JP2013011545A - Deposition device and film thickness measurement method - Google Patents

Deposition device and film thickness measurement method Download PDF

Info

Publication number
JP2013011545A
JP2013011545A JP2011145257A JP2011145257A JP2013011545A JP 2013011545 A JP2013011545 A JP 2013011545A JP 2011145257 A JP2011145257 A JP 2011145257A JP 2011145257 A JP2011145257 A JP 2011145257A JP 2013011545 A JP2013011545 A JP 2013011545A
Authority
JP
Japan
Prior art keywords
value
film
film thickness
thin film
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011145257A
Other languages
Japanese (ja)
Other versions
JP5800603B2 (en
Inventor
Ippei So
一兵 宋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2011145257A priority Critical patent/JP5800603B2/en
Publication of JP2013011545A publication Critical patent/JP2013011545A/en
Application granted granted Critical
Publication of JP5800603B2 publication Critical patent/JP5800603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a deposition device capable of obtaining a proper film thickness value even when a measured value of resonant frequency suddenly changes due to a sharp rise of temperature or other cause.SOLUTION: When the measured value of the resonant frequency sharply changes at the beginning a film forming as indicated with Lin the figure, the measured value up to a predetermined recovery time is determined as abnormal value. After the recovery time has passed, an "inclination a" and a "y-intercept b" of a linear expression representing a relationship between the time and the resonant frequency are calculated from minimum number of normal measured values. Based on the calculated linear expression, a thickness of the thin film which grows during the recovery time is calculated and is added to the film thickness obtained from a measured value obtained after the recovery time. Since the film thickness value during the abnormal value is added, a film thickness value smaller than an actual value is prevented from being output. Also when an abnormal value is output during a normal state, the film thickness during the abnormal value is calculated from the linear expression and is added to a film thickness obtained from normal measured value.

Description

本発明は、成膜中の薄膜を測定する技術分野に関する。   The present invention relates to the technical field of measuring a thin film during film formation.

真空雰囲気を用いた薄膜の形成には、スパッタ方法や蒸着方法等があり、基板等の成膜対象物表面に薄膜が成長するときに、成長中の薄膜の膜厚を測定するために、水晶振動子が用いられている。   Thin film formation using a vacuum atmosphere includes sputtering methods and vapor deposition methods. When a thin film grows on the surface of a film formation target such as a substrate, a crystal is used to measure the thickness of the growing thin film. A vibrator is used.

薄膜は、蒸着源から放出される蒸気やスパッタ源から放出されるスパッタリング粒子が、成膜対象物表面に到達し、付着して形成されており、蒸気やスパッタリング粒子が成膜対象物表面に到達する際に、水晶振動子にも到達するようにし、水晶振動子の共振周波数変化から、水晶振動子表面に形成された薄膜の膜厚が測定され、その値を成膜対象物表面の膜厚に換算し、成膜対象物表面の薄膜の膜厚を得るようにしている。
しかしながら水晶振動子に対して大きな熱衝撃が印加された場合の周波数の急上昇や、原因不明の周波数ジャンプ等の異常データ出力があると、基板表面の膜厚を正確に算出することができなくなるという不都合がある。
The thin film is formed by the vapor emitted from the vapor deposition source and the sputtered particles emitted from the sputter source reaching and adhered to the surface of the film formation target, and the vapor and the sputtered particles reach the surface of the film formation target. In this case, the thickness of the thin film formed on the surface of the crystal resonator is measured from the change in the resonance frequency of the crystal resonator so as to reach the crystal resonator. In other words, the thickness of the thin film on the surface of the film formation target is obtained.
However, if there is a sudden increase in frequency when a large thermal shock is applied to the crystal unit or abnormal data output such as an unknown frequency jump, the thickness of the substrate surface cannot be calculated accurately. There is an inconvenience.

特開平11−222670号公報JP-A-11-222670

本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、異常データを修正して正しい膜厚を算出できる技術を提供することにある。   The present invention was created to solve the above-described disadvantages of the prior art, and an object of the present invention is to provide a technique capable of correcting the abnormal data and calculating the correct film thickness.

上記課題を解決するために、本発明は、真空雰囲気中に成膜対象物と水晶振動子を配置し、前記成膜対象物の成膜面と前記水晶振動子の検出面とに一緒に薄膜を成長させ、前記水晶振動子の共振周波数を測定し、測定結果から前記成膜面に成長した前記薄膜の厚さを求める膜厚測定方法であって、前記検出面に、前記薄膜を形成する微小粒子が到達しない状態から到達が開始された際に、前記共振周波数の値の急上昇を検出すると、前記共振周波数の値と測定時刻との間に第一の線形関係が形成されたと判断できる値の前記共振周波数が測定された後、前記微小粒子が前記成膜面に到達した時刻から、所望の時刻までの間、前記検出面上の前記薄膜の膜厚は、前記第一の線形関係に従って増加したとして、測定結果から前記成膜面に成長した前記薄膜の前記膜厚を求める膜厚測定方法である。
また、本発明は、測定した前記共振周波数の値が、測定時刻に対して前記第一の線形関係を維持しながら変化しているときに、測定した前記共振周波数の値が急変して前記第一の線形関係を維持しなくなったと判断した場合には、前記急変が生じた後も、前記急変が生じる前の前記第一の線形関係が維持されるものとして、前記急変の開始後は、前記第一の線形関係と前記急変後の測定時刻とから前記成膜面に成長する前記薄膜の膜厚増加量を算出して、前記急変の開始後の前記薄膜の前記膜厚を求める膜厚測定方法である。
また、本発明は、前記急変後の前記共振周波数の測定結果から、前記急変が解消されたと判断した場合には、前記急変の解消を判断した前記共振周波数の測定結果が得られた時刻以後の時刻の測定結果から、第二の線形関係を求め、前記第二の線形関係を求めた前記測定結果から求めた前記成膜面の前記薄膜の膜厚の値から、その前記測定結果の経過時間と前記第一の線形関係とから求めた前記成膜面の前記膜厚の値を差し引いた値を、前記線形結果から求めた前記成膜面の膜厚の値に加算する膜厚測定方法である。
また、本発明は、前記第二の線形関係が求められた後に、前記急変が生じたときには、前記急変が生じる前の前記第二の線形関係が維持されるものとして、前記測定結果から前記成膜面の前記薄膜の膜厚を求める膜厚測定方法である。
また、本発明は、成膜対象物が配置される真空槽と、前記真空槽内を真空排気する真空排気装置と、前記真空槽内に配置され真空雰囲気中で前記成膜対象物の成膜面に薄膜材料を到達させる成膜源と、前記真空槽内で、前記成膜面への前記薄膜材料の到達を妨げない位置に配置された水晶振動子と、前記水晶振動子に接続され、前記水晶振動子の前記共振周波数を測定する測定装置と、前記測定装置に接続され、前記共振周波数が入力される計算機とを有し、前記計算機は、前記検出面に、前記薄膜を形成する微小粒子が到達しない状態から到達が開始された際に、前記共振周波数の値の急上昇を検出すると、前記共振周波数の測定値と測定時刻との間に線形関係が形成されたと判断した後、前記微小粒子が前記成膜面に到達した時刻から、所望の時刻までの間、前記検出面上の前記薄膜の膜厚が、前記線形関係に従って増加したとして前記成膜面に成長した前記薄膜の厚さを求めるように構成された蒸着装置である。
In order to solve the above-described problems, the present invention provides a film forming object and a crystal resonator in a vacuum atmosphere, and a thin film is formed on the film forming surface of the film forming object and the detection surface of the crystal resonator. And measuring the resonance frequency of the crystal resonator, and determining the thickness of the thin film grown on the film formation surface from the measurement result, wherein the thin film is formed on the detection surface A value that can be determined that a first linear relationship is formed between the value of the resonance frequency and the measurement time when a sudden increase in the value of the resonance frequency is detected when arrival is started from a state in which the fine particles do not reach After the resonance frequency is measured, the film thickness of the thin film on the detection surface is in accordance with the first linear relationship from the time when the microparticles reach the film formation surface to a desired time. As it increased, it grew on the film formation surface from the measurement result. A film thickness measuring method for determining the thickness of the serial film.
In the present invention, when the measured resonance frequency value changes while maintaining the first linear relationship with respect to the measurement time, the measured resonance frequency value changes suddenly and the first If it is determined that the linear relationship is no longer maintained, the first linear relationship before the sudden change is maintained even after the sudden change occurs, and after the sudden change starts, Film thickness measurement for obtaining the film thickness of the thin film after the start of the sudden change by calculating the film thickness increase amount of the thin film growing on the film formation surface from the first linear relationship and the measurement time after the sudden change Is the method.
Further, according to the present invention, when it is determined from the measurement result of the resonance frequency after the sudden change that the sudden change has been resolved, the time after the time when the measurement result of the resonance frequency that has been determined to eliminate the sudden change is obtained. From the measurement result of time, the second linear relationship is obtained, and the elapsed time of the measurement result from the value of the film thickness of the thin film on the film formation surface obtained from the measurement result obtained from the second linear relationship. And a value obtained by subtracting the value of the film thickness of the film formation surface obtained from the first linear relationship to the value of the film thickness of the film formation surface obtained from the linear result. is there.
In addition, the present invention assumes that the second linear relationship before the sudden change is maintained when the sudden change occurs after the second linear relationship is obtained, and that the composition is obtained from the measurement result. This is a film thickness measurement method for determining the film thickness of the thin film on the film surface.
The present invention also provides a vacuum chamber in which a film formation target is disposed, a vacuum exhaust device that evacuates the vacuum chamber, and a film formation of the film formation target in a vacuum atmosphere disposed in the vacuum chamber. A film forming source that allows a thin film material to reach the surface; and a crystal resonator disposed at a position that does not prevent the thin film material from reaching the film forming surface in the vacuum chamber; and is connected to the crystal resonator, A measurement device for measuring the resonance frequency of the crystal resonator; and a computer connected to the measurement device to which the resonance frequency is input, the computer forming a thin film on the detection surface. When a sudden increase in the value of the resonance frequency is detected when arrival starts from a state where particles do not reach, after determining that a linear relationship has been formed between the measurement value of the resonance frequency and the measurement time, the minute frequency From the time when the particles reach the film formation surface, Until Nozomu time, the film thickness of the thin film on the detection surface is configured evaporation apparatus to determine a thickness of the thin film grown on the deposition surface as increased with the linear relationship.

成膜開始時に異常な測定値が出力されても、測定値の推移が正常な状態に復帰した後、異常値として使用することができない測定値が出力されている間の薄膜の成長膜厚を算出することができるので、形成される薄膜の膜厚を少なく算出することが無い。   Even if an abnormal measurement value is output at the start of film formation, after the measured value transition returns to a normal state, the growth thickness of the thin film while the measurement value that cannot be used as an abnormal value is output is displayed. Since it can be calculated, the thickness of the thin film to be formed is not calculated to be small.

また、線形関係が形成された後、測定値が異常値を示しても、異常値が発生している間、線形関係から膜厚増加量を求めることができるので、膜厚が少なく算出されることがない。   Moreover, even if the measured value shows an abnormal value after the linear relationship is formed, the film thickness increase amount can be obtained from the linear relationship while the abnormal value is occurring, so the film thickness is calculated to be small. There is nothing.

本願発明を用いることができる薄膜形成装置の一例An example of a thin film forming apparatus to which the present invention can be used 薄膜形成開始時の共振周波数の急上昇を説明するためのグラフGraph to explain the sudden rise in resonance frequency at the start of thin film formation 共振周波数の測定値が急変して復帰したときの状態を説明するためのグラフGraph for explaining the state when the measured value of resonance frequency suddenly changes and returns

図1は、本発明の成膜装置10を示しており、該成膜装置10は、真空槽11を有している。
真空槽11の内部には、基板ホルダ13が配置されており、該基板ホルダ13には、成膜対象物16が配置されている。
FIG. 1 shows a film forming apparatus 10 of the present invention, and the film forming apparatus 10 has a vacuum chamber 11.
A substrate holder 13 is disposed inside the vacuum chamber 11, and a film formation target 16 is disposed on the substrate holder 13.

真空槽11内で成膜対象物16と対面する位置には、成膜源17が配置されている。成膜源17の内部には、薄膜を形成させる物質である薄膜材料が配置されており、薄膜材料の微小粒子が真空槽11内に放出されるように構成されている。   A film formation source 17 is disposed at a position facing the film formation target 16 in the vacuum chamber 11. A thin film material, which is a substance for forming a thin film, is arranged inside the film forming source 17, and the thin particles of the thin film material are configured to be discharged into the vacuum chamber 11.

真空槽11内の基板ホルダ13の側方には水晶振動子15が配置されている。水晶振動子15は、成膜源17と対面している成膜対象物16に向かう薄膜材料の微小粒子を遮蔽しない位置に配置されている。
成膜源17の微小粒子が放出される開口付近には、開口を覆うようにシャッター19が設けられている。
A crystal resonator 15 is disposed on the side of the substrate holder 13 in the vacuum chamber 11. The quartz crystal resonator 15 is disposed at a position where the fine particles of the thin film material facing the film formation target 16 facing the film formation source 17 are not shielded.
A shutter 19 is provided in the vicinity of the opening from which the fine particles of the film forming source 17 are discharged so as to cover the opening.

真空槽11には真空排気装置29が接続されており、該真空排気装置29を動作させて真空槽11内を真空排気し、所定圧力の真空雰囲気が形成された後、成膜源17から薄膜材料の微小粒子を放出させる。
ここでは成膜装置10は蒸着装置であり、微小粒子は薄膜材料の蒸気であるが、例えば、成膜装置10がスパッタリング装置の場合には微小粒子は薄膜材料のスパッタリング粒子であり、蒸気やスパッタリング粒子以外の微小粒子も本発明に含まれる。
A vacuum evacuation device 29 is connected to the vacuum chamber 11, and the vacuum evacuation device 29 is operated to evacuate the vacuum chamber 11 to form a vacuum atmosphere at a predetermined pressure. Release fine particles of material.
Here, the film forming apparatus 10 is a vapor deposition apparatus, and the fine particles are vapors of a thin film material. For example, when the film forming apparatus 10 is a sputtering apparatus, the fine particles are sputtered particles of the thin film material. Fine particles other than particles are also included in the present invention.

ここでは、成膜源17内に配置された薄膜材料を加熱して蒸気状態になった薄膜材料の放出を開始させ、蒸気放出が安定したところで、シャッター19を開ける。
成膜対象物16は、成膜源17に対面する成膜面21を有しており、水晶振動子15は、成膜源17に対面する検出面22を有している。
Here, the thin film material placed in the film forming source 17 is heated to start the discharge of the thin film material in a vapor state, and when the vapor discharge is stabilized, the shutter 19 is opened.
The film formation target 16 has a film formation surface 21 that faces the film formation source 17, and the crystal unit 15 has a detection surface 22 that faces the film formation source 17.

成膜源17から放出された薄膜材料の蒸気は、成膜面21と検出面22の両方に到達し、成膜面21と検出面22の両方に薄膜を成長させる。なお、本例では薄膜材料は加熱して生成された薄膜材料の蒸気を真空槽11内に放出して成膜面21と検出面22に到達させているが、例えば、薄膜材料をターゲット状に成形し、真空槽11内に導入したスパッタリングガスをプラズマ化させて、ターゲットをスパッタリングし、薄膜材料で構成されたスパッタリング粒子を成膜面21と検出面22に到達させる場合も含め、薄膜材料の微小粒子が成膜面21と検出面22に到達すればよい。   The vapor of the thin film material released from the film formation source 17 reaches both the film formation surface 21 and the detection surface 22 and grows a thin film on both the film formation surface 21 and the detection surface 22. In this example, the thin film material is heated to release the vapor of the thin film material into the vacuum chamber 11 to reach the film formation surface 21 and the detection surface 22. The sputtering gas introduced into the vacuum chamber 11 is formed into plasma, the target is sputtered, and the sputtering particles composed of the thin film material reach the film formation surface 21 and the detection surface 22. It suffices for the fine particles to reach the film formation surface 21 and the detection surface 22.

真空槽11の外部には、測定装置25が配置され、水晶振動子15は測定装置25に接続されており、測定装置25により、この水晶振動子15の共振周波数が所定時刻に継続的に測定されている。所定時刻の間である測定間隔は、等間隔であっても、数式や記憶内容に従う等間隔でない時間であっても良い。   A measuring device 25 is disposed outside the vacuum chamber 11, and the crystal resonator 15 is connected to the measuring device 25. The measuring device 25 continuously measures the resonance frequency of the crystal resonator 15 at a predetermined time. Has been. The measurement intervals between the predetermined times may be equal intervals or may be non-equal intervals according to mathematical formulas or stored contents.

測定装置25には、コンピュータ等から成る計算装置26が接続されており、測定装置25が継続的に測定した共振周波数である測定値は、計算装置26に出力されている。計算装置26内には演算装置27が配置されており、この演算装置27によって算出や判断が成されており、入力された測定値と測定時刻とが含まれる測定結果から、水晶振動子15の検出面22上の薄膜の膜厚を求め、予め設定された膜厚の関係から、検出面22の薄膜の膜厚値を、成膜面21の薄膜の膜厚値に換算する。二個以上の測定結果(測定値と、測定値の測定時刻)から、その測定結果間に成長した薄膜の膜厚増加量が求められ、膜厚増加量を求めた測定結果以前に求めた膜厚に膜厚増加量を加算することで、最新の膜厚が求められる。   The measuring device 25 is connected to a computing device 26 composed of a computer or the like, and a measured value that is a resonance frequency continuously measured by the measuring device 25 is output to the computing device 26. An arithmetic device 27 is arranged in the calculation device 26, and calculation and determination are made by the arithmetic device 27. From the measurement result including the input measurement value and the measurement time, the crystal unit 15 The film thickness of the thin film on the detection surface 22 is obtained, and the film thickness value of the thin film on the detection surface 22 is converted into the film thickness value of the thin film on the film formation surface 21 based on a preset film thickness relationship. From two or more measurement results (measurement value and measurement time of the measurement value), the film thickness increase amount of the thin film grown between the measurement results is obtained, and the film obtained before the measurement result for obtaining the film thickness increase amount The latest film thickness is obtained by adding the increase in film thickness to the thickness.

計算装置26には入力された共振周波数の測定値の測定時刻が分かるようになっており、換算した膜厚値と測定時刻とから、成膜面21上の薄膜の成長速度を算出し、設定された基準値と比較して、成長速度が基準値を含む所定範囲内に含まれるように、成膜源17を制御して、成膜源17からの蒸気放出速度を制御できるようになっている。   The calculation device 26 can know the measurement time of the measurement value of the input resonance frequency, and calculates and sets the growth rate of the thin film on the film formation surface 21 from the converted film thickness value and measurement time. The vapor deposition rate can be controlled by controlling the film formation source 17 so that the growth rate is within a predetermined range including the reference value as compared with the reference value thus obtained. Yes.

成膜源17の蒸気放出速度に変動が無く、蒸気放出速度が一定値の場合、共振周波数と測定時間の間には一次式である線形関係が形成され、線形関係が維持されるときは、成膜速度は線形関係の傾きなので、一定値となる。
他方、熱や真空槽11内の圧力変動等の膜厚変化以外の要因によって、水晶振動子15の共振周波数の測定値は影響を受ける。
When there is no change in the vapor release rate of the film forming source 17 and the vapor release rate is a constant value, a linear relationship that is a linear expression is formed between the resonance frequency and the measurement time, and when the linear relationship is maintained, The film formation rate is a constant value because it has a linear relationship.
On the other hand, the measured value of the resonance frequency of the crystal unit 15 is affected by factors other than the film thickness change such as heat and pressure fluctuation in the vacuum chamber 11.

上記成膜装置10の水晶振動子15では、シャッター19が開けられる前は加熱されず、室温が維持されるのに対し、薄膜材料の微小粒子は高温であるため、シャッター19を開けて薄膜材料の微小粒子が検出面22や成膜面21に到達すると、水晶振動子15や成膜対象物16は昇温する。   In the crystal resonator 15 of the film forming apparatus 10, the room temperature is maintained without being heated before the shutter 19 is opened, whereas the fine particles of the thin film material are at a high temperature. When the fine particles reach the detection surface 22 and the film formation surface 21, the crystal resonator 15 and the film formation target 16 are heated.

水晶振動子15は、保持器具への取付部分等から熱が放出されるため、微小粒子が継続して到達しても、温度上昇速度は次第に小さくなるが、シャッター19が開けられたときの温度上昇は大きいため、シャッター19を開けたときの測定結果には大きな影響が与えられる。   Since the crystal resonator 15 releases heat from the attachment part to the holding device or the like, the temperature rise rate gradually decreases even if fine particles reach continuously, but the temperature when the shutter 19 is opened is low. Since the rise is large, the measurement result when the shutter 19 is opened is greatly affected.

図2のグラフは、横軸は、成膜開始前の所定時刻を基準時刻とし、基準時刻からの時間である測定時刻を示しており、縦軸は、測定した共振周波数の値であり、同図中の符号L1は、測定時刻上の共振周波数の測定値を結んだ曲線であり、シャッター19を開けたときの共振周波数の測定値の急上昇があった場合を示している。符号t0は、シャッターを開けて薄膜成長を開始した開始時刻を示している。 In the graph of FIG. 2, the horizontal axis indicates a measurement time that is a time from the reference time with a predetermined time before the start of film formation, and the vertical axis indicates the value of the measured resonance frequency. A symbol L 1 in the figure is a curve connecting the measured values of the resonance frequency at the measurement time, and shows a case where the measured value of the resonance frequency suddenly increases when the shutter 19 is opened. The symbol t 0 indicates the start time when the thin film growth is started by opening the shutter.

この曲線L1によると、急激な温度上昇により、共振周波数の測定値が急激に増加した後、温度の上昇速度が小さくなり、検出面22への薄膜成長による影響が共振周波数の変化に対して支配的になり、共振周波数が低下する。低下が開始された後、共振周波数の測定値と時刻の間に線形関係が形成されている。 According to this curve L 1 , the measured value of the resonance frequency rapidly increases due to a rapid temperature rise, and then the rate of temperature rise decreases, and the influence of the thin film growth on the detection surface 22 is affected by the change in the resonance frequency. It becomes dominant and the resonance frequency is lowered. After the decrease starts, a linear relationship is formed between the measured value of the resonance frequency and the time.

薄膜形成の開始時刻t0から、共振周波数が開始時刻t0の値に回復して線形関係が形成された時刻までの間には、この曲線L1に従って膜厚を求めると、検出面22に形成される薄膜の膜厚はゼロとなってしまい、測定値に基づく膜厚は、実際よりも小さい値となる。
シャッター19を開けたときに、検出面22に、薄膜を形成する微小粒子が到達しない状態から到達が開始される状態になる。
From the start time t 0 of the thin film formation to the time when the resonance frequency recovers to the value of the start time t 0 and the linear relationship is formed, when the film thickness is obtained according to this curve L 1 , The film thickness of the formed thin film becomes zero, and the film thickness based on the measured value is smaller than the actual value.
When the shutter 19 is opened, the arrival is started from the state in which the fine particles forming the thin film do not reach the detection surface 22.

蒸着法では、微小粒子は薄膜材料の蒸気であり、スパッタリングでは、ターゲットを構成する薄膜材料のスパッタリング粒子である。
検出面22への微小粒子の到達により、水晶振動子15の温度が急上昇すると、その水晶振動子15の温度も急上昇する。
In the vapor deposition method, the fine particles are vapor of a thin film material, and in the sputtering, the fine particles are sputtered particles of the thin film material constituting the target.
When the temperature of the crystal unit 15 suddenly increases due to the arrival of fine particles on the detection surface 22, the temperature of the crystal unit 15 also increases rapidly.

計算装置26内の記憶装置28には、制御手順が記憶されており、測定装置25に接続されている計算装置26の演算装置27は、記憶装置28に記憶された演算手順に従って、次にように動作する。
測定装置25内には時計が設けられており、共振周波数を測定した測定時刻が分かるようになっており、成膜を開始すると、共振周波数の測定値と、その測定値の測定時刻とが記憶装置28に記憶される。
A control procedure is stored in the storage device 28 in the calculation device 26, and the calculation device 27 of the calculation device 26 connected to the measurement device 25 follows the calculation procedure stored in the storage device 28 as follows. To work.
A clock is provided in the measuring device 25 so that the measurement time when the resonance frequency is measured can be known. When the film formation is started, the measurement value of the resonance frequency and the measurement time of the measurement value are stored. It is stored in the device 28.

水晶振動子15上では、検出面22に形成された薄膜の膜厚と、共振周波数の変化量は比例関係にあり、薄膜の成長速度が一定値である場合は、共振周波数の測定時刻と測定値との間には、一次式が成立し、線形関係にある。   On the crystal unit 15, the thickness of the thin film formed on the detection surface 22 and the amount of change in the resonance frequency are in a proportional relationship, and when the growth rate of the thin film is a constant value, the measurement time and measurement of the resonance frequency are performed. A linear expression is established between the values and is in a linear relationship.

ここで、所定の基準時刻からの経過時間x(x=測定時刻−基準時刻)との間に線形関係があり、共振周波数の値yとの間に、次の一次式、
y = a*x+b …… (1)
が成立するときには、共振周波数の測定時刻と共振周波数の値とから、最小二乗法によって、上記(1)式の“傾きa”の値と、“y切片b”の値とが求められる。
Here, there is a linear relationship between the elapsed time x from a predetermined reference time (x = measurement time−reference time), and the following linear expression between the resonance frequency value y,
y = a * x + b (1)
Is established, the value of “slope a” and the value of “y intercept b” in the above equation (1) are obtained from the measurement time of the resonance frequency and the value of the resonance frequency by the least square method.

水晶振動子15の共振周波数は、検出面22に形成された薄膜の膜厚が厚くなると低下するので、薄膜が成長している時には共振周波数が増加することはない。
この計算装置26は、所定の許容上昇値を超えて共振周波数の上昇を検出すると、温度急上昇があったものと判断し、その測定値は異常値として分類して、最小二乗法の計算には用いられないように、算出に用いる測定値の範囲から除外する。
Since the resonance frequency of the crystal unit 15 decreases as the thickness of the thin film formed on the detection surface 22 increases, the resonance frequency does not increase when the thin film is growing.
When the calculation device 26 detects an increase in the resonance frequency exceeding a predetermined allowable increase value, the calculation device 26 determines that there is a rapid increase in temperature, classifies the measured value as an abnormal value, and calculates the least square method. Excluded from the range of measured values used for calculation so that they are not used.

本例では、温度急上昇による共振周波数の上昇後、測定時刻と測定値とが線形関係になるまでに必要な回復時間が予め分かっており、共振周波数の急上昇による異常を検出したときは、予め記憶された回復時間が経過すると、線形関係が成立したものとし、回復時間経過後に測定した共振周波数の測定値は正常であるものとして記憶する。   In this example, the recovery time required until the measurement time and the measured value have a linear relationship is known in advance after the resonance frequency is increased due to a rapid rise in temperature, and when an abnormality due to a sudden increase in the resonance frequency is detected, it is stored in advance. When the recovery time thus set elapses, it is assumed that a linear relationship is established, and the measured value of the resonance frequency measured after the recovery time elapses is stored as normal.

また、得られた測定値のうち、最新の測定値の測定時刻に近い複数の測定値に、測定時刻と測定値の間に線形関係が成立したことを検出すると、線形関係が成立した測定値は正常であるものとして記憶するようにしても良い。   In addition, if it is detected that a linear relationship is established between the measurement time and the measured value for a plurality of measured values close to the measurement time of the latest measured value among the obtained measured values, the measured value for which the linear relationship is established May be stored as normal.

記憶装置28には(1)式を算出する際に用いる測定値の最小個数が記憶されており、いずれにしろ、線形関係が成立した後、共振周波数が最小個数個連続して測定されて、最小個数個の正常な測定値が得られると、最小二乗法により、(1)式の“傾きa”と“y切片b”とを算出する。
算出した“傾きa”と“y切片b”とを有する(1)式と、開始時刻t0の時刻を示す値とから、(1)式に従って測定値が変化したときの、開始時刻t0に於ける共振周波数f0が求められる。
The storage device 28 stores the minimum number of measurement values used when calculating the equation (1). In any case, after the linear relationship is established, the minimum number of resonance frequencies are continuously measured. When the minimum number of normal measurement values are obtained, “slope a” and “y intercept b” in equation (1) are calculated by the method of least squares.
The start time t 0 when the measured value changes according to the expression (1) from the expression (1) having the calculated “slope a” and “y intercept b” and the value indicating the time of the start time t 0. The resonance frequency f 0 is obtained.

そして、開始時刻t0の値及び開始時刻t0に於ける共振周波数f0の値と、正常な測定値とその測定時刻の値とから、開始時刻t0から正常な測定値が得られた測定時刻までに成長した薄膜の初期膜厚を、(1)式に従って算出することができる。
開始時刻t0から正常な測定値が得られた測定時刻までの時間が、回復時間の場合は、回復時間中に成長した薄膜の初期膜厚が算出される。
Then, the values of and start time t 0 to at resonant frequency f 0 of the starting time t 0, the normal measured value and the value of the measurement time, a normal measured value from the start time t 0 is obtained The initial film thickness of the thin film grown up to the measurement time can be calculated according to equation (1).
When the time from the start time t 0 to the measurement time when a normal measurement value is obtained is the recovery time, the initial film thickness of the thin film grown during the recovery time is calculated.

正常な測定値が得られた後の膜厚に初期膜厚を加算すると、開始時刻から現在の測定時刻までの間に成長した薄膜の膜厚を算出することができる。算出した膜厚は、温度急変による異常な測定値が検出されなかった場合と等しい値であり、共振周波数の急変が無かったものとした場合の値である。   When the initial film thickness is added to the film thickness after the normal measurement value is obtained, the film thickness of the thin film grown from the start time to the current measurement time can be calculated. The calculated film thickness is the same value as when no abnormal measurement value due to a sudden change in temperature is detected, and is the value when there is no sudden change in the resonance frequency.

次に、正常な測定値が得られている状態から、異常な測定値が得られた場合の処理手順を説明する。この場合、既に最小個数個の正常な測定値が得られており、(1)式の“傾きa”と“y切片b”とが算出されているものとする。なお、ここで既に算出されている“傾きa”と“y切片b”は、温度急上昇の回復後に得られた線形関係も含む(第一の線形関係)。
線形関係が形成されていると判断しているときは、新しい測定結果が得られると、計算装置26は、先ず、その測定結果中の測定値と、既に求めた(1)式との間の差の絶対値である誤差や、直前の測定値との間の差の絶対値である誤差の値が、予め記憶された許容誤差以下であるかどうかを判断する。
Next, a processing procedure when an abnormal measurement value is obtained from a state where a normal measurement value is obtained will be described. In this case, it is assumed that the minimum number of normal measurement values have already been obtained, and “slope a” and “y intercept b” in equation (1) have been calculated. Note that the “inclination a” and “y intercept b” already calculated here include the linear relationship obtained after recovery from the rapid temperature rise (first linear relationship).
When it is determined that the linear relationship is formed, when a new measurement result is obtained, the calculation device 26 firstly calculates a value between the measurement value in the measurement result and the already obtained equation (1). It is determined whether or not the error that is the absolute value of the difference and the error value that is the absolute value of the difference from the immediately preceding measurement value are less than or equal to the allowable error stored in advance.

誤差の値が許容誤差以下であったときは、その誤差を有する測定値は正常であると判断し、最新の測定値として算出に用いる測定値に加え、“傾きa”と“y切片b”とを算出し直す。   When the error value is equal to or less than the allowable error, it is determined that the measurement value having the error is normal, and in addition to the measurement value used for calculation as the latest measurement value, “slope a” and “y intercept b” And recalculate.

記憶装置28には、最小個数以上の整数値が算出個数として記憶されており、算出に用いられる測定値の個数が算出個数に達した後は、最新の正常な測定値が得られると、その測定値を算出に用いる測定値に加えると共に、直前の算出に用いた測定値のうち、最も古い測定時刻の測定値を算出に用いる測定値から除外する。その結果、一定の算出個数が維持され、最新の測定値を含む算出個数の測定値と、それら測定値に対応する測定時刻とによって、(1)式の“傾きa”と“y切片b”とを算出する。   In the storage device 28, an integer value equal to or greater than the minimum number is stored as a calculated number. After the number of measured values used for calculation reaches the calculated number, the latest normal measured value is obtained. The measurement value is added to the measurement value used for the calculation, and the measurement value at the oldest measurement time is excluded from the measurement values used for the calculation among the measurement values used for the previous calculation. As a result, a constant calculated number is maintained, and the “slope a” and “y intercept b” in the equation (1) are calculated according to the calculated number of measured values including the latest measured value and the measurement time corresponding to these measured values. And calculate.

最新の測定値について、既に算出した(1)式との間の誤差や、直前の測定値との間の差である誤差の値が、許容誤差以内ではなかった場合は、直前に“傾きa”と“y切片b”とを求めた(1)式と測定時刻によって、共振周波数の値を算出し、算出した共振周波数から、膜厚を求め、異常な測定値から求めた膜厚ではなく、測定時刻と(1)式とから求めた膜厚を、その測定時刻の膜厚とする。従って、正常な測定値から求めた膜厚(ここでは、測定値から求めた膜厚に、初期膜厚が加算された値である)に、異常な測定値が出力されている間に異常な測定値が出力されている間の時間と(1)式によって求めた補正膜厚値が加算されることになり、異常値が除外される結果、膜厚の値が途切れて実際よりも小さい値の膜厚値が出力されることはない。   If the error value between the latest measurement value and the previously calculated equation (1) or the difference from the previous measurement value is not within the allowable error, immediately before the “slope a The value of the resonance frequency is calculated based on the equation (1) for determining “and“ y intercept b ”and the measurement time, the film thickness is calculated from the calculated resonance frequency, and not the film thickness determined from the abnormal measurement value. The film thickness obtained from the measurement time and the equation (1) is defined as the film thickness at the measurement time. Therefore, an abnormal measurement value is output to the film thickness obtained from the normal measurement value (here, the value obtained by adding the initial film thickness to the film thickness obtained from the measurement value). The time during which the measured value is output and the corrected film thickness value obtained by equation (1) are added. As a result of removing the abnormal value, the film thickness value is interrupted and is smaller than the actual value. No film thickness value is output.

異常な測定値が測定される状態で、設定された測定時刻毎や所定間隔で測定を継続し、測定値の誤差が許容誤差以内になった場合や直前の測定値との間の差が所定値よりも小さくなった場合には、異常事態が終了したと判断し、測定値が正常な値に戻ったものとする。
そして、異常が解消し、正常に戻ったとされた測定値を測定した解消時刻以後は、測定値と測定時刻から求める膜厚の増加量は、異常な測定値が測定される直前の膜厚に、補正膜厚値が加算された膜厚に加算されて、現在の膜厚が求められる。そして、解消時刻後、測定値の個数が最小個数又は算出個数に達したときに、“傾きa”と“y切片b”とを算出し直し、新しい線形関係(第二の線形関係)を求める。
Measurement is continued at each set measurement time or at a specified interval while abnormal measurement values are being measured, and the difference between the measurement value and the previous measurement value is predetermined when the measurement value error is within the allowable error. When it becomes smaller than the value, it is determined that the abnormal situation has ended, and the measured value returns to a normal value.
Then, after the time when the measured value that was determined to have returned to normal after the abnormality was resolved, the increase in film thickness obtained from the measured value and the measured time is the film thickness immediately before the abnormal measured value is measured. The current film thickness is obtained by adding the corrected film thickness value to the added film thickness. Then, after the cancellation time, when the number of measured values reaches the minimum number or the calculated number, “slope a” and “y intercept b” are recalculated to obtain a new linear relationship (second linear relationship). .

なお、異常値が出力されている間の膜厚は、正常な測定値に戻った後の“傾きa”と“y切片b”とを有する(1)式によって算出し、正常な測定値から求めた膜厚に加算してもよい。   It should be noted that the film thickness while the abnormal value is output is calculated by the equation (1) having “slope a” and “y intercept b” after returning to the normal measurement value, and from the normal measurement value You may add to the calculated | required film thickness.

図3のグラフは、横軸は、所定時刻を基準時刻とし、基準時刻からの時間を示す測定時刻であり、縦軸は、共振周波数から求めた成膜面21上の薄膜の膜厚を示している。図中の符号L2は、測定値から求めた膜厚と測定時刻の間が、線形関係に従って変化している状態を示している。図3のグラフは、この直線L2の線形関係にある状態から、測定値が急変して異常になり、曲線(直線)L3に従って変化した後線形状態が回復して直線L4に従って変化する場合を示している。符号t0は成膜を開始した開始時刻である。 In the graph of FIG. 3, the horizontal axis is the measurement time indicating the time from the reference time with the predetermined time as the reference time, and the vertical axis indicates the film thickness of the thin film on the film formation surface 21 obtained from the resonance frequency. ing. A symbol L 2 in the figure indicates a state in which the film thickness obtained from the measurement value and the measurement time change according to a linear relationship. In the graph of FIG. 3, the measured value suddenly changes from the linear relationship of the straight line L 2 to become abnormal, and after changing according to the curve (straight line) L 3, the linear state recovers and changes according to the straight line L 4 . Shows the case. A symbol t 0 is a start time when film formation is started.

なお、一旦正常な測定値に回復した後であっても、測定値の誤差が許容誤差を超えたときには、上記手順と同様に、求めた“傾きa”と“y切片b”とを有する(1)式と、測定時刻とから、共振周波数を算出し、その測定時刻の共振周波数として膜厚を求める。これも、測定値が正常な値に回復するまで行われる。   Even after the normal measurement value is recovered once, when the error of the measurement value exceeds the allowable error, the obtained “slope a” and “y intercept b” are obtained in the same manner as the above procedure ( The resonance frequency is calculated from the equation (1) and the measurement time, and the film thickness is obtained as the resonance frequency at the measurement time. This is also performed until the measured value returns to a normal value.

以上説明したように、本発明によれば、薄膜形成直後の温度急上昇による異常や、線形関係が維持されている正常な状態から、誤差が許容誤差を超える異常な状態になったとき、膜厚の値が途切れないようにすることができる。
また、本発明によれば、急変が解消されたと判断する測定結果の測定時刻である解消時刻の成膜面の膜厚は、急変直前の膜厚に、急変の開始後、急変が解消するまでの時間と第一の線形関係とから求めた補正膜厚値を加算して求めることができ、さらに、解消時刻後の膜厚増加量は、解消時刻後の測定結果から算出して、補正膜厚値を加算して求めた膜厚値に加算すれば、最新の膜厚を求めることができる。
As described above, according to the present invention, when an abnormality is caused by a rapid increase in temperature immediately after the thin film is formed, or when an error exceeds an allowable error from a normal state where the linear relationship is maintained, the film thickness is increased. The value of can be made uninterrupted.
Further, according to the present invention, the film thickness of the film formation surface at the cancellation time, which is the measurement time of the measurement result that determines that the sudden change has been eliminated, is the film thickness immediately before the sudden change until the sudden change is resolved after the start of the sudden change. The correction film thickness value obtained from the time of the first time and the first linear relationship can be added, and the amount of increase in film thickness after the cancellation time can be calculated from the measurement result after the cancellation time, The latest film thickness can be obtained by adding the thickness value to the obtained film thickness value.

この場合、解消時刻後の測定結果から、測定値と測定時刻との間の第二の線形関係を求めておき、その第二の線形関係が求められた後に、別の急変が生じて測定値が異常になるときがある。
そのような別の急変が生じる前の第二の線形関係が維持されるものとすれば、別の急変後の測定時刻と第二の線形関係とから、別の急変後に成膜面に成長した薄膜の膜厚増加量を求めることができ、急変直前の膜厚値に加算すれば、最新の膜厚を求めることができる。
In this case, a second linear relationship between the measurement value and the measurement time is obtained from the measurement result after the cancellation time, and after the second linear relationship is obtained, another sudden change occurs and the measurement value May become abnormal.
Assuming that the second linear relationship before such another sudden change is maintained, it has grown on the deposition surface after another sudden change from the measurement time after the second sudden change and the second linear relationship. The amount of increase in the thickness of the thin film can be obtained, and the latest film thickness can be obtained by adding to the film thickness value immediately before the sudden change.

なお、成膜面21の薄膜の膜厚は、検出面22の薄膜の膜厚を換算して求められ、成膜面21上の薄膜の成長速度は、測定時間間隔と検出面22上の膜厚増加量から求めることができ、成膜源17内の加熱装置への通電量や、成膜源17に接続されたスパッタ電源の出力電圧を制御することで、薄膜材料の微粒子の放出量を制御し、成膜面21上の薄膜の成長速度を一定値にすることができる。   The film thickness of the thin film on the film formation surface 21 is obtained by converting the film thickness of the thin film on the detection surface 22, and the growth rate of the thin film on the film formation surface 21 depends on the measurement time interval and the film on the detection surface 22. The amount of increase in the thickness of the thin film material can be determined by controlling the amount of current supplied to the heating device in the film forming source 17 and the output voltage of the sputtering power source connected to the film forming source 17. The growth rate of the thin film on the film formation surface 21 can be controlled to a constant value.

水晶振動子15の出力信号と、上記(1)式とに基づいて算出した成膜対象物16の成膜面21の薄膜の膜厚が所定膜厚に達したところで、シャッター19を閉じ、次いで、薄膜材料の微小粒子(蒸気)の放出を停止させ、薄膜が形成された成膜対象物16を真空槽11から搬出し、薄膜が未成膜の成膜対象物16を真空槽11内に搬入し、薄膜形成を開始する。   When the film thickness of the film formation surface 21 of the film formation target 16 calculated based on the output signal of the crystal unit 15 and the above equation (1) reaches a predetermined film thickness, the shutter 19 is closed, and then The release of the fine particles (vapor) of the thin film material is stopped, the film formation target 16 on which the thin film is formed is unloaded from the vacuum chamber 11, and the film formation target 16 on which the thin film is not formed is loaded into the vacuum chamber 11. Then, thin film formation is started.

10……成膜装置
11……真空槽
13……基板ホルダ
15……水晶振動子
16……成膜対象物
17……成膜源
25……測定装置
26……計算装置
29……真空排気装置
DESCRIPTION OF SYMBOLS 10 ... Film-forming apparatus 11 ... Vacuum chamber 13 ... Substrate holder 15 ... Crystal oscillator 16 ... Film-forming object 17 ... Film-forming source 25 ... Measuring apparatus 26 ... Calculation apparatus 29 ... Vacuum exhaust apparatus

Claims (5)

真空雰囲気中に成膜対象物と水晶振動子を配置し、前記成膜対象物の成膜面と前記水晶振動子の検出面とに一緒に薄膜を成長させ、
前記水晶振動子の共振周波数を測定し、測定結果から前記成膜面に成長した前記薄膜の厚さを求める膜厚測定方法であって、
前記検出面に、前記薄膜を形成する微小粒子が到達しない状態から到達が開始された際に、前記共振周波数の値の急上昇を検出すると、
前記共振周波数の値と測定時刻との間に第一の線形関係が形成されたと判断できる値の前記共振周波数が測定された後、
前記微小粒子が前記成膜面に到達した時刻から、所望の時刻までの間、前記検出面上の前記薄膜の膜厚は、前記第一の線形関係に従って増加したとして、測定結果から前記成膜面に成長した前記薄膜の前記膜厚を求める膜厚測定方法。
Arranging the film formation target and the crystal resonator in a vacuum atmosphere, and growing a thin film together on the film formation surface of the film formation target and the detection surface of the crystal resonator,
A film thickness measurement method for measuring a resonance frequency of the crystal resonator and obtaining a thickness of the thin film grown on the film formation surface from a measurement result,
Detecting a sudden increase in the value of the resonance frequency when reaching the detection surface from a state in which the fine particles forming the thin film do not reach,
After the resonance frequency of a value at which it can be determined that a first linear relationship is formed between the value of the resonance frequency and the measurement time,
From the time when the fine particles reached the film formation surface to a desired time, the film thickness of the thin film on the detection surface increased according to the first linear relationship, and the film formation was performed based on the measurement result. A film thickness measurement method for obtaining the film thickness of the thin film grown on a surface.
測定した前記共振周波数の値が、測定時刻に対して前記第一の線形関係を維持しながら変化しているときに、測定した前記共振周波数の値が急変して前記第一の線形関係を維持しなくなったと判断した場合には、
前記急変が生じた後も、前記急変が生じる前の前記第一の線形関係が維持されるものとして、前記急変の開始後は、前記第一の線形関係と前記急変後の測定時刻とから前記成膜面に成長する前記薄膜の膜厚増加量を算出して、前記急変の開始後の前記薄膜の前記膜厚を求める請求項1記載の膜厚測定方法。
When the measured resonance frequency value changes while maintaining the first linear relationship with respect to the measurement time, the measured resonance frequency value changes suddenly and maintains the first linear relationship. If you decide that
Even after the sudden change occurs, the first linear relationship before the sudden change is maintained, and after the start of the sudden change, the first linear relationship and the measurement time after the sudden change The film thickness measuring method according to claim 1, wherein the film thickness increase amount of the thin film growing on the film formation surface is calculated to determine the film thickness of the thin film after the start of the sudden change.
前記急変後の前記共振周波数の測定結果から、前記急変が解消されたと判断した場合には、前記急変の解消を判断した前記共振周波数の測定結果が得られた時刻以後の時刻の測定結果から、第二の線形関係を求め、
前記第二の線形関係を求めた前記測定結果から求めた前記成膜面の前記薄膜の膜厚の値から、その前記測定結果の経過時間と前記第一の線形関係とから求めた前記成膜面の前記膜厚の値を差し引いた値を、前記線形結果から求めた前記成膜面の膜厚の値に加算する請求項2記載の膜厚測定方法。
From the measurement result of the resonance frequency after the sudden change, when it is determined that the sudden change has been resolved, from the measurement result of the time after the time when the measurement result of the resonance frequency that has determined the cancellation of the sudden change is obtained, Find the second linear relationship
The film formation obtained from the elapsed time of the measurement result and the first linear relation from the value of the film thickness of the thin film on the film formation surface obtained from the measurement result obtained from the second linear relation The film thickness measurement method according to claim 2, wherein a value obtained by subtracting the value of the film thickness of the surface is added to the value of the film thickness of the film formation surface obtained from the linear result.
前記第二の線形関係が求められた後に、前記急変が生じたときには、前記急変が生じる前の前記第二の線形関係が維持されるものとして、前記測定結果から前記成膜面の前記薄膜の膜厚を求める請求項3記載の膜厚測定方法。   When the sudden change occurs after the second linear relationship is obtained, it is assumed that the second linear relationship before the sudden change is maintained, and from the measurement result, The film thickness measuring method according to claim 3, wherein the film thickness is obtained. 成膜対象物が配置される真空槽と、
前記真空槽内を真空排気する真空排気装置と、
前記真空槽内に配置され真空雰囲気中で前記成膜対象物の成膜面に薄膜材料を到達させる成膜源と、
前記真空槽内で、前記成膜面への前記薄膜材料の到達を妨げない位置に配置された水晶振動子と、
前記水晶振動子に接続され、前記水晶振動子の前記共振周波数を測定する測定装置と、
前記測定装置に接続され、前記共振周波数が入力される計算機とを有し、
前記計算機は、前記検出面に、前記薄膜を形成する微小粒子が到達しない状態から到達が開始された際に、前記共振周波数の値の急上昇を検出すると、
前記共振周波数の測定値と測定時刻との間に線形関係が形成されたと判断した後、
前記微小粒子が前記成膜面に到達した時刻から、所望の時刻までの間、前記検出面上の前記薄膜の膜厚が、前記線形関係に従って増加したとして前記成膜面に成長した前記薄膜の厚さを求めるように構成された蒸着装置。
A vacuum chamber in which an object to be deposited is placed;
An evacuation device for evacuating the vacuum chamber;
A film forming source that is disposed in the vacuum chamber and causes a thin film material to reach a film forming surface of the film forming object in a vacuum atmosphere;
In the vacuum chamber, a crystal resonator disposed at a position that does not prevent the thin film material from reaching the film formation surface;
A measuring device connected to the crystal resonator and measuring the resonance frequency of the crystal resonator;
A computer connected to the measuring device and receiving the resonance frequency;
The calculator detects a sudden rise in the value of the resonance frequency when reaching the detection surface from a state in which the fine particles forming the thin film do not reach,
After determining that a linear relationship is formed between the measurement value of the resonance frequency and the measurement time,
From the time when the microparticles reach the film formation surface to a desired time, the film thickness of the thin film on the detection surface is increased according to the linear relationship, and the thin film grown on the film formation surface A vapor deposition device configured to determine the thickness.
JP2011145257A 2011-06-30 2011-06-30 Vapor deposition equipment, film thickness measurement method Active JP5800603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011145257A JP5800603B2 (en) 2011-06-30 2011-06-30 Vapor deposition equipment, film thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011145257A JP5800603B2 (en) 2011-06-30 2011-06-30 Vapor deposition equipment, film thickness measurement method

Publications (2)

Publication Number Publication Date
JP2013011545A true JP2013011545A (en) 2013-01-17
JP5800603B2 JP5800603B2 (en) 2015-10-28

Family

ID=47685533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011145257A Active JP5800603B2 (en) 2011-06-30 2011-06-30 Vapor deposition equipment, film thickness measurement method

Country Status (1)

Country Link
JP (1) JP5800603B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009626A1 (en) * 2014-07-15 2016-01-21 株式会社アルバック Film thickness control device, film thickness control method, and film formation device
CN107565062A (en) * 2017-07-20 2018-01-09 武汉华星光电半导体显示技术有限公司 Thickness monitoring instrument and evaporator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111121A (en) * 1996-10-07 1998-04-28 Ulvac Japan Ltd Film thickness measuring device and its application technology
JPH1161387A (en) * 1997-08-07 1999-03-05 Nec Corp Fine adjusting vapor deposition system and frequency regulating method
JP2006078302A (en) * 2004-09-09 2006-03-23 Ulvac Japan Ltd Film thickness monitoring method and device
JP2006307251A (en) * 2005-04-27 2006-11-09 Kobe Univ Method for producing diamond-like carbon thin film
WO2009038085A1 (en) * 2007-09-21 2009-03-26 Ulvac, Inc. Thin film forming apparatus, film thickness measuring method and film thickness sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111121A (en) * 1996-10-07 1998-04-28 Ulvac Japan Ltd Film thickness measuring device and its application technology
JPH1161387A (en) * 1997-08-07 1999-03-05 Nec Corp Fine adjusting vapor deposition system and frequency regulating method
JP2006078302A (en) * 2004-09-09 2006-03-23 Ulvac Japan Ltd Film thickness monitoring method and device
JP2006307251A (en) * 2005-04-27 2006-11-09 Kobe Univ Method for producing diamond-like carbon thin film
WO2009038085A1 (en) * 2007-09-21 2009-03-26 Ulvac, Inc. Thin film forming apparatus, film thickness measuring method and film thickness sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009626A1 (en) * 2014-07-15 2016-01-21 株式会社アルバック Film thickness control device, film thickness control method, and film formation device
KR20160147009A (en) * 2014-07-15 2016-12-21 가부시키가이샤 아루박 Film thickness control device, film thickness control method, and film formation device
JP6060319B2 (en) * 2014-07-15 2017-01-11 株式会社アルバック Film thickness control apparatus, film thickness control method, and film formation apparatus
CN106471152A (en) * 2014-07-15 2017-03-01 株式会社爱发科 Film thickness monitoring device, film thickness monitoring method and film formation device
JPWO2016009626A1 (en) * 2014-07-15 2017-04-27 株式会社アルバック Film thickness control apparatus, film thickness control method, and film formation apparatus
KR102035143B1 (en) 2014-07-15 2019-10-22 가부시키가이샤 아루박 Film thickness control device, film thickness control method, and film formation device
CN107565062A (en) * 2017-07-20 2018-01-09 武汉华星光电半导体显示技术有限公司 Thickness monitoring instrument and evaporator

Also Published As

Publication number Publication date
JP5800603B2 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
KR101283161B1 (en) Thin film forming apparatus, film thickness measuring method and film thickness sensor
JP4818073B2 (en) Film thickness measurement method
KR20150135082A (en) Method for controlling film thickness by crystal oscillation type film thickness monitor
JP5800603B2 (en) Vapor deposition equipment, film thickness measurement method
KR101976254B1 (en) Film forming apparatus and film forming method
KR20170003447A (en) Substrate trasnfering apparatus and substrate trasnfering method
JP2019137877A (en) Vapor deposition apparatus and vapor deposition method
KR20200001531A (en) Method of manufacturing semiconductor device, method of managing parts, substrate processing apparatus and substrate processing program
JP6060319B2 (en) Film thickness control apparatus, film thickness control method, and film formation apparatus
US11175323B2 (en) Process monitoring using crystal with reactance sensor
JP6564745B2 (en) Film thickness sensor
WO2016140321A1 (en) Sensor for film thickness monitoring device, film thickness monitoring device provided with same, and method for manufacturing sensor for film thickness monitoring device
KR102193817B1 (en) Thin film manufacturing device, thin film manufacturing method
JP6318254B2 (en) Method and controller for controlling gas supply
JP6412384B2 (en) Quartz crystal resonator, sensor head having the crystal resonator, film formation control device, and method for manufacturing film formation control device
WO2017110270A1 (en) Pressure sensor
JP2009041091A (en) Film deposition method and film deposition system
JP2013173965A (en) Vapor deposition apparatus
JP2018083958A (en) Abnormality detection device for thin film deposition device and abnormality detection method for thin film deposition device
JP2000144417A (en) High frequency sputtering device
JP2019131859A (en) Vapor deposition device and vapor deposition method
TW202249136A (en) System and method for deconvolution of real-time mass from the influence of temperature and pressure on crystal microbalance
JPH1030178A (en) Sputtering method and device therefor
JP2000107587A (en) Method and apparatus for calibrating gas pressure in bell jar (vacuum film forming chamber or container)
Dhawan et al. Effect of ion beam energy on density, roughness & uniformity of Co film deposited using ion beam sputtering system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150331

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150825

R150 Certificate of patent or registration of utility model

Ref document number: 5800603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250