JP2013016052A - Object recognition device for vehicle - Google Patents

Object recognition device for vehicle Download PDF

Info

Publication number
JP2013016052A
JP2013016052A JP2011148782A JP2011148782A JP2013016052A JP 2013016052 A JP2013016052 A JP 2013016052A JP 2011148782 A JP2011148782 A JP 2011148782A JP 2011148782 A JP2011148782 A JP 2011148782A JP 2013016052 A JP2013016052 A JP 2013016052A
Authority
JP
Japan
Prior art keywords
distance
detection
vehicle
shape
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011148782A
Other languages
Japanese (ja)
Inventor
Tei Hirano
呈 平野
Satoshi Saito
聡 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2011148782A priority Critical patent/JP2013016052A/en
Publication of JP2013016052A publication Critical patent/JP2013016052A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an object shape recognition device for vehicle for increasing the accuracy of the shape recognition of an object having a complicate shape even when an ultrasonic sensor which is low in directivity is used.SOLUTION: An object shape estimation part 8 of an object shape recognition device 1 for vehicle is configured to set a distance point showing the position of an object to at least either a detection point on an object line in the neighborhood of the front side critical line or a detection point on the object line in the neighborhood of the rear side critical line of a self-vehicle on a fan-shaped horizontal surface crossing an irradiation range with detection distances by ultrasonic sensors 2 and 3, and to, on the basis of the detection distances on time when the distance from the self-vehicle is detected by the ultrasonic sensors 2 and 3 and on time before and after the pertinent time by a predetermined time among the detection distances repeatedly detected according as the self-vehicle moves, set the distance point to the front side detection point when the detection distance on each time approaches the self-vehicle, and to set the distance point to the rear side detection point when the detection distance on each time recedes from the self-vehicle, and to recognize the shape obtained by connecting the set distance points as the shape of the object.

Description

この発明は、超音波センサを用いて物体の形状を認識する車両用物体認識装置に関する。   The present invention relates to a vehicle object recognition device that recognizes the shape of an object using an ultrasonic sensor.

近年、自動車業界のドライバの運転を支援する運転支援システムが普及しており、特に、駐車時の運転支援システムにおいては自動運転化に向けた開発が進められている。この種のシステムでは、障害物の位置を正確に特定する必要があり、特に、周囲に複数の障害物がある狭いスペースしかない駐車環境下で走行する場合は、周囲の障害物の位置を高精度に検出する必要がある。そのため、障害物の位置特定手段には位置検出精度の高いレーザーレーダを用いることが適しているが、高価であるため安価な超音波センサで高精度に位置を特定する技術が求められている。   In recent years, driving support systems that support driving of drivers in the automobile industry have become widespread, and in particular, development for automatic driving has been promoted in driving support systems during parking. This type of system requires that the location of obstacles be accurately identified, especially when driving in a parking environment where there is only a small space around which there are multiple obstacles. It is necessary to detect the accuracy. Therefore, it is suitable to use a laser radar with high position detection accuracy as the obstacle position specifying means, but since it is expensive, a technique for specifying the position with high accuracy using an inexpensive ultrasonic sensor is required.

超音波センサは、主に圧電素子に電圧を加えることにより超音波を発生させ、その超音波を物体に照射するとともに、その物体から帰ってくる反射波を受信して、その照射から反射までの時間に基づいて物体から超音波センサまでの距離を検出し、その距離を自車両から物体までの距離としている。   The ultrasonic sensor generates ultrasonic waves mainly by applying a voltage to the piezoelectric element, irradiates the ultrasonic waves to the object, receives a reflected wave returning from the object, and performs from the irradiation to the reflection. The distance from the object to the ultrasonic sensor is detected based on the time, and the distance is defined as the distance from the host vehicle to the object.

超音波は音波であるため、拡散することにより指向性が低く検知範囲角が大きくなるという特徴を有する。そのため、超音波センサは、通常、超音波センサの所定の照射範囲内に物体が存在する場合に、超音波センサから物体までの最短距離を自車両から物体までの距離として検出するが、物体が超音波センサの照射範囲内のどの位置に存在するのか、つまり、自車両位置を基準とした物体の方向を検出することができない。   Since the ultrasonic wave is a sound wave, it has a feature that the directivity is low and the detection range angle is large by diffusing. Therefore, the ultrasonic sensor normally detects the shortest distance from the ultrasonic sensor to the object as the distance from the own vehicle to the object when the object exists within the predetermined irradiation range of the ultrasonic sensor. It is impossible to detect the position within the irradiation range of the ultrasonic sensor, that is, the direction of the object based on the position of the host vehicle.

そこで、超音波センサを用いて照射範囲内の物体の位置を推定するにあたり、自車両を基準とした物体の方向は、略円錐形を有する超音波照射範囲の中心の方向(超音波照射方向)にあると仮定して、検出された距離に基づき物体の位置を推定することが一般的に行われている。   Therefore, in estimating the position of the object within the irradiation range using the ultrasonic sensor, the direction of the object relative to the host vehicle is the direction of the center of the ultrasonic irradiation range having a substantially conical shape (ultrasonic irradiation direction). In general, the position of the object is estimated based on the detected distance.

特に、超音波センサを用いた障害物の形状の推定は、上記した位置の推定を自車両の移動に伴い繰り返し、それらの推定した位置を繋ぎ合わせることにより行われる。   In particular, the estimation of the shape of an obstacle using an ultrasonic sensor is performed by repeatedly estimating the position as the vehicle moves and connecting the estimated positions.

しかし、このような方法の場合、実際には超音波照射方向に障害物がない場合であったとしても超音波センサの照射範囲内に障害物の一部でも入っていれば、当該障害物の一部からの超音波の反射波を検出してしまい、その反射波に基づく距離が超音波照射方向における自車両から障害物までの距離として認識される。したがって、検出された距離から推定される障害物の形状は、実際の障害物の形状と比較し、自車両進行方向と平行方向に伸びた形状となり、障害物の形状を正確に認識できない。   However, in the case of such a method, even if there are actually no obstacles in the ultrasonic irradiation direction, if some obstacles are within the irradiation range of the ultrasonic sensor, The reflected wave of the ultrasonic wave from a part is detected, and the distance based on the reflected wave is recognized as the distance from the own vehicle to the obstacle in the ultrasonic wave irradiation direction. Therefore, the shape of the obstacle estimated from the detected distance becomes a shape extending in a direction parallel to the traveling direction of the host vehicle as compared with the actual shape of the obstacle, and the shape of the obstacle cannot be accurately recognized.

そこで、従来では、上記した障害物の位置の推定を自車両の移動に伴い繰り返し行い、それらの位置を繋ぎ合わせた線に基づき駐車車両の形状を再推定する技術が提案されている(特許文献1)。   Therefore, conventionally, a technique has been proposed in which the position of an obstacle is repeatedly estimated as the host vehicle moves, and the shape of the parked vehicle is re-estimated based on a line connecting the positions (Patent Literature). 1).

特開2011−34297(段落0051〜0063、図8参照)JP 2011-34297 (see paragraphs 0051 to 0063, FIG. 8)

しかしながら、上記特許文献1の技術では、推定した位置を繋ぎ合わせた線に基づき、駐車車両の前方位置を推定し、その位置に一般的な車両の形状を適用させることにより駐車車両の形状ならびに自車両との位置関係を再推定しているため、駐車車両間の駐車スペースの探索しかできず、障害物の形状が凸凹状になっているような複雑な駐車環境下には対応できない。また、駐車車両が斜めに位置する場合の位置推定が困難であるため、複雑な駐車環境下で精度よく障害物の位置を検出することが求められる駐車用の自動運転システムに上記特許文献1の技術を適用することは、精度的に実用性に欠ける。   However, in the technique of Patent Document 1, the front position of the parked vehicle is estimated based on a line obtained by connecting the estimated positions, and the shape of the parked vehicle and the vehicle itself are applied by applying a general vehicle shape to the position. Since the positional relationship with the vehicle is re-estimated, it is only possible to search for a parking space between the parked vehicles, and it is not possible to cope with a complicated parking environment in which the shape of the obstacle is uneven. In addition, since it is difficult to estimate the position when the parked vehicle is located obliquely, an automatic parking system that is required to accurately detect the position of an obstacle in a complicated parking environment is disclosed in Patent Document 1 described above. Applying technology lacks practicality in accuracy.

また、位置の推定を自車両の移動に伴い繰り返し行い、それらの点を繋ぎ合わせた線からさらに複雑な演算処理を施すことにより駐車車両の形状を再推定しているため、演算処理負荷が高く、高価な演算装置が必要となり、その分、車両コストが高くなる。   In addition, the position estimation is repeated as the host vehicle moves, and the shape of the parked vehicle is re-estimated by performing more complicated calculation processing from the line connecting these points. Therefore, an expensive arithmetic unit is required, and the vehicle cost increases accordingly.

本発明は、上記課題に鑑みなされたものであり、複雑な障害物の形状を精度よく検出するとともに、これに伴うコストの低減を図ることを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to accurately detect the shape of a complicated obstacle and to reduce the cost associated therewith.

上記した目的を達成するために、本発明の車両用物体形状認識装置では、自車両側方に向けて円錐状に広がる照射範囲内の物体から前記自車両までの距離を検出する超音波センサを有し、前記自車両の移動に伴い前記物体から前記自車両までの距離の検出を繰り返すことにより前記物体の形状を認識する車両用物体認識装置において、前記物体の位置を示す距離点を、前記超音波センサによる自車両からの検出距離で、前記照射範囲を横断した扇状の水平面の前記自車両の前方側臨界線近辺の前方側対象線上の前方側検出点および後方側臨界線近辺の後方側対象線上の後方側検出点のうち少なくともいずれかに設定する設定手段と、前記設定された前記距離点を繋ぎ合わせた形状を前記物体の形状と認識する認識手段とを備え、前記設定手段は、前記自車両の移動に伴い繰り返し検出される検出距離のうち、前記超音波センサによる自車両からの距離を検出する検出時刻およびその所定時間だけ前後の時刻におけるそれぞれの検出距離に基づき、前記自車両の移動に伴い前記各時刻の検出距離が前記自車両に近づくときは前記距離点を前記前方側検出点に設定し、遠ざかるときは前記後方側検出点に設定することを特徴とする(請求項1)。   In order to achieve the above-described object, in the vehicle object shape recognition device of the present invention, an ultrasonic sensor that detects a distance from an object within an irradiation range that spreads conically toward the side of the host vehicle to the host vehicle is provided. In the vehicle object recognition device for recognizing the shape of the object by repeatedly detecting the distance from the object to the host vehicle as the host vehicle moves, the distance point indicating the position of the object is A front detection point on the front target line in the vicinity of the front critical line of the own vehicle and a rear side in the vicinity of the rear critical line at a detection distance from the own vehicle by the ultrasonic sensor and across the irradiation range. Setting means for setting at least one of the detection points on the rear side on the target line; and recognition means for recognizing a shape obtained by connecting the set distance points as the shape of the object. Of the detection distances that are repeatedly detected as the host vehicle moves, based on the detection time at which the ultrasonic sensor detects the distance from the host vehicle and the respective detection distances at times before and after that predetermined time, The distance point is set as the front detection point when the detection distance at each time approaches the host vehicle as the vehicle moves, and the detection point is set as the rear detection point when moving away. Item 1).

請求項1にかかる発明によれば、物体の位置を示す距離点が、超音波センサによる自車両からの検出距離で、照射範囲を横断した扇状の水平面の自車両の前方側臨界線近辺の前方側対象線上の前方側検出点および後方側臨界線近辺の後方側対象線上の後方側検出点のうち少なくともいずれかに設定される。   According to the first aspect of the present invention, the distance point indicating the position of the object is the detection distance from the own vehicle by the ultrasonic sensor, and the front side of the front side near the front critical line of the own vehicle on the fan-shaped horizontal plane crossing the irradiation range. It is set to at least one of the front side detection point on the side target line and the rear side detection point on the rear side target line near the rear critical line.

そして、上記した設定手段において、自車両の移動に伴い繰り返し検出される検出距離のうち、超音波センサによる自車両からの距離を検出する検出時刻およびその所定時間だけ前後の時刻におけるそれぞれの検出距離に基づき、自車両の移動に伴い各時刻の検出距離が自車両に近づくときは上記した距離点が前方側検出点に設定され、遠ざかるときは後方側検出点に設定される。   In the setting means described above, out of the detection distances that are repeatedly detected with the movement of the host vehicle, the detection time for detecting the distance from the host vehicle by the ultrasonic sensor and the respective detection distances at the time before and after that predetermined time Based on the above, when the detection distance at each time approaches the own vehicle as the host vehicle moves, the above-described distance point is set as the front side detection point, and when moving away, it is set as the rear side detection point.

上記各時刻における検出距離が自車両に近づく場合、そのとき(検出時刻)の超音波センサの照射範囲内にある物体の形状は自車両進行方向に対して右斜めに傾いた位置をしている可能性が高い。このような場合、超音波センサから物体までの最短距離を表す点は前方側検出点となるため、物体の位置を示す距離点を前方側検出点に設定することで正確に物体の位置を認識できる。   When the detected distance at each time approaches the host vehicle, the shape of the object within the irradiation range of the ultrasonic sensor at that time (detection time) is inclined to the right with respect to the traveling direction of the host vehicle. Probability is high. In such a case, the point representing the shortest distance from the ultrasonic sensor to the object is the front detection point. Therefore, the object position can be accurately recognized by setting the distance point indicating the object position as the front detection point. it can.

また、上記各時刻における検出距離が自車両から遠ざかる場合は、物体の形状は自車両進行方向に対して左斜めに傾いた位置をしている可能性が高い。このような場合、超音波センサから物体までの最短距離を表す点は後方側検出点となるため、物体の位置を示す距離点を後方側検出点に設定することで正確に物体の位置を認識できる。   Further, when the detection distance at each time is far from the own vehicle, it is highly likely that the shape of the object is inclined obliquely to the left with respect to the traveling direction of the own vehicle. In such a case, the point representing the shortest distance from the ultrasonic sensor to the object is the detection point on the rear side. Therefore, the position of the object is accurately recognized by setting the distance point indicating the position of the object as the detection point on the rear side. it can.

そして、自車両の移動に伴い設定されたこれらの距離点を繋ぎ合わせた形状が障害物の形状と認識される。   And the shape which connected these distance points set with the movement of the own vehicle is recognized as the shape of an obstacle.

このように、各時刻における検出距離の関係から障害物の位置を正確に示す距離点を設定し、自車両の移動に伴いこの設定を繰り返し、設定したこれらの距離点を繋ぎ合わせた形状を障害物の形状と認識するため、複雑な障害物の形状を精度良く認識することができる。   In this way, a distance point that accurately indicates the position of the obstacle is set from the relationship of the detected distance at each time, this setting is repeated as the host vehicle moves, and the shape formed by connecting these set distance points is obstructed. Since it is recognized as the shape of an object, the shape of a complicated obstacle can be recognized with high accuracy.

また、従来のように複雑な演算を行わなくとも、正確な障害物の形状認識ができるため、高価な演算装置を必要とせず、低コストな構成で物体の形状を認識することができる。   In addition, since it is possible to accurately recognize the shape of an obstacle without performing complicated calculations as in the prior art, it is possible to recognize the shape of an object with a low-cost configuration without requiring an expensive calculation device.

本発明の一実施形態の車両用物体認識装置のブロック図である。It is a block diagram of the object recognition device for vehicles of one embodiment of the present invention. 図1の動作説明図である。It is operation | movement explanatory drawing of FIG. 図1の動作説明図である。It is operation | movement explanatory drawing of FIG. 図1の動作説明図である。It is operation | movement explanatory drawing of FIG. 図1の動作説明図である。It is operation | movement explanatory drawing of FIG. 図1の動作説明図である。It is operation | movement explanatory drawing of FIG. 図1の動作説明図である。It is operation | movement explanatory drawing of FIG. 図1の動作説明図である。It is operation | movement explanatory drawing of FIG. 障害物マップ生成の説明図である。It is explanatory drawing of obstruction map production | generation. 図1の車両用物体認識装置の動作説明用フローチャートである。It is a flowchart for operation | movement description of the vehicle object recognition apparatus of FIG.

本発明の一実施形態について、図1〜図10を参照して説明する。なお、図1は本発明にかかる一実施形態の車両用物体認識装置のブロック図、図2〜7は各検出点設定の説明図、図8は物体形状認識の説明図、図9は、障害物マップ生成の説明図、図10は図1の動作説明用のフローチャートである。   An embodiment of the present invention will be described with reference to FIGS. 1 is a block diagram of an object recognition apparatus for a vehicle according to an embodiment of the present invention, FIGS. 2 to 7 are explanatory diagrams of setting each detection point, FIG. 8 is an explanatory diagram of object shape recognition, and FIG. FIG. 10 is a flowchart for explaining the operation of FIG.

(構成)
本発明にかかる一実施形態の車両用物体形状認識装置1の構成について、図1を参照して説明する。
(Constitution)
A configuration of a vehicle object shape recognition apparatus 1 according to an embodiment of the present invention will be described with reference to FIG.

左側面超音波センサ2および右側面超音波センサ3は、自車両10から物体までの距離を測定するためのセンサであり、自車両10の左右側面にそれぞれ設置される。これらの超音波センサ2,3は、自車両10の側方の物体に向けて超音波を照射し、当該物体からの反射波を検出して自車両10から物体までの距離を検出する。このとき、超音波は、略円錐状に照射されるため、その照射範囲が物体までの距離を検出する検出範囲となるが、地面からの反射波の影響を極力抑えるために、超音波の照射範囲は円錐を偏平させて水平方向に広がる楔形状になっている。また、距離の検出は、一定時間間隔で継続的に行われ、自車両10の移動に伴い自車両10から物体までの距離を検出し続けることで、物体の形状を推定することが可能になる。   The left side ultrasonic sensor 2 and the right side ultrasonic sensor 3 are sensors for measuring the distance from the host vehicle 10 to an object, and are respectively installed on the left and right side surfaces of the host vehicle 10. These ultrasonic sensors 2 and 3 irradiate ultrasonic waves toward an object on the side of the host vehicle 10, detect a reflected wave from the object, and detect a distance from the host vehicle 10 to the object. At this time, since the ultrasonic wave is irradiated in a substantially conical shape, the irradiation range becomes a detection range for detecting the distance to the object, but in order to suppress the influence of the reflected wave from the ground as much as possible, the irradiation of the ultrasonic wave The range is a wedge shape that flattens the cone and spreads in the horizontal direction. Further, the distance detection is continuously performed at regular time intervals, and the object shape can be estimated by continuously detecting the distance from the host vehicle 10 to the object as the host vehicle 10 moves. .

車速センサ4は、自車両10の速度を検出するために用いられ、舵角センサ5は、自車両10のハンドル操舵角を検出するために用いられる。   The vehicle speed sensor 4 is used for detecting the speed of the host vehicle 10, and the steering angle sensor 5 is used for detecting the steering wheel steering angle of the host vehicle 10.

車両移動量管理部6は、車速センサ4と舵角センサ5により検出された自車両10の車速および操舵角に関する情報に基づき自車両10の移動量を算出し、算出した自車両10の移動量(移動方向を含む)を測距データ管理部7に送る。この移動量の算出は、自車両10の移動に伴い、一定時間間隔で行われる。   The vehicle movement amount management unit 6 calculates the movement amount of the host vehicle 10 based on information on the vehicle speed and the steering angle of the host vehicle 10 detected by the vehicle speed sensor 4 and the steering angle sensor 5, and the calculated movement amount of the host vehicle 10. (Including the moving direction) is sent to the ranging data management unit 7. This calculation of the amount of movement is performed at regular time intervals as the host vehicle 10 moves.

測距データ管理部7は、車両移動量管理部6から送られた自車両10の移動量データに基づいて、後述するマップ上の自車両10の位置を推定し、その位置データ(x、y座標,自車両10の向き)とその位置における左右側面超音波センサ2,3から取得した超音波センサ2,3それぞれから物体までの検出距離に関する測距データを記憶し、それらの測距データを物体形状推定部8に送る。   The distance measurement data management unit 7 estimates the position of the host vehicle 10 on a map, which will be described later, based on the movement amount data of the host vehicle 10 sent from the vehicle movement amount management unit 6, and the position data (x, y Distance measurement data regarding the detected distance from the ultrasonic sensors 2 and 3 to the object obtained from the left and right side ultrasonic sensors 2 and 3 at that position, and the distance measurement data. This is sent to the object shape estimation unit 8.

物体形状推定部8は、自車両10の移動に伴い繰り返し検出される測距データ管理部7から取得した測距データに基づく検出距離のうち、超音波センサ2,3による自車両10からの距離を検出する検出時刻およびその所定時間だけ前後の時刻におけるそれぞれの検出距離に基づき、物体の位置を示す距離点を設定する。このような物体形状推定部8の設定機能が本発明における設定手段に相当するが、この設定機能については、以下に説明する。   The object shape estimation unit 8 is a distance from the vehicle 10 by the ultrasonic sensors 2 and 3 among the detection distances based on the distance measurement data acquired from the distance measurement data management unit 7 that is repeatedly detected as the host vehicle 10 moves. A distance point indicating the position of the object is set based on the detection time at which the object is detected and the respective detection distances at the time before and after the predetermined time. Such a setting function of the object shape estimation unit 8 corresponds to the setting means in the present invention, and this setting function will be described below.

上記したように、超音波センサ2,3は、超音波センサから物体までの最短距離を自車両10から物体までの距離として検出するが、物体が超音波センサの照射範囲内のどの位置に存在するのか、つまり、自車両10の位置を基準とした物体の方向は検出することができない。そこで、図2に示すように、左側面超音波センサ2を例にとると、物体形状推定部8は、障害物11の位置を示す距離点を、超音波センサ2,3による自車両からの検出距離で、超音波照射範囲を横断した扇状の水平面の自車両10の前方側臨界線近辺の前方側対象線12上の前方側検出点12aおよび後方側臨界近辺の後方側対象線13上の後方側検出点13aのうち少なくともいずれかに設定する。   As described above, the ultrasonic sensors 2 and 3 detect the shortest distance from the ultrasonic sensor to the object as the distance from the own vehicle 10 to the object, but the object is present at any position within the irradiation range of the ultrasonic sensor. In other words, the direction of the object based on the position of the host vehicle 10 cannot be detected. Therefore, as shown in FIG. 2, taking the left side ultrasonic sensor 2 as an example, the object shape estimation unit 8 determines the distance point indicating the position of the obstacle 11 from the own vehicle by the ultrasonic sensors 2 and 3. On the front-side detection point 12a on the front-side object line 12 near the front-side critical line of the own vehicle 10 in the fan-shaped horizontal plane that crosses the ultrasonic irradiation range at the detection distance, and on the rear-side object line 13 near the rear-side critical line It is set to at least one of the rear side detection points 13a.

例えば、図3に示すように、超音波センサ2により自車両10から障害物11までの距離が検出された場合、物体形状推定部8は、その測距データとその検出時刻の所定時間Δtだけ前の時刻(前時刻)の測距データを測距データ管理部7より取得するとともに、上記検出時刻より所定時間Δtだけ後の時刻(後時刻)の測距データを測距データ管理部7から取得する。図3の場合、前時刻の測距データにより得られた検出距離に対して検出時刻における検出距離は短く、検出時刻における検出距離に対して後時刻の検出距離は短くなっており、障害物11が自車両10に対して近づいていることが分かる。   For example, as shown in FIG. 3, when the distance from the vehicle 10 to the obstacle 11 is detected by the ultrasonic sensor 2, the object shape estimation unit 8 only detects the distance measurement data and a predetermined time Δt of the detection time. Ranging data at the previous time (previous time) is acquired from the ranging data management unit 7, and ranging data at a time (subsequent time) after a predetermined time Δt from the detection time is obtained from the ranging data management unit 7. get. In the case of FIG. 3, the detection distance at the detection time is shorter than the detection distance obtained from the distance measurement data at the previous time, and the detection distance at the later time is shorter than the detection distance at the detection time. It can be seen that is approaching the host vehicle 10.

このような場合、検出時刻の超音波センサ2の超音波照射範囲における障害物の形状は自車両10に対して右斜めに傾いた形状をしている可能性が高いため、物体形状推定部8は、障害物11の形状を右斜めに傾いた形状であると推定する。   In such a case, since the shape of the obstacle in the ultrasonic irradiation range of the ultrasonic sensor 2 at the detection time is likely to be inclined obliquely to the right with respect to the host vehicle 10, the object shape estimation unit 8 Estimates that the shape of the obstacle 11 is inclined obliquely to the right.

ところで、超音波センサ2は上記のように、超音波センサ2から障害物までの最短距離を自車両10から障害物11の距離として検出するが、検出時刻における超音波センサ2から障害物11までの最短距離を示す点は前方側検出点12aであるため、前方側検出点12aは障害物11の位置を正確に示す。したがって、このように検出時刻およびその所定の時刻だけ前後の時刻の検出距離が自車両10に近づくときは、物体形状推移部8は障害物11の位置を示す距離点を前方側検出点12aに設定する。   By the way, as described above, the ultrasonic sensor 2 detects the shortest distance from the ultrasonic sensor 2 to the obstacle as the distance from the own vehicle 10 to the obstacle 11, but from the ultrasonic sensor 2 to the obstacle 11 at the detection time. Since the point indicating the shortest distance is the front detection point 12a, the front detection point 12a accurately indicates the position of the obstacle 11. Therefore, when the detection time and the detection distance of the time before and after the predetermined time approach the own vehicle 10, the object shape transition unit 8 sets the distance point indicating the position of the obstacle 11 as the front detection point 12a. Set.

図4に示すように、検出時刻、前時刻および後時刻の検出距離の比較の結果により、障害物11が自車両10に対して遠ざかっていることが分かった場合、検出時刻の超音波センサ2の照射範囲における障害物11の形状は、自車両10に対して左斜めに傾いた形状をしている可能性が高いため、物体形状推定部8は、障害物11の形状を左斜めに傾いた形状であると推定する。   As shown in FIG. 4, when it is found from the comparison result of the detection distances of the detection time, the previous time, and the subsequent time that the obstacle 11 is moving away from the host vehicle 10, the ultrasonic sensor 2 at the detection time. Since there is a high possibility that the shape of the obstacle 11 in the irradiation range is inclined to the left with respect to the own vehicle 10, the object shape estimation unit 8 inclines the shape of the obstacle 11 to the left. Estimated shape.

このような場合、検出時刻における超音波センサ2から障害物11までの最短距離を示す点は後方側検出点13aであるため、前方側検出点13aは障害物11の位置を正確に示す。したがって、検出時刻およびその所定の時刻だけ前後の時刻の検出距離が自車両10よりも遠ざかるときは、物体形状推移部8は、障害物11の位置を示す距離点を後方側検出点13aに設定する。   In such a case, since the point indicating the shortest distance from the ultrasonic sensor 2 to the obstacle 11 at the detection time is the rear side detection point 13a, the front side detection point 13a accurately indicates the position of the obstacle 11. Therefore, when the detection time and the detection distance of the time before and after the predetermined time are farther than the own vehicle 10, the object shape transition unit 8 sets the distance point indicating the position of the obstacle 11 as the rear detection point 13a. To do.

図5に示すように、前時刻の検出距離に対して検出時刻の検出距離が長く、検出時刻の距離に対して後時刻の検出距離が短くなる場合、検出時刻の超音波センサ2の照射範囲内の障害物11の屈曲点α部分における形状を推定することが困難である。また、図6に示すように、前時刻の検出距離に対して検出時刻の検出距離が短く、検出時刻の検出距離に対して後時刻の検出距離が長くなる場合も、検出時刻の超音波センサ2の照射範囲内の障害物11の屈曲点β部分における形状を推定することが困難である。したがって、これらの場合に、物体形状推定部8は、障害物11の位置を示す距離点を前方側12aおよび後方側検出点13aそれぞれに設定する。   As shown in FIG. 5, when the detection distance of the detection time is longer than the detection distance of the previous time and the detection distance of the later time is shorter than the distance of the detection time, the irradiation range of the ultrasonic sensor 2 at the detection time It is difficult to estimate the shape of the obstacle 11 in the bending point α. Also, as shown in FIG. 6, the detection time ultrasonic sensor is also used when the detection distance of the detection time is shorter than the detection distance of the previous time and the detection distance of the later time is longer than the detection distance of the detection time. It is difficult to estimate the shape at the bending point β of the obstacle 11 within the irradiation range of 2. Therefore, in these cases, the object shape estimation unit 8 sets the distance points indicating the position of the obstacle 11 to the front side 12a and the rear side detection point 13a, respectively.

さらに、図7に示すように、上記した各検出時刻におけるそれぞれの検出距離が、全て同じ距離である場合、検出時刻の超音波センサ2の照射範囲における障害物11の形状は、自車両10の進行方向と平行であると推定できる。しかし、このときの超音波センサ2から障害物11までの最短距離を示す点は、超音波照射方向にあるため、障害物11の位置を示す距離を前方側12aおよび後方側検出点13aのいずれかに設定するのは適当でない。したがって、各検出時刻におけるそれぞれの検出距離が変わらない場合、物体形状推定部8は、障害物11の位置を示す距離点を前方側検出点12aおよび後方側検出点13aそれぞれに設定する。   Furthermore, as shown in FIG. 7, when the detection distances at the detection times described above are all the same distance, the shape of the obstacle 11 in the irradiation range of the ultrasonic sensor 2 at the detection time is as follows. It can be estimated to be parallel to the traveling direction. However, since the point indicating the shortest distance from the ultrasonic sensor 2 to the obstacle 11 at this time is in the ultrasonic irradiation direction, the distance indicating the position of the obstacle 11 is set to either the front side 12a or the rear side detection point 13a. It is not appropriate to set it. Therefore, when the respective detection distances at the respective detection times are not changed, the object shape estimation unit 8 sets distance points indicating the positions of the obstacles 11 to the front detection point 12a and the rear detection point 13a, respectively.

以上のように、物体形状推定部8は、各検出時刻におけるそれぞれの検出距離に基づき、自車両10の移動に伴い各時刻の検出距離が自車両10側に近づくときおよび遠ざかるときを除いて、障害物11の位置を示す距離点を前方側検出点12aおよび後方側検出点13aそれぞれに設定する。   As described above, the object shape estimation unit 8 is based on the respective detection distances at the respective detection times, except when the detection distance at each time approaches or moves away from the own vehicle 10 as the host vehicle 10 moves. A distance point indicating the position of the obstacle 11 is set for each of the front detection point 12a and the rear detection point 13a.

次に、物体形状推定部8は、上記設定された距離点12a、13aを繋ぎ合わせた形状を障害物11の形状と認識する(本発明における認識手段)。例えば、図8に示すような、自車両進行方向の左側に点線で表すジグザグ形状をした障害物がある場合、物体形状推定部8は、自車両10の移動に伴い障害物11の自車両10の進行方向に対して右斜めに傾いた部分の位置を示すそれぞれの距離点を前方側検出点12aに設定し、障害物11の凸部の位置を示す距離点を前方側検出点12aおよび後方側検出点13aそれぞれに設定し、左斜めに傾いた部分の位置を示す距離点を後方側検出点13aに設定し、これらの各検出点12a、13aそれぞれを繋ぎ合わせた形状を障害物11の形状と認識する。このように、右斜めや左斜めに傾いた複雑な形状を有する障害物11の形状を正確に認識することができる。   Next, the object shape estimation unit 8 recognizes the shape obtained by connecting the set distance points 12a and 13a as the shape of the obstacle 11 (recognition means in the present invention). For example, as illustrated in FIG. 8, when there is an obstacle having a zigzag shape represented by a dotted line on the left side in the traveling direction of the host vehicle, the object shape estimation unit 8 causes the host vehicle 10 of the obstacle 11 to move along with the movement of the host vehicle 10. Each distance point indicating the position of the portion inclined rightward with respect to the traveling direction is set as the front detection point 12a, and the distance point indicating the position of the convex portion of the obstacle 11 is set as the front detection point 12a and the rear. The distance detection point 13a is set to each of the side detection points 13a, the distance point indicating the position of the obliquely inclined portion to the left is set as the rear detection point 13a, and the shape obtained by connecting the detection points 12a and 13a is connected to the obstacle 11 Recognize as a shape. In this way, the shape of the obstacle 11 having a complicated shape tilted rightward or leftward can be accurately recognized.

障害物マップ生成部9は、物体形状推定部8により認識された物体形状に基づいて自車両10周辺のマップを生成する。例えば、本実施形態の車両用物体認識装置1を用いて駐車空間を認識する場合、図9に示すように、ドライバのボタン操作などを契機に、その時の自車両10の位置を原点14として、自車両10の進行方向をY軸、これとは垂直の方向をX軸とする座標平面を設定する。   The obstacle map generation unit 9 generates a map around the host vehicle 10 based on the object shape recognized by the object shape estimation unit 8. For example, when recognizing a parking space using the vehicle object recognition device 1 of the present embodiment, as shown in FIG. 9, with the driver's button operation or the like as the trigger, the position of the host vehicle 10 at that time is the origin 14. A coordinate plane is set in which the traveling direction of the host vehicle 10 is the Y axis, and the direction perpendicular thereto is the X axis.

そして、自車両10の移動に伴い超音波センサ2,3により自車両10から駐車車両15までの距離を検出し続け、それらのデータに基づいて物体形状推定部8で駐車車両15の形状を推定する。このとき、自車両10の位置は、車速センサ4と舵角センサ5から検出した自車両10の速度と操舵角に関する情報に基づき推定し、その時の超音波センサ2、3の測距データをもとに駐車車両15の大きさと位置に対応する駐車車両15をマップ上に生成し、この生成を繰り返すことで駐車空間を認識する。   As the host vehicle 10 moves, the ultrasonic sensors 2 and 3 continue to detect the distance from the host vehicle 10 to the parked vehicle 15, and the object shape estimation unit 8 estimates the shape of the parked vehicle 15 based on the data. To do. At this time, the position of the host vehicle 10 is estimated based on information about the speed and the steering angle of the host vehicle 10 detected from the vehicle speed sensor 4 and the steering angle sensor 5, and the distance measurement data of the ultrasonic sensors 2 and 3 at that time are also stored. In addition, a parked vehicle 15 corresponding to the size and position of the parked vehicle 15 is generated on the map, and the parking space is recognized by repeating this generation.

次に、本実施形態の車両用物体認識装置1の動作について、図10のフローチャートを参照して説明する。   Next, operation | movement of the vehicle object recognition apparatus 1 of this embodiment is demonstrated with reference to the flowchart of FIG.

まず、ドライバのボタン操作などを契機として、そのときの自車両10の位置を示す原点14およびX−Y座標平面が設定される。そして、車速センサ4と舵角センサ5により検出された自車両10の速度と操舵角に関する情報をもとに車両移動量推定部6で自車両10の移動量(移動方向を含む)を算出し、設定された座標平面における自車両10の位置を推定する(ステップS2)とともに、超音波センサ2,3から測距データを取得する(ステップS1)。   First, with the button operation of the driver as an opportunity, the origin 14 and the XY coordinate plane indicating the position of the host vehicle 10 at that time are set. Then, based on information about the speed and steering angle of the host vehicle 10 detected by the vehicle speed sensor 4 and the steering angle sensor 5, the vehicle travel amount estimation unit 6 calculates the travel amount (including the travel direction) of the host vehicle 10. Then, the position of the host vehicle 10 in the set coordinate plane is estimated (step S2), and distance measurement data is acquired from the ultrasonic sensors 2 and 3 (step S1).

次に、ステップS2にて、取得した測距データの検出時刻および2Δt時間前の時刻までのそれぞれの測距データが測距データ管理部7に存在するか否かを物体形状推定部8で判断し、測距データが存在する場合は、物体形状推定部8は、それら3つの時刻におけるそれぞれの検出距離に基づき(ステップS3)、自車両10の移動に伴いこれらの各時刻の検出距離が自車両10に近づくときは、上記検出時刻のΔt時間前の時刻の障害物11の位置を示す距離点を前方側検出点12aに設定し(ステップS4)、自車両10から遠ざかるときは後方側検出点13aに設定し(ステップS5)、その他の場合は前方側検出点12aおよび後方側検出点13aそれぞれに設定する(ステップS6)。測距データの検出時刻から2Δt時間前までの測距データが存在しない場合は、ステップ2をNOで通過し、2Δt時間前までのデータが測距データ管理部7に記憶されるまで距離検出が繰り返される。   Next, in step S2, the object shape estimation unit 8 determines whether or not each of the distance measurement data until the detection time of the acquired distance measurement data and the time before 2Δt hours exists in the distance measurement data management unit 7. If the distance measurement data exists, the object shape estimation unit 8 automatically detects the detected distances at these times as the host vehicle 10 moves based on the detected distances at the three times (step S3). When approaching the vehicle 10, the distance point indicating the position of the obstacle 11 at a time Δt before the detection time is set as the front detection point 12 a (step S 4), and when moving away from the host vehicle 10, the rear side detection is performed. Set to point 13a (step S5), otherwise set to front detection point 12a and rear detection point 13a (step S6). If there is no ranging data up to 2Δt hours before the detection time of the ranging data, step 2 is NO and the distance detection is performed until the data up to 2Δt hours is stored in the ranging data management unit 7. Repeated.

次に、設定された検出点12a,13aを前回設定された検出点とを線で結び(ステップS7)、その線を周辺マップ上に追加し(ステップS8)、ステップS9にて周辺マップ上に駐車スペースがあるかどうかを判断し、ある場合は、駐車スペースの存在を自車両10に設けられた液晶ディスプレイの表示画面に表示するなどしてドライバに通知して(ステップS10)物体形状認識を終了する。また、駐車スペースがない場合は、スペースが見つかるまで障害物11の形状認識を繰り返す。   Next, the set detection points 12a and 13a are connected to the previously set detection points with a line (step S7), and the line is added to the peripheral map (step S8). It is determined whether there is a parking space, and if there is, the driver is notified by displaying the presence of the parking space on the display screen of the liquid crystal display provided in the host vehicle 10 (step S10) and object shape recognition is performed. finish. If there is no parking space, the shape recognition of the obstacle 11 is repeated until a space is found.

したがって、上記実施形態によれば、物体形状推定部8は、物体の位置を示す距離点を超音波センサ2,3による自車両10からの検出距離で、照射範囲を横断した扇状の水平面の自車両10の前方側臨界線近辺の前方側対象線12上の前方側検出点12aおよび後方側臨界線近辺の後方側対象線13上の後方側検出点13aのうち少なくともいずれかに設定し、当該物体形状推定部8の設定手段は、自車両10の移動に伴い繰り返し検出される検出距離のうち、前記超音波センサ2,3による自車両10からの距離を検出する検出時刻およびその所定時間Δtだけ前、後の時刻におけるそれぞれの検出距離に基づき、自車両10の移動に伴い各時刻の検出距離が自車両10に近づくときは距離点を前方側検出点12aに設定し、遠ざかるときは後方側検出点13aに設定し、その他の場合は前方側検出点12aおよび後方側検出点13aのそれぞれに設定し、設定された距離点12a,13aそれぞれを繋ぎ合わせた形状を物体の形状と認識するため、自車両10の進行方向に対して右斜めや左斜めに傾いた複雑な形状を有する障害物11の形状を正確に認識することができる。   Therefore, according to the above-described embodiment, the object shape estimation unit 8 uses the distance point indicating the position of the object as the detection distance from the vehicle 10 by the ultrasonic sensors 2 and 3, and the object shape estimation unit 8 on the fan-shaped horizontal plane crossing the irradiation range. Set at least one of the front detection point 12a on the front target line 12 near the front critical line of the vehicle 10 and the rear detection point 13a on the rear target line 13 near the rear critical line, The setting means of the object shape estimation unit 8 includes a detection time for detecting a distance from the own vehicle 10 by the ultrasonic sensors 2 and 3 and a predetermined time Δt among the detection distances repeatedly detected as the own vehicle 10 moves. If the detection distance at each time approaches the own vehicle 10 with the movement of the host vehicle 10 based on the respective detection distances at the previous and later times, the distance point is set to the front detection point 12a and moved away. Is set at the rear detection point 13a, and in other cases, it is set at each of the front detection point 12a and the rear detection point 13a, and the shape obtained by connecting the set distance points 12a and 13a as the shape of the object. Therefore, it is possible to accurately recognize the shape of the obstacle 11 having a complicated shape that is inclined diagonally right or left with respect to the traveling direction of the host vehicle 10.

また、従来のように複雑な演算を行わなくとも、単に3つの検出時刻におけるそれぞれの検出距離から障害物11の位置を示す距離点を、前方側検出点12aおよび後方側検出点13aのうち少なくともいずれかに設定し、自車両10の移動に伴い設定が繰り返されるこれらの距離点12a,13aを繋ぎ合わせた形状で、正確な障害物11の形状認識ができるため、高価な演算装置を必要とせず、低コストな構成で物体の形状を認識することができる。   Further, the distance point indicating the position of the obstacle 11 from the respective detection distances at the three detection times can be determined as at least one of the front detection point 12a and the rear detection point 13a without performing complicated calculations as in the prior art. Since it is possible to accurately recognize the shape of the obstacle 11 by connecting these distance points 12a and 13a, which are set to any one and are repeatedly set as the host vehicle 10 moves, an expensive arithmetic unit is required. Therefore, the shape of the object can be recognized with a low-cost configuration.

なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。   The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention.

例えば、上記した実施形態では、検出点を、前方側、後方側の2点で設定したが、図5〜7に示す例において、これらに加えて超音波照射範囲を横断した扇状の水平面の中心近辺の中心対象線上に中心検出点を設定し、自車両10の移動に伴い繰り返し検出される検出距離のうち、超音波センサ2,3による自車両10からの距離を検出する検出時刻およびその所定時間だけ前後の時刻におけるそれぞれの検出距離に基づき、自車両10の移動に伴い上記各時刻の検出距離が自車両10に近づくときおよび遠ざかるとき以外の場合(その他の場合)は、中心検出点に設定してもよい。これにより、図5〜7に示す例においては障害物11の形状をより一層精度よく認識することができる。具体的には、図5、6に示す例では、障害物11の屈曲点α,βまでの検出距離の精度がよくなり、また、図7に示す例のように、障害物11の形状が自車両10の進行方向と平行である場合、超音波センサ2,3から障害物11までの最短距離は、超音波センサ2,3から中心検出点までの距離であるため、中心検出点は障害物11の位置を正確に示す。したがって、このような中心検出点を設定することにより、自車両10の移動に伴い繰り返し設定される距離点を繋ぎ合わせた形状は、前方側および後方側にのみ距離点を設定する上記実施形態により認識される形状より正確な障害物11の形状を表すため、形状認識の精度をさらに向上させることができる。   For example, in the above-described embodiment, the detection points are set at two points on the front side and the rear side, but in the examples shown in FIGS. 5 to 7, in addition to these, the center of the fan-shaped horizontal plane that crosses the ultrasonic irradiation range A detection time for detecting a distance from the own vehicle 10 by the ultrasonic sensors 2 and 3 among detection distances that are repeatedly detected as the own vehicle 10 moves by setting a center detection point on a central target line in the vicinity and the predetermined time. Based on the respective detection distances at the time before and after the time, when the detection distance at each time is close to or away from the own vehicle 10 as the host vehicle 10 moves (other cases), the center detection point is used. It may be set. Thereby, in the example shown in FIGS. 5-7, the shape of the obstruction 11 can be recognized still more accurately. Specifically, in the example shown in FIGS. 5 and 6, the accuracy of the detection distance to the bending points α and β of the obstacle 11 is improved, and the shape of the obstacle 11 is the same as in the example shown in FIG. When the traveling direction of the host vehicle 10 is parallel, the shortest distance from the ultrasonic sensors 2 and 3 to the obstacle 11 is the distance from the ultrasonic sensors 2 and 3 to the center detection point. The position of the object 11 is indicated accurately. Therefore, by setting such a center detection point, the shape in which the distance points that are repeatedly set as the host vehicle 10 moves is connected to the shape in which the distance points are set only on the front side and the rear side. Since the shape of the obstacle 11 is more accurate than the recognized shape, the accuracy of shape recognition can be further improved.

なお、上記実施形態においては、検出点を超音波照射範囲を横断した扇状の水平面の前方側および後方側臨界線近辺の前方側対象線12および後方側対象線13上に設定したが、これらの対象線12,13は後方側臨界線および後方側臨界線それぞれと一致しても構わない。   In the above embodiment, the detection points are set on the front side target line 12 and the rear side target line 13 near the front side and the rear side critical line of the fan-shaped horizontal plane crossing the ultrasonic irradiation range. The target lines 12 and 13 may coincide with the rear critical line and the rear critical line, respectively.

1… 車両用物体形状認識装置
2… 左側面超音波センサ
3… 右側面超音波センサ
7… 測距データ管理部
8… 物体形状推定部(設定手段、認識手段)
12… 前方側対象線
12a… 前方側検出点
13… 後方側対象線
13a… 後方側検出点
DESCRIPTION OF SYMBOLS 1 ... Vehicle object shape recognition apparatus 2 ... Left side ultrasonic sensor 3 ... Right side ultrasonic sensor 7 ... Ranging data management part 8 ... Object shape estimation part (setting means, recognition means)
12 ... Front side target line 12a ... Front side detection point
13 ... Back side target line 13a ... Back side detection point

Claims (1)

自車両側方に向けて円錐状に広がる照射範囲内の物体から前記自車両までの距離を検出する超音波センサを有し、前記自車両の移動に伴い前記物体から前記自車両までの距離の検出を繰り返すことにより前記物体の形状を認識する車両用物体認識装置において、
前記物体の位置を示す距離点を、前記超音波センサによる自車両からの検出距離で、前記照射範囲を横断した扇状の水平面の前記自車両の前方側臨界線近辺の前方側対象線上の前方側検出点および後方側臨界線近辺の後方側対象線上の後方側検出点のうち少なくともいずれかに設定する設定手段と、
前記設定された前記距離点を繋ぎ合わせた形状を前記物体の形状と認識する認識手段とを備え、
前記設定手段は、前記自車両の移動に伴い繰り返し検出される検出距離のうち、前記超音波センサによる自車両からの距離を検出する検出時刻およびその所定時間だけ前後の時刻におけるそれぞれの検出距離に基づき、前記自車両の移動に伴い前記各時刻の検出距離が前記自車両に近づくときは前記距離点を前記前方側検出点に設定し、遠ざかるときは前記後方側検出点に設定することを特徴とする車両用物体認識装置。

An ultrasonic sensor for detecting a distance from an object within an irradiation range conically extending toward the side of the host vehicle to the host vehicle, and the distance from the object to the host vehicle as the host vehicle moves In the vehicle object recognition device for recognizing the shape of the object by repeating detection,
The distance point indicating the position of the object is a detection distance from the own vehicle by the ultrasonic sensor, and the front side on the front side target line in the vicinity of the front critical line of the own vehicle on the fan-shaped horizontal plane crossing the irradiation range. Setting means for setting at least one of the detection point and the detection point on the back side on the back side target line near the back side critical line;
Recognizing means for recognizing the shape obtained by connecting the set distance points as the shape of the object,
The setting means includes a detection time for detecting a distance from the own vehicle by the ultrasonic sensor and a detection distance at a time before and after the predetermined time among detection distances repeatedly detected as the vehicle moves. Based on the movement of the host vehicle, the distance point is set as the front detection point when the detection distance at each time approaches the host vehicle, and the detection point is set as the rear detection point when moving away. A vehicle object recognition device.

JP2011148782A 2011-07-05 2011-07-05 Object recognition device for vehicle Withdrawn JP2013016052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011148782A JP2013016052A (en) 2011-07-05 2011-07-05 Object recognition device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011148782A JP2013016052A (en) 2011-07-05 2011-07-05 Object recognition device for vehicle

Publications (1)

Publication Number Publication Date
JP2013016052A true JP2013016052A (en) 2013-01-24

Family

ID=47688679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011148782A Withdrawn JP2013016052A (en) 2011-07-05 2011-07-05 Object recognition device for vehicle

Country Status (1)

Country Link
JP (1) JP2013016052A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5843948B1 (en) * 2014-11-27 2016-01-13 三菱電機株式会社 Parking assistance device and parking assistance method
DE112018001708T5 (en) 2017-03-28 2019-12-19 Denso Corporation OBSTACLE DETECTION DEVICE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5843948B1 (en) * 2014-11-27 2016-01-13 三菱電機株式会社 Parking assistance device and parking assistance method
DE112018001708T5 (en) 2017-03-28 2019-12-19 Denso Corporation OBSTACLE DETECTION DEVICE
US10929695B2 (en) 2017-03-28 2021-02-23 Denso Corporation Obstacle detection apparatus

Similar Documents

Publication Publication Date Title
KR101815599B1 (en) Parking assistance device using tpms
KR101521842B1 (en) Device for detecting the parking space and method thereof
JP6318864B2 (en) Driving assistance device
CN104648403B (en) Method, device and system for detecting narrow road
WO2016063529A1 (en) Object detection device
CN110867132B (en) Environment sensing method, device, electronic equipment and computer readable storage medium
WO2016084479A1 (en) Drive control device for vehicle, drive control method, and drive control program
US20130110391A1 (en) Apparatus for estimating travel path of a vehicle
JP5843948B1 (en) Parking assistance device and parking assistance method
WO2014125810A1 (en) Obstruction detection device
JP2013054614A (en) Drive assisting device
JP2013020458A (en) On-vehicle object discrimination device
JP5402983B2 (en) Vehicular road shape recognition method and apparatus, and recording medium
JP2017151726A (en) Collision predicting device
US9676327B2 (en) Rear side obstacle display method and apparatus of vehicle
JP6442225B2 (en) Object detection device
JP2014159182A (en) Parking space sensing device
JP2022502642A (en) How to evaluate the effect of objects around the means of transportation on the driving operation of the means of transportation
KR20180039900A (en) Apparatus and method for determining collision possibility according to traveling path scenario and controlling a vehicle
KR102545582B1 (en) System for avoiding collision in crossroad and method for control thereof
JP2012234373A (en) Driving support device
JP2013016052A (en) Object recognition device for vehicle
KR101734726B1 (en) Method of tracking parking space and apparatus performing the same
JP5490633B2 (en) Vehicle traveling path estimation device
JP4864450B2 (en) Vehicle driving support device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007