JP2013016894A - Solid-state imaging device and manufacturing method of the same - Google Patents

Solid-state imaging device and manufacturing method of the same Download PDF

Info

Publication number
JP2013016894A
JP2013016894A JP2011146252A JP2011146252A JP2013016894A JP 2013016894 A JP2013016894 A JP 2013016894A JP 2011146252 A JP2011146252 A JP 2011146252A JP 2011146252 A JP2011146252 A JP 2011146252A JP 2013016894 A JP2013016894 A JP 2013016894A
Authority
JP
Japan
Prior art keywords
solid
state imaging
imaging device
metal core
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011146252A
Other languages
Japanese (ja)
Inventor
Hiroshi Sugawara
宏 菅原
Kiyohiko Yamada
清彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011146252A priority Critical patent/JP2013016894A/en
Publication of JP2013016894A publication Critical patent/JP2013016894A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thin solid-state imaging device having high rigidity, improved accuracy, and high reliability and allowing for high-density wiring.SOLUTION: The solid-state imaging device of this invention is provided with: an insulating multilayer substrate having an aperture and including at least one layer of inner-layer metal core; a translucent member installed on one surface of the multilayer substrate so as to cover the aperture; and a solid state imaging element installed on the other surface of the multilayer substrate so as to cover the aperture. The solid-state imaging device includes regions where the inner layer metal core is exposed, at the periphery of the multilayer substrate.

Description

本発明は、固体撮像装置およびその製造方法に係り、特に、監視カメラ、医療用カメラ、車載用カメラ、情報通信端末用カメラなどの固体撮像素子を用いて形成される小型の固体撮像装置およびその製造方法に関するものである。   The present invention relates to a solid-state imaging device and a manufacturing method thereof, and in particular, a small-sized solid-state imaging device formed using a solid-state imaging device such as a surveillance camera, a medical camera, an in-vehicle camera, an information communication terminal camera, and the like. It relates to a manufacturing method.

近年、携帯電話、車載部品等で小型カメラの需要が急速に進展している。この種の小型カメラは固体撮像素子によりレンズなどの光学系を介して入力される画像を電気信号として出力する固体撮像装置が使用されている。そしてこの撮像装置の小型化、高性能化に伴い、各方面での使用が増え、映像入力装置としての市場を広げている。従来の半導体撮像素子を用いた撮像装置は、レンズ、半導体撮像素子、その駆動回路および信号処理回路などを搭載したLSI等の部品を夫々筐体あるいは構造体に形成してこれらを組み合わせている。このような組み合わせによる実装構造は、平板状のプリント基板上に各素子を搭載する構造をとることが多い。しかし、高機能化(小型化、解像度向上)の市場要求に伴い撮像素子の微細化が進み、わずかな位置ずれが、画質の問題となり、実装精度の向上が望まれている。   In recent years, the demand for small cameras for mobile phones, in-vehicle components, etc. has been rapidly increasing. This type of small camera uses a solid-state imaging device that outputs an image input as an electrical signal by an optical system such as a lens by a solid-state imaging device. With the downsizing and higher performance of this imaging device, the use in various fields has increased, expanding the market as a video input device. In a conventional image pickup apparatus using a semiconductor image pickup device, components such as an LSI on which a lens, a semiconductor image pickup device, a driving circuit thereof, a signal processing circuit, and the like are mounted are respectively formed in a housing or a structure and combined. The mounting structure by such a combination often takes a structure in which each element is mounted on a flat printed board. However, along with the market demand for higher functionality (miniaturization, higher resolution), the miniaturization of the image sensor has progressed, and a slight misalignment becomes a problem in image quality, and improvement in mounting accuracy is desired.

例えば、特許文献1では、フレキシブル配線板を用いて高精度の配線を形成しているが、固体撮像素子を搭載する際に位置ずれが生じ易いという問題を回避すべく、フレキシブル配線板と補強板の積層基板を用い、この積層基板を貫通する貫通穴を位置決め穴として用いる方法が提案されている。   For example, in Patent Document 1, a high-precision wiring is formed using a flexible wiring board. However, in order to avoid a problem that misalignment is likely to occur when a solid-state imaging device is mounted, a flexible wiring board and a reinforcing board are used. A method has been proposed in which a multilayer substrate is used and a through hole penetrating the multilayer substrate is used as a positioning hole.

特開2008−263550号公報JP 2008-263550 A

特許文献1の固体撮像装置では、貫通穴の形成は機械加工によってなされるため、十分な精度を得ることができないという問題があった。また片面は補強板であるため、部品の配置ができず、機能に限界があった。
近年、監視カメラ、医療用カメラ、車載用カメラ、情報通信端末用カメラなどの分野では、カメラの高機能化要求が高まってきているため、処理回路の高集積化が必須となり、配線基板のさらなる微細化・高密度化が求められている。
本発明は、前記実情に鑑みてなされたもので、更なる微細化・高密度化に対応可能な固体撮像装置を提供することを目的とする。
The solid-state imaging device of Patent Document 1 has a problem in that sufficient accuracy cannot be obtained because the through hole is formed by machining. Further, since one side is a reinforcing plate, the parts cannot be arranged, and the function is limited.
In recent years, in the fields of surveillance cameras, medical cameras, in-vehicle cameras, cameras for information communication terminals, etc., there is an increasing demand for higher functionality of cameras. Miniaturization and high density are required.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a solid-state imaging device that can cope with further miniaturization and higher density.

そこで本発明の固体撮像装置は、開口部を持ち、少なくとも1層の内層金属コアを含む絶縁性の積層基板と、前記積層基板の1方の面に前記開口部を塞ぐように設置された透光性部材と、前記積層基板の他方の面に前記開口部を塞ぐように設置された固体撮像素子と、を具備し、前記積層基板の周縁部で前記内層金属コアが露呈する領域を含むことを特徴とする。   In view of this, the solid-state imaging device of the present invention has an insulating laminated substrate having an opening and including at least one inner metal core, and a transparent substrate installed on one surface of the laminated substrate so as to close the opening. An optical member; and a solid-state imaging device installed so as to close the opening on the other surface of the multilayer substrate, and including a region where the inner metal core is exposed at a peripheral portion of the multilayer substrate. It is characterized by.

また、本発明は、上記固体撮像装置であって、開口部を有し、少なくとも1層の内層金属コアを含む絶縁性の積層基板と、前記積層基板の1方の面に前記開口部を塞ぐように設置された透光性部材と、前記積層基板の他方の面に前記開口部を塞ぐように設置された固体撮像素子と、を具備し、前記積層基板の周縁部に前記内層金属コアが露呈する複数の領域を含む。   The present invention is also the above-described solid-state imaging device, comprising an insulating laminated substrate having an opening and including at least one inner metal core, and closing the opening on one surface of the laminated substrate. A translucent member installed in such a manner, and a solid-state imaging device installed so as to close the opening on the other surface of the multilayer substrate, and the inner layer metal core is disposed on a peripheral portion of the multilayer substrate. It includes a plurality of exposed areas.

また、本発明は、上記固体撮像装置であって、前記複数の領域は、前記積層基板に設けられた基準穴を含み、前記基準穴の周縁で、前記内層金属コアが露出しており、前記積層基板の両面に、固体撮像素子と、透光性部材が配置されたものを含む。   The present invention is the solid-state imaging device, wherein the plurality of regions include a reference hole provided in the multilayer substrate, and the inner metal core is exposed at a periphery of the reference hole, It includes one in which a solid-state imaging device and a translucent member are disposed on both surfaces of a multilayer substrate.

また、本発明は、上記固体撮像装置であって、前記透光性部材は光学レンズを含み、前記複数の領域を基準として、前記光学レンズと前記固体撮像素子とが、前記積層基板に対して、表裏から位置あわせ可能に構成されたものを含む。   Further, the present invention is the above-described solid-state imaging device, wherein the translucent member includes an optical lens, and the optical lens and the solid-state imaging element with respect to the multilayer substrate on the basis of the plurality of regions. Including those that can be aligned from the front and back.

また、本発明は、上記固体撮像装置であって、前記透光性部材は、光学フィルタを含む。   Moreover, this invention is the said solid-state imaging device, Comprising: The said translucent member contains an optical filter.

また、本発明は、上記固体撮像装置であって、前記内層金属コアが、前記積層基板のスルーホールを避けて面全体に形成された金属板であるものを含む。   The present invention includes the solid-state imaging device, wherein the inner metal core is a metal plate that is formed on the entire surface while avoiding a through hole of the multilayer substrate.

また、本発明は、上記固体撮像装置であって、前記積層基板の配線パターンの接地部が前記金属板に電気的に接続されたものを含む。   In addition, the present invention includes the solid-state imaging device, wherein a ground portion of a wiring pattern of the multilayer substrate is electrically connected to the metal plate.

また、本発明は、上記固体撮像装置であって、前記積層基板は、樹脂基材と配線パターンとの積層体で構成されたものを含む。   Moreover, this invention is said solid-state imaging device, Comprising: The said laminated substrate contains what was comprised with the laminated body of the resin base material and the wiring pattern.

また、本発明は、上記固体撮像装置であって、前記積層基板は、セラミック基材と配線パターンとの積層体で構成されたものを含む。   Moreover, this invention is said solid-state imaging device, Comprising: The said multilayer substrate contains what was comprised by the laminated body of the ceramic base material and the wiring pattern.

また、本発明の固体撮像装置の製造方法は、開口部を有し、少なくとも1層の内層金属コアを含み、貫通した開口部をもつ絶縁性の積層基板を形成する工程と、一部に内層金属コアを突出させるように前記積層基板の外形を裁断する工程と、前記積層基板の開口部を塞ぐように固体撮像素子を搭載する工程と、前記積層基板の開口部を塞ぐように透光性部材を搭載する工程とを具備したことを特徴とする。   In addition, a method for manufacturing a solid-state imaging device according to the present invention includes a step of forming an insulating multilayer substrate having an opening, including at least one inner metal core, and having an opening therethrough. A step of cutting the outer shape of the multilayer substrate so as to protrude the metal core, a step of mounting a solid-state imaging device so as to close the opening of the multilayer substrate, and a translucency so as to close the opening of the multilayer substrate And a step of mounting the member.

また、本発明は、上記固体撮像装置の製造方法であって、前記積層基板を形成する工程は、周縁で前記内層金属コアが突出するように、基準穴を形成する工程を含む。   Moreover, this invention is a manufacturing method of the said solid-state imaging device, Comprising: The process of forming the said laminated substrate includes the process of forming a reference | standard hole so that the said inner-layer metal core may protrude in a periphery.

また、本発明は、上記固体撮像装置の製造方法であって、前記積層基板を形成する工程は、金属板を形状加工し内層金属コアを形成する工程と、配線層を備えた樹脂基体を形成する工程と、前記内層金属コアを前記樹脂基体に貼着する工程とを含む。   The present invention is also a method for manufacturing the solid-state imaging device, wherein the step of forming the laminated substrate includes forming a metal plate to form an inner metal core, and forming a resin substrate including a wiring layer. And a step of attaching the inner metal core to the resin substrate.

また、本発明は、上記固体撮像装置の製造方法であって、前記積層基板を形成する工程は、金属板を形状加工し内層金属コアを形成する工程と、セラミック積層グリーンシートを形成する工程と、前記内層金属コアを前記セラミック積層グリーンシートに貼着する工程とを含む。   The present invention is also a method of manufacturing the solid-state imaging device, wherein the step of forming the multilayer substrate includes a step of forming a metal plate to form an inner metal core, and a step of forming a ceramic multilayer green sheet. And a step of adhering the inner metal core to the ceramic laminated green sheet.

本発明によれば、内部金属コアが周縁部に露呈しているため、この内部金属コアを基準として位置合わせが容易である。特に、この内部金属コアを、積層基板と、光学レンズを一体化したレンズ筐体との位置決めに用いることで、固体撮像素子と光学レンズとの、より高精度の位置決めが可能となる。また、固体撮像装置の薄型化が可能で、高密度配線が可能でかつ位置精度の向上を図ることができ、信頼性の高い固体撮像装置を得ることができる。また、この内部金属コアが積層基板から露呈していることで、放熱が容易となり、固体撮像素子チップの温度上昇を防ぐことができる。
また、本発明の固体撮像装置の製造方法を用いることにより、固体撮像装置の薄型化に際しても、容易に制御性よく、高精度で信頼性の高い固体撮像装置を製造することができる。その結果、携帯端末装置の薄型化も可能となる。
According to the present invention, since the internal metal core is exposed at the peripheral edge, alignment is easy with the internal metal core as a reference. In particular, by using this internal metal core for positioning the laminated substrate and the lens housing in which the optical lens is integrated, the solid-state imaging device and the optical lens can be positioned with higher accuracy. In addition, the solid-state imaging device can be thinned, high-density wiring is possible, the positional accuracy can be improved, and a highly reliable solid-state imaging device can be obtained. Further, since the internal metal core is exposed from the laminated substrate, heat dissipation is facilitated, and the temperature rise of the solid-state imaging device chip can be prevented.
In addition, by using the method for manufacturing a solid-state imaging device of the present invention, it is possible to easily manufacture a solid-state imaging device with high controllability, high accuracy, and high reliability even when the thickness of the solid-state imaging device is reduced. As a result, the mobile terminal device can be thinned.

本実施の形態1の固体撮像装置の分解斜視図1 is an exploded perspective view of the solid-state imaging device according to the first embodiment. 本実施の形態1の固体撮像装置のレンズ筐体を外した状態を示す断面図Sectional drawing which shows the state which removed the lens housing | casing of the solid-state imaging device of this Embodiment 1. FIG. 本実施の形態1の固体撮像装置に用いられる積層基板の断面図Sectional drawing of the multilayer substrate used for the solid-state imaging device of this Embodiment 1. FIG. 同積層基板を示す上面図Top view showing the same multilayer substrate 本実施の形態1の固体撮像装置の積層基板の製造工程を示す図The figure which shows the manufacturing process of the multilayer substrate of the solid-state imaging device of this Embodiment 1. 本実施の形態1の固体撮像装置の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the solid-state imaging device of this Embodiment 1. 本実施の形態2の固体撮像装置の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the solid-state imaging device of this Embodiment 2. 本実施の形態3の固体撮像装置の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the solid-state imaging device of this Embodiment 3. 本実施の形態の固体撮像装置の積層基板の変形例を示す上面図The top view which shows the modification of the laminated substrate of the solid-state imaging device of this Embodiment

以下、本発明に係る実施の形態について図面を参照して詳細に説明する。
(実施の形態1)
図1は、本実施の形態1の固体撮像装置の分解斜視図である。図2は、本実施の形態1の固体撮像装置のレンズ筐体を外した状態を示す斜視図、図3は、本実施の形態1の固体撮像装置に用いられる積層基板の要部断面図、図4は、同積層基板を示す上面図、図5は、同積層基板の製造工程を示す図である。
図1に示すように、この固体撮像装置は、開口部7を有し、内層金属コア2の両面に積層一体化された積層基板1と、この積層基板1の内層金属コア2側に開口部7を塞ぐように設置された透光性部材(光学フィルタ)14および光学レンズ15と、この積層基板1側に設置された固体撮像素子10とを具備している。そして積層基板1の周縁部である四隅で内層金属コア2が露呈する4つの領域(露出部4)を含む。そして、光学レンズ15と一体化したレンズ筐体16には、レンズ位置決めピンを構成する基準突起部17が形成されている。基準突起部17は、基準穴としての切込み部3に嵌合する基準となる突起であり、この基準突起部17が、内層金属コア2が露呈する露出部4を基準として、レンズ筐体16の実装がなされる。この基準突起部17は、3個設けられている。3個存在することで、より効率よい位置決めが可能となるが、4個でもよいし、2個でもよい。
Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.
(Embodiment 1)
FIG. 1 is an exploded perspective view of the solid-state imaging device according to the first embodiment. 2 is a perspective view showing a state in which the lens housing of the solid-state imaging device according to the first embodiment is removed, and FIG. 3 is a cross-sectional view of a main part of the multilayer substrate used in the solid-state imaging device according to the first embodiment. FIG. 4 is a top view showing the laminated substrate, and FIG. 5 is a diagram showing a manufacturing process of the laminated substrate.
As shown in FIG. 1, this solid-state imaging device has an opening 7, a laminated substrate 1 laminated and integrated on both surfaces of the inner metal core 2, and an opening on the inner metal core 2 side of the laminated substrate 1. 7 is provided with a translucent member (optical filter) 14 and an optical lens 15 installed so as to close the solid-state image sensor 10 and a solid-state imaging device 10 installed on the laminated substrate 1 side. And it includes four areas (exposed part 4) where the inner metal core 2 is exposed at the four corners which are the peripheral part of the multilayer substrate 1. The lens housing 16 integrated with the optical lens 15 is formed with a reference protrusion 17 constituting a lens positioning pin. The reference protrusion 17 is a reference protrusion that fits into the notch 3 serving as a reference hole. The reference protrusion 17 is a reference of the exposed portion 4 from which the inner metal core 2 is exposed. Implementation is done. Three reference protrusions 17 are provided. The presence of three enables more efficient positioning, but may be four or two.

本実施の形態では、積層基板1と外形形状および大きさがほぼ同じ内層金属コア2とを積層して貼り合わせることで一体化している。この場合の積層基板1にはガラスエポキシ樹脂を絶縁性の樹脂基体1aとして用い、内層金属コア2には300μmの厚さの銅板を用いた。そして、内層金属コア2には基準穴としての切込み部3が形成されており、その周辺に内層金属コアの露出部4を形成している。そして、開口部7が開けられている。またこの積層基板1は図3に断面図を示すように、樹脂基体1a上に金属配線パターン1bが形成されており、固体撮像素子10が電気的に接続するように設置されている。積層基板1上には図1に示すように、金属配線パターン1bと接続するようにチップ部品11やコネクタ(図示せず)が設置されている。また、金属配線パターン1bの接地部は銅の内層金属コア2と電気接続がなされている。さらに、このとき用いた固体撮像素子10は裏面に遮光膜として黒色のエポキシ樹脂膜(図示せず)を塗布したものを使用した。なおこの遮光膜としては、固体撮像素子10の裏面に成膜されたタングステン薄膜などの金属膜であってもよい。   In the present embodiment, the laminated substrate 1 and the inner metal core 2 having substantially the same outer shape and size are laminated and bonded together. In this case, a glass epoxy resin was used as the insulating resin substrate 1 a for the laminated substrate 1, and a copper plate having a thickness of 300 μm was used for the inner metal core 2. The inner metal core 2 is provided with a cut portion 3 as a reference hole, and an exposed portion 4 of the inner metal core is formed in the periphery thereof. And the opening part 7 is opened. Further, as shown in a cross-sectional view in FIG. 3, the laminated substrate 1 has a metal wiring pattern 1b formed on a resin substrate 1a, and is installed so that the solid-state imaging device 10 is electrically connected. As shown in FIG. 1, a chip component 11 and a connector (not shown) are installed on the multilayer substrate 1 so as to be connected to the metal wiring pattern 1b. The ground portion of the metal wiring pattern 1b is electrically connected to the copper inner metal core 2. Furthermore, the solid-state image sensor 10 used at this time used what coated the black epoxy resin film (not shown) as a light shielding film on the back surface. The light shielding film may be a metal film such as a tungsten thin film formed on the back surface of the solid-state imaging device 10.

図1は、本実施の形態1の固体撮像装置の分解斜視図であり、図1の固体撮像装置を斜め上面から見たものである。
積層基板1と外形形状が同じ大きさの内層金属コア2とを積層一体化しており、内層金属コア2にも開口部7が開けられている。透光性部材(透光性フィルタ)14には、赤外線カットフィルタ機能を持つガラスを使用した。そして、光学レンズ15と一体化したレンズ筐体16には、レンズ位置決めピンを構成する基準突起部17が形成されている。図に示している基準突起部17は基準穴としての切込み部3に嵌合する基準となる突起である。
FIG. 1 is an exploded perspective view of the solid-state imaging device of the first embodiment, and is a view of the solid-state imaging device of FIG.
A laminated substrate 1 and an inner layer metal core 2 having the same outer shape are laminated and integrated, and an opening 7 is also opened in the inner layer metal core 2. As the translucent member (translucent filter) 14, glass having an infrared cut filter function was used. The lens housing 16 integrated with the optical lens 15 is formed with a reference protrusion 17 constituting a lens positioning pin. The reference protrusion 17 shown in the drawing is a protrusion serving as a reference that fits into the notch 3 serving as a reference hole.

また、積層基板1の配線部は高密度配線を構成している。   Further, the wiring portion of the multilayer substrate 1 constitutes a high density wiring.

図4は本実施の形態1の固体撮像装置の積層基板の上面図である。
積層基板1と外形形状が同じ大きさの内層金属コア2とを積層一体化しており、基準穴としての切込み部3を有している。
FIG. 4 is a top view of the multilayer substrate of the solid-state imaging device according to the first embodiment.
A laminated substrate 1 and an inner metal core 2 having the same outer shape are laminated and integrated, and has a cut portion 3 as a reference hole.

なお、積層基板1上に固体撮像素子10を実装するとともに、チップ部品11、コネクタ(図示せず)などを搭載し、さらに固体撮像素子10、チップ部品11を覆うようにモールド樹脂を形成してもよい。このように積層基板1を用いることで高密度配線を精度よく実現することができる。   In addition, while mounting the solid-state image sensor 10 on the multilayer substrate 1, a chip component 11, a connector (not shown), and the like are mounted, and a mold resin is formed so as to cover the solid-state image sensor 10 and the chip component 11. Also good. By using the multilayer substrate 1 in this way, high-density wiring can be realized with high accuracy.

次に、本実施の形態の固体撮像装置の製造工程について説明する。
図5は、本実施の形態1の固体撮像装置の製造に用いられる積層基板の製造工程を示す工程断面図である。
図5(a)において、積層基板1を構成する内層金属コア2をパンチングにより切込み部3及び開口部7及び認識穴13を形成するとともに、ダイシングラインD.L.を形成する。
こののち、樹脂基体1aにビアを通し、両面に金属配線パターン1bの配線を形成する。樹脂基体1aには60μmの厚さのプリプレグを使用した。この場合、多数個取りの金属配線パターン1bを一度に形成した。なお、樹脂基体1aとしては、ポリイミドフィルムなどのフレキシブル基材を用いてもよい。
Next, a manufacturing process of the solid-state imaging device according to the present embodiment will be described.
FIG. 5 is a process cross-sectional view illustrating a manufacturing process of the multilayer substrate used for manufacturing the solid-state imaging device according to the first embodiment.
5A, the inner metal core 2 constituting the multilayer substrate 1 is punched to form a cut portion 3, an opening portion 7, and a recognition hole 13, and a dicing line D.D. L. Form.
Thereafter, vias are passed through the resin substrate 1a, and the metal wiring pattern 1b is formed on both surfaces. A prepreg having a thickness of 60 μm was used for the resin substrate 1a. In this case, a multi-piece metal wiring pattern 1b was formed at a time. As the resin substrate 1a, a flexible substrate such as a polyimide film may be used.

そして図5(b)に示すように、内層金属コア2の両面に上記樹脂基体1aを貼り付けた。内層金属コアには、300μmの厚さの銅板を用いた。積層基板1と内層金属コア2の貼り付けには、導電性接着剤(図示せず)を用いて接着する。従って、積層基板1の配線の接地部と銅板を用いた内層金属コア2とが電気的に接続している。図示していないが、内層金属コア2側で接地したくない金属配線パターン1bの表面には絶縁膜を形成している。切込み部3の周りは内層金属コアの露出部4が確保されている。   And as shown in FIG.5 (b), the said resin base | substrate 1a was affixed on both surfaces of the inner-layer metal core 2. As shown in FIG. A copper plate having a thickness of 300 μm was used for the inner metal core. The laminated substrate 1 and the inner metal core 2 are bonded using a conductive adhesive (not shown). Therefore, the grounding portion of the wiring of the multilayer substrate 1 and the inner metal core 2 using the copper plate are electrically connected. Although not shown, an insulating film is formed on the surface of the metal wiring pattern 1b that is not desired to be grounded on the inner metal core 2 side. An exposed portion 4 of the inner metal core is secured around the cut portion 3.

このようにして、積層基板1と内層金属コア2を積層一体化した後に外形をプレス裁断により個片に切り落とす。
このようにして、図5(c)に示すように、切込み部3の周りに内層金属コアの露出部4を有する、本発明の固体撮像装置用の実装基板としての積層基板が得られる。
In this way, after the laminated substrate 1 and the inner metal core 2 are laminated and integrated, the outer shape is cut into individual pieces by press cutting.
In this way, as shown in FIG. 5C, a multilayer substrate is obtained as the mounting substrate for the solid-state imaging device of the present invention, which has the exposed portion 4 of the inner metal core around the notch portion 3.

このようにして形成された積層基板を用い、図6(a)に示すように、透光性部材14を接着する。続いて、図6(b)に示すように、透光性部材14に対向して開口部を塞ぐように積層基板1の金属配線パターン1bに固体撮像素子10を設置した。固体撮像素子10の電極(図示せず)上にバンプ10bを形成し、その先端に導電性接着剤10cを転写形成した。このときのバンプ10bは金線で形成し、導電性接着剤10cは銀ペーストとした。図示しない認識用パターンを基準として固体撮像素子10を金属配線パターン1b上に設置した後に、導電性接着剤10cを加熱硬化した。   As shown in FIG. 6A, the translucent member 14 is bonded using the multilayer substrate formed as described above. Subsequently, as illustrated in FIG. 6B, the solid-state imaging device 10 was installed on the metal wiring pattern 1 b of the multilayer substrate 1 so as to face the light transmissive member 14 and close the opening. A bump 10b was formed on an electrode (not shown) of the solid-state imaging device 10, and a conductive adhesive 10c was transferred and formed on the tip thereof. The bump 10b at this time was formed of a gold wire, and the conductive adhesive 10c was a silver paste. After the solid-state imaging device 10 was placed on the metal wiring pattern 1b using a recognition pattern (not shown) as a reference, the conductive adhesive 10c was heated and cured.

図6(b)において、固体撮像素子10の周りには、接続部の補強のために封止樹脂9を注入し、その後に加熱硬化を行った。続いて、チップ部品11およびコネクタ(図示せず)は別途、金属配線パターン1bに半田接続した。
そして必要に応じて、モールドを行い、モールド樹脂により各部品を覆って補強を行う。
このようにして、図6(c)に示すように固体撮像素子10と透光性部材14とを積層した構造体を形成する。そしてこの構造体にレンズ筐体16を装着して固体撮像装置が製造される。
また、光学レンズ15を搭載したレンズ筐体16には、基準突起部17が形成されており、基準穴としての切込み部3に差し込むことにより嵌合した。また、配線ケーブル(図示せず)をコネクタ(図示せず)に接続した。
このような製造方法をとることにより、簡易に、薄型で、高剛性で、高精度と高放熱性と高信頼性の固体撮像装置を製造することができる。
In FIG. 6B, a sealing resin 9 is injected around the solid-state imaging device 10 to reinforce the connection portion, and then heat curing is performed. Subsequently, the chip component 11 and the connector (not shown) were separately solder-connected to the metal wiring pattern 1b.
Then, if necessary, molding is performed, and each component is covered with a molding resin to be reinforced.
In this way, a structure in which the solid-state imaging device 10 and the translucent member 14 are stacked is formed as shown in FIG. Then, the lens housing 16 is attached to the structure to manufacture a solid-state imaging device.
In addition, a reference protrusion 17 is formed on the lens housing 16 on which the optical lens 15 is mounted, and is fitted by being inserted into the notch 3 serving as a reference hole. In addition, a wiring cable (not shown) was connected to a connector (not shown).
By adopting such a manufacturing method, it is possible to manufacture a solid-state imaging device that is simple, thin, highly rigid, highly accurate, highly radiant, and highly reliable.

また、本発明の固体撮像装置においては固体撮像素子チップの裏面からモールド樹脂で覆うことで、固体撮像素子やチップ部品の実装強度を補強することができる。   Moreover, in the solid-state imaging device of the present invention, the mounting strength of the solid-state imaging device and the chip component can be reinforced by covering the back surface of the solid-state imaging device chip with a mold resin.

このような構成を持つことにより、積層基板1の薄さのメリットを活かしながら同じ外形を持つ内層金属コア2を一部で突出させることにより、合わせ精度と放熱性を確保することができる。内層金属コアの露出部4を形成することにより積層基板1のズレや端面における突起物等の基準認識の邪魔になるようなものを避けることができ、銅端面の高精度性での形状を確保することができる。この内層金属コアの露出部4を基準として、レンズ筐体16のレンズ位置決めピンである基準突起部17を精度よく位置合わせすることができる。その結果、積層基板1上の固体撮像素子10と、レンズ筐体16と一体化された光学レンズ15との位置あわせの高精度化が可能となる。   By having such a configuration, the inner layer metal core 2 having the same outer shape is partially projected while taking advantage of the thinness of the multilayer substrate 1, thereby ensuring alignment accuracy and heat dissipation. By forming the exposed portion 4 of the inner layer metal core, it is possible to avoid things that obstruct the reference recognition such as deviation of the laminated substrate 1 and protrusions on the end face, and ensure the shape of the copper end face with high accuracy. can do. With reference to the exposed portion 4 of the inner layer metal core, the reference protrusion 17 that is a lens positioning pin of the lens housing 16 can be accurately aligned. As a result, it is possible to increase the accuracy of alignment between the solid-state imaging device 10 on the multilayer substrate 1 and the optical lens 15 integrated with the lens housing 16.

積層基板1の表面にチップ部品11を搭載することにより、電気配線設計の自由度が高まる。つまり固体撮像素子近傍にチップ部品11をおくことができ、電気特性の最適化を図ることができる。また、コネクタ(図示せず)を積層基板1上に搭載することにより固体撮像素子10からの信号を外部に取り出すことができて、携帯機器との接続を自由に行うことができる。   By mounting the chip component 11 on the surface of the multilayer substrate 1, the degree of freedom in electrical wiring design is increased. That is, the chip component 11 can be placed in the vicinity of the solid-state imaging device, and the electrical characteristics can be optimized. In addition, by mounting a connector (not shown) on the laminated substrate 1, a signal from the solid-state imaging device 10 can be taken out and connection with a portable device can be freely performed.

また、金属配線パターン1bを銅の内層金属コア2に電気接続しているので、ノイズ抑制や静電遮蔽を行うことができるので電気特性の安定性を得ることができる。さらに、固体撮像素子10の裏面にタングステンなどの金属薄膜からなる遮光性膜が塗布されているので、固体撮像素子10の裏面からの光入射による撮像信号のノイズを無くすことができる。特に金属配線パターン1bの接地部を銅の内層金属コア2と電気接続することで、特にノイズ抑制や静電遮蔽を確実にすることができる。   Moreover, since the metal wiring pattern 1b is electrically connected to the copper inner layer metal core 2, noise suppression and electrostatic shielding can be performed, so that stability of electrical characteristics can be obtained. Furthermore, since a light-shielding film made of a metal thin film such as tungsten is applied to the back surface of the solid-state image sensor 10, it is possible to eliminate imaging signal noise due to light incident from the back surface of the solid-state image sensor 10. In particular, by electrically connecting the ground portion of the metal wiring pattern 1b to the copper inner layer metal core 2, noise suppression and electrostatic shielding can be particularly ensured.

また、固体撮像素子10、チップ部品11などの部品脱落を防ぎ、強固に接着しておくことができる。また固体撮像素子10の裏面にもモールド樹脂を形成することにより、固体撮像素子10の裏面からの透過光によるノイズを抑制することができる。固体撮像素子10の裏面からの透過光をより抑制するために固体撮像素子10の裏面に前述したように遮光膜が形成されていても良い。   In addition, it is possible to prevent the components such as the solid-state imaging device 10 and the chip component 11 from falling off and firmly adhere to each other. Further, by forming a mold resin on the back surface of the solid-state image sensor 10, it is possible to suppress noise caused by transmitted light from the back surface of the solid-state image sensor 10. In order to further suppress the transmitted light from the back surface of the solid-state image sensor 10, a light shielding film may be formed on the back surface of the solid-state image sensor 10 as described above.

以上のように、本実施の形態1の固体撮像装置によれば、積層基板と内層金属コアが同じ外形寸法で積層構造をしており、固体撮像素子および透光性部材あるいは光学レンズを搭載する際の基準穴もしくは切込みが形成され、その周囲で積層基板側に内層金属コアの表面が露出しており、この内層金属コアを目印として、透光性部材をも設置することができる。従って、固体撮像装置の薄型化が容易で、作業性良く組み立てることができ、高剛性および光軸合わせの高精度性を得ることができる。   As described above, according to the solid-state imaging device of the first embodiment, the laminated substrate and the inner metal core have a laminated structure with the same outer dimensions, and the solid-state imaging device and the translucent member or the optical lens are mounted. A reference hole or notch is formed, and the surface of the inner metal core is exposed on the periphery of the laminated substrate, and a translucent member can also be installed using the inner metal core as a mark. Therefore, the solid-state imaging device can be easily reduced in thickness, can be assembled with good workability, and high rigidity and high accuracy of optical axis alignment can be obtained.

また内層金属コア側には光性部材及び光学レンズが装着されている。固体撮像素子は、積層基板上に形成された図示しない認識用パターンを基準として、積層基板に対する位置あわせを行うことができる。なおこの穴は貫通穴でなくても切り込みであってもよい。   An optical member and an optical lens are mounted on the inner metal core side. The solid-state imaging device can perform positioning with respect to the multilayer substrate on the basis of a recognition pattern (not shown) formed on the multilayer substrate. The hole may not be a through hole but may be a cut.

また、上記実施の形態において、透光性部材として光学フィルタを用いるようにすれば、固体撮像素子への入射光の赤外線領域をカットして良好な撮像特性を得ることができる。   In the above embodiment, if an optical filter is used as the translucent member, it is possible to obtain an excellent imaging characteristic by cutting the infrared region of the incident light to the solid-state imaging device.

また、本発明の固体撮像装置に用いる透光性部材を設置する内層金属コアの開口部周りの厚みが周囲よりも薄くなっていても良い。その結果、透光性部材の位置ずれを無くし、設置用の接着剤の拡がりも抑制することができる。   Moreover, the thickness around the opening of the inner metal core on which the translucent member used in the solid-state imaging device of the present invention is installed may be thinner than the surroundings. As a result, the displacement of the translucent member can be eliminated and the spread of the adhesive for installation can be suppressed.

なお、固体撮像素子と光学レンズとの位置あわせの必要性についてはいうまでもないが、透光性部材と固体撮像素子との位置あわせも必要である。
この理由について説明する。
光学レンズから出た光は固体撮像素子に向かって集光するように設計されており、正確には射出瞳位置から光が出てくるようになっている。このため、透光性部材14で構成される光学フィルタの大きさとしては板状部材の開口に対して接着部分を加えた寸法が必要となる。また、フィルタはワークサイズ(分割前の板材)が蒸着装置の中で均一な成膜をするために制限があり、ワークサイズは70mm角程である。そしてワークサイズから製品にする際にダイヤモンドブレードなどでダイシングし分割するため、つまりワークサイズからの取り数でコストが決まることになる。そこで接着面積を含めてサイズを最小にすることでコストを圧縮することができる。以上の観点から、薄型化とコスト低減を実現するために小さなフィルタを用いるのが望ましく、したがって上述したように光線の有効範囲を確実にカバーするために透光性部材の位置精度も必要となる。
Needless to say, the alignment between the solid-state imaging device and the optical lens is necessary, but the alignment between the translucent member and the solid-state imaging device is also necessary.
The reason for this will be described.
The light emitted from the optical lens is designed to be condensed toward the solid-state imaging device, and the light is emitted from the exit pupil position accurately. For this reason, the size of the optical filter constituted by the translucent member 14 is required to have a size obtained by adding an adhesive portion to the opening of the plate-like member. In addition, the filter has a limitation in that the work size (plate material before division) is uniformly formed in the vapor deposition apparatus, and the work size is about 70 mm square. When the workpiece size is changed to a product, the cost is determined by dicing and dividing with a diamond blade or the like, that is, the number of workpieces taken from the workpiece size. Therefore, the cost can be reduced by minimizing the size including the adhesion area. From the above viewpoints, it is desirable to use a small filter in order to realize thinning and cost reduction. Therefore, as described above, the positional accuracy of the translucent member is also required to reliably cover the effective range of the light beam. .

また、上述したように固体撮像装置に用いる固体撮像素子チップの裏面には遮光性膜が形成されていても良く、その結果、薄い固体撮像素子の場合に裏面からの光の透過によるノイズの発生を避けることができる。
この遮光性膜は、固体撮像素子の裏面に形成された金属膜であってもよい。この構成により、薄型でより確実に裏面からの光を遮光することができる。
また、この遮光性膜は、前記固体撮像素子の裏面に形成された遮光性の樹脂膜であってもよい。この構成により、形成が容易でかつ確実に裏面からの光を遮光することができる。
Further, as described above, a light-shielding film may be formed on the back surface of the solid-state imaging device chip used in the solid-state imaging device. As a result, in the case of a thin solid-state imaging device, noise is generated due to light transmission from the back surface. Can be avoided.
This light-shielding film may be a metal film formed on the back surface of the solid-state imaging device. With this configuration, light from the back surface can be shielded more reliably with a thin shape.
The light shielding film may be a light shielding resin film formed on the back surface of the solid-state imaging device. With this configuration, light from the back surface can be shielded easily and reliably.

なお、前記実施の形態では、積層基板の配線部と内層金属コア2とは、貼り合わせに先立ち切り込みおよび開口部7を形成したが、積層基板の配線部と内層金属コア2とは、貼り合わせてから開口部7を形成してもよい。このとき、レーザなどで切断することにより、積層基板の端縁を丸く形成することができ、屑の発生を防ぎ、撮像領域のコンタミネーションを防ぐことができる。
また、前記実施の形態では、積層基板1の周縁部である四隅で内層金属コア2が露呈する4つの領域(露出部4)を形成したが、図9に変形例を示すように2つ以上であればよい。
In the above embodiment, the wiring portion of the multilayer substrate and the inner layer metal core 2 are cut and formed with the opening 7 prior to bonding, but the wiring portion of the multilayer substrate and the inner layer metal core 2 are bonded together. Then, the opening 7 may be formed. At this time, by cutting with a laser or the like, the edge of the laminated substrate can be formed in a round shape, generation of dust can be prevented, and contamination of the imaging region can be prevented.
Moreover, in the said embodiment, although the four area | regions (exposed part 4) which the inner-layer metal core 2 exposes were formed in the four corners which are the peripheral parts of the laminated substrate 1, two or more are shown as a modification in FIG. If it is.

(実施の形態2)
次に本発明の実施の形態2について説明する。
図7に示すように、シールド部材30を備えたことを特徴とする。
この固体撮像装置は、図7に断面図を示すように、実装用基板100上に一端を接続するとともに他端を固体撮像素子10表面に接続するシールド部材30を設けることにより、放熱性がさらに向上するとともに、グランド接続が容易となる。ここで固体撮像素子10は半田ボール18を介して実装用基板100上の配線パターンに接続される。そしてビス19によって固定される。
(Embodiment 2)
Next, a second embodiment of the present invention will be described.
As shown in FIG. 7, a shield member 30 is provided.
As shown in the cross-sectional view of FIG. 7, this solid-state imaging device further has a heat dissipation property by providing a shield member 30 that connects one end to the mounting substrate 100 and connects the other end to the surface of the solid-state imaging device 10. As well as improving the ground connection. Here, the solid-state imaging device 10 is connected to the wiring pattern on the mounting substrate 100 via the solder balls 18. Then, it is fixed by screws 19.

(実施の形態3)
次に本発明の実施の形態3について説明する。
本発明の実施の形態3ではセミックグリーンシートを用いて積層基板を形成する方法について説明する。
本実施の形態では、図8(a)乃至(c)に示すように、積層基板1を形成する工程を、金属板を形状加工して切り欠き及び開口部を備えた内層金属コアを形成し、この内層金属コアに、セラミックグリーンシートを積層し焼成することで、寸法精度の高い切り欠きを備えた積層基板を形成することが可能となる。
すなわち、図8(a)に示すように、プレス工程を経て内層金属コア2を形成する。
そしてこの切り欠きに合わせて、スクリーン印刷により順次、セラミックグリーンシート、導体層を交互に繰り返し積層し、積層体を得る。
こののち焼成し、図8(b)に示すように、セラミック積層グリーンシートの間に内層金属コアを挟んだ積層体を形成する。
そして最後に、図8(c)に示すように、ダイシングラインD.L.に沿って個々の領域に分断する。
(Embodiment 3)
Next, a third embodiment of the present invention will be described.
In Embodiment 3 of the present invention, a method for forming a laminated substrate using a semi-green sheet will be described.
In this embodiment, as shown in FIGS. 8A to 8C, the step of forming the laminated substrate 1 is performed by forming a metal plate to form an inner metal core having a notch and an opening. By laminating and firing ceramic green sheets on the inner metal core, it becomes possible to form a laminated substrate having a notch with high dimensional accuracy.
That is, as shown in FIG. 8A, the inner metal core 2 is formed through a pressing process.
And according to this notch, a ceramic green sheet and a conductor layer are laminated | stacked alternately by screen printing sequentially, and a laminated body is obtained.
After that, as shown in FIG. 8B, the laminate is formed by sandwiching the inner metal core between the ceramic laminated green sheets.
Finally, as shown in FIG. Divide into individual regions along L.

このようにして、寸法精度の高い切り欠きを形成することができ、実装精度を高めることが可能となる。樹脂基板を用いた場合には切断時にバリが生じ易いという問題があるが、セラミックグリーンシートを用いて形成することで、容易に高精度の積層基板を形成することができる。   In this way, a notch with high dimensional accuracy can be formed, and the mounting accuracy can be increased. When a resin substrate is used, there is a problem that burrs are easily generated during cutting. However, by using a ceramic green sheet, a highly accurate laminated substrate can be easily formed.

以上説明してきたように、本発明の固体撮像装置およびその製造方法は、固体撮像装置の薄型化が可能で、精度向上と信頼性の向上を図ることができることから、携帯電話などの小型携帯端末への適用が有用である。   As described above, the solid-state imaging device and the manufacturing method thereof according to the present invention can reduce the thickness of the solid-state imaging device and can improve accuracy and reliability. Application to is useful.

1 積層基板
1a 樹脂基体
1b 金属配線パターン
2 内層金属コア
3 切込み部(基準穴)
4 内層金属コアの露出部
7 開口部
9 封止樹脂
10 固体撮像素子(チップ)
10b バンプ
10c 導電性接着剤
11 チップ部品
13 認識穴
14 透光性部材
15 光学レンズ
16 レンズ筐体
17 基準突起部
18 半田ボール
19 ビス
30 シールド部材
100 実装用基板
DESCRIPTION OF SYMBOLS 1 Laminated substrate 1a Resin base | substrate 1b Metal wiring pattern 2 Inner layer metal core
3 Cut section (reference hole)
4 Exposed part of inner metal core
7 opening
9 Sealing resin 10 Solid-state imaging device (chip)
10b Bump 10c Conductive adhesive 11 Chip part 13 Recognition hole 14 Translucent member 15 Optical lens 16 Lens housing 17 Reference projection 18 Solder ball 19 Screw 30 Shield member 100 Mounting substrate

Claims (12)

開口部を有し、少なくとも1層の内層金属コアを含む絶縁性の積層基板と、
前記積層基板の1方の面に前記開口部を塞ぐように設置された透光性部材と、
前記積層基板の他方の面に前記開口部を塞ぐように設置された固体撮像素子と、を具備し、
前記積層基板の周縁部に前記内層金属コアが露呈する複数の領域を含む固体撮像装置。
An insulating laminated substrate having an opening and including at least one inner metal core;
A translucent member installed so as to block the opening on one surface of the multilayer substrate;
A solid-state imaging device installed so as to close the opening on the other surface of the multilayer substrate;
A solid-state imaging device including a plurality of regions in which the inner metal core is exposed at a peripheral portion of the multilayer substrate.
請求項1に記載の固体撮像装置であって、
前記複数の領域は、前記積層基板に設けられた基準穴を含み、
前記基準穴の周縁で、前記内層金属コアが露出しており、前記積層基板の両面に、前記固体撮像素子と、前記透光性部材が配置された固体撮像装置。
The solid-state imaging device according to claim 1,
The plurality of regions include a reference hole provided in the laminated substrate,
The solid-state imaging device in which the inner metal core is exposed at the periphery of the reference hole, and the solid-state imaging element and the translucent member are disposed on both surfaces of the laminated substrate.
請求項1または2に記載の固体撮像装置であって、
前記透光性部材は光学レンズを含み、
前記複数の領域を基準として、前記光学レンズと前記固体撮像素子とが、前記積層基板に対して、表裏から位置あわせ可能に構成された固体撮像装置。
The solid-state imaging device according to claim 1 or 2,
The translucent member includes an optical lens,
A solid-state imaging device configured such that the optical lens and the solid-state imaging device can be aligned from the front and back with respect to the multilayer substrate with the plurality of regions as a reference.
請求項1乃至3のいずれか1項に記載の固体撮像装置であって、
前記透光性部材は、光学フィルタを含む固体撮像装置。
The solid-state imaging device according to any one of claims 1 to 3,
The translucent member is a solid-state imaging device including an optical filter.
請求項1乃至4のいずれか1項に記載の固体撮像装置であって、
前記内層金属コアが、前記積層基板のスルーホールを避けて面全体に形成された金属板である固体撮像装置。
The solid-state imaging device according to any one of claims 1 to 4,
The solid-state imaging device, wherein the inner metal core is a metal plate formed on the entire surface while avoiding a through hole of the multilayer substrate.
請求項5に記載の固体撮像装置であって、
前記積層基板の配線パターンの接地部が前記金属板に電気的に接続された固体撮像装置。
The solid-state imaging device according to claim 5,
A solid-state imaging device in which a ground portion of a wiring pattern of the multilayer substrate is electrically connected to the metal plate.
請求項1乃至6のいずれか1項に記載の固体撮像装置であって、
前記積層基板は、樹脂基材と配線パターンとの積層体で構成された固体撮像装置。
The solid-state imaging device according to any one of claims 1 to 6,
The multilayer substrate is a solid-state imaging device configured by a laminate of a resin base material and a wiring pattern.
請求項1乃至6のいずれか1項に記載の固体撮像装置であって、
前記積層基板は、セラミック基材と配線パターンとの積層体で構成された固体撮像装置。
The solid-state imaging device according to any one of claims 1 to 6,
The multilayer substrate is a solid-state imaging device configured by a laminate of a ceramic base material and a wiring pattern.
開口部を有し、少なくとも1層の内層金属コアを含み、貫通した開口部をもつ絶縁性の積層基板を形成する工程と、
一部に内層金属コアを突出させるように前記積層基板の外形を裁断する工程と、
前記積層基板の開口部を塞ぐように固体撮像素子を搭載する工程と、
前記積層基板の開口部を塞ぐように透光性部材を搭載する工程とを具備した固体撮像素子の製造方法。
Forming an insulating laminated substrate having an opening, including at least one inner metal core, and having an opening therethrough;
Cutting the outer shape of the laminated substrate so that the inner metal core protrudes in part;
Mounting a solid-state imaging device so as to close the opening of the multilayer substrate;
And a step of mounting a translucent member so as to close the opening of the multilayer substrate.
請求項9に記載の固体撮像装置の製造方法であって、
前記積層基板を形成する工程は、周縁で前記内層金属コアが突出するように、基準穴を形成する工程を含む固体撮像素子の製造方法。
It is a manufacturing method of the solid-state imaging device according to claim 9,
The step of forming the laminated substrate includes a step of forming a reference hole so that the inner metal core protrudes at the periphery.
請求項10に記載の固体撮像装置の製造方法であって、
前記積層基板を形成する工程は、
金属板を形状加工し内層金属コアを形成する工程と、
配線層を備えた樹脂基体を形成する工程と、
前記内層金属コアを前記樹脂基体に貼着する工程とを含む固体撮像素子の製造方法。
It is a manufacturing method of the solid-state imaging device according to claim 10,
The step of forming the laminated substrate includes:
Forming a metal plate to form an inner metal core;
Forming a resin substrate provided with a wiring layer;
A method of manufacturing a solid-state imaging device including a step of attaching the inner metal core to the resin substrate.
請求項10に記載の固体撮像装置の製造方法であって、
前記積層基板を形成する工程は、
金属板を形状加工し内層金属コアを形成する工程と、
セラミック積層グリーンシートを形成する工程と、
前記内層金属コアを前記セラミック積層グリーンシートに貼着する工程とを含む固体撮像素子の製造方法。
It is a manufacturing method of the solid-state imaging device according to claim 10,
The step of forming the laminated substrate includes:
Forming a metal plate to form an inner metal core;
Forming a ceramic laminated green sheet;
And a step of adhering the inner layer metal core to the ceramic laminated green sheet.
JP2011146252A 2011-06-30 2011-06-30 Solid-state imaging device and manufacturing method of the same Withdrawn JP2013016894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011146252A JP2013016894A (en) 2011-06-30 2011-06-30 Solid-state imaging device and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011146252A JP2013016894A (en) 2011-06-30 2011-06-30 Solid-state imaging device and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2013016894A true JP2013016894A (en) 2013-01-24

Family

ID=47689161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011146252A Withdrawn JP2013016894A (en) 2011-06-30 2011-06-30 Solid-state imaging device and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2013016894A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059829A (en) * 2013-09-19 2015-03-30 株式会社デンソー Inertial sensor
CN106405988A (en) * 2015-06-30 2017-02-15 罗伯特·博世有限公司 Camera housing for adjusting an optical system
JP2017060037A (en) * 2015-09-17 2017-03-23 京セラ株式会社 Imaging apparatus
JPWO2017111125A1 (en) * 2015-12-25 2017-12-21 太陽誘電株式会社 Printed wiring board and camera module
JP2022008988A (en) * 2018-03-30 2022-01-14 パナソニックIpマネジメント株式会社 Connection structure and connection method between lens barrel pedestal and sensor substrate in camera unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059829A (en) * 2013-09-19 2015-03-30 株式会社デンソー Inertial sensor
CN106405988A (en) * 2015-06-30 2017-02-15 罗伯特·博世有限公司 Camera housing for adjusting an optical system
CN106405988B (en) * 2015-06-30 2020-12-08 罗伯特·博世有限公司 Camera housing for calibrating a light fixture
JP2017060037A (en) * 2015-09-17 2017-03-23 京セラ株式会社 Imaging apparatus
JPWO2017111125A1 (en) * 2015-12-25 2017-12-21 太陽誘電株式会社 Printed wiring board and camera module
JP2022008988A (en) * 2018-03-30 2022-01-14 パナソニックIpマネジメント株式会社 Connection structure and connection method between lens barrel pedestal and sensor substrate in camera unit

Similar Documents

Publication Publication Date Title
JP6597729B2 (en) Imaging unit and imaging apparatus
JP3607160B2 (en) Imaging device
KR20090128374A (en) Solid-state imaging device and method for manufacturing the same
KR100877159B1 (en) Solid-state imaging apparatus and manufacturing method thereof
JP2008263550A (en) Solid-state imaging device and manufacturing method therefor
US10477084B2 (en) Manufacturing method for camera module
EP1603166A1 (en) Image pickup device and camera module
JP2010193059A (en) Camera module
WO2018079644A1 (en) Substrate for imaging element mounting, imaging device and imaging module
JP2013016894A (en) Solid-state imaging device and manufacturing method of the same
JP2019040901A (en) Circuit board
JP3787765B2 (en) Solid-state imaging device and manufacturing method thereof
JP2009295821A (en) Composite board having inter-substrate connection structure, solid-state image pickup device using the composite board, and method of manufacturing the solid-state image pickup device
KR100877158B1 (en) Solid-state imaging apparatus and manufacturing method thereof
JP2008312104A (en) Solid-state imaging apparatus, and method for manufacturing the same
JP2005292242A (en) Imaging apparatus and method for manufacturing the same
JP2003179217A (en) Solid-state imaging device and method of manufacturing the same
JP3839019B2 (en) Imaging device
JP2008263551A (en) Solid-state imaging device and manufacturing method therefor
JP6329065B2 (en) Electronic device mounting substrate and electronic device
JP2008263552A (en) Solid-state imaging device and manufacturing method thereof
JP3821831B2 (en) Imaging device
JP2009070876A (en) Solid-state imaging device and its manufacturing process
JP2010283443A (en) Solid-state imaging apparatus, and method of manufacturing the same
JP2008263553A (en) Solid-state imaging device and manufacturing method therefor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902