JP2013014960A - Soil sampling device - Google Patents
Soil sampling device Download PDFInfo
- Publication number
- JP2013014960A JP2013014960A JP2011149086A JP2011149086A JP2013014960A JP 2013014960 A JP2013014960 A JP 2013014960A JP 2011149086 A JP2011149086 A JP 2011149086A JP 2011149086 A JP2011149086 A JP 2011149086A JP 2013014960 A JP2013014960 A JP 2013014960A
- Authority
- JP
- Japan
- Prior art keywords
- rod
- sample
- lubricant
- sample storage
- ground
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Abstract
Description
本発明はボーリング孔底あるいはピット内で、地盤の強度や変形特性等の高度な室内試験を行うための供試体を採取する場合に使用する地盤試料採取装置に関し、特に試料収納管内に試料を取り込む時や試料を収納管から押出す時に試料周面に作用する摩擦力やサンプラーを引き抜く時の真空圧、各種の振動や揺動等による品質の低下と試料の落下防止等を図る地盤試料採取装置に関する。 The present invention relates to a ground sample collection device used when collecting a specimen for performing an advanced laboratory test such as strength and deformation characteristics of the ground in a borehole bottom or pit, and particularly takes a sample into a sample storage tube. A ground sampling device that reduces friction and prevents samples from dropping due to frictional force acting on the sample circumference when the sample is pushed out of the storage tube, vacuum pressure when pulling out the sampler, various vibrations and oscillations, etc. About.
地上あるいは地中に建造される構造物の設計・施工、液状化や土砂災害などの予測・復旧などに欠かすことができない地盤の力学的情報は、試験に供する供試体の品質により大きく異なる。ここでは、供試体の品質低下要因全般に配慮しつつ、品質低下の主因でありながら従来から開発が遅れていた地盤試料と試料収納管との摩擦、真空圧等による地圧と間隙圧の変化に着目した。 The mechanical information of the ground, which is indispensable for the design and construction of structures built on the ground or in the ground, and the prediction and restoration of liquefaction and landslide disasters, varies greatly depending on the quality of the specimens used for the test. Here, changes in ground pressure and pore pressure due to friction, vacuum pressure, etc. between the ground sample and the sample storage tube, which has been a long-term development, taking into account all the factors of quality degradation of the specimen, which have been the main cause of quality degradation. Focused on.
この分野での研究開発は、今回の主目的と同様、高品質化と言っても如何に確実に試料を採取できるかが第一で、採取者にとっては都合のよい方向に、試料にとっては過酷な応力条件下での採取法が主流であった。特に、内面がザラザラなチューブを圧入する結果(粗度の規定がある規格がない)、試料は圧縮されることになるが、これに対処するための固定ピストン式サンプラーが一般に用いられている(ざらざらチューブでは摩擦が大きく試料は落下し難いが、試料が圧縮されるとピストンと試料上面間に負圧が発生し試料を伸長する)サンプリング後、サンプラーを地中から引き揚げようとすると真空圧が発生し採取試料は下方に引っ張られるが、チューブとの摩擦が大きいと試料は落下し難いことになり、採取者にとっては好都合である。品質低下の原因をそのままにして対処療法的な開発が多かった。 In the research and development in this field, as with the main objective of this time, the most important thing is to ensure that the sample can be collected even if it is high quality. The sampling method under various stress conditions was the mainstream. In particular, as a result of press-fitting a tube having a rough inner surface (there is no standard that defines the roughness), the sample is compressed, but a fixed piston sampler is generally used to cope with this ( In the rough tube, the friction is large and the sample is difficult to fall, but if the sample is compressed, a negative pressure is generated between the piston and the upper surface of the sample, and the sample is expanded.) After sampling, the vacuum pressure is increased when trying to lift the sampler from the ground. The collected sample is pulled downward, but if the friction with the tube is large, the sample is difficult to fall, which is convenient for the collector. There were many coping therapy developments that left the cause of quality degradation as it was.
前記特許文献4は(出願 1995.09):地盤試料用サンプラー。請求項4:透明樹脂製の内管(収納管)に180°対象位置にV型の易破断性の溝加工をすることで、簡単に2つ割に出来、試料を乱さないで取り出すことができる)。 Patent Document 4 (Application 1995.09): Sampler for ground sample. Claim 4: By forming a V-shaped easily breakable groove at the 180 ° target position on the inner tube (storage tube) made of transparent resin, it can be easily divided into two parts and taken out without disturbing the sample. it can).
前記特許文献5は(出願 1999.09):粒状体地盤コアバーレル。砂礫などの土粒子を回転切削しながら試料を採取することを前提としている。請求項1:回転切削ビット径より小さい径のコアチューブの中に機能性キャップを装着したピストンを入れて底蓋状にし、その中に高粘性流体を封入し、回転切削によるコアがサンプラーに入って来ると、封入されている高粘性流体が高圧になり機能性キャップを介してチューブとコアで形成された環状間隙に注入され、コアを保護しながら流下してビット部から排出される。 Patent Document 5 (Application 1999.09): Granular ground core barrel. It is assumed that the sample is collected while rotating and cutting soil particles such as gravel. Claim 1: Put a piston with a functional cap into a core tube with a diameter smaller than the diameter of the rotating cutting bit to form a bottom lid, enclose a highly viscous fluid in it, and the core by rotating cutting enters the sampler Then, the enclosed highly viscous fluid becomes high pressure, is injected into the annular gap formed by the tube and the core through the functional cap, flows down while discharging the core, and is discharged from the bit portion.
請求項2:原理的にはダブルコアチューブ式で、内管は非回転で外管による回転で切削し、コアが中に入ると。高粘性流体は前記ピストンの作用で内管とコアの間を流下してビットへ、他に内管のヘッドにあるバルブを通って内外管の間を流下してビット面から排出される。 Claim 2: In principle, it is a double core tube type, and the inner tube is not rotated but is cut by rotation by the outer tube, and the core enters inside. The high-viscosity fluid flows down between the inner tube and the core by the action of the piston to the bit, and then flows between the inner and outer tubes through a valve in the head of the inner tube and is discharged from the bit surface.
前記特許文献6は(出願2006.06):貫入式地盤試料採取装置。主としてサンプラーを静的に貫入できる緩〜中位の粘性土、砂質地盤等への適用を前提としている。一般に用いられている試料収納管を水圧ピストンで圧入するサンプラーの原理を用い、孔底面に接し、試料収納管先端部に位置する固定ピストンと試料収納管からなる空間に潤滑剤からなる高濃度溶液を密封し、送水して水圧ジャッキで試料収納管(貫入し易さと強度から通常金属製の薄肉パイプ、が用いられている)を圧入すると高圧になった潤滑剤はピストンと試料収納管の隙間を流下しながら試料を養生し、最後は採取した試料の体積分だけピストン周面から流下してシュー上部の排出口から孔内に排出される。所定長圧入されると、シュー上部に格納してあるキャッチャーが水圧ジャッキで押し出されシュー上部で閉塞され、試料の落下を防止する。 Patent Document 6 (Application 2006.06): Intrusion-type ground sampling device. It is premised on application to loose to medium viscous soil, sandy ground, etc. that can mainly penetrate the sampler statically. A highly concentrated solution consisting of a lubricant in a space consisting of a fixed piston and a sample storage tube at the tip of the sample storage tube, in contact with the bottom of the hole, using the principle of a sampler that presses a commonly used sample storage tube with a hydraulic piston. When the sample storage tube (usually a metal thin pipe is used for ease of penetration and strength) is pressed in with a hydraulic jack, the lubricant that has become high pressure is removed between the piston and the sample storage tube. The sample is cured while flowing down, and finally flows down from the circumferential surface of the piston by the volume of the collected sample and is discharged into the hole from the discharge port at the top of the shoe. When press-fitted for a predetermined length, the catcher stored in the upper part of the shoe is pushed out by a hydraulic jack and closed at the upper part of the shoe to prevent the sample from dropping.
前記特許文献7は(出願21994.11):プラネットギアによりサンプラー頭部で内管の回転力を外管ロッドを介して内管に伝達されないようにする装置。内管の回転を阻止することで、採取試料の品質の低下をふぐことを目的としている。 Patent Document 7 (Application 21994.11): An apparatus that prevents the rotational force of the inner tube from being transmitted to the inner tube through the outer tube rod at the sampler head by the planet gear. The purpose is to prevent the deterioration of the quality of the collected sample by preventing the rotation of the inner tube.
前述の特許に関連した論文等の数は多いが、それ以外のものを以下に示す。 There are many papers related to the aforementioned patents, but the others are listed below.
高品質供試体の提供と摩擦問題に関する実験的考察(湯川 酒井 第46回地盤工学研究発表会 2001.079)
我が国で一般に用いられている規格化された試料収納管(シンウォールチューブTwt)等に砂を詰めて押出し摩擦実験を行った結果、砂の密度によって異なるがTwt+潤滑剤(ポリマー)塗布を1とすると、塩ビパイプは3、アクリルパイプは途中で圧壊、Twtは50〜100倍と非常に大きいこと(潤滑剤を塗布すると摩擦が激減すること)が判明した。これから消耗品である試料収納管は安価で滑り特性と加工性に優れている塩ビ管が材質では最良であることがわかった。これに潤滑剤を塗布して使用するのが実務上ベストであると判断した。
Provision of high-quality specimens and experimental study on friction problems (Yukawa Sakai 46th Geotechnical Engineering Conference 2001.079)
As a result of conducting an extrusion friction experiment by filling sand into a standardized sample storage tube (thin wall tube Twt) that is generally used in Japan, the result is that Twt + lubricant (polymer) coating is 1 although it depends on the sand density. As a result, it was found that the PVC pipe was 3, the acrylic pipe was crushed in the middle, and Twt was 50 to 100 times as large (the friction was drastically reduced when the lubricant was applied). From this, it was found that the PVC material tube, which is a consumable item, is the cheapest and the best material is the PVC tube, which has excellent sliding characteristics and workability. It was judged that it was best in practice to apply a lubricant to this.
サンプリングの基礎的要素技術に関する一考察(酒井他 学会誌 土と基礎Vol.46 No.5 1998)。透水性の良い地盤でも孔内のコアバーレルを急速に引き上げると、液状化現象より激しいボイリングが発生することをビジュアルにした。これより、地中に貫入したサンプラーを引き上げれば大きな負圧が発生し、孔底地盤は激しく乱され、採取試料も品質が低下するので、負圧の発生を止める原理的な措置を施す必要がある。 A study on basic elemental technology of sampling (Sakai et al., Journal of Society and Basics Vol.46 No.5 1998). It was made visible that even when the ground has good water permeability, when the core barrel in the hole is pulled up rapidly, more intense boiling occurs than the liquefaction phenomenon. From this, if a sampler that penetrates into the ground is pulled up, a large negative pressure will be generated, the hole bottom ground will be violently disturbed, and the quality of the collected sample will deteriorate, so it is necessary to take a principle measure to stop the generation of negative pressure There is.
高品質試料採取を検討する場合、対象地盤によって品質低下要因は大きく異なる。そこで、当該サンプラーの適用範囲は、緩い〜密な砂・砂質土層、小礫混じり砂層に代表されるものとした場合の課題を以下に列記する。 When considering high-quality sampling, quality deterioration factors vary greatly depending on the target ground. Therefore, the application range of the sampler is listed below as problems when the sampler is represented by a loose to dense sand / sandy soil layer and a sand layer mixed with pebbles.
主要課題は下記のA,B,Cの3課題とする(他に当然のこととして、安全性、無公害性、経済性、取扱や耐久性などをベースにして手段を選定する)。
A:試料収納管内面と採取試料との摩擦による品質低下の防止:試料の押し出し時も含む
B:負圧の発生による試料落下と品質低下:
C:貫入抵抗を小さくすること:外周面の切削による、潤滑剤の活用ほか
D:その他:作業性、振動、ねじれ、刃先角度・・・
The main issues are the following three issues A, B, and C (as a matter of course, the means are selected based on safety, pollution-free property, economy, handling, durability, etc.).
A: Prevention of quality degradation due to friction between the inner surface of the sample storage tube and the collected sample: Including when the sample is pushed out B: Sample dropping and quality degradation due to generation of negative pressure:
C: Decrease penetration resistance: Utilization of lubricant by cutting the outer peripheral surface, etc. D: Others: workability, vibration, torsion, edge angle ...
課題A:試料収納管内面と採取試料との摩擦を低減する手段:
試料収納管の素材は従来は加工し易さから黄銅製品であったが、現在は強度的に優れたステンレス鋼が主流で、内径75mm管、肉厚1.5〜2.0mmnのものが一般的である。しかし、このパイプは内面がかなり租なため試料との摩擦抵抗は非常に大きい。しかし、これに潤滑剤を一様に塗布すると前述のように滑り性素材の塩ビ管より滑り易くなる。そのため、前記の特開2001―98539 特開2008―002065のように試料収納管と試料との間にクリアランスを設け、ここに潤滑剤を圧入する方法では摩擦は非常に小さくなるが、地盤によってはクリアランスによる地中応力の解放や潤滑剤の試料への浸透などによる品質低下が懸念される。この両方の問題を解決するためには、ポリマー溶液等の潤滑剤の圧力上昇を防ぐ吐出圧調節バルブをサンプラーヘッドに装着して、従来のように全ての潤滑剤を利用する方式から必要な分だけ利用すること、試料収納管内面全体に潤滑剤を適切な厚さで塗布するため、潤滑剤貯蔵スペースの底蓋に相当する自由ピストンに試料収納管内壁との間隙を調整するための間隙調整ユニットを装着、さらに試料収納管を貫入管の中に入れ、この二重管の環状間隙内を試料下端のシュー上部まで潤滑剤を流下させて試料の下部で斜スリットからなる潤滑剤塗布管を用いて試料周面に潤滑剤を塗布できるようにすることで解決可能である。現状では、試料収納管の材質や表面処理、地中応力保持等の問題はあるが、貫入管との併用を基本とし、現場の状況に応じて経験則に沿った微細な調整、ポリマーなどの潤滑剤の濃度、潤滑剤吐出圧、試料外径と試料収納管とのクリアランス、試料上部の自由ピストン部での潤滑剤塗布厚等の調整が試料採取直前でも自由に設定できるようなものとすることで品質の向上と安定化を図る。
Problem A: Means for reducing friction between inner surface of sample storage tube and collected sample:
Conventionally, the material of the sample storage tube has been brass because of its ease of processing, but at present, stainless steel, which has excellent strength, is the mainstream, and generally has an inner diameter of 75 mm and a wall thickness of 1.5 to 2.0 mm. Is. However, this pipe has a very large inner surface, so the frictional resistance with the sample is very large. However, when the lubricant is uniformly applied thereto, as described above, it becomes easier to slip than the slippery PVC pipe. For this reason, a clearance is provided between the sample storage tube and the sample as in JP-A-2001-98539 and JP-A-2008-002065, and the friction is extremely reduced by a method in which a lubricant is pressed into the sample storage tube. However, depending on the ground, There are concerns about quality degradation due to release of underground stress due to clearance and penetration of lubricant into the sample. In order to solve both of these problems, a discharge pressure adjustment valve that prevents the pressure rise of the lubricant such as the polymer solution is attached to the sampler head, so that it is necessary to separate all the lubricants from the conventional method. In order to apply the lubricant to the entire inner surface of the sample storage tube at an appropriate thickness, the gap adjustment for adjusting the gap between the inner wall of the sample storage tube and the free piston corresponding to the bottom cover of the lubricant storage space Mount the unit, put the sample storage tube in the penetration tube, let the lubricant flow down to the upper part of the shoe at the lower end of the sample in the annular gap of this double tube, and install the lubricant application tube consisting of oblique slits at the lower part of the sample This can be solved by using the lubricant around the sample. At present, there are problems such as the material and surface treatment of the sample storage tube and the maintenance of underground stress, but it is based on the combined use with the penetrating tube. Adjustments such as lubricant concentration, lubricant discharge pressure, clearance between sample outer diameter and sample storage tube, and lubricant coating thickness at the free piston at the top of the sample can be freely set just before sampling. To improve and stabilize quality.
試料収納管については、前述の様に材質や表面加工の他に、摩擦力と比例関係で影響する地圧による試料収納管内面に作用する圧力で摩擦抵抗は変化する。摩擦面の条件が同一ならば、応力解放が無く地圧相当圧が保持されれば静止状態では乱れが生じないが、相対変異により摩擦力は最高値に達し試料を乱すことになる。クリアランスの調整で試料収納管の径方向に作用する圧力が決まり、その結果として周面摩擦力が発生するので、クリアランスの最適化が重要課題となるが、これは地盤や深度によっても異なることになる(大きなクリアランスでも自立する地盤であれば試料収納管内面に接しない摩擦ゼロ状態を再現できるが、地盤によっては応力解放で乱れるとか崩壊するなどの現象が発生する)。そこで、経験的に最適状態に導くため、周方向に伸縮可能な試料収納管(スリット管)の外周を弾性材で支持させる方法が実績もあり有効である。例えば、特開H01―125490(特開S60―200143/200144)等が参考になる。ただし、当該発明は採取試料への拘束圧とピストンによる軸圧を作用せせることが主目的ではなく、潤滑剤との組合せで、応力解放による試料の乱れと試料収納管に作用する地圧の低下で摩擦抵抗が低下することによる乱れの関係に着目し、縦スリット試料収納管の周圧調整と潤滑剤の吐出圧調整による試料の乱れを最小化することが主眼である。スリットチューブの利用は、上記の他に収納管から試料を押出す時に摩擦による品質低下を防ぐ最も効果的な方法である(試料の押出し時は試験の都合で、通常、採取時から日数がかなり経てから行われることがあるので、潤滑剤の硬化などで試料周面と収納管が貼り付き抜けなくなるが、スリットが入っていると貼りつきを簡単に剥して取り出すことができる。 As described above, the friction resistance of the sample storage tube is changed by the pressure acting on the inner surface of the sample storage tube due to the ground pressure that has a proportional relationship with the frictional force in addition to the material and the surface processing. If the conditions of the friction surface are the same, there will be no disturbance in the static state if there is no stress release and the pressure equivalent to the ground pressure is maintained, but the friction force reaches the maximum value due to the relative variation and the sample is disturbed. Adjustment of the clearance determines the pressure acting in the radial direction of the sample storage tube, and as a result, peripheral friction force is generated, so optimization of the clearance is an important issue, but this also depends on the ground and depth (If the ground is self-supporting even with a large clearance, a zero friction state that does not contact the inner surface of the sample storage tube can be reproduced, but depending on the ground, phenomena such as disturbance or collapse due to stress release may occur.) Therefore, in order to empirically lead to the optimum state, a method of supporting the outer periphery of the sample storage tube (slit tube) that can be expanded and contracted in the circumferential direction with an elastic material is effective. For example, Japanese Patent Laid-Open No. H01-125490 (Japanese Patent Laid-Open No. S60-200143 / 200144) is helpful. However, the present invention is not mainly intended to apply the restraining pressure to the sample to be collected and the axial pressure by the piston, and in combination with the lubricant, the disturbance of the sample due to stress release and the reduction of the ground pressure acting on the sample storage tube Focusing on the relationship of turbulence caused by lowering of frictional resistance, the main purpose is to minimize the turbulence of the sample due to the adjustment of the peripheral pressure of the vertical slit sample storage tube and the adjustment of the discharge pressure of the lubricant. In addition to the above, the use of a slit tube is the most effective method to prevent quality degradation due to friction when extruding a sample from a storage tube. Since it may be performed after that, the sample peripheral surface and the storage tube cannot be removed due to hardening of the lubricant or the like, but if there is a slit, the adhesion can be easily peeled off and taken out.
課題B:負圧の発生による試料落下と品質低下を防ぐ手段:
貫入型で採取したサンプラーを地盤から引き抜くと、先端部で真空圧が発生し試料の品質を低下させ、最悪の場合、試料は落下することになる。これを防ぐためには貫入管の外側を掘削し、孔内水圧がシュー位置に直ちに供給されるようにする必要がある。さらには、負圧が発生しないでも試料収納管の内面摩擦の低下により試料は落下し易くなるので、孔内水圧でサンプラー下面の試料に上向きの水圧を作用させる他、メカニカルな試料の落下防止工法の併用をできるようにする。(例えば、キャッチャ作動機構 特開2008―002065などによる)。
Problem B: Means for preventing sample drop and quality degradation due to generation of negative pressure:
When the sampler sampled from the intrusion type is pulled out from the ground, a vacuum pressure is generated at the tip, which degrades the quality of the sample. In the worst case, the sample falls. In order to prevent this, it is necessary to excavate the outside of the penetration pipe so that the water pressure in the hole is immediately supplied to the shoe position. In addition, even if negative pressure does not occur, the sample is likely to fall due to a decrease in internal friction of the sample storage tube. In addition to applying upward water pressure to the sample on the lower surface of the sampler with the water pressure in the hole, a mechanical sample fall prevention method Can be used together. (For example, according to the catcher operating mechanism JP 2008-002065 A).
回転切削型のサンプラーでは、外側が切削されるので負圧は発生し難いようになっている。その典型はトリプルチューブサンプラーで(地盤工学会基準JGS 1223―2003)、試料収納管は通常塩ビ管を用いている。しかし、採取試料の学会レベルでの評価は必ずしも良くない。その理由は緩い砂地盤では試料が落下する(キャッチャがついていない)、密なあるいは硬い地盤ではクリアランスを大きくとって採取されるため乱れやすい。特に共通して乱れの原因になるのは、回転時の振動や加圧力が大きい場合はローリングするためとされている。そこで、試料収納管の内面に試料の上下面で潤滑剤を塗布して摩擦抵抗を小さくし、ビットを土粒子切削用ではなく、土粒子を剥しながらサクサク切削できる鋭利な刃型とし、かつビット全周で切削するのではなく3点程度に付けた刃先で切削することで切削トルクを非常に小さくし、さらに回転数を従来の最低回転速度の数分の一以下にすることで振動やローリングを低減する頃が出来る。 In the rotary cutting type sampler, since the outside is cut, negative pressure is unlikely to be generated. A typical example is a triple tube sampler (JGS1223-2003, Geotechnical Society Standard), and a PVC pipe is usually used as a sample storage tube. However, the evaluation of collected samples at the academic level is not always good. The reason is that the sample falls on a loose sand ground (no catcher is attached), and on a dense or hard ground, it is easily disturbed because it is collected with a large clearance. In particular, the common cause of turbulence is that rolling occurs when the vibration and applied pressure during rotation are large. Therefore, lubricant is applied to the inner surface of the sample storage tube on the upper and lower surfaces of the sample to reduce the frictional resistance, and the bit is not for cutting soil particles, but has a sharp blade shape that can be cut smoothly while peeling the soil particles. The cutting torque is made extremely small by cutting with 3 cutting edges instead of cutting the entire circumference, and vibration and rolling are reduced by reducing the rotation speed to a fraction of the conventional minimum rotation speed. It is time to reduce.
課題C:貫入抵抗を小さくする手段:
前述のように、採取試料の上下位置で全面に潤滑剤を塗布することで試料と試料収納管との摩擦抵抗を減少させ、適性クリアランス(拘束圧の適正化)の確保等による貫入時の摩擦抵抗の減少、さらに貫入管の外側を掘削することで摩擦を少なくすることにする。
Problem C: Means for reducing penetration resistance:
As described above, by applying a lubricant to the entire surface of the sample to be collected, the friction resistance between the sample and the sample storage tube is reduced, and friction during penetration by ensuring appropriate clearance (optimization of restraint pressure), etc. We will reduce friction by reducing the resistance and excavating the outside of the penetration pipe.
課題D:その他:
現場作業中、直前での採取結果を分析し、直ちにその場で、潤滑剤の濃度、潤滑剤吐出圧の設定、ピストン部の間隙調整ユニットの調整で潤滑剤の塗布厚を調節などが容易にできるようにすることで品質の安定化と向上を図ることにした。
Issue D: Other:
Easily adjust the lubricant application thickness by adjusting the concentration of lubricant, lubricant discharge pressure, and adjustment of the piston gap adjustment unit immediately after analyzing the sampling results immediately before the site work By making it possible, we decided to stabilize and improve quality.
(礫混じり)砂質系地盤の高品質試料採取装置で、試料の試料収納管などと試料との摩擦を低減することで採取時は元より試料を押し出す時の乱れも激減できる。また、潤滑剤の吐出圧の調整と斜スリットからの試料下部での潤滑剤の塗布等により摩擦の低減と採取試料への潤滑剤の浸透問題はクリアできた。現場での実績の積み重ねが次の現場での高品質化に役立つシステムの構築が出来た。 (With gravel) This is a high-quality sample collection device for sandy ground. By reducing the friction between the sample storage tube and the sample, the disturbance when pushing the sample from the original can be drastically reduced. In addition, by adjusting the discharge pressure of the lubricant and applying the lubricant under the sample from the oblique slit, the problem of friction reduction and penetration of the lubricant into the collected sample could be cleared. A system that helps build high quality at the next site has been constructed by accumulating achievements at the site.
地圧バランスによる摩擦低減と応力解放による品質低下防止、更に、回転切削時の試料に作用するトルクのカットや切削振動等による品質低下の防止などが可能になり、現場での実績の積み重ねが次の現場での高品質化に役立つシステムの構築ができる。 It is possible to reduce friction due to ground pressure balance and prevent quality degradation by releasing stress, and to prevent quality degradation due to torque cutting and cutting vibration acting on the sample during rotary cutting. It is possible to construct a system that helps to improve the quality at the site.
本発明は、現場での試料採取から採取試料を試料収納管から抜き取るまでの品質向上と安定化を目指すもので、主として、砂質土から小礫混じり砂、小礫質土等の、緩い〜密なものまでをカバーし、反対に土粒子や岩砕を切削してコアを採取することは主たる対象地盤とはしていない。 The present invention aims to improve and stabilize the quality of sampling from on-site sampling to extraction of the collected sample from the sample storage tube, mainly from sandy soil to pebbles mixed sand, pebbly soil, etc. It is not the main target ground to cover even dense things and conversely cut the soil particles and rocks to collect the core.
以下に本発明の実施例について説明する。 Examples of the present invention will be described below.
当該高品質地盤試料採取装置の基本型で、請求項1に対応する実施例を図1ないし図8に示す。この高品質地盤試料採取装は、容易に静的に貫入できる緩い砂質系地盤を採取対象とするものである。 FIG. 1 to FIG. 8 show an embodiment corresponding to claim 1 as a basic type of the high-quality ground sampling device. This high-quality ground sample collection device is intended for collection of loose sandy ground that can be easily and statically penetrated.
図1ないし図8の実施例1において、地盤に穿設したボーリング孔B底に試料収納管4をその軸方向に降下させて該試料収納管4内に地盤試料を採取する地盤試料採取装置Xにおいて、該地盤試料採取装置Xはロッド1の先端部に取付けられたサンプラーヘッド2と、このサンプラーヘッド2に上端部が螺合固定あるいはスライド移動可能に取付けられた貫入菅3と、この貫入菅3の内壁面との間に潤滑剤流路5が形成されるように該貫入菅3内に挿入された摩擦抵抗の小さい素材あるいは摩擦抵抗の小さいシートを内壁面に貼着あるいはコーティングした採取試料を保護する試料収納菅4と、この試料収納菅4の下端部に該試料収納菅4と同一内径寸法の短菅に短冊上の傾斜潤滑剤流路22が形成された潤滑剤塗布菅7と、前記貫入菅3の下端部に取付けられた前記試料収納菅4と同径かあるいはわずかに小さい内径の外テーパを有する該試料収納菅4の上部が前記サンプラーヘッド2の底面に接触した状態で該試料収納菅4と前記潤滑剤塗布菅7を固定するシュー6と、前記試料収納菅4内にスライド移動可能に取付けられたピストン14と、このピストン14と前記サンプラーヘッド2との間の試料収納菅4の潤滑剤貯蔵スペース18に潤滑剤を供給するとともに、供給された潤滑剤に所定の圧力が加わると外方へ排出する潤滑剤通路19と、前記試料収納菅4の上部に形成された前記潤滑剤貯蔵スペース18の潤滑剤を前記潤滑剤流路19へ供給する連通孔8とで構成されている。
1 to 8, the ground sample collection device X for collecting a ground sample in the
詳しくは、試料を収納する試料収納管4は塩ビ管で(他にテフロン等の土との摩擦抵抗の小さな素材からなる管やこれらの薄肉シートを内面に貼付或いはコーティングした物も対象となるが。安価で多様なものがあるので塩ビパイプを使用した)、その外径より僅かに大きい内径の貫入管3被せ、さらに試料収納管4と同一内径の短管に試料全面にスリットから潤滑剤が塗布できるように短冊状の傾斜潤滑剤流路22としての傾斜スリットの潤滑剤供給溝がシュー6と接する部分に設けた潤滑剤塗布管7を貫入管3の下側に入れてある。傾斜スリット22から浸み出た潤滑剤が試料周面全体に塗布されるように傾斜スリットの角度と長さを決めている。
Specifically, the
試料収納管4の頂部はサンプラーヘッド2下面に接触した状態で貫入管3をサンプラーヘッド2に着脱可能にネジ接合されている。貫入管3の下端には試料収納管4と同径か僅かに小さい内径の外テーパーのシュー6を着脱可能にネジ接合して、試料収納管4と潤滑剤塗布管7を固定する。試料収納管4の内径より僅かに小さい径のピストン14を試料収納管4内の底部近くにセットする。シュー6の先端部の内径が試料収納管4より小さくしてクリアランスを取っている場合はピストン14がその段差で抜け落ちないようになっているが、段差なしの場合は図示のようにサンプラーヘッド2の下面との間にピストン固定ワイヤー13で抜け落ちないようにしている。ピストン14で底が出来た試料収納管4を側壁とする潤滑剤貯蔵スペース18に通常1〜5%の濃厚ポリマー溶液などの潤滑剤をサンプラーヘッド2部の注入孔11から注入して満たし、かつ試料収納管4の上部の連通孔8を通って試料収納管4と貫入管3からなる環状流路5を流下して下部の潤滑剤塗布管7の下端まで満たし、潤滑剤塗布管7の傾斜スリット22からエアを排出しながら高品質地盤試料採取装内に潤滑剤を充填する(高品質地盤試料採取装を孔内に下降させるとき、潤滑剤の粘性が大きいのでピストン14の隙間から流出することはない)。
The
潤滑剤が一様に、そして試料全面に塗布され、かつ試料の深部まで潤滑剤が浸透しないように、採取地盤の状態によりサンプラーヘッド2にある潤滑剤の吐出圧調節バルブ10を弾性薄肉テープをヘッドに巻く張力と巻き数により潤滑剤吐出孔9からでる潤滑剤の量を調節する。同様にピストン14と試料収納管4内面の隙間から潤滑剤が流下して試料に浸透しないように、かつ通常用いられているOリング等によるピストンシールを使うと潤滑剤が拭き取られ摩擦低減効果が低下するので、潤滑剤の濃度(粘性)を考慮して間隙を決める必要がある。そのため、ピストン14上にスポンジなどのクッション15をセットし圧縮プレート16を介して圧縮ボルトナット17で調節する。
The lubricant discharge
サンプラーヘッド2にロッド1を介して地上から押し圧を作用させて貫入管3と試料収納管4を同時に貫入させると、試料が試料収納管4内に入り、同時にピストン14が相対的に上昇して(固定ピストン式なのでピストン14の深度は一定で高品質地盤試料採取装のみが貫入する)潤滑剤は加圧され、加圧された潤滑剤は連通孔8を通って、環状流路5を流下し潤滑剤塗布管7で傾斜スリット22から試料側面に潤滑剤が塗布され、余った潤滑剤はサンプラーヘッド2部の吐出圧調節バルブ10から排出されるようになっている。このように試料採取前に採取地盤の状態により各種の調節ができることが特徴である。
When a pressure is applied to the
図9ないし図12の実施例2において、前記実施例1と主に異なる点は、試料収納菅4Aの軸方向の全長あるいは下端部を除く部位に1個の縦スリット21を形成し、その外周を3個の弾性ビーム23、23、23で支持したものを用いた点で、このような試料収納菅4Aを用いて構成した地盤試料採取装置X1にしても前記実施例1と同様な作用効果が得られる。
9 to 12 mainly differs from the first embodiment in that one
なお、試料収納管4Aを単に剛性の大きな管ではく、試料が地圧で膨張することによる摩擦の増加を軽減するため、試料収納管4Aが直径方向に伸縮できるものとし、採取後、試料収納管4Aから試料を押出す時の摩擦をなくすため、縦スリット21を広げて摩擦が働かない状態で試料を押出せる。
It should be noted that the
図13ないし図16の実施例3において、前記実施例1と主に異なる点は、試料収納菅4Bの軸方向の全長あるいは下端部を除く部位に3個の縦スリット21、21、21を形成し、その外周部分を3個の弾性ビーム23、23、23で支持したものを用いた点で、このような試料収納菅4Bを用いて構成した地盤試料採取装置X2にしても前記実施例1と同様な作用効果が得られる。
The third embodiment of FIGS. 13 to 16 is mainly different from the first embodiment in that three
図17ないし図20の実施例4において、前記実施例1と主に異なる点は、試料収納菅4Cの軸方向の全長あるいは下端部を除く部位に3個の縦スリット21、21、21を形成し、その外周部分をテープ24でテーピングしたり、あるいは複数個の弾性チューブで支持したものを使用した点で、このような試料収納菅4Cを用いて構成した地盤試料採取装置X3にしても前記実施例1と同様な作用効果が得られる。
17 to 20 mainly differs from the first embodiment in that three
なお、弾性チューブ径、厚さや枚数、弾性ビーム23、23,23の幅や厚さ、硬さを選択することでスリット収納管4cに作用する拘束圧を事前に調節することができる。
The restraining pressure acting on the slit storage tube 4c can be adjusted in advance by selecting the elastic tube diameter, thickness and number, and the width and thickness of the
図21ないし図24の実施例5において、前記実施例1と主に異なる点は、ピストン14はサンプラーヘッド2の中央部をスライド移動するピストン固定ロッド28に固定されるとともに、該ピストン固定ロッド28の上端部は底面に取付けられ、かつ上面にロッド1の先端部が取付けられた外菅取付部材27、この外菅取付部材27に上端部が固定され、先端部を除く貫入菅3を内部に収納する外菅25、前記外菅取付部材27とサンプラーヘッド2との間の外菅25内に設けられた貫入用ピストン30、この貫入用ピストン30と前記外菅取付部材27との間の加圧水室31aに加圧水を供給する加圧水供給路31b、前記外菅25の下部寄りの部位に形成したストッパー孔33と係合する前記貫入用ピストン30に設けられた貫入用ストッパー32、この貫入用ストッパー32が前記ストッパー孔33に係合すると前記貫入用ピストン30と前記サンプラーヘッド2との間の下部加圧水室31cに加圧水を流入させ、該サンプラーヘッド2を下方へ移動させて潤滑剤塗布菅7の先端部をシュー6によって内側へ湾曲させる該貫入用ピストン30に設けられた高水圧作動バルブ31とからなる試料収納菅の試料キャッチ装置70とを設けて地盤試料採取装置X4を構成している。
The fifth embodiment of FIGS. 21 to 24 differs from the first embodiment mainly in that the
このように構成された地盤試料採取装置X4は強制圧入のキャッチャーが付いているので試料の落下の心配がない半面、水圧シリンダーがある分、サンプリング孔径が大きくなる。 Since the ground sampling device X4 configured in this way is equipped with a forced press-fitting catcher, there is no fear of the sample falling, but the sampling hole diameter is increased by the presence of the hydraulic cylinder.
ボーリングロッド1の先端にサンプラーヘッド2を取り付け、これに接続する外管25に水密で摺動する貫入用ピストン30を嵌め込み、このピストンには外管25内径より小さい外径の貫入管3が接続され、この中に環状流路5を形成して径の小さい試料収納管4が挿入された二重管からなり、試料収納管4頂部には潤滑剤の連通孔8が設けられ、貫入管3先端部には外テーパーで試料収納管4内径より僅かに小さいか同径のシュー6が接続され、シュー6の上面と試料収納管4との間には試料収納管4の内径と同径の傾斜スリット加工された短冊状のキャッチャ兼潤滑剤塗布管26が嵌め込まれている。短管の円周上にスリットで試料全周面を覆うように上端部を除き斜めに多数のスリットを入れることで潤滑剤が試料全表面に塗布され、かつキャッチャーの役目も果たすように、下部先端は外テーパーを付け、円周上に数段の溝加工をすることで押込まれるとシュー6の上面の傾斜したリングに刃先が当たり内側に折れ曲がり、シュー6の上面付近の試料に突き刺さり試料の落下を防ぐようになっている。
A
試料収納管4の上端部は貫入管3をシリンダーとするキャッチャ作動用ピストン34に接合され、このピストン14は貫入用ピストン30の下面に接し、シュー6位置にはシュー6内径と同じか僅かに小さい径の固定ピストン14がセットされることで出来た潤滑剤貯蔵スペース18に潤滑剤が封入され、固定ピストン14は、中心にピストン固定ロッド28を有し、このロッドは潤滑剤封入用の導管も兼用し、キャッチャ作動用ピストン34と貫入用ピストン30の中心を水密で摺動可能な状態で貫通してサンプラーヘッド2に結合され、導管はサンプラーヘッド2内を通り端部で注入孔11と吐出孔9に枝分かれし注入バルブ12と吐出圧調整バルブ10に連結しているサンプラーを試料採取深度に降ろし、ロッド1の上下動が無いように地上で固定し、ロッド1に加圧水を注入し外菅取付部材27の泥水導管29を通って貫入用ピストン30とキャッチャ作動用ピストン34が下方に同時に押出されると、試料が試料収納管4内に入り、同時にピストン14が上昇して潤滑剤は加圧される。
The upper end portion of the
加圧された潤滑剤がピストント14と試料収納管4の隙間から下方に流出して試料に浸透しないように、かつ潤滑剤が試料収納管4の内壁からすべて除去されることなく薄く皮膜が残る程度にピストン14に装着した間隙調整ユニット15を事前に調節しておく。加圧された潤滑剤は連通孔8を通って、環状流路5内を流下して潤滑剤塗布管7の斜めスリットから試料側面に潤滑剤が塗布され、余った潤滑剤はサンプラーヘッド2部の吐出圧調節バルブ10から排出される。
A thin film remains so that the pressurized lubricant does not flow downward from the gap between the
所定長貫入すると、貫入用ピストン30の側面から貫入ストッパー32が外管25下端部に設けられたストッパー孔33に嵌まり、貫入用ピストン30が停止することをトリガーとして、貫入用ピストン30は上下動を停止した状態のままで、その下方にセットしてあるキャッチャー作動用ピストン34が加圧水の注入により下降して、シュー6の上面とキャッチャ兼潤滑剤塗布管26の先端部の接触圧で先端部が内側に曲がり隣接する短冊と重なり合いながら試料端部に突き刺ささり、試料を落下させずに採取できる。
また、貫入抵抗が大きくなり貫入が困難になりそうな時は、サンプラーヘッド2より大きい径で、長さがサンプラー総長より長いコアチューブを、サンプラーヘッド2に装着したロッド1より径の大きい掘管の先端部に接続し、上端部には回転自在で上下動が出来るスイベルにホースを接続し、これらをロッド1とサンプラーにかぶせてホースから泥水を圧送しながらロッド1を回転させずに掘管のみを回転或いは揺動して貫入管3の周辺地盤を掘削して摩擦抵抗を少なくして貫入させ、かつサンプラー引揚時の負圧の発生をなくす。
When a predetermined length of penetration occurs, the
Also, when penetration resistance increases and penetration is likely to occur, a core tube with a diameter larger than the
図25ないし図27の実施例6において、前記実施例1と主に異なる点は、サンプラーヘッド2の中央部を貫通する連結ロッド40に固定されるとともに、該連結ロッド40の上部にスライド移動可能に取付けられた固定ロッド41 を有し、かつロッド1の先端部が取付けられる回転切削菅取付部材35、この回転切削菅取付部材35に上端部が固定され、先端部のビット部37がシュー6の外周部に位置する貫入菅3との間に環状流路5としての隙間を有する回転切削菅36、前記ロッド1から供給される加圧水を前記環状流路5としての隙間に供給する加圧水供給孔29、前記回転切削菅取付部材35の底面に取付けられた前記連結ロッド40の上下移動が可能で、該回転切削菅取付部材35の回転が伝わるのを阻止する連結ロッド支持部材38とからなる貫入菅3の外周部の切削装置39を設けて地盤試料採取装置X5を構成している。
In the sixth embodiment shown in FIGS. 25 to 27, the main difference from the first embodiment is that it is fixed to the connecting
このように構成された地盤試料採取装置X5は実施例1,2の静的圧入型に対し,中〜密な砂地盤や小礫混じり地盤を対象とするもので、サンプラー側面を掘削しながら圧入するもので、一般によく用いられているサンプラーを改良したものである。
請求項4に関する実施例で図25ないし図27に示すように、通常のトリプルチューブサンプラーと基本的な相違点は、ピストン14が装着され潤滑剤が封入されていること試料収納管4と貫入管3の間に環状流路5があり、試料収納管4上部の連通孔8を通して潤滑剤が流下でき、試料下部の潤滑剤塗布管7で潤滑剤が試料の側面に塗布され摩擦が低減されること等が主な相違点である。
The ground sampling device X5 configured in this way is intended for medium to dense sand ground and ground mixed with pebbles, compared to the static press-fitting type of the first and second embodiments. This is an improved version of a sampler that is commonly used.
As shown in FIGS. 25 to 27 in the embodiment related to
請求項1または2記載の特定サンプラーヘッド2上に回転自在のスラストベアリング38aを設け、その上に軸方向に伸縮するスプリング38bを介して回転切削菅取付部材35を装着し、先端部に回転切削ビット37を有する回転切削菅36を回転切削ビット37に接続し、回転切削ビット37上面中心にはロッド1が接続され、押し圧とトルクを回転切削ビット37に伝達し、かつロッド1を介して圧送される泥水は回転切削ビット37で泥水導管29を通り、回転切削菅36の内面と特定サンプラーの貫入管3との環状隙間に導かれ回転切削ビット部37で噴射され、掘削しながらサンプリングが出来るようになっている。
3. A rotatable thrust bearing 38a is provided on the
ポリマー濃厚溶液等の潤滑剤はサンプラーヘッド2とスラストベアリング38aやスプリング38bの中心線上を貫通する連結ロッド兼潤滑剤導管40を通り回転切削菅36の注入バルブ12、吐出圧調整バルブ10へ導かれる。
緩〜中位の砂地盤から試料を採取する場合、試料にトルクが働かないように回転切削ビット37は、従来型の全周面に装着するのではなく、3〜5点のみに装着した鋭利な刃先を用いる送泥式回転切削とする。
A lubricant such as a concentrated polymer solution is guided to the injection valve 12 and the discharge
When a sample is taken from a moderate to medium sand ground, the
図28の実施例7において、前記実施例6と主に異なる点は、サンプラーヘッド2側のロッド1の外周部お加圧水が供給される堀菅42で覆うとともに、該堀菅42の下端部にコアチューブヘッド43を固定し、該コアチューブヘッド43に上端部が固定され、ビット37を備えた下端部がシュー6の外周部に位置し、貫入菅3との間に隙間を有するコアチューブ44とからなる貫入菅3の外周部の切削装置切削装置39Aを設けて地盤試料採取装置X6を構成している。
In the seventh embodiment of FIG. 28, the main difference from the sixth embodiment is that the outer periphery of the rod 1 on the
このように構成された地盤試料採取装置X6をさらに詳しく説明すると、ロッド1とサンプラー全体に原則非接触で被せるコアチューブ44である。ロッド1の外側には掘管42を被せ、掘管の下端部にはコアチューブヘッド43を接続し、下端にビット37を装着したコアチューブ44を接続する。ロッド1の上端部は図示していないボーリングマシンに接続され上下動が出来るようになっている。ロッド1にはスイベル45と回転用のハンドル47が装着され、スイベル45によってロッド1は上下動のみ伝達され回転は阻止されている。スイベル45の上面には泥水ホース46が接続され、掘管42の上下動のみの泥水掘削あるいは回転・揺動・上下動を併用した泥水掘削を行いサンプラーの貫入抵抗を小さくし、かつサンプラー引抜時に真空圧が発生して地盤を乱すことがないようにしている。
The ground sampling device X6 configured in this manner will be described in more detail. The
図29および図30の実施例8において、前記実施例7と主に異なる点は、サンプラーヘッド2側のロッド1の外周部を覆う加圧水が供給され、かつ上下移動可能な堀菅42、この堀菅42の下端部に固定された作動杆ヘッド49、この作動杆ヘッド49に上端部が固定され、下端部がシュー6の外周部に位置する、貫入菅3との間に隙間を有する試料収納菅4で収納した試料をキャッチすることができるキャッチャ−作動菅54、前記作動杆ヘッド49の上部位置の堀菅42に固定された切削菅ヘッド48、この切削菅ヘッド48に上端部が固定され、内側面が傾斜面のビットを備えた下端部がシュー6の外周部に位置する切削菅36、前記堀菅42を下方に移動させて作動杆ヘッド49およびキャッチャ−作動菅54を下方に移動させ、該キャッチャ−作動菅54の先端部のビット37の内側面に沿って内側に湾曲させる堀菅下降装置50を設けて地盤試料採取装置X7を構成している。
29 and 30 differs from the seventh embodiment mainly in the
このように構成された地盤試料採取装置X7をさらに詳しく説明すると、特定サンプラーの外周を掘削して貫入抵抗を小さくすることと、強制圧入キャッチャーも装備しているのが特徴である。かつ試料・試料収納管4・貫入管3にトルクが働かないように地上に於いてロッド1で回転を固定しているので品質の低下要因がカットされている。
The ground sampling device X7 configured in this manner will be described in more detail. It is characterized by excavating the outer periphery of the specific sampler to reduce the penetration resistance and also equipped with a forced press-fitting catcher. In addition, since the rotation is fixed by the rod 1 on the ground so that no torque acts on the sample /
特定サンプラーーヘッド2上の中心にロッド1が接合され、サンプラーヘッド2より径の大きいキャッチャ作動管54は作動管ヘッド49に接合され、その外側を摺動する切削管36、その先端部にはビット37を装着し、キャッチャ作動管54とビットの間には鋸刃状キャッチャー55が下向きにセットされ、ビット37上面の内側下がりの傾斜リング面56に接した状態で切削管が切削管ヘッド48に接合されると作動管ヘッド49上面は切削管ヘッド48の下面に接するようになっている。
The rod 1 is joined to the center of the
サンプラーヘッド2上面にはロッド1径に対して切削管36より厚い肉厚で長さがキャッチャー閉塞に必要なストロークで、その先は有孔円錐台状になり先端部はロッド径と同じ径のキャッチャー作動用の有孔円錐台52がサンプラーヘッド2と作動管ヘッド49間のロッド1に装着され、その上端部にはキャッチャー作動管54と切削管36の回転と上下動を固定するピンホールに差し込んだピンを抜き取るためのピン抜きフック51が装着されている。
The top surface of the
キャッチャー作動管54と切削管36を固定するピンホールにピンを差し込み一体化してピン抜きフックをセットし、貫入管3先端のシューと回転切削ビット37との離間距離を適性に保ちながら、掘管42のみを図示していないボーリングマシンで回転させて泥水掘削し、ロッド1は地上で回転を阻止した状態で同時に地中に圧入する。
A pin is inserted into a pin hole for fixing the
所定長のサンプリングが出来た時点でロッドの上下動も地上で固定し掘管42のみに押し圧と回転力を作用させて泥水掘削を行うと接合ピンフックは、有孔円錐台の斜面を降下し、ビット37上部の傾斜円錐リングがシュー6と同レベルに達した時点で、固定ピンが引き抜かれ、同時に、作動杆ヘッド49が貫入しないように作動杆ヘッド49に装着した鋼棒からなるスペーサー53が作動管ヘッド49を貫通してサンプラーヘッド2上面に当たると同時に、掘管42の回転を止め、圧入力のみを作用させると貫入管3はロッド1で上下動が固定されているのでシュー6は上下動ができなく、掘管42の押し圧により作動管は下降するので鋸刃キャッチャ55ーは先端部で内側に折り曲げられながらシュー6下方の地盤に貫入して閉塞し、試料の落下を防止することができる。
When the predetermined length of sampling is completed, the vertical movement of the rod is fixed on the ground, and when the mud drilling is performed by applying pressure and rotational force only to the digging
近年、地盤と基礎の解析が益々高度化してきている半面、液状化や土砂災害など自然リスクがゲリラ豪雨や地震の度に巨大化してきている。このような社会的強い要求に対し旧来の地盤調査法では十分対処できなくなってきた。一方、室内での要素試験技術は長足の進歩を遂げてきたが、それに耐え得る高品質試料の提供が出来ていない。そこで、当該新手法の確実な普及化が望まれる。 In recent years, ground and foundation analysis has become more sophisticated, but natural risks such as liquefaction and landslide disasters have become enormous every time guerrilla heavy rains and earthquakes occur. Traditional ground survey methods have been unable to cope with such strong social demands. On the other hand, indoor element testing technology has made great strides, but has not been able to provide high-quality samples that can withstand it. Therefore, it is desired that the new method be reliably spread.
本発明は地盤試料採取装置を製造する産業およびこれを使用する産業で利用される。 The present invention is utilized in industries that manufacture and use ground sampling devices.
1:ロッド、 2:サンプラーヘッド、
3:貫入管、 4:試料収納菅、
5:環状流路、 6:シユー、
7:潤滑剤塗布管、 8:連通孔、
8:連通孔、 10:吐出圧調節バルブ、
12:注入バルブ、 13:ピストン固定ワイヤー、
14:ピストン、 15:クッション、
16:圧縮プレート、 17:圧縮ボルトナット、
18:潤滑剤貯蔵スペース、 19:潤滑剤通路、
21:縦スリット、 22:傾斜スリット、
23:弾性ビーム、 24:弾性チューブ、
25:外管、 26:キャッチャ兼潤滑剤塗布管、
27:外菅取付部材、 28:固定ロッド、
29:泥水導管、 30:貫入用ピストン、
31:高水圧作動バルブ、 32:貫入用ストッパー、
33:ストッパー孔、 34:キャッチャー作動用ピストン、
35:回転切削菅取付部材、 36:切削管、
37:回転切削ビット、 38:連結ロッド支持部材、
39、39A:切削装置、 40:連結ロッド兼潤滑剤導管、
41:固定ロッド、 42:掘管、
43:コアチューブヘッド、 44:コアチューブ、
45:スイベル、 46:泥水ホース、
47:ハンドル、 48:切削管ヘッド、
49:作動管ヘッド、 50:堀菅下降装置、
51:ピン抜きフック、 52:有孔円錐台、
53:スペーサー、 54:キャッチャ作動管、
55:鋸刃状キャッチャー、 56:傾斜リング面、
70:試料キャッチ装置、
X、X1〜X7:地盤試料採取装置。
1: Rod, 2: Sampler head,
3: Penetration pipe, 4: Sample storage rod,
5: Annular flow path 6: Shu
7: Lubricant application tube, 8: Communication hole,
8: Communication hole, 10: Discharge pressure adjustment valve,
12: Injection valve, 13: Piston fixing wire,
14: piston, 15: cushion,
16: compression plate, 17: compression bolt and nut,
18: Lubricant storage space, 19: Lubricant passage,
21: Vertical slit, 22: Inclined slit,
23: elastic beam, 24: elastic tube,
25: Outer pipe, 26: Catcher and lubricant application pipe,
27: Outer mounting member, 28: Fixed rod,
29: Muddy water conduit, 30: Penetration piston,
31: High water pressure operation valve, 32: Stopper for penetration,
33: Stopper hole, 34: Piston for catcher operation,
35: Rotary cutting rod mounting member, 36: Cutting tube,
37: Rotary cutting bit, 38: Connecting rod support member,
39, 39A: Cutting device, 40: Connecting rod and lubricant conduit,
41: Fixed rod, 42: Drill pipe,
43: Core tube head, 44: Core tube,
45: Swivel, 46: Muddy water hose,
47: Handle, 48: Cutting tube head,
49: Actuating tube head, 50: Hori * descending device,
51: Unpinned hook, 52: Perforated truncated cone,
53: Spacer, 54: Catcher operating tube,
55: Saw blade catcher, 56: Inclined ring surface,
70: Sample catching device,
X, X1 to X7: Ground sampling device.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011149086A JP5554294B2 (en) | 2011-07-05 | 2011-07-05 | Ground sampling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011149086A JP5554294B2 (en) | 2011-07-05 | 2011-07-05 | Ground sampling device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013014960A true JP2013014960A (en) | 2013-01-24 |
JP5554294B2 JP5554294B2 (en) | 2014-07-23 |
Family
ID=47687868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011149086A Expired - Fee Related JP5554294B2 (en) | 2011-07-05 | 2011-07-05 | Ground sampling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5554294B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103954476A (en) * | 2014-05-09 | 2014-07-30 | 河海大学 | Penetration open thin-wall soil sampler and sampling method |
KR101544769B1 (en) | 2015-03-09 | 2015-08-17 | 지케이엔지니어링(주) | Extension type Sample Extracting Apparatus For sandy soil |
JP2016052747A (en) * | 2014-09-04 | 2016-04-14 | 株式会社コンセック | Core bit |
JP2016094767A (en) * | 2014-11-14 | 2016-05-26 | 基礎地盤コンサルタンツ株式会社 | Ground sampling device and ground sampling method |
KR101674487B1 (en) * | 2016-07-05 | 2016-11-09 | 김진표 | Core barrel assembly for ground core sampler |
JP2017031573A (en) * | 2015-07-29 | 2017-02-09 | 一般社団法人地盤工房 | Soil sampling device |
JP2017043936A (en) * | 2015-08-26 | 2017-03-02 | 大成建設株式会社 | Sampling method and sampling tube |
KR102032787B1 (en) * | 2019-01-25 | 2019-10-17 | 주식회사 에이스지오 | Penetration test device for geotechnical site investigation |
CN110487585A (en) * | 2019-09-20 | 2019-11-22 | 宁波市鄞州区农业技术推广站 | Rhizosphere sampler and application method for the research of continuous cropping soil distress mechanism |
CN111426506A (en) * | 2020-03-31 | 2020-07-17 | 浙江大学 | Push-in type in-situ soil sampler |
CN111504689A (en) * | 2020-03-31 | 2020-08-07 | 浙江大学 | Jet type in-situ soil sampler |
JP2021173048A (en) * | 2020-04-24 | 2021-11-01 | 株式会社クリステンセン・マイカイ | Core sampling device |
CN116296557A (en) * | 2023-05-11 | 2023-06-23 | 山东省地质矿产勘查开发局第一地质大队(山东省第一地质矿产勘查院) | Geological disaster investigation sampling equipment |
CN116399644A (en) * | 2023-04-06 | 2023-07-07 | 中国农业大学 | Synchronous sampling device and method for layered bottom mud and pore water of drainage ditch |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2880969A (en) * | 1955-06-01 | 1959-04-07 | Jersey Prod Res Co | Apparatus for obtaining unaltered cores |
JPH01125490A (en) * | 1987-11-10 | 1989-05-17 | Kiso Jiban Consultants Kk | Pressure type ground sample sampling method and device |
JP2001098539A (en) * | 1999-09-30 | 2001-04-10 | Kiso Jiban Consultants Kk | Granular soil core barrel |
JP2003129460A (en) * | 2001-10-22 | 2003-05-08 | Atec Yoshimura:Kk | Sampler for soil sample |
JP2008002065A (en) * | 2006-06-20 | 2008-01-10 | Kiso Jiban Consultants Kk | Penetration type soil sampling equipment |
-
2011
- 2011-07-05 JP JP2011149086A patent/JP5554294B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2880969A (en) * | 1955-06-01 | 1959-04-07 | Jersey Prod Res Co | Apparatus for obtaining unaltered cores |
JPH01125490A (en) * | 1987-11-10 | 1989-05-17 | Kiso Jiban Consultants Kk | Pressure type ground sample sampling method and device |
JP2001098539A (en) * | 1999-09-30 | 2001-04-10 | Kiso Jiban Consultants Kk | Granular soil core barrel |
JP2003129460A (en) * | 2001-10-22 | 2003-05-08 | Atec Yoshimura:Kk | Sampler for soil sample |
JP2008002065A (en) * | 2006-06-20 | 2008-01-10 | Kiso Jiban Consultants Kk | Penetration type soil sampling equipment |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103954476A (en) * | 2014-05-09 | 2014-07-30 | 河海大学 | Penetration open thin-wall soil sampler and sampling method |
JP2016052747A (en) * | 2014-09-04 | 2016-04-14 | 株式会社コンセック | Core bit |
JP2016094767A (en) * | 2014-11-14 | 2016-05-26 | 基礎地盤コンサルタンツ株式会社 | Ground sampling device and ground sampling method |
KR101544769B1 (en) | 2015-03-09 | 2015-08-17 | 지케이엔지니어링(주) | Extension type Sample Extracting Apparatus For sandy soil |
JP2017031573A (en) * | 2015-07-29 | 2017-02-09 | 一般社団法人地盤工房 | Soil sampling device |
JP2017043936A (en) * | 2015-08-26 | 2017-03-02 | 大成建設株式会社 | Sampling method and sampling tube |
KR101674487B1 (en) * | 2016-07-05 | 2016-11-09 | 김진표 | Core barrel assembly for ground core sampler |
KR102032787B1 (en) * | 2019-01-25 | 2019-10-17 | 주식회사 에이스지오 | Penetration test device for geotechnical site investigation |
CN110487585A (en) * | 2019-09-20 | 2019-11-22 | 宁波市鄞州区农业技术推广站 | Rhizosphere sampler and application method for the research of continuous cropping soil distress mechanism |
CN110487585B (en) * | 2019-09-20 | 2024-03-22 | 宁波市鄞州区农业技术推广站 | Rhizosphere sampling device for continuous cropping soil disease mechanism research and application method |
CN111426506A (en) * | 2020-03-31 | 2020-07-17 | 浙江大学 | Push-in type in-situ soil sampler |
CN111504689A (en) * | 2020-03-31 | 2020-08-07 | 浙江大学 | Jet type in-situ soil sampler |
JP2021161863A (en) * | 2020-03-31 | 2021-10-11 | 浙江大学Zhejiang University | Jet type original position soil sampler |
JP2021173048A (en) * | 2020-04-24 | 2021-11-01 | 株式会社クリステンセン・マイカイ | Core sampling device |
CN116399644A (en) * | 2023-04-06 | 2023-07-07 | 中国农业大学 | Synchronous sampling device and method for layered bottom mud and pore water of drainage ditch |
CN116399644B (en) * | 2023-04-06 | 2024-06-04 | 中国农业大学 | Synchronous sampling device and method for layered bottom mud and pore water of drainage ditch |
CN116296557A (en) * | 2023-05-11 | 2023-06-23 | 山东省地质矿产勘查开发局第一地质大队(山东省第一地质矿产勘查院) | Geological disaster investigation sampling equipment |
CN116296557B (en) * | 2023-05-11 | 2023-08-11 | 山东省地质矿产勘查开发局第一地质大队(山东省第一地质矿产勘查院) | Geological disaster investigation sampling equipment |
Also Published As
Publication number | Publication date |
---|---|
JP5554294B2 (en) | 2014-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5554294B2 (en) | Ground sampling device | |
JP4787082B2 (en) | Intrusive ground sampling device | |
KR101463185B1 (en) | Soil sampling mechanism | |
CN1657744B (en) | Apparatus and method for acquiring information while drilling | |
US8881609B2 (en) | Percussive driving apparatus for environmental sampling or test device | |
Basu et al. | Drilled displacement piles–current practice and design | |
JP2023049309A (en) | Drilling machine and drilling method | |
CN105649075B (en) | A kind of device and method for reducing drill-pouring negative friction of pile | |
CN102782248A (en) | Core drilling tools with retractably lockable driven latch mechanisms | |
BRPI0611197A2 (en) | Apparatus and method for directing an open-ended conductive tube into the ground and well bottom assembly | |
KR20130023137A (en) | Underwater drilling arrangement and method for making a bore in a bed of a water body | |
CN107816328A (en) | A kind of hermetic core taking tool and sealing core drill technique | |
EP2543770A1 (en) | Method and device for measuring nozzle beams underground | |
CN103603342A (en) | Construction method of ultra-long bored concrete pile with large-diameter casing combination | |
JP2016094767A (en) | Ground sampling device and ground sampling method | |
JPH0972184A (en) | Sampler for ground sample | |
CN115749654A (en) | Hole cleaning equipment for cast-in-place pile and cast-in-place pile hole forming method using same | |
US6505693B1 (en) | Soil sampler | |
JP2007070870A (en) | Ground surveying method and ground surveying apparatus using rotary percussion drill | |
KR20160133393A (en) | Apparatus for digging underground hole and constructing casing, and method for constructing casing using this same | |
CN211228470U (en) | Construction device for slurry-free cast-in-situ bored pile | |
Kjellman et al. | Soil sampler with metal foils. Device for taking undisturbed samples of very great length | |
JP2005171487A (en) | Underground water collecting apparatus | |
JP2009228322A (en) | Driven water level observation device | |
US8869915B2 (en) | Systems and methods for sonic subsurface material removal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140520 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140528 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5554294 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |