JP2013013947A - Measurement device - Google Patents

Measurement device Download PDF

Info

Publication number
JP2013013947A
JP2013013947A JP2011146693A JP2011146693A JP2013013947A JP 2013013947 A JP2013013947 A JP 2013013947A JP 2011146693 A JP2011146693 A JP 2011146693A JP 2011146693 A JP2011146693 A JP 2011146693A JP 2013013947 A JP2013013947 A JP 2013013947A
Authority
JP
Japan
Prior art keywords
measured
photodiodes
gap
photodiode
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011146693A
Other languages
Japanese (ja)
Other versions
JP5378459B2 (en
Inventor
Kimio Miyazawa
君男 宮澤
Makoto Anezaki
誠 姉崎
Akihisa Matsumoto
昭久 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Tool Co
Original Assignee
Union Tool Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Tool Co filed Critical Union Tool Co
Priority to JP2011146693A priority Critical patent/JP5378459B2/en
Publication of JP2013013947A publication Critical patent/JP2013013947A/en
Application granted granted Critical
Publication of JP5378459B2 publication Critical patent/JP5378459B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measurement device with extremely excellent practicality capable of measuring dynamic deflection of an extremely small diameter round rod or an extremely small diameter tool mounted to a spindle to rotate at a high rotational frequency.SOLUTION: This measurement device includes an optical system including a light source, a lens system for leading a light beam from the light source to a member to be measured, and a plurality of photodiodes receiving the light beam via the member to be measured, and measures the position of the member to be measured or deflection amount on the basis of the light receiving amount in the photodiodes. All side portions which cross an axial center of the member to be measured are straight lines in the plurality of photodiodes in an optical-axis direction view of the optical system. At least one gap inclined relative to the axial direction of the member to be measured is provided between the plurality of photodiodes. Both end parts of the gap are located outside an outline of the member to be measured, and the side portions crossing the axial center of the member to be measured other than the side portions of the photodiodes forming the gap are configured so as not to be parallel to the gap.

Description

本発明は、測定装置に関するものである。   The present invention relates to a measuring apparatus.

近年の電化製品や情報通信機器などの電気・電子機器の高性能化および小型化に伴い、これらの製品に使用されるプリント配線板(PCB)の高密度実装化や金型の小型化、高精度化が要求されている。そして、このような状況に対応するため、ドリルやエンドミル等の回転切削工具も年々小径化が進むと共に、非常に精度の高い切削加工が要求されている。   With recent high performance and miniaturization of electrical and electronic equipment such as electrical appliances and information communication equipment, high-density mounting of printed wiring boards (PCB) used in these products, miniaturization of molds, and high Accuracy is required. In order to cope with such a situation, the diameter of rotary cutting tools such as drills and end mills has been reduced year by year, and cutting with extremely high accuracy is required.

回転切削工具の回転に伴う振れ(動的振れ)は切削加工精度に大きな影響を与えるため、回転切削工具の性能はもとより切削加工に用いられる加工装置のスピンドルの状態、具体的にはスピンドルの動的振れ精度を把握することが重要である。   The run-out (dynamic run-out) associated with the rotation of the rotary cutting tool has a large effect on the cutting accuracy. Therefore, not only the performance of the rotary cutting tool but also the state of the spindle of the processing equipment used for the cutting process, specifically the spindle movement. It is important to understand the accuracy of the run-out.

そこで、切削加工に用いられる加工装置のスピンドルにチャックを介してゲージピン(丸棒)を取り付けてスピンドルを回転させ、このゲージピンのチャックから突き出した部分の動的振れを測定することでスピンドルの状態を把握している。   Therefore, a gauge pin (round bar) is attached to the spindle of a processing apparatus used for cutting processing via a chuck, the spindle is rotated, and the state of the spindle is measured by measuring the dynamic deflection of the portion protruding from the chuck of this gauge pin. I know.

例えば、プリント配線板(PCB)加工用の回転切削工具は、シャンク部の外径を3.175mmまたは2mmなどとすることがこの業界で周知の事実であり、これら回転切削工具を取り付ける穴明け機などの加工装置のチャック内径は3.175mmまたは2mmなどとされている。   For example, it is a well-known fact in the industry that a rotary cutting tool for printed wiring board (PCB) processing has an outer diameter of a shank portion of 3.175 mm or 2 mm, and a drilling machine for attaching these rotary cutting tools. The chuck inner diameter of a processing apparatus such as 3.175 mm or 2 mm is set.

従って、前記ゲージピンの外径は前記加工装置のチャック内径に合わせ、外径3.175mmまたは2mmなどの丸棒としている。その他、例えば特許文献1,2に開示されるようにドリルやエンドミル等の回転切削工具のシャンク部をチャックを介して取り付けてスピンドルと回転切削工具の総合的な動的振れを測定する非接触式の測定装置が提案されている。   Therefore, the outer diameter of the gauge pin is a round bar having an outer diameter of 3.175 mm or 2 mm according to the chuck inner diameter of the processing apparatus. In addition, for example, as disclosed in Patent Documents 1 and 2, a non-contact type that measures the total dynamic runout of a spindle and a rotary cutting tool by attaching a shank portion of a rotary cutting tool such as a drill or an end mill via a chuck A measuring device has been proposed.

ところで、高い切削加工精度を得るためには、被削材や回転切削工具の仕様に応じて回転切削工具を適切な切削速度(周速)で回転させる必要があり、回転切削工具の小径化が進んでいる近年では、極小径の回転切削工具(極小径工具)をより高い回転数で回転させる必要がある。一般にスピンドルの回転数が高まるほどその遠心力により回転切削工具が撓み振れ回ることで動的振れが大きくなる傾向にあることが知られている。   By the way, in order to obtain high cutting accuracy, it is necessary to rotate the rotary cutting tool at an appropriate cutting speed (peripheral speed) according to the specifications of the work material and the rotary cutting tool. In recent years, it is necessary to rotate a very small diameter rotary cutting tool (minimum diameter tool) at a higher rotational speed. In general, it is known that the dynamic runout tends to increase as the rotational speed of the spindle increases and the rotary cutting tool bends and swings due to the centrifugal force.

従って、特にスピンドルを高回転で回転させる場合、チャックから突き出す部分(突出し部)の質量が大きいとその分スピンドルの回転による遠心力が高まり、動的振れが大きくなる傾向にある。   Therefore, especially when the spindle is rotated at a high rotation, if the mass of the portion protruding from the chuck (protruding portion) is large, the centrifugal force due to the rotation of the spindle is correspondingly increased and the dynamic vibration tends to increase.

このため極小径工具を実際に使用する際の回転数でのスピンドルの状態を把握しようとして極小径工具の工具本体の外径よりも大きな外径のゲージピン(例えば外径3.175mmの丸棒)をスピンドルに取り付けて回転させた場合、前記ゲージピンの突出し部の質量が極小径工具の突出し部の質量よりも大きいことから、ゲージピンの動的振れは極小径工具の動的振れよりも大きくなってしまい、正確な動的振れを把握することができず、また極度に動的振れが大きい場合はスピンドルを壊してしまう危険性がある。   For this reason, a gauge pin having an outer diameter larger than the outer diameter of the tool body of the ultra-small diameter tool (for example, a round bar having an outer diameter of 3.175 mm) in an attempt to grasp the state of the spindle at the rotational speed when the ultra-small diameter tool is actually used. Since the mass of the protruding part of the gauge pin is larger than the mass of the protruding part of the very small diameter tool, the dynamic deflection of the gauge pin is larger than the dynamic deflection of the extremely small diameter tool. Therefore, there is a risk that an accurate dynamic shake cannot be grasped and the spindle is broken if the dynamic shake is extremely large.

一方、ドリルやエンドミル等の極小径工具のシャンク部をチャックを介してスピンドルに取り付けてスピンドルと極小径工具の総合的な動的振れを測定することが望まれる場合もあるが、スピンドルの状態を把握する目的の場合は極小径工具自体の形状誤差の影響をより抑制するため、よりシンプルな形状のゲージピンでの測定が望ましい。   On the other hand, it may be desirable to measure the overall dynamic runout of the spindle and the small diameter tool by attaching the shank of a small diameter tool such as a drill or end mill to the spindle via the chuck. For the purpose of grasping, in order to further suppress the influence of the shape error of the extremely small diameter tool itself, it is desirable to measure with a simpler gauge pin.

この場合、できるだけ突出し部の質量を実際に使用予定の極小径工具の質量に近いものとするため、ゲージピンのシャンク部の外径をチャックの内径に合わせ、先端部の外径を極小径工具の外径に合わせた段付き丸棒状の極小径工具のブランク形状のゲージピン(極小径丸棒)を用いることが望ましい。ここでブランクとは、例えば外周に螺旋状の切り屑排出溝や切れ刃を形成する前の状態の工具(段付き丸棒状)のことである。   In this case, in order to make the mass of the protruding portion as close as possible to the mass of the extremely small diameter tool that is actually planned to be used, match the outer diameter of the shank portion of the gauge pin with the inner diameter of the chuck, It is desirable to use a blank-shaped gauge pin (minimum diameter round bar) of a stepped round bar-like ultra-small diameter tool matched to the outer diameter. Here, the blank refers to a tool (stepped round bar shape) in a state before forming a helical chip discharge groove or cutting edge on the outer periphery, for example.

このように、高い切削加工精度を実現するため、スピンドルに取り付けられて高い回転数で回転する極小径丸棒若しくは極小径工具の動的振れを測定することは重要である。   As described above, in order to achieve high cutting accuracy, it is important to measure the dynamic runout of a small-diameter round bar or a small-diameter tool that is attached to a spindle and rotates at a high rotational speed.

特開平1−306156号公報JP-A-1-306156 実開2000−47号公報Japanese Utility Model Publication No. 2000-47

ところで、従来の非接触式の測定装置では次のような問題がある。   By the way, the conventional non-contact type measuring apparatus has the following problems.

特許文献1には受光素子として電荷結合素子(CCD)を備えて工具の外径や偏心量(動的振れを構成する要素の一つ)を求める装置が開示されている。しかしながら電荷結合素子を用いた場合、検出信号が時系列に出力されるためデータの取り出し時間が長くなってしまうため、高い回転数で回転する丸棒若しくは工具の動的振れを測定することは不可能である。また、分解能は使用する光学系の倍率とCCDの画素ピッチに依存するため、十分な高分解能が得られない場合があるという問題がある。   Patent Document 1 discloses a device that includes a charge coupled device (CCD) as a light receiving element and obtains the outer diameter and eccentricity of the tool (one of the elements constituting dynamic deflection). However, when a charge-coupled device is used, the detection signal is output in time series and the data extraction time becomes long. Therefore, it is not possible to measure the dynamic deflection of a round bar or tool that rotates at a high rotational speed. Is possible. Further, since the resolution depends on the magnification of the optical system used and the pixel pitch of the CCD, there is a problem that sufficient high resolution may not be obtained.

また、特許文献2では受光素子として2つのフォトダイオードを用いており、夫々のフォトダイオードを所定の間隔(ギャップ幅)で離間して(所謂ギャップを設けて)配置し、工具の振れ量や外径を測定する検査装置が開示されている。   Further, in Patent Document 2, two photodiodes are used as light receiving elements, and the photodiodes are spaced apart by a predetermined interval (gap width) (so-called a gap is provided), so that the amount of tool deflection and the amount of vibration can be reduced. An inspection device for measuring the diameter is disclosed.

このギャップはギャップ軸が被測定部材の軸方向と平行に設けられ(ギャップの幅方向が被測定部材の軸方向に直交するように設けられ)、光学系の光軸方向視において、前記被測定部材の軸方向の全域で被測定部材によりギャップを覆っている状態で測定が可能となるものである。ここで「ギャップ軸」とは、ギャップ幅の中点を通りギャップの幅方向に直交する仮想線を示している。   The gap is provided with the gap axis parallel to the axial direction of the member to be measured (provided so that the width direction of the gap is orthogonal to the axial direction of the member to be measured). Measurement is possible in a state where the gap is covered by the member to be measured in the entire axial direction of the member. Here, the “gap axis” indicates a virtual line that passes through the middle point of the gap width and is orthogonal to the width direction of the gap.

従って、このような構成の場合、被測定部材の外径がギャップ幅よりも小さい場合や、回転させられている被測定部材の動的振れが大きい場合など、ギャップを覆うことが出来なくなる場合は正確な測定ができないという問題がある。即ち、ギャップ幅を狭くしていけばその分測定できる範囲は広がるが、現実にはギャップ幅を狭くするにも限界があり、極小径丸棒若しくは極小径工具においては夫々の外径がギャップ幅よりも小さくなる場合があり測定することができないという問題がある。   Therefore, in the case of such a configuration, when the outer diameter of the member to be measured is smaller than the gap width, or when the dynamic vibration of the member to be measured being rotated is large, the gap cannot be covered. There is a problem that accurate measurement is not possible. In other words, the narrower the gap width, the wider the measurable range, but in reality there is a limit to narrowing the gap width. In the case of extremely small diameter round bars or extremely small diameter tools, each outer diameter is the gap width. There is a problem that it may be smaller than that and cannot be measured.

本発明は、上記問題点を解決したものであり、切削加工に用いられる加工装置のスピンドルに取り付けられて高い回転数で回転する極小径丸棒若しくは極小径工具の動的振れを測定可能な極めて実用性に秀れた測定装置を提供するものである。   The present invention solves the above-described problems, and is capable of measuring the dynamic runout of a very small diameter round bar or a very small diameter tool that is attached to a spindle of a processing apparatus used for cutting and rotates at a high rotational speed. The present invention provides a measuring device with excellent practicality.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

光源と、この光源からの光線を被測定部材へ導くレンズ系と、前記被測定部材を介して前記光線を受光する複数のフォトダイオードとを備える光学系を有し、このフォトダイオードでの受光量をもとに前記被測定部材の位置若しくは振れ量を測定する測定装置であって、前記光学系の光軸方向視において、前記複数のフォトダイオードにして前記被測定部材の軸心と交差する辺部が全て直線であり、前記複数のフォトダイオード間には、前記被測定部材の軸方向に対して傾斜する少なくとも1つのギャップが設けられ、このギャップの両端部は前記被測定部材の外形より外方に位置せしめられ、前記ギャップを形成するフォトダイオードの辺部以外の前記被測定部材の軸心と交差する辺部が前記ギャップと平行でないように構成されていることを特徴とする測定装置に係るものである。   An optical system including a light source, a lens system that guides light from the light source to a member to be measured, and a plurality of photodiodes that receive the light through the member to be measured; the amount of light received by the photodiode A measuring device for measuring a position or a shake amount of the member to be measured based on the optical axis of the optical system as viewed in the optical axis direction, the plurality of photodiodes being sides intersecting with the axis of the member to be measured All of the portions are straight, and at least one gap that is inclined with respect to the axial direction of the member to be measured is provided between the plurality of photodiodes. Both ends of the gap are outside the outer shape of the member to be measured. The side portion that is positioned in the direction and intersects the axis of the member to be measured other than the side portion of the photodiode that forms the gap is configured not to be parallel to the gap. Those of the measuring apparatus according to claim.

また、請求項1記載の測定装置において、前記各フォトダイオードは前記光学系の光軸方向視において、多角形状のフォトダイオードであることを特徴とする測定装置に係るものである。   2. The measuring apparatus according to claim 1, wherein each of the photodiodes is a polygonal photodiode as viewed in the optical axis direction of the optical system.

また、請求項1,2いずれか1項に記載の測定装置において、前記被測定部材と前記フォトダイオードとの間にはテレセントリック光学系が設けられていることを特徴とする測定装置に係るものである。   The measurement apparatus according to claim 1, wherein a telecentric optical system is provided between the member to be measured and the photodiode. is there.

また、請求項1,2いずれか1項に記載の測定装置において、前記被測定部材の一部に前記光線を被測定部材の軸方向のみに集束させるレンズを備えたことを特徴とする測定装置に係るものである。   The measuring apparatus according to claim 1, further comprising a lens that focuses the light beam only in an axial direction of the member to be measured on a part of the member to be measured. It is related to.

また、請求項1〜3いずれか1項に記載の測定装置において、前記被測定部材の一部に前記光線を被測定部材の軸方向のみに集束させるレンズと、前記フォトダイオードに向かって前記光線を平行光として照射させるレンズとを備えたことを特徴とする測定装置に係るものである。   The measuring apparatus according to claim 1, wherein a lens that focuses the light beam only in an axial direction of the member to be measured on a part of the member to be measured, and the light beam toward the photodiode. And a lens that irradiates the light as parallel light.

また、請求項4、5いずれか1項に記載の測定装置において、前記被測定部材は回転切削工具であることを特徴とする測定装置に係るものである。   The measuring apparatus according to any one of claims 4 and 5, wherein the member to be measured is a rotary cutting tool.

また、請求項1〜6いずれか1項に記載の測定装置において、同一面積にして同一形状の2つのフォトダイオードが設けられていることを特徴とする測定装置に係るものである。   The measurement apparatus according to any one of claims 1 to 6, wherein two photodiodes having the same area and the same shape are provided.

本発明は上述のように構成したから、切削加工に用いられる加工装置のスピンドルに取り付けられて高い回転数で回転する極小径丸棒若しくは極小径工具の動的振れを測定可能な極めて実用性に秀れた測定装置となる。   Since the present invention is configured as described above, it is extremely practical to measure the dynamic runout of a small-diameter round bar or a small-diameter tool that is attached to the spindle of a machining apparatus used for cutting and rotates at a high rotational speed. An excellent measuring device.

本発明の測定原理を示す概略説明図及び電圧差を求める計算式である。It is the schematic explanatory drawing which shows the measurement principle of this invention, and the calculation formula which calculates | requires a voltage difference. 従来例の構成概略説明平面図である。It is a structure schematic explanatory top view of a prior art example. 従来例の測定原理を示す概略説明図及び電圧差を求める計算式である。It is the schematic explanatory drawing which shows the measurement principle of a prior art example, and the calculation formula which calculates | requires a voltage difference. 実施例1の構成概略説明図である。1 is a schematic explanatory diagram of a configuration of Example 1. FIG. 実施例1の測定部の構成概略説明斜視図である。FIG. 3 is a schematic perspective view illustrating a configuration of a measurement unit according to the first embodiment. 実施例2の構成概略説明図である。6 is a schematic explanatory diagram of a configuration of Example 2. FIG. 実施例2の測定部の構成概略説明斜視図である。FIG. 6 is a perspective view schematically illustrating the configuration of a measurement unit according to a second embodiment. 実施例3の構成概略説明図である。6 is a schematic explanatory diagram of a configuration of Example 3. FIG. 実施例3の測定部の構成概略説明斜視図である。FIG. 10 is a perspective view schematically illustrating the configuration of a measurement unit according to a third embodiment. フォトダイオードの構成例を示す概略説明正面図である。It is a schematic explanatory front view which shows the structural example of a photodiode.

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。   An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.

被測定部材を回転させながら光源(LED:発光ダイオード)から光線を照射してフォトダイオードでの受光量をもとに該被測定部材の振れ量を測定する。図1に本発明の測定原理を示す概略説明図及び電圧差を求める計算式の一例を示す。   While rotating the member to be measured, light is emitted from a light source (LED: light emitting diode), and the amount of shake of the member to be measured is measured based on the amount of light received by the photodiode. FIG. 1 shows a schematic explanatory diagram illustrating the measurement principle of the present invention and an example of a calculation formula for obtaining a voltage difference.

この際、フォトダイオード間のギャップを(そのギャップ軸が)被測定部材の軸方向に対して傾斜し、このギャップの両端部が(光学系の光軸方向視において)被測定部材の外形より外方に位置せしめられるように配置することで、例えばフォトダイオードを2つ、図1に図示したように配置した場合には、各フォトダイオードの受光量(受光量に応じて生じる電流から電圧に変換する)から振れ量を測定することが可能となる。尚、被測定部材を光源であるLEDからフォトダイオードまでの光路間に配置させない状態においては、フォトダイオードの全域にLEDからの光線が照射されるように設定する。   At this time, the gap between the photodiodes (the gap axis thereof) is inclined with respect to the axial direction of the member to be measured, and both ends of the gap (outside the optical axis direction of the optical system) are outside the outer shape of the member to be measured. For example, when two photodiodes are arranged as shown in FIG. 1, the amount of light received by each photodiode (converted from a current generated according to the amount of received light to a voltage). It is possible to measure the shake amount. Note that, in a state where the member to be measured is not disposed between the light path from the LED serving as the light source to the photodiode, the entire region of the photodiode is set to be irradiated with the light beam from the LED.

従って、被測定部材の外径がギャップ幅よりも小さい場合や、回転させられている被測定部材の動的振れが大きい場合でも、被測定部材の外径やギャップ幅の大きさに関する制約が飛躍的に緩和され、確実に正確な振れ量の測定を行えることになる。   Therefore, even when the outer diameter of the member to be measured is smaller than the gap width, or when the dynamic vibration of the member to be measured being rotated is large, restrictions on the outer diameter of the member to be measured and the size of the gap width have jumped. Therefore, accurate measurement of the shake amount can be performed.

本発明の具体的な実施例1について図面に基づいて説明する。   A first embodiment of the present invention will be described with reference to the drawings.

実施例1は、光源と、この光源からの光線を被測定部材へ導くレンズ系と、前記被測定部材を介して前記光線を受光する複数のフォトダイオードとを備える光学系を有し、このフォトダイオードでの受光量をもとに前記被測定部材の位置若しくは振れ量を測定する測定装置であって、前記光学系の光軸方向視において、前記複数のフォトダイオードにして前記被測定部材の軸心と交差する辺部が全て直線であり、前記複数のフォトダイオード間には、前記被測定部材の軸方向に対して傾斜する少なくとも1つのギャップが設けられ、このギャップの両端部は前記被測定部材の外形より外方に位置せしめられ、前記ギャップを形成するフォトダイオードの辺部以外の前記被測定部材の軸心と交差する辺部が前記ギャップ(のギャップ軸)と平行でないように構成されているものである。   Example 1 has an optical system that includes a light source, a lens system that guides light from the light source to a member to be measured, and a plurality of photodiodes that receive the light through the member to be measured. A measuring apparatus for measuring the position or shake amount of the member to be measured based on the amount of light received by a diode, wherein the plurality of photodiodes are used as shafts of the member to be measured when viewed in the optical axis direction of the optical system. All sides intersecting the center are straight lines, and at least one gap that is inclined with respect to the axial direction of the member to be measured is provided between the plurality of photodiodes. Sides that are positioned outward from the outer shape of the member and intersect the axis of the member to be measured other than the side parts of the photodiode forming the gap are parallel to the gap (gap axis thereof). Those that are configured not.

具体的には、実施例1は、図4,5に図示したように、被測定部材としてのゲージピン(丸棒)を図1(及び図10(a))に示したフォトダイオードを用いて測定するものであり、特に、極小径(外径0.3mm以下)の被測定部材を高速回転させながら測定する際に有用である。   Specifically, in Example 1, as shown in FIGS. 4 and 5, a gauge pin (round bar) as a member to be measured is measured using the photodiode shown in FIG. 1 (and FIG. 10A). In particular, it is useful when measuring a member to be measured having an extremely small diameter (outer diameter of 0.3 mm or less) while rotating at high speed.

実施例1においては同一面積にして多角形状の2つのフォトダイオード、具体的には直角三角形状で同一形状のフォトダイオードを一対設けた構成にし、前記フォトダイオードの斜辺を所定の間隔(ギャップ幅)で離間して配置せしめることで、その対向する斜辺間にギャップを形成している。つまり、図1における領域イ及び領域エ部分を含む1つのフォトダイオード、領域ア及び領域ウ部分を含む1つのフォトダイオードを対向させて配置している。   In the first embodiment, two photodiodes having the same area and polygonal shapes, more specifically, a pair of photodiodes having the same shape in the shape of a right triangle are provided, and the hypotenuses of the photodiodes are separated by a predetermined interval (gap width). The gaps are formed between the opposite hypotenuses by being spaced apart from each other. In other words, one photodiode including the region A and the region D in FIG. 1 and one photodiode including the region A and the region C are arranged to face each other.

尚、図1中、図1(a)が一対のフォトダイオードと被測定部材との関係を光学系の光軸方向視で表した概略説明図で、前記フォトダイオードにして前記被測定部材の軸心と交差する辺部のうち前記ギャップを形成する辺部(直角三角形状のフォトダイオードの斜辺)以外の辺部(直角三角形状のフォトダイオードの斜辺と1頂点を共有する辺部)が前記ギャップ(のギャップ軸)と平行でないように構成されていることを明示したものであり、図1(b)がフォトダイオードと被測定部材の位置による、電圧差の変化を表したグラフである。   In FIG. 1, FIG. 1 (a) is a schematic explanatory view showing the relationship between a pair of photodiodes and a member to be measured as viewed in the optical axis direction of the optical system. Sides (sides sharing one vertex with the oblique side of the right-angled triangular photodiode) other than the side (the oblique side of the right-angled triangular photodiode) forming the gap among the sides intersecting with the heart are the gap. FIG. 1B is a graph showing a change in voltage difference depending on the position of the photodiode and the member to be measured.

図1に示した測定原理を具体的に説明する。被測定部材がx方向(径方向)に移動し被測定部材軸心位置Xmが変化すると、2つのフォトダイオード間において光線を受光する面積差が変化することにより電圧差も変化する。面積差に変換係数Keを乗ずることで電圧差を表したものが式(1)である。このため被測定部材軸心位置Xmが変化すると被測定部材のx方向(径方向)の位置に相当する電圧差を測定でき、また、その位置に相当する電圧差の最大値と最小値との差から振れ量に相当する電圧差(前記、位置に相当する電圧差の差)を算出することができる。   The measurement principle shown in FIG. 1 will be specifically described. When the measured member moves in the x direction (radial direction) and the measured member axial center position Xm changes, the voltage difference also changes due to the change in the area difference between receiving the light beams between the two photodiodes. Expression (1) represents the voltage difference by multiplying the area difference by the conversion coefficient Ke. Therefore, when the measured member axial center position Xm changes, the voltage difference corresponding to the position in the x direction (radial direction) of the measured member can be measured, and the maximum and minimum values of the voltage difference corresponding to the position can be measured. The voltage difference corresponding to the shake amount (the difference in voltage difference corresponding to the position) can be calculated from the difference.

例えば、被測定部材の軸心位置Xmがフォトダイオードの中央位置(x方向中央位置=L/2の位置)に在り回転していない時、若しくは回転していても振れ量がゼロである時、夫々のフォトダイオード間の面積差はゼロであり、よって計算式(1)により電圧差はゼロとなる。被測定部材の位置が変われば、それに応じて前記電圧差も変化し、被測定部材の位置がわかる。被測定部材が回転していて振れ量がゼロでなければ、その分被測定部材の軸心位置がx方向に移動することで電圧差が変化し、この電圧差の最大値と最小値との差から振れ量に相当する電圧差を算出し、よってx方向の位置の差である振れ量を測定することが可能となる。   For example, when the shaft center position Xm of the member to be measured is at the center position of the photodiode (x-direction center position = L / 2 position) and is not rotating, or even if it is rotating, the shake amount is zero. The area difference between the respective photodiodes is zero, and thus the voltage difference is zero according to the calculation formula (1). If the position of the member to be measured changes, the voltage difference changes accordingly, and the position of the member to be measured can be known. If the member to be measured is rotating and the amount of deflection is not zero, the voltage difference changes as the shaft center position of the member to be measured moves in the x direction, and the maximum and minimum values of this voltage difference The voltage difference corresponding to the shake amount is calculated from the difference, and thus the shake amount that is the difference in the position in the x direction can be measured.

この原理を利用して電圧差から振れ量を求めるため、式(1)を変形した式(2)に電圧差などをあてはめて算出することができる。ここで、式(2)にあてはめる電圧差Vが振れ量に相当する電圧差であれば算出されるXmは被測定部材の振れ量であるし、例えば式(2)にあてはめる電圧差Vが位置に相当する電圧差であれば算出されるXmは被測定部材の軸心位置である。用途に応じて位置または振れ量を表示する測定装置とすれば良い。その他、Lはフォトダイオードの長さ、Aはフォトダイオードの高さ、rは被測定部材の半径、Keは受光単位面積あたりの、受光量に応じて生じる電流を電圧に変換する係数である。つまり、受光面積を電圧に変換する係数である。   Since the shake amount is obtained from the voltage difference using this principle, it can be calculated by applying the voltage difference or the like to Equation (2) obtained by modifying Equation (1). Here, if the voltage difference V applied to the equation (2) is a voltage difference corresponding to the shake amount, the calculated Xm is the shake amount of the measured member. For example, the voltage difference V applied to the equation (2) is the position. Xm calculated if the voltage difference corresponds to is the axial center position of the member to be measured. What is necessary is just to set it as the measuring apparatus which displays a position or a shake amount according to a use. In addition, L is the length of the photodiode, A is the height of the photodiode, r is the radius of the member to be measured, and Ke is a coefficient for converting a current generated according to the amount of received light per unit area of received light into a voltage. That is, it is a coefficient for converting the light receiving area into a voltage.

Figure 2013013947
Figure 2013013947

Figure 2013013947
Figure 2013013947

尚、前記斜辺間に形成されたギャップの大きさ(幅)は、少しでも離間していればそれで良く、その上限についても理論上の制約はない。光学系の光軸方向視において、前記被測定部材が前記フォトダイオードの高さ(A)の全域で光源(LED)からの光線を遮るように前記被測定部材を光路間に配置すれば良い。   The size (width) of the gap formed between the hypotenuses only needs to be separated as much as possible, and there is no theoretical limitation on the upper limit. The member to be measured may be disposed between the optical paths so that the member to be measured blocks the light beam from the light source (LED) over the entire height (A) of the photodiode when viewed in the optical axis direction of the optical system.

また、図1(a)に示したフォトダイオードの位置をx方向には固定し、y方向に移動させる分には、実質的にギャップ幅が異なることになるが、式(1)の関係は維持され、よって式(2)をそのまま適用できるため、実際の製作時にはギャップ幅を厳密に調整する必要がなく非常に実用的である。x方向に移動させた形態を採る場合には式(1)の関係が崩れ、よって式(2)を適用できないため、フォトダイオードの配置に応じた計算式を適用させることで測定可能となる。   In addition, the gap width is substantially different when the position of the photodiode shown in FIG. 1A is fixed in the x direction and moved in the y direction. Therefore, since the formula (2) can be applied as it is, there is no need to strictly adjust the gap width in actual production, which is very practical. In the case of adopting a form moved in the x direction, the relationship of equation (1) is broken, and therefore equation (2) cannot be applied. Therefore, measurement can be performed by applying a calculation equation according to the arrangement of the photodiodes.

また、このギャップは、両端部が光学系の光軸方向視(ギャップ正面視)において被測定部材の外形より外方に位置せしめられていれば当該ギャップ軸(ギャップ幅の中点を通りギャップの幅方向に直交する仮想線)をどのような傾斜角度に設定してもよい。本実施例においては60°に設定している。   In addition, if the both end portions are positioned outward from the outer shape of the member to be measured in the optical axis direction view (gap front view) of the optical system, the gap passes through the midpoint of the gap width. The imaginary line orthogonal to the width direction may be set at any inclination angle. In this embodiment, it is set to 60 °.

尚、被測定部材の軸方向に対するギャップ軸の傾斜角度が0°に限りなく近い場合(被測定部材の軸方向と平行に近い場合)は、前記ギャップの両端部を被測定部材の外形より外方に位置せしめることが難しく、これを実現させるためには必然的にフォトダイオードの高さを大きくしなければならず現実的でない。フォトダイオードを十分な高さに設定しなければ、ギャップの両端部が被測定部材の外形より内方に位置することになってしまい、これは、図3に示した従来例の範囲と考えられ、従来の問題は解決しない。被測定部材の軸方向に対するギャップ軸の傾斜角度は、現実的には|30|°以上|90|°以下である。尚、前記傾斜角度はギャップ軸が傾斜する方向を問わずどちらに傾斜しても良いため、前記の通り絶対値で表現している。また、フォトダイオードの正面視形状(光軸方向視形状)もどのような形状としてもよく、多角形状とすれば容易に製作できるため生産面で有利である。   When the inclination angle of the gap axis with respect to the axial direction of the member to be measured is almost as close as 0 ° (when it is nearly parallel to the axial direction of the member to be measured), both ends of the gap are outside the outer shape of the member to be measured. In order to realize this, the height of the photodiode must be increased, which is not practical. If the photodiode is not set to a sufficient height, both end portions of the gap are positioned inward from the outer shape of the member to be measured, which is considered to be the range of the conventional example shown in FIG. The conventional problem is not solved. The inclination angle of the gap axis with respect to the axial direction of the member to be measured is practically | 30 | ° or more and | 90 | ° or less. The tilt angle may be tilted in any direction regardless of the direction in which the gap axis is tilted, and is expressed as an absolute value as described above. Further, the shape of the photodiode in the front view (the shape in the optical axis direction) may be any shape, and if it is a polygonal shape, it can be easily manufactured, which is advantageous in terms of production.

実施例1においては、光源(LED)からの光は、絞り(ピンホール)を通ってコリメートレンズ1により平行光にされ、被測定部材を介してフォトダイオードに照射される。また、被測定部材が光源であるLEDからフォトダイオードまでの光路間に配置されていない状態では、フォトダイオードの全域にLEDからの光線が照射されるように設定されている。尚、LEDの発光量は、図5には図示していないが、レンズの照射領域内に設置されるフォトセンサ及び光量制御回路によって一定の値に調整される。   In the first embodiment, light from a light source (LED) passes through a diaphragm (pinhole) to be collimated by a collimating lens 1 and is irradiated to a photodiode via a member to be measured. Further, in a state where the member to be measured is not disposed between the light path from the LED that is the light source to the photodiode, the entire region of the photodiode is set to be irradiated with the light beam from the LED. Although not shown in FIG. 5, the light emission amount of the LED is adjusted to a constant value by a photosensor and a light amount control circuit installed in the irradiation region of the lens.

フォトダイオードは受光量に応じて電流を発生し、この電流をアンプで電圧に変換且つ増幅し、各種の回路を用いてゲージピンの外径、位置及び振れ量を測定する。以下、図4に基づいてゲージピンの外径、位置及び振れ量を測定する具体的手法について説明する。   The photodiode generates a current according to the amount of light received, converts this current into a voltage by an amplifier and amplifies it, and measures the outer diameter, position and deflection of the gauge pin using various circuits. Hereinafter, a specific method for measuring the outer diameter, position, and deflection amount of the gauge pin will be described with reference to FIG.

ゲージピンの外径は、アンプ(1)からの信号を、加算回路(3)で各フォトダイオードのゲージピンにより遮られた影の部分の面積に相当する電圧を加算することで得ることができる。A/D変換回路は、得た値をアナログ値からデジタル値に変換する。   The outer diameter of the gauge pin can be obtained by adding a voltage corresponding to the area of the shadow portion blocked by the gauge pin of each photodiode by the adder circuit (3) from the signal from the amplifier (1). The A / D conversion circuit converts the obtained value from an analog value to a digital value.

ゲージピンの振れ量は、ゲージピンの位置を測定し、その位置情報より各種回路を用いることで測定することができる。即ち、アンプ(1)からの信号を、減算回路(2)で各フォトダイオード間の電圧差を算出し、この電圧差がゲージピンの位置に相当し、最大値保持回路(4)で(位置の)最大値に相当する電圧差(以下「最大値」と略記する)が保持され、最小値保持回路(5)で(位置の)最小値に相当する電圧差(以下「最小値」と略記する)が保持され、この最大値と最小値との差を減算回路(6)で算出して得られた値がゲージピンの振れ量に相当する電圧差V(前記、位置に相当する電圧差の差)である。その後、A/D変換回路で、アナログ値からデジタル値に変換し、更に、上述のようにして得られたゲージピンの外径の半分の値をrとして前記振れ量に相当する電圧差Vと前記rとを振れ量Xmを求める式(2)にあてはめて振れ量取得演算回路(7)で算出することでより正確な振れ量を得ることができる。得られた振れ量は振れ量表示器に表示される。   The amount of deflection of the gauge pin can be measured by measuring the position of the gauge pin and using various circuits based on the position information. That is, the voltage difference between the photodiodes is calculated from the signal from the amplifier (1) by the subtraction circuit (2). This voltage difference corresponds to the position of the gauge pin, and the maximum value holding circuit (4) ) A voltage difference corresponding to the maximum value (hereinafter abbreviated as “maximum value”) is held, and a voltage difference corresponding to the minimum value (of position) in the minimum value holding circuit (5) (hereinafter abbreviated as “minimum value”). ) Is held, and the value obtained by calculating the difference between the maximum value and the minimum value by the subtraction circuit (6) is the voltage difference V corresponding to the amount of deflection of the gauge pin (the difference in voltage difference corresponding to the position). ). Thereafter, the analog value is converted into a digital value by an A / D conversion circuit, and the voltage difference V corresponding to the shake amount is set to r, where r is a half value of the outer diameter of the gauge pin obtained as described above, and A more accurate shake amount can be obtained by applying r to the equation (2) for obtaining the shake amount Xm and calculating the shake amount by the shake amount acquisition calculation circuit (7). The obtained shake amount is displayed on the shake amount display.

即ち、フォトダイオード間のギャップをそのギャップ軸が被測定部材の軸方向に対して傾斜し、このギャップの両端部が光学系の光軸方向視において被測定部材の外形より外方に位置せしめられるように配置した場合、計算式(1)には比例項に半径rが含まれるため、被測定部材の外径が変わると図1に示すx方向の被測定部材の軸心位置が同じ場合であっても計算式(1)で算出される電圧差Vが変わり、よって図1(b)に示す電圧差の傾きが変わりその都度校正が必要となる。しかしながら上記の通り被測定部材の外径を測定できるため、上記のようにして測定した外径から得られた半径rを式(2)にあてはめることで、校正を行わずとも理論値に近い値を計算で求めることができる。   In other words, the gap axis between the photodiodes is inclined with respect to the axial direction of the member to be measured, and both ends of the gap are positioned outward from the outer shape of the member to be measured when viewed in the optical axis direction of the optical system. In the case of the arrangement, the equation (1) includes the radius r in the proportional term. Therefore, when the outer diameter of the member to be measured is changed, the axial center position of the member to be measured in the x direction shown in FIG. Even in such a case, the voltage difference V calculated by the calculation formula (1) changes. Therefore, the slope of the voltage difference shown in FIG. 1B changes, and calibration is required each time. However, since the outer diameter of the member to be measured can be measured as described above, by applying the radius r obtained from the outer diameter measured as described above to the equation (2), a value close to the theoretical value without performing calibration. Can be calculated.

尚、前記振れ量に相当する電圧差に替えて、減算回路(2)で得られた前記位置に相当する電圧差を式(2)にあてはめれば算出されるXmはゲージピンの軸心位置である。この得られたゲージピン(被測定部材)の位置を表示器に表示させることで、位置測定または位置確認用の測定装置に適用できることは言うまでもない。   If the voltage difference corresponding to the position obtained by the subtraction circuit (2) is applied to the equation (2) instead of the voltage difference corresponding to the shake amount, the calculated Xm is the axial center position of the gauge pin. is there. It goes without saying that the position of the obtained gauge pin (member to be measured) can be applied to a measuring device for position measurement or position confirmation by displaying it on a display.

尚、図2,3に図示した従来構成の測定装置(2つのフォトダイオードをギャップ幅だけ離間して配置し、ギャップ軸が被測定部材の軸方向と平行に設けられている装置)においては、電圧差Vを求める式(3)若しくはこの式(3)を変形した、被測定部材軸心位置(若しくは被測定部材の振れ量)Xmを求める式(4)に半径rが比例項として含まれない。このため、被測定部材の外径が変わっても、それ(外径の違い)が電圧差Vや振れ量Xmに影響を及ぼさないため校正を必要としないという利点はあるが、被測定部材がギャップを覆うことが出来なくなる場合があるため、正確な測定ができないという問題は解決されない。具体的には、前記したような問題を回避するため、ギャップ幅をできるだけ小さく(ギャップ幅≒0mmに)できたとしても、位置測定においては、ギャップ軸を中心として被測定部材の外径分の範囲でしか測定できず、よって振れ量も被測定部材の外径分の量を超えるほどの振れ量は測定できないという問題がある。   In the conventional measuring apparatus shown in FIGS. 2 and 3 (the apparatus in which the two photodiodes are arranged apart from each other by the gap width and the gap axis is provided in parallel with the axial direction of the member to be measured), The radius r is included as a proportional term in the equation (3) for obtaining the voltage difference V or the equation (4) for obtaining the measured member axial center position (or the shake amount of the member to be measured) Xm obtained by modifying the equation (3). Absent. For this reason, even if the outer diameter of the member to be measured changes, there is an advantage that calibration is not necessary because the difference (outer diameter) does not affect the voltage difference V or the shake amount Xm. Since the gap may not be covered, the problem that accurate measurement cannot be performed is not solved. Specifically, in order to avoid the above-described problem, even if the gap width can be made as small as possible (gap width≈0 mm), in the position measurement, the outer diameter of the member to be measured is centered on the gap axis. Therefore, there is a problem that the amount of deflection cannot be measured so that the amount of deflection can exceed the amount of the outer diameter of the member to be measured.

Figure 2013013947
Figure 2013013947

Figure 2013013947
Figure 2013013947

また、実施例1(及び後述する実施例2,3)においては、上述の通り同一面積且つ直角三角形状で同一形状のフォトダイオードを一対設けた構成(図10(a))としているが、上記ギャップ、フォトダイオード及び被測定部材に係る条件を満たす構成であればどのような形状のものを採用してもよく、2つ以上の傾斜するギャップが設けられていてもよい。フォトダイオードの構成に応じた計算式でXmを算出すれば良いのである。   Further, in Example 1 (and Examples 2 and 3 to be described later), as described above, a configuration in which a pair of photodiodes having the same area and a right triangle shape and the same shape is provided (FIG. 10A), Any configuration may be adopted as long as it satisfies the conditions related to the gap, the photodiode, and the member to be measured, and two or more inclined gaps may be provided. What is necessary is just to calculate Xm with the calculation formula according to the structure of a photodiode.

フォトダイオードの構成としては、例えば図10(b)〜(d)のような構成を採用できる。図中符号Oは被測定部材を略示した仮想線である。また、フォトダイオードの(水平方向)長さは被測定部材の外径+α(想定される最大振れ量分)があればよく、高さはできるだけ低くするのが望ましい(少なくとも被測定部材の長さ以下)。一般に被測定部材の軸方向における測定位置が異なると振れ量が異なり、先端側の振れ量が大きく、根元側(被測定部材の被把持部に近い側)が小さい傾向がある。このためフォトダイオードの高さが高すぎると、その分被測定部材の軸方向における振れ量の値が平均化し、所望の値が得られない可能性があるためである。   As the configuration of the photodiode, for example, the configurations shown in FIGS. 10B to 10D can be adopted. A symbol O in the figure is an imaginary line schematically showing the member to be measured. Further, the (horizontal) length of the photodiode only needs to be equal to the outer diameter of the member to be measured + α (the expected maximum deflection), and the height is preferably as low as possible (at least the length of the member to be measured). Less than). In general, when the measurement position in the axial direction of the member to be measured is different, the amount of vibration is different, the amount of deflection on the tip side is large, and the root side (side near the grasped portion of the member to be measured) tends to be small. For this reason, if the height of the photodiode is too high, the value of the shake amount in the axial direction of the member to be measured is averaged, and a desired value may not be obtained.

また、図10(b)においては、領域イ及び領域エを含むフォトダイオードの面積と、領域ア及び領域ウを含むフォトダイオードの面積とが同一となるように設定されており、図10(a)と同様、各フォトダイオードの被測定部材により区切られる領域ア〜エに基づき、(イ+エ)−(ア+ウ)の計算式より同様に振れ量を求めることができる。また、図10(c)は、3つのフォトダイオードで構成されたものであり、領域ア及び領域エを含むフォトダイオードの面積と領域ウ及び領域カを含むフォトダイオードの面積とが同一となるように設定されており、更に前記2つのフォトダイオードの面積の和(領域ア、エを含むフォトダイオードの面積と領域ウ、カを含むフォトダイオードの面積との和)と領域イ及び領域オを含むフォトダイオードの面積とが同一となるように設定されている。領域ア〜カに基づき、(イ+オ)−((ア+エ)+(ウ+カ))の計算式より同様に振れ量を求めることができる。また、図10(d)は、4つのフォトダイオードで構成されたものであり、夫々のフォトダイオードの面積が同一となるように設定されている。領域ア〜クに基づき、((イ+カ)+(ウ+キ))−((ア+オ)+(エ+ク))の計算式より同様に振れ量を求めることができる。尚、各フォトダイオードの形状が同一形状であると、生産面で有利である。また、図10(b)は単純な形状である四角形状のフォトダイオードを所定角度傾斜させるだけで容易に実現できる。   In FIG. 10B, the area of the photodiode including the regions A and D is set to be the same as the area of the photodiode including the regions A and C. FIG. In the same manner as in (), based on the areas (a) to (e) delimited by the measured members of the respective photodiodes, the shake amount can be obtained in the same manner from the formula ((i + e)-(a + u)). Further, FIG. 10C is composed of three photodiodes, and the area of the photodiode including the area A and the area D is equal to the area of the photodiode including the area C and the area F. In addition, the sum of the areas of the two photodiodes (the sum of the area of the photodiode including the areas A and D and the area of the photodiode including the areas C and F), the area A, and the area E is included. The area of the photodiode is set to be the same. Based on the areas a to f, the shake amount can be obtained in the same manner from the calculation formula of (I + O)-((A + E) + (U + K)). FIG. 10D is composed of four photodiodes, and each photodiode is set to have the same area. Based on the areas (a) to (c), the shake amount can be obtained in the same manner from the calculation formula of ((I + F) + (U + K))-((A + O) + (E + K)). Note that it is advantageous in terms of production if the photodiodes have the same shape. Further, FIG. 10B can be easily realized by simply tilting a rectangular photodiode having a simple shape by a predetermined angle.

つまり、図10(a)〜(d)に示したフォトダイオードの構成は、本願発明を実施し得る実用性の高い構成を例示したもので、図10(a)〜(d)は夫々、生産の容易性やコスト面も考慮し、複数のフォトダイオードの組み合わせにより、受光面の面積が、受光面の総面積の2分の1ずつとなるように構成したものである。   That is, the configuration of the photodiode shown in FIGS. 10A to 10D exemplifies a highly practical configuration capable of carrying out the present invention, and FIGS. 10A to 10D are respectively produced. In consideration of the ease and cost, the combination of a plurality of photodiodes makes the area of the light receiving surface one-half of the total area of the light receiving surface.

実施例1は上述のように構成したから、被測定部材を回転させながらLEDから光線を照射してフォトダイオードでの受光量をもとに該被測定部材の振れ量を測定する際、被測定部材を光源であるLEDからフォトダイオードまでの光路間に配置させない状態においては、フォトダイオードの全域にLEDからの光線が照射されるように設定し、また、フォトダイオード間のギャップをそのギャップ軸が被測定部材の軸方向に対して傾斜し、このギャップの両端部が光学系の光軸方向視において被測定部材の外形より外方に位置せしめられるように配置することで、各フォトダイオードの受光量から振れ量を測定することが可能となる。   Since Example 1 is configured as described above, when measuring the deflection of the member to be measured based on the amount of light received by the photodiode by irradiating light from the LED while rotating the member to be measured, In a state where the member is not arranged between the light source LED and the photodiode, the light beam from the LED is set to be irradiated to the entire area of the photodiode, and the gap axis between the photodiodes is determined by the gap axis. Inclining with respect to the axial direction of the member to be measured, and arranging so that both ends of the gap are positioned outward from the outer shape of the member to be measured when viewed in the optical axis direction of the optical system. The amount of shake can be measured from the amount.

従って、被測定部材の外径がギャップ幅よりも小さい場合や、回転させられている被測定部材の動的振れが大きい場合でも、被測定部材の外径やギャップ幅の大きさに関する制約が飛躍的に緩和され、確実に正確な振れ量の測定を行えることになる。   Therefore, even when the outer diameter of the member to be measured is smaller than the gap width, or when the dynamic vibration of the member to be measured being rotated is large, restrictions on the outer diameter of the member to be measured and the size of the gap width have jumped. Therefore, accurate measurement of the shake amount can be performed.

よって、実施例1は、切削加工に用いられる加工装置のスピンドルに取り付けられて高い回転数で回転する極小径丸棒の動的振れを測定可能な極めて実用性に秀れた測定装置となる。   Therefore, Example 1 is an extremely practical measuring device that can measure the dynamic vibration of a small-diameter round bar that is attached to the spindle of a processing device used for cutting and rotates at a high rotational speed.

本発明の具体的な実施例2について図面に基づいて説明する。   A second embodiment of the present invention will be described with reference to the drawings.

実施例2は、図6,7に図示したように、実施例1の被測定部材とフォトダイオードとの間にテレセントリック光学系を設けたものであり、実施例1と同様に被測定部材としてのゲージピン(丸棒)を測定するものである。   In the second embodiment, as shown in FIGS. 6 and 7, a telecentric optical system is provided between the member to be measured of the first embodiment and the photodiode. A gauge pin (round bar) is measured.

テレセントリック光学系は、結像レンズ(球面レンズ)2と絞りとで構成されるもので、これによりフォトダイオードに向かって被測定部材の像が結像されることになる。テレセントリック光学系を該テレセントリック光学系とフォトダイオードとの距離が固定されるように追加すると、被測定部材と前記テレセントリック光学系との距離が変化してもフォトダイオード上に結像される被測定部材の像(影)の大きさが変わることはないため、被測定部材の光軸方向の位置決めを厳密に行わなくても、より容易にして正確な測定が可能となる。よって、実施例2は実施例1に比し、より精度の高い測定が可能なものとなる。   The telecentric optical system is composed of an imaging lens (spherical lens) 2 and a stop, whereby an image of the member to be measured is formed toward the photodiode. When a telecentric optical system is added so that the distance between the telecentric optical system and the photodiode is fixed, the measured member forms an image on the photodiode even if the distance between the measured member and the telecentric optical system changes. Since the size of the image (shadow) does not change, it is possible to perform measurement more easily and accurately without strictly positioning the member to be measured in the optical axis direction. Therefore, the second embodiment can measure with higher accuracy than the first embodiment.

その余は実施例1と同様である。   The rest is the same as in Example 1.

本発明の具体的な実施例3について図面に基づいて説明する。   A specific third embodiment of the present invention will be described with reference to the drawings.

実施例3は、図8,9に図示したように、実施例2の構成にレンズ3,4を追加したものであり、被測定部材としてドリルなどの、外周に螺旋状の切り屑排出溝や切れ刃を有する回転切削工具を測定するものである。尚、図9では被測定部材を簡略化のため丸棒状に図示している。   As shown in FIGS. 8 and 9, the third embodiment is obtained by adding lenses 3 and 4 to the configuration of the second embodiment. A rotary cutting tool having a cutting edge is measured. In FIG. 9, the member to be measured is shown in a round bar shape for simplification.

ここで、レンズ3は、被測定部材の一部に前記光線を被測定部材の軸方向のみに集束させる(被測定部材の測定する範囲を狭くする)円筒形レンズであり、レンズ4はレンズ3で照射範囲を狭くした光を平行光に戻す円筒形レンズである。   Here, the lens 3 is a cylindrical lens that focuses the light beam on a part of the member to be measured only in the axial direction of the member to be measured (the measurement range of the member to be measured is narrowed), and the lens 4 is the lens 3. It is a cylindrical lens that returns light with a narrow irradiation range to parallel light.

被測定部材の測定する範囲を狭くするレンズ3を用いることで、回転切削工具の軸心と略直交する略線状の光を回転切削工具に照射可能となり、軸方向の測定範囲を可及的に狭くすることができ、外周に溝が存在するドリル等であっても振れ量を正確に測定可能となる(測定される振れ量は軸方向の測定範囲の平均値となるため、軸方向の測定範囲が広いと外周に溝が存在するドリル等では誤差が生じる。)。   By using the lens 3 that narrows the measurement range of the member to be measured, it becomes possible to irradiate the rotary cutting tool with substantially linear light that is substantially orthogonal to the axis of the rotary cutting tool, and the axial measurement range is as much as possible. Even with a drill or the like having a groove on the outer periphery, the amount of deflection can be measured accurately (the measured amount of deflection is the average value of the axial measuring range, so If the measuring range is wide, an error will occur if the drill has a groove on the outer periphery.)

以下、図8に基づいて回転切削工具の外径、位置及び振れ量を測定する具体的手法について説明する。   Hereinafter, a specific method for measuring the outer diameter, position, and runout amount of the rotary cutting tool will be described with reference to FIG.

回転切削工具の外径は、アンプ(1)からの信号を、加算回路(3)で各フォトダイオードの回転切削工具により遮られた影の部分の面積に相当する電圧を加算し、最大値保持回路(7)で最大値を保持することで得ることができる。即ち、ドリル等の回転切削工具の場合は、溝の部分があるため、ゲージピンと異なり、外周のある部分(溝がない部分)の最大値を保持する必要がある。A/D変換回路は、得た値をアナログ値からデジタル値に変換する。   The outer diameter of the rotary cutting tool is maintained at its maximum value by adding the signal from the amplifier (1) to the voltage corresponding to the area of the shaded area blocked by the rotary cutting tool of each photodiode by the adder circuit (3). It can be obtained by holding the maximum value in the circuit (7). That is, in the case of a rotary cutting tool such as a drill, since there is a groove portion, it is necessary to maintain the maximum value of a portion with an outer periphery (a portion without a groove) unlike a gauge pin. The A / D conversion circuit converts the obtained value from an analog value to a digital value.

回転切削工具の振れ量は、回転切削工具の位置を測定し、その位置情報より各種回路を用いることで測定することができる。即ち、アンプ(1)からの信号を、減算回路(2)で各フォトダイオード間の電圧差を算出し、この電圧差が回転切削工具の位置に相当し、減算回路(9)で最大値保持回路(7)に保持される最大径に相当する電圧(以下「最大径」と略記する)と瞬時値との差を算出し、サンプルホールド回路(4)において、前記差を比較回路(10)で最大径と比較して最大径との差が所定の基準値より大きい場合(ドリル等の外周がない場所、即ち溝の部分と判断される場合)にはサンプリングを行わず直前の値がホールドされ、最大径との差が所定の基準値より小さい場合(ドリル等の外周がある場所と判断される場合)にはサンプリング(電圧差の値を随時出力)され、サンプリングされた電圧差は、最大値保持回路(5)で(位置の)最大値に相当する電圧差(以下「最大値」と略記する)が保持され、最小値保持回路(6)で(位置の)最小値に相当する電圧差(以下「最小値」と略記する)が保持され、この最大値と最小値との差を減算回路(8)で算出して得られた値が回転切削工具の振れ量に相当する電圧差V(前記、位置に相当する電圧差の差)である。その後、A/D変換回路で、アナログ値からデジタル値に変換し、更に、上述のようにして得られた回転切削工具の外径の半分の値をrとして前記振れ量に相当する電圧差Vと前記rとを振れ量Xmを求める式(2)にあてはめて振れ量取得演算回路(11)で算出することでより正確な振れ量を得ることができる。得られた振れ量は振れ量表示器に表示される。尚、前記した所定の基準値とは、回転切削工具の外径に起因して任意に設定可能な基準値である。   The runout amount of the rotary cutting tool can be measured by measuring the position of the rotary cutting tool and using various circuits from the position information. That is, the voltage difference between the photodiodes is calculated from the signal from the amplifier (1) by the subtraction circuit (2), and this voltage difference corresponds to the position of the rotary cutting tool, and the maximum value is held by the subtraction circuit (9). A difference between a voltage corresponding to the maximum diameter held in the circuit (7) (hereinafter abbreviated as “maximum diameter”) and an instantaneous value is calculated, and the difference is compared with the comparison circuit (10) in the sample hold circuit (4). If the difference between the maximum diameter and the maximum diameter is larger than the predetermined reference value (when it is judged that there is no outer periphery such as a drill, ie, a groove), sampling is not performed and the previous value is held. When the difference from the maximum diameter is smaller than a predetermined reference value (when it is determined that there is an outer periphery such as a drill), sampling (output the voltage difference value as needed), the sampled voltage difference is Maximum value (position) in the maximum value holding circuit (5) The corresponding voltage difference (hereinafter abbreviated as “maximum value”) is held, and the minimum value holding circuit (6) holds the voltage difference (hereinafter abbreviated as “minimum value”) corresponding to the minimum value (position). The value obtained by calculating the difference between the maximum value and the minimum value by the subtraction circuit (8) is the voltage difference V corresponding to the runout amount of the rotary cutting tool (the difference in voltage difference corresponding to the position). is there. Thereafter, the analog value is converted into a digital value by an A / D conversion circuit, and further, a voltage difference V corresponding to the deflection amount is set to r, where r is a half value of the outer diameter of the rotary cutting tool obtained as described above. And r is applied to the equation (2) for obtaining the shake amount Xm, and the shake amount acquisition calculation circuit (11) calculates the more accurate shake amount. The obtained shake amount is displayed on the shake amount display. The predetermined reference value is a reference value that can be arbitrarily set due to the outer diameter of the rotary cutting tool.

実施例3においては、測定方法が特に有用である、被測定部材としてドリルなどの、外周に螺旋状の切り屑排出溝や切れ刃を有する回転切削工具について例示したが、上記測定方法はゲージピン(丸棒)についても同様に可能なものであり、前述したようにゲージピンの軸方向の測定範囲を可及的に狭くすることができるため、軸方向の所望の位置における振れ量をより正確に測定することが可能となる。   In Example 3, the measurement method is particularly useful, and a rotary cutting tool having a spiral chip discharge groove and a cutting edge on the outer periphery, such as a drill, is exemplified as a member to be measured. (Round bar) is also possible in the same way, and as described above, the measuring range in the axial direction of the gauge pin can be made as narrow as possible, so the amount of deflection at the desired position in the axial direction can be measured more accurately. It becomes possible to do.

以上のようにして、極小径ドリル等の振れ量を正確に測定することが可能となる。   As described above, it is possible to accurately measure the deflection amount of a very small diameter drill or the like.

その余は実施例1と同様である。   The rest is the same as in Example 1.

また、実施例3におけるサンプルホールド回路はあくまで一例であり、この構成に限らず(サンプルホールド回路を用いずに)、回転切削工具の外径を同時に求められれば、他の方法を用いてもよいし、別の測定装置であらかじめ外径を正しく測定できていれば、より簡単な構成で振れを測定できることは言うまでもない。   In addition, the sample and hold circuit in the third embodiment is merely an example, and is not limited to this configuration (without using the sample and hold circuit), and other methods may be used as long as the outer diameter of the rotary cutting tool can be obtained simultaneously. Needless to say, if the outer diameter can be correctly measured in advance by another measuring device, the shake can be measured with a simpler configuration.

Claims (7)

光源と、この光源からの光線を被測定部材へ導くレンズ系と、前記被測定部材を介して前記光線を受光する複数のフォトダイオードとを備える光学系を有し、このフォトダイオードでの受光量をもとに前記被測定部材の位置若しくは振れ量を測定する測定装置であって、前記光学系の光軸方向視において、前記複数のフォトダイオードにして前記被測定部材の軸心と交差する辺部が全て直線であり、前記複数のフォトダイオード間には、前記被測定部材の軸方向に対して傾斜する少なくとも1つのギャップが設けられ、このギャップの両端部は前記被測定部材の外形より外方に位置せしめられ、前記ギャップを形成するフォトダイオードの辺部以外の前記被測定部材の軸心と交差する辺部が前記ギャップと平行でないように構成されていることを特徴とする測定装置。   An optical system including a light source, a lens system that guides light from the light source to a member to be measured, and a plurality of photodiodes that receive the light through the member to be measured; the amount of light received by the photodiode A measuring device for measuring a position or a shake amount of the member to be measured based on the optical axis of the optical system as viewed in the optical axis direction, the plurality of photodiodes being sides intersecting with the axis of the member to be measured All of the portions are straight, and at least one gap that is inclined with respect to the axial direction of the member to be measured is provided between the plurality of photodiodes. Both ends of the gap are outside the outer shape of the member to be measured. The side portion that is positioned in the direction and intersects the axis of the member to be measured other than the side portion of the photodiode that forms the gap is configured not to be parallel to the gap. Measuring apparatus according to claim. 請求項1記載の測定装置において、前記各フォトダイオードは前記光学系の光軸方向視において、多角形状のフォトダイオードであることを特徴とする測定装置。   The measuring apparatus according to claim 1, wherein each of the photodiodes is a polygonal photodiode when viewed in the optical axis direction of the optical system. 請求項1,2いずれか1項に記載の測定装置において、前記被測定部材と前記フォトダイオードとの間にはテレセントリック光学系が設けられていることを特徴とする測定装置。   The measuring apparatus according to claim 1, wherein a telecentric optical system is provided between the member to be measured and the photodiode. 請求項1,2いずれか1項に記載の測定装置において、前記被測定部材の一部に前記光線を被測定部材の軸方向のみに集束させるレンズを備えたことを特徴とする測定装置。   The measuring apparatus according to claim 1, wherein a lens that focuses the light beam only in the axial direction of the member to be measured is provided on a part of the member to be measured. 請求項1〜3いずれか1項に記載の測定装置において、前記被測定部材の一部に前記光線を被測定部材の軸方向のみに集束させるレンズと、前記フォトダイオードに向かって前記光線を平行光として照射させるレンズとを備えたことを特徴とする測定装置。   4. The measuring apparatus according to claim 1, wherein a lens that focuses the light beam only in an axial direction of the member to be measured on a part of the member to be measured, and the light beam parallel to the photodiode. 5. A measuring apparatus comprising a lens for irradiating as light. 請求項4、5いずれか1項に記載の測定装置において、前記被測定部材は回転切削工具であることを特徴とする測定装置。   The measuring apparatus according to claim 4, wherein the member to be measured is a rotary cutting tool. 請求項1〜6いずれか1項に記載の測定装置において、同一面積にして同一形状の2つのフォトダイオードが設けられていることを特徴とする測定装置。   The measuring apparatus according to claim 1, wherein two photodiodes having the same area and the same shape are provided.
JP2011146693A 2011-06-30 2011-06-30 Runout measurement device Active JP5378459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011146693A JP5378459B2 (en) 2011-06-30 2011-06-30 Runout measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011146693A JP5378459B2 (en) 2011-06-30 2011-06-30 Runout measurement device

Publications (2)

Publication Number Publication Date
JP2013013947A true JP2013013947A (en) 2013-01-24
JP5378459B2 JP5378459B2 (en) 2013-12-25

Family

ID=47687146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011146693A Active JP5378459B2 (en) 2011-06-30 2011-06-30 Runout measurement device

Country Status (1)

Country Link
JP (1) JP5378459B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061085A1 (en) * 2015-10-06 2017-04-13 コーデンシ株式会社 Light receiving device and position detection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229306A (en) * 1987-03-19 1988-09-26 N T T Gijutsu Iten Kk Linear light receiving device
JPH05210863A (en) * 1990-12-18 1993-08-20 Ricoh Co Ltd Optical pickup device and position detector used therefor
JPH071294A (en) * 1993-06-15 1995-01-06 Kobe Steel Ltd Optical type work shape measuring device in numerically controlled machine tool
JP2000000047U (en) * 1999-11-24 2000-06-30 ユニオンツール株式会社 Inspection equipment for cutting tools.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229306A (en) * 1987-03-19 1988-09-26 N T T Gijutsu Iten Kk Linear light receiving device
JPH05210863A (en) * 1990-12-18 1993-08-20 Ricoh Co Ltd Optical pickup device and position detector used therefor
JPH071294A (en) * 1993-06-15 1995-01-06 Kobe Steel Ltd Optical type work shape measuring device in numerically controlled machine tool
JP2000000047U (en) * 1999-11-24 2000-06-30 ユニオンツール株式会社 Inspection equipment for cutting tools.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061085A1 (en) * 2015-10-06 2017-04-13 コーデンシ株式会社 Light receiving device and position detection device
JP2017072453A (en) * 2015-10-06 2017-04-13 コーデンシ株式会社 Light reception device and position detection device
US10260857B2 (en) 2015-10-06 2019-04-16 Kodenshi Corporation Light receiving device and position detection device

Also Published As

Publication number Publication date
JP5378459B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP6385531B1 (en) Optical spindle multi-degree-of-freedom error measuring apparatus and method
JP2007071852A (en) Apparatus and method for measuring deep hole
JP4992078B2 (en) Inclination angle measuring device, machine tool equipped with the same, and inclination angle calibration method for machine tool
CN103542813B (en) One kind is based on border differential and the self-alignment laser diameter measuring instrument of ambient light
JP6664074B2 (en) Flatness measurement device
JP2020051892A (en) Measurement system and method for manufacturing shaft with hole
JP4970204B2 (en) Straightness measuring device, thickness variation measuring device, and orthogonality measuring device
JP6599266B2 (en) Shape measuring device, processing device, and calibration method for shape measuring device
JP4964691B2 (en) Measuring method of measured surface
CN106989682B (en) A kind of light veil type axial workpiece measuring instrument gauge head unit and its measurement method
US20100265519A1 (en) Displacement sensor
JP5378459B2 (en) Runout measurement device
JP2008008879A (en) Measuring instrument, measuring reference, and precision machine tool
JP4890188B2 (en) Motion error measurement reference body and motion error measurement device
JP2003170335A (en) Method and device for measuring rotary cutting tool
JP2008122349A (en) Measuring instrument
JP2017037028A (en) Measurement device
JP2016191663A (en) Calibration method of optical sensor, and three-dimensional coordinate measuring instrument
JP7201208B2 (en) Calibration gauge and calibration method
TWI247095B (en) Optical revolving spindle error measurement device
JP6969523B2 (en) Cutting equipment
JP2607722Y2 (en) Inspection equipment for cutting tools.
JP2011137812A (en) Measurement apparatus of multi-axis processing machine
JP5601699B2 (en) Calibration device
JP4962215B2 (en) Accuracy check device for inking device and accuracy checking method for inking device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130925

R150 Certificate of patent or registration of utility model

Ref document number: 5378459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250