JP2013011431A - Heat exchange system - Google Patents

Heat exchange system Download PDF

Info

Publication number
JP2013011431A
JP2013011431A JP2011157144A JP2011157144A JP2013011431A JP 2013011431 A JP2013011431 A JP 2013011431A JP 2011157144 A JP2011157144 A JP 2011157144A JP 2011157144 A JP2011157144 A JP 2011157144A JP 2013011431 A JP2013011431 A JP 2013011431A
Authority
JP
Japan
Prior art keywords
heat exchanger
pump
pressure
coolant
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011157144A
Other languages
Japanese (ja)
Inventor
Shozo Tomita
昭三 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHI NIPPON SEIKI SEISAKUSHO KK
Original Assignee
NISHI NIPPON SEIKI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHI NIPPON SEIKI SEISAKUSHO KK filed Critical NISHI NIPPON SEIKI SEISAKUSHO KK
Priority to JP2011157144A priority Critical patent/JP2013011431A/en
Publication of JP2013011431A publication Critical patent/JP2013011431A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchange system which is achieved in energy saving finally by clearing up a calorie in one unit of a second heat exchanger even if a plurality of first heat exchangers operate cooling operations and heating operations to a system having the plurality of first heat exchangers with respect to one unit of the second heat exchanger using a circulation pump.SOLUTION: The circulation pump 4 as a pressurization means is forwardly and reversely rotated to change a flow of a cooling liquid, and the number of revolutions of the pump can be controlled by an inverter or the like. A pump which rotates by a pressure difference is used for a pressure-reduction means, a generator 7 is attached to the pump and applied with a load, and an output of the load is input into the circulation pump, thus achieving the energy saving.

Description

本発明は、冷却液などの中間熱媒体を介して第一熱交換と第二熱交換器の間で熱交換を行う熱交換システムに関する。  The present invention relates to a heat exchange system that performs heat exchange between a first heat exchange and a second heat exchanger via an intermediate heat medium such as a coolant.

今までの冷凍機は皆、潤滑油が必要でしたが液バックで油が薄まったり、又、油が冷媒に溶けてなくなったりで、故障が多かったが、それを水のポンプの様な物で油を使用しないシステムである。  All the conventional refrigerators needed lubricating oil, but the oil was diluted by the liquid back, or the oil was not dissolved in the refrigerant, and there were many failures, but it was like a water pump. This is a system that does not use oil.

特許第4574104号公報  Japanese Patent No. 4574104

中間熱媒体を介して第一熱交換器と第二熱交換器の間で熱交換を行う熱交換システムにおいて、数基の冷却ユニットを連係して一体に構成する冷却機は、冷却液を共有するので負荷に応じて必要な台数が運転出来たり、複数台の個々の温度も設定出来る、又循環ポンプを各自随意に逆転させたり、正転させたりして温度幅の広い運転が出来、其の上第二熱交換器で全部の熱量の収支清算が出来て非常に省エネ運転になる、又一対一の場合も勿論循環ポンプの逆転で逆サイクルが可能です。
ところが、このように中間熱媒体を介して吸熱側熱交換器と放熱側熱交換器の間で熱交換を行うと、直接式に比べて熱効率が低下するという問題があった。
In a heat exchange system that exchanges heat between a first heat exchanger and a second heat exchanger via an intermediate heat medium, a cooler that integrates several cooling units together to share a coolant Therefore, the required number of units can be operated according to the load, the temperature of each of the multiple units can be set, and the circulating pump can be rotated at will, and can be operated in a wide temperature range. The upper second heat exchanger can be used to save and balance all heat, resulting in very energy saving operation. In the one-on-one case, it is possible to reverse cycle by reversing the circulation pump.
However, when heat exchange is performed between the heat absorption side heat exchanger and the heat radiation side heat exchanger through the intermediate heat medium in this way, there is a problem that the heat efficiency is reduced as compared with the direct type.

そこで本発明は、中間熱媒体を介して吸熱側熱交換器と放熱側熱交換器の間で熱交換を行う際の熱効率の低下を補うことを目的になされたものである。  In view of this, the present invention has been made to compensate for a decrease in thermal efficiency when heat is exchanged between the heat absorption side heat exchanger and the heat radiation side heat exchanger via the intermediate heat medium.

かかる目的を達成するために、本発明は以下のように構成した。  In order to achieve this object, the present invention is configured as follows.

すなわち、第一熱交換器と第二熱交換器とを冷却液の循環経路に接続して熱交換可能に連結し、この冷却液を溶媒とし、溶質として気体を液体の冷却液に飽和圧力になるまで溶解して、この気体が溶解した冷却液を前記循環経路に循環させると共に、この冷却液の循環経路の高温側には気体と液体の混合溶液を循環圧縮するポンプ4より第二熱交換器2に送られて冷却されて冷却液に還る、そして冷却液は減圧手段の圧力差で回転しそれに発電機を直結して其の負荷を加・減する事により第一熱交換器内の蒸発圧力を調整させるシステムであります。  That is, the first heat exchanger and the second heat exchanger are connected to the coolant circulation path so as to be able to exchange heat, and the coolant is used as a solvent, and the gas is used as a solute at a saturated pressure. The cooling liquid in which the gas is dissolved is circulated through the circulation path, and the second heat exchange is performed by the pump 4 that circulates and compresses the mixed solution of gas and liquid on the high temperature side of the circulation path of the cooling liquid. It is sent to the unit 2 to be cooled and returned to the cooling liquid, and the cooling liquid is rotated by the pressure difference of the decompression means, and a generator is directly connected to it to increase or decrease its load. This system adjusts the evaporation pressure.

以上説明したように、本発明は、冷却液の循環経路に設けた加圧手段と減圧手段により圧力を変化させて、溶質である気体の分離乃至溶解を起こし、その際の溶質の吸熱反応乃至発熱反応により、冷却液の温度が変化することを利用している。
そして本発明では、このような吸熱反応により吸熱側熱交換器の温度をより低くし、発熱反応により放熱側熱交換器の温度をより高くすることで、相対的に周囲との温度差が広がって従来に比べて熱効率の高い熱交換システムを実現でき、使用している冷却液は水・アンモニアなのでオゾンが出ないし安価であるし、直ぐに手に入れられる物である又将来省エネに利用望めるるシステムとして以下に書き出して見ました。
◎温度差さえあればそれを圧力差に変換出来て発電できます例えば海水の深層水と,其の他
◎廃熱回収が容易にできます。
◎電気自動車などの冷・暖房の装置の簡略化など色々な装置
As described above, according to the present invention, the pressure is changed by the pressurizing unit and the depressurizing unit provided in the circulation path of the coolant to cause separation or dissolution of the gas as the solute, and the endothermic reaction of the solute at that time. It utilizes the fact that the temperature of the coolant changes due to an exothermic reaction.
In the present invention, the temperature difference from the surroundings is relatively widened by lowering the temperature of the heat absorption side heat exchanger by such an endothermic reaction and increasing the temperature of the heat dissipation side heat exchanger by an exothermic reaction. The heat exchange system with higher heat efficiency than before can be realized, and since the coolant used is water / ammonia, ozone is not generated and it is cheap, and it can be obtained immediately and can be used for energy saving in the future. I wrote the following as a system.
◎ As long as there is a temperature difference, it can be converted into a pressure difference and power can be generated. For example, deep sea water and other ◎ Waste heat recovery can be done easily.
◎ Various devices such as simplification of cooling and heating devices such as electric vehicles

本発明を実施した熱交換システムの配管図である。  It is a piping diagram of the heat exchange system which implemented this invention. 第一熱交換器1が数基と第二熱交換器2を1基での熱交換システムの配管図である。  It is a piping diagram of a heat exchange system in which the first heat exchanger 1 has several units and the second heat exchanger 2 has one unit.

減圧手段としては圧力差で回転させるポンプや、又他の方法で゛発電させても良いガ、其の電力に負荷を懸けて、加・減して第一熱交換器・第二熱交換器・蒸発圧力などの制御をさせ又循環ポンプの回転数の変更させるなどに使用する。
加圧手段として逆転可能なポンプとし、それに電動機を取り付けて逆転し、必要に応じて流れの方向を反対方向にも流れるようにして冷・暖両方が出来る熱交換システムである。
以下に図面を参照して本発明の実施の形態について説明する。
The pressure reducing means is a pump that rotates with a pressure difference, or a power that can be generated by other methods. The load is applied to the electric power, and the first heat exchanger and the second heat exchanger are added or subtracted.・ Used to control evaporating pressure and change the rotation speed of the circulation pump.
This is a heat exchanging system that is capable of both cooling and heating by using a reversible pump as a pressurizing means, reversing it by attaching an electric motor thereto, and allowing the flow to flow in the opposite direction as necessary.
Embodiments of the present invention will be described below with reference to the drawings.

図1に、本発明を実施した熱交換システムの配管図を示す。
第一熱交換器や第二熱交換器熱交換器は、吸熱機能・放熱機能どちらも其の時置かれた時の状態で変化する熱交換器である。
また、図2には第二熱交換器1基と数基の第一熱交換器を連係した熱交換システムの配管図を示す。
又熱交換器は何れも空気・水など色々な物に対応します。
先に図1に付いて説明しますと、1第一熱交換器を吸熱交換器として使用し、2熱交換器を放熱熱交換器として使用する、この間に循環経路3を形成して第一熱交換器1と第二熱交換器2を熱交換可能に連結する。第一熱交換器1の熱媒体は、例えばフロンとし、これを循環経路3の冷却液によって冷却する。
循環経路3の高温側には冷却液の加圧手段として電動機5がついている循環ポンプ4を配置し、低温側にはガスの封入弁6と冷却液の減圧手段として発電機7装着している膨張ポンプ9を配置する、膨張ポンプ9に付いての説明は請求項1を参照下さい。
また、ガスの封入弁6には飽和ガスバランス用のタンク8を取り付け、この中に冷却液の温度が多少変動してもガスの飽和濃度が変らない様にする為の余分なガスを溜めておく。
In FIG. 1, the piping diagram of the heat exchange system which implemented this invention is shown.
A 1st heat exchanger or a 2nd heat exchanger heat exchanger is a heat exchanger which changes with the state when both heat absorption function and heat dissipation function were put at that time.
FIG. 2 shows a piping diagram of a heat exchange system in which one second heat exchanger and several first heat exchangers are linked.
In addition, all heat exchangers are compatible with various things such as air and water.
As described above with reference to FIG. 1, the first heat exchanger is used as an endothermic exchanger and the second heat exchanger is used as a radiant heat exchanger. The heat exchanger 1 and the 2nd heat exchanger 2 are connected so that heat exchange is possible. The heat medium of the first heat exchanger 1 is, for example, chlorofluorocarbon and is cooled by the coolant in the circulation path 3.
On the high temperature side of the circulation path 3, a circulation pump 4 with an electric motor 5 is disposed as a coolant pressurizing means, and a gas sealing valve 6 and a generator 7 are mounted as a coolant depressurizing means on the low temperature side. Refer to claim 1 for an explanation of the expansion pump 9 in which the expansion pump 9 is arranged.
Further, a saturated gas balance tank 8 is attached to the gas sealing valve 6, and an excess gas is stored therein so that the saturation concentration of the gas does not change even if the temperature of the coolant slightly changes. deep.

本発明を実施した熱交換システムは以上のような構成で、最初に循環経路3を冷却液で満たし、循環ポンプ4を運転して第一熱交換器1と第二熱交換器2の間に冷却液を循環させる。
次に、ガスの封入弁6よりアンモニアなどのガスを少しずつ注入して冷却液に溶け込ませる。
この時のガスの量は、第一熱交換器1の熱媒体に対する温度範囲の飽和圧力になるまで注入する。
The heat exchange system embodying the present invention is configured as described above. First, the circulation path 3 is filled with the cooling liquid, and the circulation pump 4 is operated to place the first heat exchanger 1 and the second heat exchanger 2 between them. Circulate the coolant.
Next, a gas such as ammonia is injected little by little from the gas sealing valve 6 and dissolved in the coolant.
The amount of gas at this time is injected until a saturation pressure in a temperature range with respect to the heat medium of the first heat exchanger 1 is reached.

冷却液が循環経路3を循環する過程で、発電機7付き膨張ポンプ9で減圧されて第一熱交換器1に流入する、流入した冷却液は圧力が下がり、従って温度も下がるので外部よりの高い温度との熱交換によって温度が上昇し、冷却液の飽和状態が崩れて溶解していたガスが分離する。
この時ガスが蒸発する蒸発熱で外部よりの侵入熱を冷却するのである。
In the process in which the coolant circulates in the circulation path 3, the pressure is reduced by the expansion pump 9 with the generator 7 and flows into the first heat exchanger 1. The temperature rises due to heat exchange with a high temperature, and the saturated state of the cooling liquid collapses and the dissolved gas is separated.
At this time, the heat of vaporization of the gas is used to cool the intrusion heat from the outside.

一方第一熱交換器1から流出したガスと冷却液は、ともに電動機5付き循環ポンプ4を通って圧力を増し、第二熱交換器2に流入してひやされる。
この圧力の増大と温度の低下により、分離していたガスがふたたび冷却液の中に溶け込むようになる。
このガスが溶解・凝縮する時の発熱反応によって冷却液の温度が上昇し、相対的に温度差が広がって、ここでも第二熱交換器2の冷却効果が良くなる、しかし1番の熱伝導率の良くなる事であろう、なぜならば普通の機械式の圧縮機は、熱伝導率の悪いの潤滑油を使用するが、本システムでは使用しないからである。
以上により、ガスが分離する時の吸熱反応とガスが溶解する時の発熱反応を利用して第一熱交換器1と第二熱交換器2との間に循環経路3を介在させた事による冷却効率の低下を補うことができる。
この熱交換システムは循環ポンプ4の回転を逆転させて、循環経路3の流路も正転・逆転させて冷房・暖房が出来ます。
On the other hand, the gas and the coolant that have flowed out of the first heat exchanger 1 both increase in pressure through the circulation pump 4 with the electric motor 5 and flow into the second heat exchanger 2 for cooling.
Due to the increase in pressure and the decrease in temperature, the separated gas again dissolves in the coolant.
The temperature of the coolant rises due to the exothermic reaction when the gas dissolves and condenses, and the temperature difference is relatively widened. Here, the cooling effect of the second heat exchanger 2 is improved, but the first heat conduction It will be more efficient because ordinary mechanical compressors use lubricants with poor thermal conductivity, but not in this system.
As described above, the circulation path 3 is interposed between the first heat exchanger 1 and the second heat exchanger 2 using the endothermic reaction when the gas is separated and the exothermic reaction when the gas is dissolved. The decrease in cooling efficiency can be compensated.
In this heat exchange system, the rotation of the circulation pump 4 is reversed, and the flow path of the circulation path 3 is also rotated forward and backward to allow cooling and heating.

図2に第二熱交換器2を1基と第一熱交換器1数基の場合の熱交換システム配管図を示す。
複数の第一熱交換器1の両側に発電機7装着している膨張ポンプ9と電動機5がついている循環ポンプ4は第一熱交換器1が冷・暖の指令により冷却液の流れ3の方向はポンプの回転が正・逆と変るのと連動している、又其れにつれて膨張ポンプも冷却液の流れ3の方向が変り発電機7も其れに連れて逆回転して発電する、数台の第一熱交換器1が夫々サイクルの方向が変っても其の熱量の収支は第二熱交換器2で総合的にミックスされ高い熱交換率がえられる。
FIG. 2 shows a heat exchange system piping diagram in the case of one second heat exchanger 2 and one first heat exchanger.
The circulation pump 4 with the expansion pump 9 and the electric motor 5 attached to the generators 7 on both sides of the plurality of first heat exchangers 1 is connected to the coolant flow 3 in response to the first heat exchanger 1 cooling / heating instruction. The direction is linked to the change of the pump rotation between forward and reverse, and the expansion pump and the direction of the coolant flow 3 change accordingly, and the generator 7 also rotates in the reverse direction to generate electricity. Even if several first heat exchangers 1 change the direction of the cycle, the balance of the heat amount is comprehensively mixed by the second heat exchanger 2 to obtain a high heat exchange rate.

溶質を溶媒に溶解して熱反応を起こす方法には、実施例に示した液体に気体を吸収させる方法以外に、固体に気体を吸着させる方法、液体と液体を混合させる方法など色々な方法がある。
また、溶質と溶媒の組み合わせには、水とアンモニアガス、水と臭化リチュウム、水と炭酸ガスなどの他に、シリカゲルにアンモニアや二硫化炭素などの液体よりガスのみ吸着させ、其れを暖めて再生させ反復する事により冷却するような方法もある、又エチレングリコールのような不凍液剤を添加して低温でも利用出来て利用範囲も広げる事も考えられる。
There are various methods for causing a thermal reaction by dissolving a solute in a solvent, such as a method of adsorbing a gas to a solid, a method of mixing a liquid and a liquid, in addition to the method of absorbing a gas in the liquid shown in the examples. is there.
In addition to water and ammonia gas, water and lithium bromide, water and carbon dioxide gas, etc., the solute and solvent combination can adsorb only gas from liquids such as ammonia and carbon disulfide to silica gel and warm it. There is a method of cooling by regenerating and repeating the process, and an antifreezing agent such as ethylene glycol can be added to be used even at a low temperature and the range of use can be expanded.

1 第一熱交換器
2 第二熱交換器
3 循環経路
4 循環ポンプ
5 電動機
6 ガス封入弁
7 発電機
8 タンク
9 膨張ポンプ
DESCRIPTION OF SYMBOLS 1 1st heat exchanger 2 2nd heat exchanger 3 Circulation path 4 Circulation pump 5 Electric motor 6 Gas filling valve 7 Generator 8 Tank 9 Expansion pump

Claims (2)

第一熱交換器と第二熱交換器を冷却液の循環経路にせつぞくして熱交換可能に連結し、この冷却液を溶媒とし、溶質として気体を液体の冷却液に飽和圧力になるまで溶解して、この気体が溶解した冷却液を前記循環経路に循環させると共に、この冷却液の循環経路の高温側には気体と冷却液を共に加圧手段として電動機付き循環ポンプとし、低温側には冷却液の減圧手段として圧力差で回転するポンプで膨張ポンプとして名称付けたが逆回転も可能で此れに発電機をつけ其の発電に対して負荷をかけ、其の負荷の加・減により冷水の時には第一熱交換器内の蒸発圧力を、温水時の時には凝縮圧力を調整する、其の負荷の出力を周波数変換器などにより、電動機付き循環ポンプの入力電力にいれて省電力を図る事を特徴とする熱交換システム。  The first heat exchanger and the second heat exchanger are connected to the coolant circulation path so that heat exchange is possible, and this coolant is used as a solvent and gas is used as a solute until the liquid reaches the saturation pressure. Dissolve and circulate the coolant in which this gas is dissolved in the circulation path, and at the high temperature side of the coolant circulation path, both the gas and the cooling liquid are used as pressurizing means to form a circulation pump with an electric motor. Is a pump that rotates at a pressure difference as a means for reducing the pressure of the coolant, and is named as an expansion pump, but it can also be rotated in reverse. By adjusting the evaporation pressure in the first heat exchanger during cold water and the condensing pressure during hot water, the load output is input to the input power of the circulating pump with an electric motor using a frequency converter to save power. A heat exchange system characterized by aiming. 高温側加圧手段の電動機付き循環ポンプは逆回転も可能でインバーター等使用し回転数も変えられる機能を持たせる、そして第一熱交換器が低圧使用の時や高圧使用の時には第一熱交換器に取り付けた圧力センサーにより電動機付きポンプの回転数を変化させる事が出来る。The circulation pump with an electric motor on the high-temperature side pressurization means can be reversely rotated and has a function to change the rotation speed by using an inverter, etc., and the first heat exchanger when the first heat exchanger is used at low pressure or high pressure The rotation speed of the pump with electric motor can be changed by the pressure sensor attached to the vessel.
JP2011157144A 2011-06-29 2011-06-29 Heat exchange system Withdrawn JP2013011431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011157144A JP2013011431A (en) 2011-06-29 2011-06-29 Heat exchange system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011157144A JP2013011431A (en) 2011-06-29 2011-06-29 Heat exchange system

Publications (1)

Publication Number Publication Date
JP2013011431A true JP2013011431A (en) 2013-01-17

Family

ID=47685439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011157144A Withdrawn JP2013011431A (en) 2011-06-29 2011-06-29 Heat exchange system

Country Status (1)

Country Link
JP (1) JP2013011431A (en)

Similar Documents

Publication Publication Date Title
JP2010065862A (en) Second class absorption heat pump system
JP4909245B2 (en) Absorption system operation method and absorption system
JP5730028B2 (en) Heat source system
KR101069886B1 (en) Air conditon apparatus for ship
US9366238B2 (en) System and process of cooling an OTEC working fluid pump motor
JP5312644B1 (en) Air conditioning power generation system
JP2005287090A (en) Thermoelectric generator
JP2013011431A (en) Heat exchange system
WO2013054519A1 (en) Exhaust heat recovery apparatus
KR200456118Y1 (en) Energy saving ship with power generation system using orc
JP4464114B2 (en) Thermal storage device and thermal storage control method
JP2018147730A (en) Fuel cell system
JP2584415B2 (en) Cooling and heating water circulation system for Bulmeier heat pump
KR101186285B1 (en) heat exchanger system for ship with hydrogen storage tank.
TW201309178A (en) Cooling system for electronic device
JP4574104B2 (en) Heat exchange system
JP2016029268A (en) Waste heat recovery device
JP2015178946A (en) Combined-cycle heat pump device
CN114440490B (en) Water chilling unit
JPS62196567A (en) Solar-heat utilizing absorption chilling unit
JP2008267793A (en) Heat pump heating system
KR101729531B1 (en) Self Cooling type PrOx and Portable Fuel Cell Generator thereby
TW201308839A (en) Cooling system for electronic device
CN115500052A (en) Cold volume distribution unit, liquid cooling system and data center
JP2002364944A (en) Device for utilizing waste heat of hot air valve

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902