなく加工できる化学的な加工を用いる必要がある。   In general, the surface of an object to be polished such as a semiconductor wafer is mechanically flattened by pressing the polishing member against the surface to be polished of the wafer while rotating both the wafer and the polishing member. Particularly in the case of difficult-to-work materials such as SiC and GaN, the mechanical polishing method mainly uses diamond abrasive grains, so that defects are introduced into the material by mechanical action and damage the crystal lattice. Therefore, in order to produce a highly accurate surface without a work-modified layer, it is necessary to use chemical processing that can be processed without generating lattice defects.

化学的な加工法としては、被加工物を腐食する性質を持つ液体の薬品を使ったエッチング方法が一般的である。純粋な化学プロセスのため機械的加工法に比べて被加工物に与える損傷が少なく、研磨による加工変性層が生じないため高精度な表面を得やすい。しかしながら、化学的エッチングは等方的に進行することから、結晶内に欠陥が存在すると、結晶的に不完全な欠陥部分が優先的にエッチングされてしまうため、平坦度を改善することは困難である。   As a chemical processing method, an etching method using a liquid chemical having a property of corroding a workpiece is generally used. Since it is a pure chemical process, it causes less damage to the workpiece than mechanical processing methods, and it is easy to obtain a highly accurate surface because there is no work-modified layer due to polishing. However, since chemical etching proceeds isotropically, if there are defects in the crystal, defective portions that are incomplete in the crystal are preferentially etched, so it is difficult to improve the flatness. is there.

これに対して、機械的加工法と化学的加工法の両方の特徴を持つ化学的機械的研磨法(Chemical Mechanical Polishing;CMP)は、研磨パッドとウエハとの接触面に研磨剤(スラリー)を供給して、液体成分による化学的研磨と研磨粒子による機械的研磨との相乗効果によって比較的平坦度の高い研磨加工が可能である(特許文献1参照)。ここでスラリーとは、研磨粒子がアルカリ水溶液などの薬液に分散している懸濁液のことである。   On the other hand, chemical mechanical polishing (CMP), which has characteristics of both mechanical processing and chemical processing, applies an abrasive (slurry) to the contact surface between the polishing pad and the wafer. It is possible to provide a polishing process with relatively high flatness by synergistic effect of chemical polishing with a liquid component and mechanical polishing with abrasive particles (see Patent Document 1). Here, the slurry is a suspension in which abrasive particles are dispersed in a chemical solution such as an alkaline aqueous solution.

一方、酸化剤を含む処理液中に被加工物を配し、加工基準面に該酸化剤を分解する固体触媒を用い、該触媒表面で酸化剤から活性種を生成し、触媒に接触若しくは極接近した被加工物の表面原子と活性種との化学反応で、生成した化合物を除去、あるいは溶出させることによって被加工物を加工する触媒支援型化学加工方法が提案されている(特許文献2参照)。   On the other hand, a workpiece is placed in a processing solution containing an oxidant, and a solid catalyst that decomposes the oxidant is used on the processing reference surface. There has been proposed a catalyst-assisted chemical processing method for processing a workpiece by removing or eluting a generated compound by a chemical reaction between a surface atom and an active species of the workpiece that is approaching (see Patent Document 2). ).

また、研磨部材の研磨面の表面積を被研磨面の表面積に対して小さくすることで、研磨粒子を含む研磨材を被研磨面に直接供給することを可能とし、被研磨面に直接供給された研磨剤および被研磨面に対して直接光を照射することで、光のエネルギーを吸収して光触媒として作用するようになった研磨粒子を、光触媒作用が失われる前に速やかに被研磨面のうち研磨面と対向する領域へ送り込み、光触媒作用および光化学反応を利用して被研磨面を酸化する方法が提案されている(特許文献3参照)。   In addition, by reducing the surface area of the polishing surface of the polishing member relative to the surface area of the surface to be polished, it is possible to directly supply an abrasive containing abrasive particles to the surface to be polished, and the material is directly supplied to the surface to be polished. By directly irradiating the abrasive and the surface to be polished with light, the abrasive particles that have absorbed the energy of light and acted as a photocatalyst can be quickly removed from the surface to be polished before the photocatalytic activity is lost. A method has been proposed in which the surface to be polished is oxidized by using a photocatalytic action and a photochemical reaction, which are sent to a region facing the polishing surface (see Patent Document 3).

さらにまた、電解質溶液中、光照射により光触媒膜上に生成した活性種(水酸ラジカル)を用いて被加工物を酸化除去していく光触媒反応を利用した加工法(光触媒型が提案されている(特許文献4参照)。   Furthermore, a processing method using a photocatalytic reaction in which an object to be processed is oxidized and removed using an active species (hydroxyl radical) generated on a photocatalyst film by light irradiation in an electrolyte solution (a photocatalytic type is proposed). (See Patent Document 4).

特開2004−281865号公報JP 2004-281865 A 特開2008−136983号公報JP 2008-136983 A 特開2006−224252号公報JP 2006-224252 A 特開2002−334856号公報JP 2002-334856 A 特開2010−251699号公報JP 2010-251699 A

しかしながら、特許文献1のCMPは機械的研磨を含むため、研磨痕などの研磨変性層(ダメージ層)を完全に取り除くことは原理的にできない。また、SiCやGaN単結晶は化学的に極めて安定であるため、化学的作用が効き難く充分な加工速度が得られない。   However, since the CMP of Patent Document 1 includes mechanical polishing, it is impossible in principle to completely remove a polishing modified layer (damage layer) such as a polishing mark. In addition, since SiC and GaN single crystals are chemically very stable, the chemical action is hardly effective and a sufficient processing speed cannot be obtained.

一方、特許文献2の触媒支援型化学加工方法は、加工基準面となる固体触媒表面で酸化剤を分解し、化学反応に用いる活性種を生成するため、活性種は固体触媒表面上若しくは表面近傍のみにしか存在せず、従って、固体触媒の表面平坦度が被加工物表面に転写されることとなる。化学的に加工されるため、高精度な表面を作製することが可能であるが、加工原理上固体触媒表面の平坦度を上回ることはない。   On the other hand, the catalyst-assisted chemical processing method of Patent Document 2 decomposes the oxidizing agent on the surface of the solid catalyst serving as a processing reference surface and generates active species used for the chemical reaction. Therefore, the surface flatness of the solid catalyst is transferred to the workpiece surface. Since it is chemically processed, it is possible to produce a highly accurate surface, but the flatness of the surface of the solid catalyst is not exceeded on the processing principle.

また、特許文献3の光触媒作用および光化学反応を利用した方法であっても、研磨部材および研磨砥粒を用いている限りにおいては、加工変性層を無くすことは困難である。   Further, even in the method using the photocatalytic action and the photochemical reaction of Patent Document 3, it is difficult to eliminate the work-modified layer as long as the polishing member and the abrasive grains are used.

さらにまた、特許文献4のような単に光触媒膜と被加工物を接触させる方法では、被加工物基板の反りと水酸ラジカルの拡散距離を考慮しておらず、結果として等方的な加工となり高精度な表面平坦性を得ることは困難である。   Furthermore, the method of simply bringing the photocatalytic film into contact with the workpiece as in Patent Document 4 does not consider the warpage of the workpiece substrate and the diffusion distance of hydroxyl radicals, resulting in isotropic processing. It is difficult to obtain highly accurate surface flatness.

すなわち、近年電子デバイス材料としての重要性が認知され、パワーデバイスや発光デバイスへの適用に期待が高まっているSiCやGaN等の難加工性物質では、結晶学的に格子欠陥を導入せず、かつ平坦性の高い加工を行うとき、その加工速度が研磨型加工法に比べて極めて遅いという課題があった。   That is, in recent years, the importance as an electronic device material has been recognized, and difficult-to-work materials such as SiC and GaN, which are expected to be applied to power devices and light-emitting devices, do not introduce lattice defects crystallographically. In addition, when processing with high flatness, there is a problem that the processing speed is extremely slow compared with the polishing type processing method.

本発明は前述の状況に鑑みてなされたものであり、その目的は、SiCやGaN等の難加工性物質の加工速度を向上できる光触媒反応型化学的加工方法及び装置を提供することにある。   The present invention has been made in view of the above situation, and an object thereof is to provide a photocatalytic reaction type chemical processing method and apparatus capable of improving the processing speed of difficult-to-process materials such as SiC and GaN.

上記目的を達成するために創案された本発明は、光触媒薄膜を被加工物の表面に接触若しくは極接近させると共に、その間に酸性水溶液からなる反応処理液を介在させ、前記光触媒薄膜に光照射して生成した活性種を用いて被加工物の表面を加工する光触媒反応型化学的加工方法において、前記反応処理液のpHが4.88以下となるような条件下で被加工物の表面を加工する光触媒反応型化学的加工方法である。   The present invention devised to achieve the above object is to bring the photocatalyst thin film into contact with or close to the surface of the workpiece, while interposing a reaction treatment solution comprising an acidic aqueous solution, and irradiating the photocatalyst thin film with light. In the photocatalytic reaction type chemical processing method in which the surface of the workpiece is processed using the active species generated in this way, the surface of the workpiece is processed under the condition that the pH of the reaction treatment liquid is 4.88 or less. This is a photocatalytic reaction type chemical processing method.

前記光触媒薄膜を構成する光触媒として、TiO2、KTaO3、SrTiO3、ZrO2、NbO3、ZnO、WO3、及びSnO2からなる群から選択される少なくとも1つの金属酸化物を用いると良い。 As the photocatalyst constituting the photocatalytic thin film, at least one metal oxide selected from the group consisting of TiO 2 , KTaO 3 , SrTiO 3 , ZrO 2 , NbO 3 , ZnO, WO 3 , and SnO 2 may be used.

前記被加工物は、SiC、GaN、サファイア、ルビー、ダイヤモンドのいずれかからなると良い。   The workpiece may be made of any one of SiC, GaN, sapphire, ruby, and diamond.

前記反応処理液は、硫酸、塩酸、硝酸、燐酸、フッ化水素酸、過酸化水素のうち少なくとも1つを含む酸性水溶液からなると良い。   The reaction treatment liquid may be an acidic aqueous solution containing at least one of sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, hydrofluoric acid, and hydrogen peroxide.

また本発明は、平坦な表面に光触媒薄膜が形成され、その光触媒薄膜を回転させる回転定盤と、その回転定盤の回転軸に対して偏心した回転軸を有し、被加工物を保持すると共に前記光触媒薄膜の表面に前記被加工物を接触若しくは極接近させる上下動可能なホルダと、前記光触媒薄膜と前記被加工物の表面との間に酸性水溶液からなる反応処理液を供給する処理液供給手段と、前記光触媒薄膜に光照射する光照射手段とを備え、被加工物の表面を平坦化加工する光触媒反応型化学的加工装置において、前記処理液供給手段は、pHが4.88以下の前記反応処理液を供給する光触媒反応型化学的加工装置である。   The present invention also has a photocatalytic thin film formed on a flat surface, a rotating platen that rotates the photocatalytic thin film, and a rotating shaft that is eccentric with respect to the rotating shaft of the rotating platen, and holds the workpiece. A holder capable of moving up and down to bring the workpiece into contact with or close to the surface of the photocatalytic thin film, and a processing liquid for supplying a reaction processing liquid comprising an acidic aqueous solution between the photocatalytic thin film and the surface of the workpiece In the photocatalytic reaction type chemical processing apparatus comprising a supply means and a light irradiation means for irradiating the photocatalyst thin film with light, the treatment liquid supply means has a pH of 4.88 or less. This is a photocatalytic reaction type chemical processing apparatus for supplying the reaction treatment liquid.

本発明によれば、SiCやGaN等の難加工性物質の加工速度を向上できる。   According to the present invention, the processing speed of difficult-to-process materials such as SiC and GaN can be improved.

本発明に係る光触媒反応型化学的加工装置の構成を示す図である。It is a figure which shows the structure of the photocatalytic reaction type chemical processing apparatus which concerns on this invention. 本発明の加工原理を説明する模式図である。It is a schematic diagram explaining the processing principle of this invention.

以下に、本発明の好適な一実施の形態について図面を用いて説明する。   Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings.

本実施の形態に係る光触媒反応型化学的加工方法は、光触媒薄膜を被加工物の表面に接触若しくは極接近させると共に、その間に酸性水溶液からなる反応処理液を介在させ、光触媒薄膜に光照射して生成した活性種を用いて被加工物の表面を加工するに際して、反応処理液のpHが4.88以下となるような条件下で被加工物の表面を加工することを特徴とする。   In the photocatalytic reaction type chemical processing method according to the present embodiment, the photocatalyst thin film is brought into contact with or in close proximity to the surface of the workpiece, and a reaction treatment liquid composed of an acidic aqueous solution is interposed therebetween, and the photocatalytic thin film is irradiated with light. When the surface of the workpiece is processed using the active species generated in this manner, the surface of the workpiece is processed under such a condition that the pH of the reaction treatment liquid is 4.88 or less.

まず、この加工方法の加工原理を、光触媒としてTiO2を用いた場合を例にして図2により説明する。 First, the processing principle of this processing method will be described with reference to FIG. 2 taking as an example the case of using TiO 2 as a photocatalyst.

光触媒反応型化学的加工方法は、反応処理液中に被加工物を設置し、二酸化チタン(TiO2)などの光触媒活性を有する薄膜を被加工物の被加工面(表面)に接触若しくは極接近させると共に、その間に酸性水溶液からなる反応処理液を介在させ、一般に知られている光触媒反応により薄膜上で生成した強力な酸化力を持つ活性種と被加工物の表面原子とを化学反応させることで、溶出可能な化合物へ変化させた後、順次除去することによって被加工物の表面を加工する方法である。 The photocatalytic reaction type chemical processing method is to place a work piece in a reaction treatment solution, and to contact or bring a thin film having photocatalytic activity such as titanium dioxide (TiO 2 ) into contact with or close to the work surface (surface) of the work piece. In addition, a reaction treatment solution consisting of an acidic aqueous solution is interposed between the active species having a strong oxidizing power generated on the thin film by a generally known photocatalytic reaction and the surface atoms of the workpiece. In this method, the surface of the workpiece is processed by sequentially removing the compound after changing it to an eluting compound.

光触媒活性を有するTiO2にバンドギャップエネルギー以上(400nm以下)の光(紫外線UV)を照射すると、下記に示す反応
TiO2 + 光(UV) → h+ + e-
に従い、価電子帯(Ev)に存在する電子が伝導帯(Ec)へと励起され、正孔(h+)および励起電子(e-)対が生成する。
When TiO 2 having photocatalytic activity is irradiated with light (ultraviolet UV) having a band gap energy or more (400 nm or less), the following reaction is performed: TiO 2 + light (UV) → h + + e
Accordingly, electrons existing in the valence band (E v ) are excited to the conduction band (E c ), and hole (h + ) and excited electron (e ) pairs are generated.

正孔は下記に示す反応
2O → H+ + OH-
+ + OH- → ・OH
に従い、水(H2O)の電離によって生成した水酸化物イオン(OH-)から電子(e-)を引き抜き、水酸ラジカル(ヒドロキシルラジカル;・OH)を生成する。
Holes are the reactions shown below H 2 O → H + + OH
h + + OH - → · OH
Accordingly, an electron (e ) is extracted from a hydroxide ion (OH ) generated by ionization of water (H 2 O) to generate a hydroxyl radical (hydroxyl radical; .OH).

生成したヒドロキシルラジカルは非常に酸化力が強く、SiC、GaN、ダイヤモンド等の化学的に安定な材料とも以下に示す式
SiC + 4・OH + O2 → SiO2 + CO2 + 2H2
2GaN + 6・OH → Ga23 + N2 + 3H2
に従って反応し、酸化膜を形成すると考えられる。
The generated hydroxyl radical has a very strong oxidizing power, and the following formula SiC + 4 · OH + O 2 → SiO 2 + CO 2 + 2H 2 O is applied to chemically stable materials such as SiC, GaN and diamond.
2GaN + 6.OH → Ga 2 O 3 + N 2 + 3H 2 O
It is considered that an oxide film is formed as a result of the reaction.

一方、励起電子は特別な酸化されやすい物質(犠牲剤)が添加されていない限り、下記に示す反応
2 + e- → O2 -
に従い処理液中に溶解している酸素ガス(溶存酸素)に移動し酸素を還元する。
On the other hand, unless the special oxidizable substance (sacrificial agent) is added to the excited electrons, the following reaction O 2 + e → O 2
According to the above, the oxygen gas is dissolved in the treatment liquid (dissolved oxygen) to reduce oxygen.

ここで、反応により1電子還元された酸素分子(スーパーオキサイドアニオン)は、順次還元され、最終的に4電子還元されて水となる。そこで、スーパーオキサイドアニオンをSiCやGaNなどの被加工物の反応に利用することで、加工速度を向上させることが期待できる。   Here, oxygen molecules (superoxide anion) reduced by one electron by the reaction are sequentially reduced and finally reduced by four electrons to become water. Therefore, it is expected that the processing speed can be improved by utilizing the superoxide anion for the reaction of a workpiece such as SiC or GaN.

スーパーオキサイドアニオンは水溶液中で次の式
2 - + H+ ⇔ HOO・
に示すような平衡状態にあり、この反応の平衡定数pKaは4.88である。
The superoxide anion has the following formula in an aqueous solution: O 2 + H + ⇔ HOO.
In equilibrium as shown in, equilibrium constant pK a of the reaction is 4.88.

ここで、HOO・はヒドロペルオキシラジカルであり、ヒドロキシルラジカルと共に強力な反応活性種であり、SiCやGaNとも次式
SiC + 4HOO・ → SiO2 + CO2 + 2H2O + O2
2GaN + 6HOO・ → Ga23 + N2 + 3H2O + 3O2
に示すように反応し、酸化膜を形成すると考えられる。
Here, HOO. Is a hydroperoxy radical, which is a powerful reactive species together with the hydroxyl radical, and both SiC and GaN are represented by the following formula: SiC + 4HOO. → SiO 2 + CO 2 + 2H 2 O + O 2
2GaN + 6HOO · → Ga 2 O 3 + N 2 + 3H 2 O + 3O 2
It is considered that an oxide film is formed by reacting as shown in FIG.

従って、処理溶液のpHを4.88以下にすることにより、スーパーオキサイドアニオンを順次ヒドロペルオキシラジカルへ変換し、被加工物の加工反応である酸化反応を促進することが期待できる。   Therefore, by setting the pH of the treatment solution to 4.88 or less, it can be expected that the superoxide anion is sequentially converted into a hydroperoxy radical and promotes an oxidation reaction that is a processing reaction of the workpiece.

なお、SiCやGaNの被加工面に酸化反応によって形成された酸化膜はそれぞれ適切な処理溶液中で以下の式
SiO2 + 6HF → H2SiF6 + 2H2
Ga23 + 3H2SO4 → Ga2(SO43 + 3H2
に従い除去されることで加工が進んでいく。
The oxide films formed on the surface to be processed of SiC or GaN by the oxidation reaction are each expressed by the following formula SiO 2 + 6HF → H 2 SiF 6 + 2H 2 O in an appropriate treatment solution.
Ga 2 O 3 + 3H 2 SO 4 → Ga 2 (SO 4 ) 3 + 3H 2 O
The processing proceeds by being removed according to the above.

次に、本実施の形態に係る加工方法を実施する加工装置の構成を図1により説明する。   Next, the configuration of a processing apparatus that performs the processing method according to the present embodiment will be described with reference to FIG.

図1に示すように、本実施の形態に係る加工装置(光触媒反応型化学的加工装置)10は、平坦な表面に光触媒薄膜1が形成され、その光触媒薄膜1を回転させる回転定盤11と、その回転定盤11の回転軸9に対して偏心した回転軸13を有し、被加工物3を保持すると共に光触媒薄膜1の表面に被加工物3を接触若しくは極接近させる上下動可能なホルダ4と、光触媒薄膜1と被加工物3の表面14との間に酸性水溶液からなる反応処理液5を供給する処理液供給手段6と、光触媒薄膜1に光7を照射する光照射手段8とを備える。また加工装置10が被加工物3の表面14を平坦化加工するに際し、処理液供給手段6は、pHが4.88以下の反応処理液5を供給することを特徴とする。   As shown in FIG. 1, a processing apparatus (photocatalytic reaction type chemical processing apparatus) 10 according to the present embodiment includes a rotating platen 11 that has a photocatalytic thin film 1 formed on a flat surface and rotates the photocatalytic thin film 1. The rotating table 13 has a rotating shaft 13 that is eccentric with respect to the rotating shaft 9 of the rotating platen 11 and can be moved up and down to hold the workpiece 3 and to bring the workpiece 3 into contact with or close to the surface of the photocatalytic thin film 1. A treatment liquid supply means 6 for supplying a reaction treatment liquid 5 made of an acidic aqueous solution between the holder 4, the photocatalytic thin film 1 and the surface 14 of the workpiece 3, and a light irradiation means 8 for irradiating the photocatalytic thin film 1 with light 7. With. Further, when the processing apparatus 10 planarizes the surface 14 of the workpiece 3, the processing liquid supply means 6 supplies the reaction processing liquid 5 having a pH of 4.88 or less.

この加工装置10において、薄膜支持基材2は光7を透過する透明材料からなり、被加工物3の表面14に要求される平坦度以上の平坦性を有することが望ましい。また薄膜支持基材2は一体に回転する回転軸9を備え、この回転軸9および光触媒薄膜1と共に回転定盤11をなす。回転軸9は反応処理液5の飛散あるいは漏出を防止する加工槽12に挿通されており、薄膜支持基材2は加工槽12内に配置される。この回転定盤11が回転軸9により回転することで、光触媒薄膜1を回転させることとなる。   In this processing apparatus 10, the thin film supporting substrate 2 is preferably made of a transparent material that transmits light 7 and has a flatness that is equal to or higher than the flatness required for the surface 14 of the workpiece 3. The thin film supporting substrate 2 includes a rotating shaft 9 that rotates integrally. The rotating shaft 9 and the photocatalytic thin film 1 form a rotating platen 11. The rotating shaft 9 is inserted into a processing tank 12 that prevents the reaction processing solution 5 from scattering or leaking, and the thin film support base 2 is disposed in the processing tank 12. The photocatalytic thin film 1 is rotated by rotating the rotating platen 11 by the rotating shaft 9.

被加工物3を保持するホルダ4は、回転定盤11の回転軸9に対して偏心した回転軸13を備え、ホルダ4は回転軸13と一体に回転する。また、ホルダ4は表面(被加工面)14を光触媒薄膜1に対向させて被加工物3を保持し、表面14に光触媒薄膜1を接触若しくは極接近させる。   The holder 4 that holds the workpiece 3 includes a rotating shaft 13 that is eccentric with respect to the rotating shaft 9 of the rotating surface plate 11, and the holder 4 rotates integrally with the rotating shaft 13. The holder 4 holds the workpiece 3 with the surface (surface to be processed) 14 facing the photocatalytic thin film 1, and brings the photocatalytic thin film 1 into contact with or in close proximity to the surface 14.

ホルダ4は上下動可能であり、被加工物3のホルダ4への固定時に、回転定盤11とホルダ4とを離間させて被加工物3を取り扱いやすくしたり、被加工物3の加工時に、被加工面である表面14に所定の押圧力、例えば、回転定盤11に被加工物3が自重で押付けられる程度の圧力(55Pa)を付与したりする。   The holder 4 can move up and down, and when the workpiece 3 is fixed to the holder 4, the rotating surface plate 11 and the holder 4 are separated from each other to facilitate handling of the workpiece 3, or when the workpiece 3 is processed. A predetermined pressing force, for example, a pressure (55 Pa) at which the workpiece 3 is pressed against the rotating surface plate 11 by its own weight is applied to the surface 14 which is the processing surface.

処理液供給手段6は回転定盤11の表面に反応処理液5を滴下して供給するものであり、本実施の形態では処理液供給手段6として滴下ノズルを用いる。この処理液供給手段6としての滴下ノズルは、回転定盤11の上方かつホルダ4の側方に設けられる。処理液供給手段6から滴下された反応処理液5は、回転定盤11の回転により光触媒薄膜1の表面で薄い処理液層5aを形成し、光触媒薄膜1と被加工物3の表面14との間に反応処理液5が介在することとなる。なお、本発明は処理液供給手段6を滴下ノズルに限定するものではない。   The processing liquid supply means 6 supplies the reaction processing liquid 5 by dropping it onto the surface of the rotating platen 11. In this embodiment, a dropping nozzle is used as the processing liquid supply means 6. The dripping nozzle as the processing liquid supply means 6 is provided above the rotary platen 11 and on the side of the holder 4. The reaction treatment liquid 5 dropped from the treatment liquid supply means 6 forms a thin treatment liquid layer 5 a on the surface of the photocatalytic thin film 1 by the rotation of the rotating platen 11, and the photocatalytic thin film 1 and the surface 14 of the workpiece 3 The reaction processing liquid 5 is interposed therebetween. In the present invention, the treatment liquid supply means 6 is not limited to the dropping nozzle.

光照射手段8は、薄膜支持基材2の裏面側かつ被加工物3の下方に設置され、光7は光照射手段8から上方に向けて照射される。光照射手段8から照射された光7は透明材料からなる薄膜支持基材2を透過し、これを介して被加工物3の周囲の光触媒薄膜1に到達する。   The light irradiation means 8 is installed on the back surface side of the thin film supporting substrate 2 and below the workpiece 3, and the light 7 is irradiated upward from the light irradiation means 8. The light 7 irradiated from the light irradiation means 8 passes through the thin film supporting substrate 2 made of a transparent material, and reaches the photocatalytic thin film 1 around the workpiece 3 through this.

光触媒薄膜1に到達した光7は、前述の加工原理により被加工物3の表面に化合物層15を形成する。この化合物層15を反応処理液5との反応により順次除去、あるいは溶出させることで、被加工物3の表面14が加工される。この際、ホルダ4が備える回転軸13を同時に回転させることにより、被加工物3の表面14が均等に加工されることとなる。   The light 7 that has reached the photocatalytic thin film 1 forms a compound layer 15 on the surface of the workpiece 3 according to the processing principle described above. By sequentially removing or eluting the compound layer 15 by reaction with the reaction treatment liquid 5, the surface 14 of the workpiece 3 is processed. At this time, the surface 14 of the workpiece 3 is uniformly processed by simultaneously rotating the rotary shaft 13 provided in the holder 4.

次に、加工装置10の要部について詳細に述べる。   Next, the main part of the processing apparatus 10 will be described in detail.

本実施の形態において被加工物3は、例えば、パワーデバイス、発光デバイス等の電子デバイスに用いられる半導体材料、酸化物材料等の結晶材料である。より具体的には、被加工物3は、SiC、GaN、サファイア、ルビー、ダイヤモンド等の難加工性の結晶材料からなる基板である。   In the present embodiment, the workpiece 3 is a crystalline material such as a semiconductor material or an oxide material used for an electronic device such as a power device or a light emitting device. More specifically, the workpiece 3 is a substrate made of a difficult-to-work crystal material such as SiC, GaN, sapphire, ruby, diamond or the like.

光触媒薄膜1は、光触媒からなる薄膜、または光触媒を含む薄膜から形成される。光触媒薄膜1を構成する光触媒としては、価電子帯の上端のエネルギーが約2.8eV以上であるTiO2、KTaO3、SrTiO3、ZrO2、NbO3、ZnO、WO3、及びSnO2等の金属酸化物からなる群から選択される少なくとも一つの化合物を用いることができる。また、これらの化合物に不純物をドープすることもできる。例えば、窒素(N)をドープした窒素ドープ光触媒(例えば、NドープTiO2)から光触媒薄膜1を形成することもできる。 The photocatalytic thin film 1 is formed from a thin film made of a photocatalyst or a thin film containing a photocatalyst. Examples of the photocatalyst constituting the photocatalytic thin film 1 include TiO 2 , KTaO 3 , SrTiO 3 , ZrO 2 , NbO 3 , ZnO, WO 3 , and SnO 2 having an energy at the upper end of the valence band of about 2.8 eV or more. At least one compound selected from the group consisting of metal oxides can be used. Further, these compounds can be doped with impurities. For example, the photocatalytic thin film 1 can also be formed from a nitrogen-doped photocatalyst doped with nitrogen (N) (for example, N-doped TiO 2 ).

ここで、光触媒としてTiO2を用いる場合、結晶構造がアナターゼ型であるTiO2を用いることが望ましい。なお、ルチル型のTiO2、又はアナターゼ型のTiO2とルチル型のTiO2との混晶を用いることもできる。混晶を用いる場合、アナターゼ型の含有率が75%以上であることが望ましい。 Here, when TiO 2 is used as the photocatalyst, it is desirable to use TiO 2 having a crystal structure of anatase type. Note that rutile TiO 2 or a mixed crystal of anatase TiO 2 and rutile TiO 2 can also be used. When using a mixed crystal, it is desirable that the content of anatase type is 75% or more.

本発明は光触媒薄膜1を製造する方法について特に限定されず、例えばスパッタ法、蒸着法、分子線エピタキシー法(Molecular Beam Epitaxy法;MBE法)、レーザーアブレーション法、イオンプレーティング法、熱CVD法、プラズマCVD法、有機金属気相成長法(Metal Organic Chemical Vapor Deposition法;MOCVD法)、液相エピタキシー法、エアロゾルデポジション法(Aerosol Deposition法;AD法)、ラングミュア−ブロジェット法(Langmuir−Blodgett法;LB法)、ゾルゲル法、めっき法、塗布法等を用いて形成することができる。本実施の形態においては、成膜の制御の容易さ等の観点からスパッタ法を用いる。   The present invention is not particularly limited with respect to the method for producing the photocatalytic thin film 1. For example, sputtering, vapor deposition, molecular beam epitaxy (Molecular Beam Epitaxy; MBE), laser ablation, ion plating, thermal CVD, Plasma CVD method, metal organic chemical vapor deposition method (Metal Organic Chemical Deposition method; MOCVD method), liquid phase epitaxy method, aerosol deposition method (Aerosol Deposition method; AD method), Langmuir-Blodgett method (Langmuir-Brodet method) LB method), sol-gel method, plating method, coating method and the like. In this embodiment mode, a sputtering method is used from the viewpoint of easy control of film formation.

スパッタ法を用いて光触媒薄膜1を形成する場合、以下のように形成することができる。例えば、TiO2からなるターゲットを用いてAr雰囲気下でスパッタリングを実施することにより、TiO2として直接堆積させて形成される光触媒薄膜1を薄膜支持基材2上に形成できる。また、Tiからなるターゲットを用いてO2とArとの混合雰囲気(以下、「O2/Ar雰囲気」という場合がある)下でスパッタリングを実施することにより、Tiと雰囲気中のO2とが反応して形成されるTiO2からなる光触媒薄膜1を薄膜支持基材2上に形成できる。 When the photocatalytic thin film 1 is formed using a sputtering method, it can be formed as follows. For example, by performing sputtering under an Ar atmosphere using a target composed of TiO 2, the photocatalytic film 1 formed by directly depositing a TiO 2 can be formed on the thin film support substrate 2. Further, by performing sputtering in a mixed atmosphere of O 2 and Ar (hereinafter sometimes referred to as “O 2 / Ar atmosphere”) using a target made of Ti, Ti and O 2 in the atmosphere can be reduced. The photocatalytic thin film 1 made of TiO 2 formed by reaction can be formed on the thin film supporting substrate 2.

このとき、Ar等のプラズマの平均自由行程の増大を抑制し、成膜中における光触媒薄膜1へのダメージを低減させることを目的として、プラズマ出力を400W以下に、さらに好ましくは300W以下に設定すると共に、チャンバー内のガスの全圧を1.0Pa以上に、好ましくは1.2Pa以上に、更に好ましくは3.0Pa以上に設定すると良い。   At this time, the plasma output is set to 400 W or less, more preferably 300 W or less for the purpose of suppressing an increase in the mean free path of plasma of Ar or the like and reducing damage to the photocatalytic thin film 1 during film formation. At the same time, the total pressure of the gas in the chamber may be set to 1.0 Pa or higher, preferably 1.2 Pa or higher, more preferably 3.0 Pa or higher.

なお、スパッタリングを実施するスパッタ装置としては、直流スパッタ装置、高周波スパッタ装置、マグネトロンスパッタ装置、イオンビームスパッタ装置、電子サイクロトロン共鳴(Electron Cyclotron Resonance;ECR)スパッタ装置等を用いることができる。   Note that as a sputtering apparatus that performs sputtering, a DC sputtering apparatus, a high-frequency sputtering apparatus, a magnetron sputtering apparatus, an ion beam sputtering apparatus, an electron cyclotron resonance (ECR) sputtering apparatus, or the like can be used.

光触媒薄膜1の膜厚は、被加工物3の表面原子と化学反応する活性種の生成量を増加させ、被加工物3の加工を十分な速度で実施することを目的として、光7を十分に吸収することのできる厚さである150nm以上にする。また、光触媒薄膜1の膜厚は、200nm以上であることがより好ましい。一方、光触媒薄膜1の膜厚が厚すぎると、光触媒薄膜1の表面に到達する光7の量が少なくなり、活性種の生成量と被加工物3の加工速度が低下することになる。よって、光7の量に応じた活性種の量を被加工物3の加工に十分な量とすべく、光触媒薄膜1の膜厚は1μm以下であることが好ましく、より好ましくは500nm以下である。   The film thickness of the photocatalytic thin film 1 is sufficient to increase the amount of active species that chemically react with the surface atoms of the workpiece 3 and to sufficiently process the light 7 for the purpose of processing the workpiece 3 at a sufficient speed. The thickness is 150 nm or more, which is a thickness that can be absorbed into the film. The film thickness of the photocatalytic thin film 1 is more preferably 200 nm or more. On the other hand, when the film thickness of the photocatalytic thin film 1 is too thick, the amount of light 7 reaching the surface of the photocatalytic thin film 1 is reduced, and the amount of active species generated and the processing speed of the workpiece 3 are reduced. Therefore, the film thickness of the photocatalytic thin film 1 is preferably 1 μm or less, more preferably 500 nm or less so that the amount of active species corresponding to the amount of light 7 is sufficient for processing the workpiece 3. .

このような光触媒薄膜1に照射する光7としては、光触媒薄膜1を構成する光触媒のバンドギャップエネルギー以上のエネルギーを有するものを用いる。例えば、TiO2のバンドギャップエネルギーは3.0eVであり、TiO2は420nm以下の波長の光に対して光触媒機能を発揮する。したがって、光触媒としてTiO2を用いる場合、光7としては、200nm以上420nm以下、好ましくは200nm以上400nm以下の波長を有する紫外線を用い、光7を照射する光照射手段8としては、例えば高圧水銀灯を用いる。なお、光触媒薄膜1を構成する光触媒が可視光に対して光触媒機能を発揮する場合、光7として可視光を用いることもできる。 As the light 7 irradiated to such a photocatalyst thin film 1, a light having an energy equal to or higher than the band gap energy of the photocatalyst constituting the photocatalyst thin film 1 is used. For example, the band gap energy of TiO 2 is 3.0 eV, and TiO 2 exhibits a photocatalytic function for light having a wavelength of 420 nm or less. Therefore, when TiO 2 is used as the photocatalyst, the light 7 uses ultraviolet light having a wavelength of 200 nm to 420 nm, preferably 200 nm to 400 nm, and the light irradiation means 8 for irradiating the light 7 is, for example, a high-pressure mercury lamp. Use. In addition, when the photocatalyst which comprises the photocatalyst thin film 1 exhibits a photocatalytic function with respect to visible light, visible light can also be used as the light 7. FIG.

薄膜支持基材2は、光7を透過する透明材料から形成される。より具体的には、光7が紫外線である場合、薄膜支持基材2は紫外線を透過する材料、例えば、ガラス基板、石英基板、アクリル等の合成樹脂を用いることができる。光7を透過する透明材料から薄膜支持基材2を形成することにより、薄膜支持基材2の裏面側から光触媒薄膜1に光7を照射できる。なお、合成樹脂から薄膜支持基材2を構成する場合、光7による劣化を受け難い程度の透過率を有する樹脂材料を用いることが好ましい。特に光7として紫外線を用いる場合、合成樹脂は紫外線を吸収して劣化することがあるため、透過率の高い樹脂材料を用いることで、長期使用による劣化を抑制できる。   The thin film supporting substrate 2 is formed from a transparent material that transmits light 7. More specifically, when the light 7 is ultraviolet light, the thin film support base 2 can be made of a material that transmits ultraviolet light, for example, a synthetic resin such as a glass substrate, a quartz substrate, or acrylic. By forming the thin film supporting substrate 2 from a transparent material that transmits the light 7, the light 7 can be irradiated to the photocatalytic thin film 1 from the back side of the thin film supporting substrate 2. In the case where the thin film supporting substrate 2 is made of a synthetic resin, it is preferable to use a resin material having a transmittance that is not easily deteriorated by the light 7. In particular, when ultraviolet rays are used as the light 7, the synthetic resin may be deteriorated by absorbing the ultraviolet rays. Therefore, the deterioration due to long-term use can be suppressed by using a resin material having a high transmittance.

反応処理液5は、そのpHを4.88以下に制御した酸性水溶液からなるものを用いる。これにより、還元反応側、すなわち励起電子による酸素分子への1電子還元反応で生成するスーパーオキサイドアニオンを、より酸化反応性が高いヒドロペルオキシラジカルへと順次変換することができる。また、酸化反応が促進されることにより被加工物3の加工速度が向上する。   The reaction treatment liquid 5 is composed of an acidic aqueous solution whose pH is controlled to 4.88 or lower. Thereby, the superoxide anion produced | generated by the reduction reaction side, ie, the 1-electron reduction reaction to the oxygen molecule by an excited electron, can be sequentially converted into the hydroperoxy radical with higher oxidation reactivity. Moreover, the processing speed of the workpiece 3 is improved by promoting the oxidation reaction.

ここで、反応処理液5は、硫酸、塩酸、硝酸、燐酸、フッ化水素酸、過酸化水素などの少なくとも1つの無機酸を含む酸性水溶液からなることが好ましい。これにより、有機物や金属イオンが被加工物3の表面14に汚染物として残留することがないので、加工後の被加工物3の清浄度を高く維持できる。   Here, the reaction treatment liquid 5 is preferably composed of an acidic aqueous solution containing at least one inorganic acid such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, hydrofluoric acid, and hydrogen peroxide. Thereby, since organic matter and metal ions do not remain as contaminants on the surface 14 of the workpiece 3, the cleanliness of the workpiece 3 after processing can be maintained high.

次に、本実施の形態に係る加工方法を、加工装置10の動作と共に説明する。   Next, the processing method according to the present embodiment will be described together with the operation of the processing apparatus 10.

まず、SiCやGaN等の難加工物質からなる被加工物3をホルダ4に保持させる。このとき、被加工物3の表面14を光触媒薄膜1と対向させて保持させる。なお、ホルダ4が被加工物3を保持する方法については特に限定されず、例えばワックスでホルダ4に被加工物3を貼付けたり、吸引装置でホルダ4に被加工物3を吸引固定したりすれば良い。   First, the workpiece 3 made of a difficult-to-process material such as SiC or GaN is held by the holder 4. At this time, the surface 14 of the workpiece 3 is held facing the photocatalytic thin film 1. The method for holding the workpiece 3 by the holder 4 is not particularly limited. For example, the workpiece 3 is attached to the holder 4 with wax, or the workpiece 3 is sucked and fixed to the holder 4 with a suction device. It ’s fine.

被加工物3をホルダ4に保持させた後、光触媒薄膜1を被加工物3の表面14に接触若しくは極接近させる。ここで極接近とは、光触媒薄膜1上で生成した反応活性種が被加工物3の表面へ到達可能な程度(おおよそ1μm以下程度)に接近している状態をいう。光触媒薄膜1を被加工物3の表面14に極接近させることで、生成した活性反応種を被加工物3の表面14へ拡散させて反応させることができる。   After the workpiece 3 is held by the holder 4, the photocatalytic thin film 1 is brought into contact with or in close proximity to the surface 14 of the workpiece 3. Here, extremely close refers to a state in which the reactive species generated on the photocatalytic thin film 1 are approaching to the extent that they can reach the surface of the workpiece 3 (approximately 1 μm or less). By bringing the photocatalytic thin film 1 very close to the surface 14 of the workpiece 3, the generated active reactive species can be diffused and reacted with the surface 14 of the workpiece 3.

さらに、回転定盤11(つまり光触媒薄膜1)を回転させながら、処理液供給手段6よりpHを4.88以下に調節した反応処理液5を光触媒薄膜1の表面に滴下して処理液層5aを形成させ、光触媒薄膜1と被加工物3の表面14との間に反応処理液5を介在させる。また同時に、回転軸13によりホルダ4を回転させる。ここで介在とは、滴下した反応処理液5が毛細管現象により光触媒薄膜1と被加工物3との間に浸入して処理液の薄膜が形成されることをいう。なお、毛細管現象により形成される処理液の薄膜は、反応活性種の輸送(拡散)に必要であり、活性種輸送層とみなすこともできる。   Further, while rotating the rotating platen 11 (that is, the photocatalytic thin film 1), the reaction liquid 5 whose pH is adjusted to 4.88 or less from the processing liquid supply means 6 is dropped onto the surface of the photocatalytic thin film 1 and the processing liquid layer 5a. The reaction treatment liquid 5 is interposed between the photocatalytic thin film 1 and the surface 14 of the workpiece 3. At the same time, the holder 4 is rotated by the rotating shaft 13. Here, the interposition means that the dropped reaction treatment liquid 5 enters between the photocatalytic thin film 1 and the workpiece 3 by a capillary phenomenon to form a thin film of the treatment liquid. In addition, the thin film of the treatment liquid formed by capillary action is necessary for transport (diffusion) of reactive active species, and can be regarded as an active species transport layer.

しかる後に、光照射手段8から光7を照射することにより、光触媒薄膜1の表面で光照射により生成したヒドロキシラジカルと被加工物3の表面原子とが反応して化合物層15を形成する。この化合物層15は硫酸などを添加した酸性水溶液からなる反応処理液5で処理することにより除去され、その結果、高精度な平坦面が形成される。   Thereafter, by irradiating light 7 from the light irradiation means 8, the hydroxyl radicals generated by light irradiation on the surface of the photocatalytic thin film 1 react with the surface atoms of the workpiece 3 to form the compound layer 15. The compound layer 15 is removed by treatment with the reaction treatment solution 5 made of an acidic aqueous solution to which sulfuric acid or the like is added, and as a result, a highly accurate flat surface is formed.

以上説明したように、本発明では、光触媒薄膜1を被加工物3の表面14に接触若しくは極接近させると共に、その間に酸性水溶液からなる反応処理液5を介在させ、光触媒薄膜1に光照射して生成した活性種を用いて被加工物3の表面14を加工するに際し、反応処理液5のpHを4.88以下となるような条件下で被加工物3の表面14を加工するようにしている。   As described above, in the present invention, the photocatalytic thin film 1 is brought into contact with or in close proximity to the surface 14 of the workpiece 3, and the reaction treatment liquid 5 made of an acidic aqueous solution is interposed therebetween to irradiate the photocatalytic thin film 1 with light. When the surface 14 of the workpiece 3 is processed using the activated species generated in this manner, the surface 14 of the workpiece 3 is processed under the condition that the pH of the reaction treatment liquid 5 is 4.88 or less. ing.

本発明では、被加工物3の表面原子との化学反応で生成した化合物層15を除去あるいは溶出させることによって被加工物3を加工するため、砥粒や研磨剤を用いずに加工変質層のない高精度な表面を作製することができる。   In the present invention, since the work piece 3 is processed by removing or eluting the compound layer 15 generated by the chemical reaction with the surface atoms of the work piece 3, the work-affected layer of the work-affected layer is used without using abrasive grains or abrasives. A highly accurate surface can be produced.

また、加工に用いる反応処理液5のpHを4.88以下とすることで、還元反応で生じるスーパーオキサイドアニオンを反応活性種であるヒドロペルオキシラジカルに順次変換して加工に用い、従来よりも加工時間を短縮することができる。   In addition, by setting the pH of the reaction treatment solution 5 used for processing to 4.88 or less, the superoxide anion generated by the reduction reaction is sequentially converted into hydroperoxy radicals, which are reactive species, and used for processing. Time can be shortened.

また、従来、SiCやGaNのような難加工性物質の一般的研磨方法であるCMP法による研磨加工において最もコストがかかるのは、スラリーに含まれる研磨粒子であった。さらに使用済のスラリーには産業廃棄物としての処理が求められるため、廃棄に無視できない費用がかかることに加え、環境保護の観点からも好ましくなかった。本発明によれば研磨剤が不要であるのでこれらの問題も同時に解決できる。   Conventionally, the abrasive particles contained in the slurry are the most expensive in the polishing process by the CMP method, which is a general polishing method for difficult-to-process materials such as SiC and GaN. Further, since the used slurry is required to be treated as industrial waste, it is not preferable from the viewpoint of environmental protection in addition to cost which cannot be ignored. According to the present invention, since an abrasive is unnecessary, these problems can be solved simultaneously.

なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、上記実施の形態では処理液層5aにより光触媒薄膜1と被加工物3との間に反応処理液5を介在させるようにしたが、加工槽12に反応処理液5を貯留し、その貯留した反応処理液5の中に光触媒薄膜1と被加工物3を配して加工を行うようにしても良い。   For example, in the above embodiment, the reaction treatment liquid 5 is interposed between the photocatalytic thin film 1 and the workpiece 3 by the treatment liquid layer 5a. However, the reaction treatment liquid 5 is stored in the processing tank 12, and the storage is performed. The photocatalytic thin film 1 and the workpiece 3 may be disposed in the reaction treatment liquid 5 thus processed.

また、被加工物3の材料特性(耐酸化性など)に合わせて反応処理液5に犠牲剤を添加し、活性種が生成される速度を制御するようにしても良い。   Further, a sacrificial agent may be added to the reaction treatment liquid 5 in accordance with the material characteristics (oxidation resistance, etc.) of the workpiece 3 to control the rate at which active species are generated.

以下に、本発明の実施例について説明する。   Examples of the present invention will be described below.

[実施例1]
光触媒材料として高周波マグネトロンスパッタ法により作製したTiO2を用いた。
[Example 1]
As the photocatalyst material, TiO 2 produced by a high frequency magnetron sputtering method was used.

図1に示すように、ホルダ4に被加工物3としてGaN基板をワックスで貼り付けた後、GaN基板の被加工面(表面14)を、石英からなる薄膜支持基材2に堆積させたTiO2からなる光触媒薄膜1に接触させた。ここで、本実施例で用いたGaN基板は単結晶自立基板であり、直径50mm、(0001)Ga面のn型で、キャリア濃度は(1〜3)×1018/cm3である。{0001}面のGaN単結晶基板には極性があり、一方は最表面がGa原子からなるGa面であり、他方は最表面がN原子からなるN面である。本実施例ではGa面を加工した。N面を加工する場合、加工速度が多少異なるものの、加工が進行する機構はGa面の場合と同様である。なお、本実施例で用いたGaN基板の被加工面(Ga面)は、予め機械的に研磨されている。 As shown in FIG. 1, after a GaN substrate is attached as a workpiece 3 to a holder 4 with wax, a processed surface (surface 14) of the GaN substrate is deposited on a thin film support base 2 made of quartz. The photocatalytic thin film 1 made of 2 was brought into contact. Here, the GaN substrate used in this example is a single crystal free-standing substrate, which has a diameter of 50 mm, an n-type (0001) Ga plane, and a carrier concentration of (1-3) × 10 18 / cm 3 . The {0001} -plane GaN single crystal substrate has polarity, one is a Ga surface whose outermost surface is made of Ga atoms, and the other is an N surface whose outermost surface is made of N atoms. In this example, the Ga surface was processed. When processing the N plane, the processing speed is somewhat different, but the mechanism of the processing is the same as in the Ga plane. Note that the processed surface (Ga surface) of the GaN substrate used in this example is mechanically polished in advance.

GaN基板をTiO2膜に接触させた後、反応処理液5としてpHを1.5に調節した硫酸水溶液を回転定盤11に毎分5mlの流量で滴下すると共に、回転定盤11およびホルダ4が備える回転軸9,13を回転させた。回転定盤11およびホルダ4の回転数に特に制限はないが、GaN基板及び石英への傷やダメージを最小限にするため、回転定盤11は毎分5回転の速度で回転させた。GaN基板を取り付けたホルダ4も同様の理由により毎分10回転の速度で回転させた。 After bringing the GaN substrate into contact with the TiO 2 film, a sulfuric acid aqueous solution adjusted to pH 1.5 as the reaction treatment solution 5 is dropped onto the rotating platen 11 at a flow rate of 5 ml per minute, and the rotating platen 11 and the holder 4 The rotating shafts 9 and 13 included in the are rotated. There are no particular restrictions on the number of rotations of the rotating platen 11 and the holder 4, but the rotating platen 11 was rotated at a speed of 5 rotations per minute in order to minimize scratches and damage to the GaN substrate and quartz. The holder 4 with the GaN substrate attached was also rotated at a speed of 10 revolutions per minute for the same reason.

次いで、紫外線照度を30mW/cm2に調節した紫外線(光7)を高圧水銀灯からなる光照射手段8により回転定盤11の裏面側から照射し、光触媒反応を開始することにより加工を開始した。加工時間は1時間とした。 Subsequently, ultraviolet rays (light 7) with an ultraviolet illuminance adjusted to 30 mW / cm 2 were irradiated from the back side of the rotating platen 11 by the light irradiation means 8 comprising a high-pressure mercury lamp, and processing was started by initiating a photocatalytic reaction. The processing time was 1 hour.

加工後の表面(Ga面)の表面形状を位相シフト干渉顕微鏡により観察し、最大高低差(Peak−valley;PV)を求めた。PVは面内の最高点と最低点との差を表しているので、反応時間を一定とした場合に最高点の減少度合いが分かるため加工速度を比較する指標として利用できる。   The surface shape of the processed surface (Ga surface) was observed with a phase shift interference microscope, and the maximum height difference (Peak-valley; PV) was determined. Since PV represents the difference between the highest point and the lowest point in the plane, when the reaction time is constant, the degree of reduction of the highest point is known, and can be used as an index for comparing the processing speed.

その結果、加工前に面内(700μm×500μm)のPVが18.90nmであった表面14が、加工後にPVが4.375nmとなっていることが確認された。反応処理液5のpHを4.88より大きくした場合、PVは8〜16nm程度であり、pHを4.88以下にすることで加工速度が2〜7倍程度改善されたことが分かる。本実施例における加工速度は14.6nm/hであるが、基板及び定盤の回転数、加圧力、反応処理液5のpHにより2〜150nm/hの範囲で制御が可能である。   As a result, it was confirmed that the surface 14 having an in-plane (700 μm × 500 μm) PV of 18.90 nm before processing had a PV of 4.375 nm after processing. When the pH of the reaction treatment liquid 5 is higher than 4.88, PV is about 8 to 16 nm, and it can be seen that the processing speed is improved about 2 to 7 times by setting the pH to 4.88 or less. The processing speed in this embodiment is 14.6 nm / h, but it can be controlled in the range of 2 to 150 nm / h depending on the rotation speed of the substrate and the surface plate, the applied pressure, and the pH of the reaction treatment solution 5.

このように光触媒反応型化学的加工法を実施する際に反応処理液のpHを4.88以下に設定することによって、GaN単結晶基板表面の加工速度を改善することができる。   Thus, when the photocatalytic reaction type chemical processing method is performed, the processing speed of the surface of the GaN single crystal substrate can be improved by setting the pH of the reaction processing solution to 4.88 or less.

[実施例2]
SiC基板を用いて、実施例1と同様に光触媒反応型化学的加工法により基板表面を加工した。光触媒材料としては、高周波マグネトロンスパッタ法により作製したTiO2を用いた。
[Example 2]
Using the SiC substrate, the substrate surface was processed by the photocatalytic reaction type chemical processing method in the same manner as in Example 1. As the photocatalytic material, TiO 2 produced by a high frequency magnetron sputtering method was used.

図1に示すように、ホルダ4に被加工物3として25%HF水溶液で洗浄したSiC基板をワックスで貼付けた後、SiC基板の被加工面(表面14)を、石英からなる薄膜支持基材2に堆積させたTiO2からなる光触媒薄膜1に接触させた。ここで、本実施例で用いたSiC基板は単結晶であり、直径50mm、[11−20]方向に8度傾斜した(0001)Si面のn型4H−SiCで、抵抗率は0.017Ωcmである。{0001}面のSiC単結晶基板には極性があり、一方は最表面がSi原子からなるSi面であり、他方は最表面がC原子からなるC面である。本実施例ではSi面を加工した。C面を加工した場合、加工速度が多少異なるものの、加工が進行する機構はSi面の場合と同様である。なお、本実施例で用いたSiC基板の被加工面(Si面)は、予め機械的に研磨されている。 As shown in FIG. 1, a SiC substrate cleaned with a 25% HF aqueous solution as a workpiece 3 is affixed to a holder 4 with wax, and then a processed surface (surface 14) of the SiC substrate is made of a thin film supporting base made of quartz. 2 was brought into contact with the photocatalytic thin film 1 made of TiO 2 deposited on the substrate 2 . Here, the SiC substrate used in this example is a single crystal, and is a n-type 4H—SiC with a diameter of 50 mm and a (0001) Si plane inclined by 8 degrees in the [11-20] direction, and the resistivity is 0.017 Ωcm. It is. The {0001} -plane SiC single crystal substrate has polarity, one is a Si surface whose outermost surface is made of Si atoms, and the other is a C-plane whose outermost surface is made of C atoms. In this example, the Si surface was processed. When the C surface is processed, the processing speed is somewhat different, but the mechanism of the processing is the same as in the case of the Si surface. The processed surface (Si surface) of the SiC substrate used in this example is mechanically polished in advance.

SiC基板をTiO2膜に接触させた後、反応処理液5としてpHを3.0に調節した硫酸水溶液を回転定盤11に毎分5mlの流量で滴下すると共に、回転定盤11およびホルダ4が備える回転軸9,13を回転させた。回転定盤11およびホルダ4の回転数に特に制限はないが、SiC基板及び石英への傷やダメージを最小限にするため、回転定盤11は毎分5回転の速度で回転させた。SiC基板を取り付けたホルダ4も同様の理由により毎分10回転の速度で回転させた。 After the SiC substrate is brought into contact with the TiO 2 film, a sulfuric acid aqueous solution having a pH adjusted to 3.0 is dropped as a reaction treatment liquid 5 onto the rotating platen 11 at a flow rate of 5 ml per minute, and the rotating platen 11 and the holder 4 The rotating shafts 9 and 13 included in the are rotated. There are no particular restrictions on the number of rotations of the rotating platen 11 and the holder 4, but the rotating platen 11 was rotated at a speed of 5 rotations per minute in order to minimize scratches and damage to the SiC substrate and quartz. The holder 4 attached with the SiC substrate was also rotated at a speed of 10 revolutions per minute for the same reason.

次いで、紫外線照度を30mW/cm2に調節した紫外線(光7)を高圧水銀灯からなる光照射手段8により回転定盤11の裏面側から照射し、光触媒反応を開始することにより加工を開始した。加工時間は1時間とした。 Subsequently, ultraviolet rays (light 7) with an ultraviolet illuminance adjusted to 30 mW / cm 2 were irradiated from the back side of the rotating platen 11 by the light irradiation means 8 comprising a high-pressure mercury lamp, and processing was started by initiating a photocatalytic reaction. The processing time was 1 hour.

加工後の表面(Si面)の表面形状を原子間力顕微鏡(AFM)により観察し、最大高低差(PV)を求めた。   The surface shape of the processed surface (Si surface) was observed with an atomic force microscope (AFM), and the maximum height difference (PV) was obtained.

その結果、加工前に面内のPVが20.66nmであった表面14が、加工後にPVが4.696nmとなっていることが確認された。また、反応処理液5のpHを4.88より大きくした場合、PVが10.77nmであった表面14が、pHを4.88以下にすることで、加工後のPVが2.751nmとなっていることが確認された。このことからpHを4.88以下にすることで加工速度が2倍程度改善されたことが分かる。本実施例における加工速度は16.0nm/hであるが、基板及び定盤の回転数、加圧力、反応処理液5のpHにより2〜150nm/hの範囲で制御が可能である。   As a result, it was confirmed that the surface 14 whose in-plane PV was 20.66 nm before processing had a PV of 4.696 nm after processing. Further, when the pH of the reaction treatment solution 5 is set to be higher than 4.88, the surface 14 having PV of 10.77 nm has a pH of 2.751 nm after processing by setting the pH to 4.88 or less. It was confirmed that From this, it can be seen that the processing speed was improved by about 2 times by setting the pH to 4.88 or less. The processing speed in this embodiment is 16.0 nm / h, but it can be controlled in the range of 2 to 150 nm / h depending on the rotation speed of the substrate and the surface plate, the applied pressure, and the pH of the reaction treatment liquid 5.

このように光触媒反応型化学的加工法を実施する際に反応処理溶液のpHを4.88以下に設定することによって、SiC単結晶基板表面の加工速度も改善することができる。   Thus, the processing speed of the SiC single crystal substrate surface can be improved by setting the pH of the reaction processing solution to 4.88 or lower when carrying out the photocatalytic reaction type chemical processing method.

1 光触媒薄膜
2 薄膜支持基材
3 被加工物
4 ホルダ
5 反応処理液
5a 処理液層
6 処理液供給手段
7 光
8 光照射手段
9 回転軸
10 光触媒反応型化学的加工装置
11 回転定盤
12 加工槽
13 回転軸
14 (被加工物3の)表面
15 化合物層
DESCRIPTION OF SYMBOLS 1 Photocatalyst thin film 2 Thin film support base material 3 Workpiece 4 Holder 5 Reaction processing liquid 5a Processing liquid layer 6 Processing liquid supply means 7 Light 8 Light irradiation means 9 Rotating shaft 10 Photocatalytic reaction type chemical processing apparatus 11 Rotating surface plate 12 Processing Tank 13 Rotating shaft 14 Surface 15 of workpiece 3 Compound layer

Claims (5)

光触媒薄膜を被加工物の表面に接触若しくは極接近させると共に、その間に酸性水溶液からなる反応処理液を介在させ、前記光触媒薄膜に光照射して生成した活性種を用いて被加工物の表面を加工する光触媒反応型化学的加工方法において、
前記反応処理液のpHが4.88以下となるような条件下で被加工物の表面を加工することを特徴とする光触媒反応型化学的加工方法。
The photocatalytic thin film is brought into contact with or very close to the surface of the work piece, and a reaction treatment liquid composed of an acidic aqueous solution is interposed therebetween, and the photocatalytic thin film is irradiated with light, and the surface of the work piece is formed using the active species generated by light irradiation. In the photocatalytic reaction type chemical processing method to be processed,
A photocatalytic reaction type chemical processing method, wherein the surface of a workpiece is processed under a condition such that the pH of the reaction treatment solution is 4.88 or less.
前記光触媒薄膜を構成する光触媒として、TiO2、KTaO3、SrTiO3、ZrO2、NbO3、ZnO、WO3、及びSnO2からなる群から選択される少なくとも1つの金属酸化物を用いる請求項1記載の光触媒反応型化学的加工方法。 The photocatalyst constituting the photocatalytic thin film is at least one metal oxide selected from the group consisting of TiO 2 , KTaO 3 , SrTiO 3 , ZrO 2 , NbO 3 , ZnO, WO 3 , and SnO 2. The photocatalytic reaction type chemical processing method described. 前記被加工物は、SiC、GaN、サファイア、ルビー、ダイヤモンドのいずれかからなる請求項1又は2記載の光触媒反応型化学的加工方法。   3. The photocatalytic reaction type chemical processing method according to claim 1, wherein the workpiece is made of any one of SiC, GaN, sapphire, ruby, and diamond. 前記反応処理液は、硫酸、塩酸、硝酸、燐酸、フッ化水素酸、過酸化水素のうち少なくとも1つを含む酸性水溶液からなる請求項1〜3いずれか記載の光触媒反応型化学的加工方法。   The photocatalytic reaction type chemical processing method according to any one of claims 1 to 3, wherein the reaction treatment liquid is an acidic aqueous solution containing at least one of sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, hydrofluoric acid, and hydrogen peroxide. 平坦な表面に光触媒薄膜が形成され、その光触媒薄膜を回転させる回転定盤と、その回転定盤の回転軸に対して偏心した回転軸を有し、被加工物を保持すると共に前記光触媒薄膜の表面に前記被加工物を接触若しくは極接近させる上下動可能なホルダと、前記光触媒薄膜と前記被加工物の表面との間に酸性水溶液からなる反応処理液を供給する処理液供給手段と、前記光触媒薄膜に光照射する光照射手段とを備え、被加工物の表面を平坦化加工する光触媒反応型化学的加工装置において、
前記処理液供給手段は、pHが4.88以下の前記反応処理液を供給することを特徴とする光触媒反応型化学的加工装置。
A photocatalytic thin film is formed on a flat surface, and has a rotating surface plate that rotates the photocatalytic thin film, and a rotation axis that is eccentric with respect to the rotation axis of the rotation surface plate. A holder capable of moving up and down to bring the workpiece into contact with or in close proximity to the surface; a treatment liquid supply means for supplying a reaction treatment liquid comprising an acidic aqueous solution between the photocatalytic thin film and the surface of the workpiece; In the photocatalytic reaction type chemical processing apparatus comprising a light irradiation means for irradiating the photocatalytic thin film with light, and planarizing the surface of the workpiece,
The photocatalytic reaction type chemical processing apparatus, wherein the treatment liquid supply means supplies the reaction treatment liquid having a pH of 4.88 or less.
JP2011151539A 2011-07-08 2011-07-08 Method and device of photocatalyst reaction type chemical processing Withdrawn JP2013017925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011151539A JP2013017925A (en) 2011-07-08 2011-07-08 Method and device of photocatalyst reaction type chemical processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011151539A JP2013017925A (en) 2011-07-08 2011-07-08 Method and device of photocatalyst reaction type chemical processing

Publications (1)

Publication Number Publication Date
JP2013017925A true JP2013017925A (en) 2013-01-31

Family

ID=47689923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011151539A Withdrawn JP2013017925A (en) 2011-07-08 2011-07-08 Method and device of photocatalyst reaction type chemical processing

Country Status (1)

Country Link
JP (1) JP2013017925A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015073978A (en) * 2013-10-11 2015-04-20 サンスター技研株式会社 Photocatalyst carrier
EP3142142A4 (en) * 2014-03-12 2017-11-08 Osaka University Method and device for processing wide-bandgap semiconductor substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015073978A (en) * 2013-10-11 2015-04-20 サンスター技研株式会社 Photocatalyst carrier
EP3142142A4 (en) * 2014-03-12 2017-11-08 Osaka University Method and device for processing wide-bandgap semiconductor substrate

Similar Documents

Publication Publication Date Title
US9233449B2 (en) Polishing method, polishing apparatus and GaN wafer
JP5516424B2 (en) Method for manufacturing silicon carbide single crystal substrate for epitaxial growth
US8877082B2 (en) Method of processing surface of high-performance materials which are difficult to process
US20050205521A1 (en) Wet etching apparatus and wet etching method
CN109866084A (en) A kind of UV photocatalysis assistant chemical mechanical polishing apparatus and polishing method
JP6206847B2 (en) Wide band gap semiconductor substrate processing method and apparatus
Ou et al. Photochemically combined mechanical polishing of N-type gallium nitride wafer in high efficiency
JP2008081389A (en) Catalyst-aided chemical processing method and apparatus
JP2017098322A (en) POLISHING APPARATUS AND GaN SUBSTRATE POLISHING PROCESSING METHOD USING THE SAME
Deng et al. Damage-free dry polishing of 4H-SiC combined with atmospheric-pressure water vapor plasma oxidation
JP2012035188A (en) Processing method
Ou et al. Polishing tool with phyllotactic distributed through-holes for photochemically combined mechanical polishing of N-type gallium nitride wafers
JP2013017925A (en) Method and device of photocatalyst reaction type chemical processing
JP4752072B2 (en) Polishing method and polishing apparatus
CN114290132A (en) Surface treatment method for silicon carbide wafer
JP6145761B2 (en) Processing method and processing apparatus
JP2011120989A (en) Surface processing method
JP2012054438A (en) Surface roughening method of silicon-based substrate, and device
JP2010179236A (en) Processing method
JP7204105B2 (en) Processing method and processing equipment
JP2015226951A (en) Polishing apparatus
Deng et al. Damage-free and atomically-flat finishing of single crystal SiC by combination of oxidation and soft abrasive polishing
JP2013026314A (en) Manufacturing method of nitride semiconductor substrate
JP6515311B2 (en) Processing method and processing apparatus
JP2008098199A (en) Polishing method of group iii-v nitride semiconductor substrate and group iii-v nitride semiconductor substrate obtained by that method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131202

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007