JP2013011417A - Adsorption heat pump, and information processing system using the same - Google Patents

Adsorption heat pump, and information processing system using the same Download PDF

Info

Publication number
JP2013011417A
JP2013011417A JP2011145254A JP2011145254A JP2013011417A JP 2013011417 A JP2013011417 A JP 2013011417A JP 2011145254 A JP2011145254 A JP 2011145254A JP 2011145254 A JP2011145254 A JP 2011145254A JP 2013011417 A JP2013011417 A JP 2013011417A
Authority
JP
Japan
Prior art keywords
adsorber
refrigerant
heat pump
valve
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011145254A
Other languages
Japanese (ja)
Other versions
JP5747683B2 (en
Inventor
Noriyasu Aso
徳康 安曽
Toshio Manabe
敏夫 眞鍋
Hiroaki Yoshida
宏章 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2011145254A priority Critical patent/JP5747683B2/en
Publication of JP2013011417A publication Critical patent/JP2013011417A/en
Application granted granted Critical
Publication of JP5747683B2 publication Critical patent/JP5747683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the performance of an adsorption heat pump from being deteriorated, in the adsorption heat pump and an information processing system using the pump.SOLUTION: The adsorption heat pump includes: an evaporator which evaporates a refrigerant; an adsorber which is connected with the evaporator and alternately switches the adsorption of the refrigerant evaporated in the evaporator and the desorption of the adsorbing refrigerant; and a condenser which is connected with the adsorber and condenses the refrigerant desorbed from the adsorber. The adsorption heat pump includes a valve 21 for preventing the backflow of the refrigerant. The valve 21 includes: a seat 41 on which a through-hole 41a is formed; and a sheet-like valve element 42 installed on the seat 41. The valve includes irregularities 41b on a surface of the seat 41 around the through-hole 41a.

Description

本発明は、吸着式ヒートポンプ及びこれを用いた情報処理システムに関する。   The present invention relates to an adsorption heat pump and an information processing system using the same.

近年、電子機器類の進歩に加え、高度情報通信網の整備により、大量のデータを扱うブレードサーバやストレージサーバを多数設置したデータセンタの増加が著しく、これに伴い、これらの電子機器類からの廃熱エネルギも増加の一途をたどっている。   In recent years, in addition to the advancement of electronic devices, the development of advanced information communication networks has led to a significant increase in the number of data centers equipped with a large number of blade servers and storage servers that handle large amounts of data. Waste heat energy is also increasing.

特に、データセンタ等では、1ラックあたり複数のボードを装着してデータ処理能力を向上させるブレードサーバが一般的になっており、このブレードサーバでは1ラック当たりの消費電力が数kW以上と大電力化している。   In particular, in data centers and the like, blade servers are generally equipped with multiple boards per rack to improve data processing capacity. In this blade server, the power consumption per rack is several kW or more and high power. It has become.

このような廃熱エネルギの増加に伴い、発熱源であるCPU(Central Processing Unit)等の冷却技術についても様々に検討されている。例えば、空冷式の冷却技術では、大型のデータセンタやビル内に設置されたサーバルームにおいて、専用の空調機を用いて室内に冷風を循環させ、この冷風をサーバーラック内にファンを用いて導入することでCPU等を冷却している。   Along with such an increase in waste heat energy, various cooling technologies such as a CPU (Central Processing Unit) that is a heat generation source have been studied. For example, in air-cooled cooling technology, in a server room installed in a large data center or building, a dedicated air conditioner is used to circulate cool air inside the room, and this cold air is introduced into the server rack using a fan. By doing so, CPU etc. are cooled.

しかしながら、このような空冷式の冷却技術では、十分な冷風を作り出すために大量の電力を消費するので、低コスト化や環境問題の点で課題がある。   However, such an air-cooled cooling technique consumes a large amount of electric power in order to generate sufficient cold air, so there are problems in terms of cost reduction and environmental problems.

そこで、サーバ等の電子機器から排熱を回収して、それを再利用する技術として、吸着式冷ヒートポンプが着目されている。   Therefore, an adsorption-type cold heat pump has attracted attention as a technique for recovering waste heat from an electronic device such as a server and reusing it.

吸着式ヒートポンプでは、吸着剤に冷媒を吸着させる吸着工程の後、脱着工程と呼ばれる工程において、廃熱を運んできた水等の加熱流体の熱により吸着剤から冷媒を脱離させる。そして、この脱着工程において吸着剤が吸熱することを利用して加熱流体を冷却し、その冷却後の加熱流体により電子機器などを冷却する。   In the adsorption heat pump, after the adsorption process for adsorbing the refrigerant to the adsorbent, the refrigerant is desorbed from the adsorbent by the heat of a heating fluid such as water that has carried waste heat in a process called a desorption process. And in this desorption process, a heating fluid is cooled using heat absorption of an adsorbent, and an electronic device etc. are cooled with the heating fluid after the cooling.

一方、上記の吸着工程では、蒸発器に入れられた冷媒を蒸発させて吸着剤に吸着させる。このとき、冷媒が蒸発する際の気化熱により冷熱を得ることができ、この冷熱でサーバルーム内やラック内に冷風を供給することにより廃熱を有効活用することができる。   On the other hand, in the above adsorption process, the refrigerant put in the evaporator is evaporated and adsorbed on the adsorbent. At this time, cold heat can be obtained by the heat of vaporization when the refrigerant evaporates, and waste heat can be effectively utilized by supplying cold air into the server room or the rack with this cold heat.

そして、このような吸着工程と脱着工程とを繰り返すことにより、廃熱の回収と冷熱の生成とを連続して行うことが可能となる。   And by repeating such an adsorption process and a desorption process, it becomes possible to perform recovery of waste heat and generation of cold heat continuously.

特開平9−152221号公報Japanese Patent Laid-Open No. 9-152221 特開2009−198163号公報JP 2009-198163 A 国際公開第2006/135026号International Publication No. 2006/135026

高性能ケミカルヒートポンプ応用事例集、サイエンスフォーラム社High performance chemical heat pump application examples, Science Forum

吸着式ヒートポンプ及びこれを用いた情報処理システムにおいて、吸着式ヒートポンプの性能低下を防ぐことを目的とする。   In an adsorption heat pump and an information processing system using the same, an object is to prevent a decrease in performance of the adsorption heat pump.

以下の開示の一観点によれば、冷媒を蒸発させる蒸発器と、前記蒸発器と接続され、前記蒸発器で蒸発した冷媒の吸着と吸着した冷媒の脱着とを交互に切り替えて行う吸着器と、前記吸着器に接続され、前記吸着器から脱着された冷媒を凝縮させる凝縮器と、を備え、前記蒸発器と吸着器との間及び前記吸着器と凝縮器との間の少なくとも一方にバルブが配設され、前記バルブは、貫通孔が形成された台座部と前記台座部上に設置されたシート状の弁体とを含み、前記貫通孔の周囲の前記台座部の表面には、凹凸が形成されている吸着式ヒートポンプが提供される。   According to one aspect of the disclosure below, an evaporator that evaporates a refrigerant, and an adsorber that is connected to the evaporator and alternately switches between adsorption of the refrigerant evaporated by the evaporator and desorption of the adsorbed refrigerant. A condenser connected to the adsorber and condensing the refrigerant desorbed from the adsorber, and having a valve between at least one of the evaporator and the adsorber and between the adsorber and the condenser The valve includes a pedestal portion in which a through-hole is formed and a sheet-like valve body installed on the pedestal portion, and the surface of the pedestal portion around the through-hole is uneven. An adsorption heat pump in which is formed is provided.

また、その他の観点によれば、冷媒を蒸発させる蒸発器と、前記蒸発器と接続され、前記蒸発器で蒸発した冷媒の吸着と吸着した冷媒の脱着とを交互に切り替えて行う吸着器と、前記吸着器に接続され、前記吸着器から脱着された冷媒を凝縮させる凝縮器と、を備え、記蒸発器と吸着器との間及び前記吸着器と凝縮器との間の少なくとも一方にバルブが配設され、前記バルブは、貫通孔が形成された台座部と前記台座部上に設置されたシート状の弁体とを含み、前記貫通孔の周囲の前記台座部の表面には、凹凸が形成された吸着式ヒートポンプと、前記吸着式ヒートポンプによって冷却される電子機器と、を有する情報処理システムが提供される。   According to another aspect, an evaporator that evaporates a refrigerant, an adsorber that is connected to the evaporator and alternately switches between adsorption of the refrigerant evaporated by the evaporator and desorption of the adsorbed refrigerant; A condenser connected to the adsorber and condensing the refrigerant desorbed from the adsorber, wherein a valve is provided between at least one of the evaporator and the adsorber and between the adsorber and the condenser. The valve includes a pedestal portion in which a through hole is formed and a sheet-like valve body installed on the pedestal portion, and the surface of the pedestal portion around the through hole has irregularities. An information processing system having the formed adsorption heat pump and an electronic device cooled by the adsorption heat pump is provided.

開示の吸着式ヒートポンプ及びこれを用いた情報処理システムでは、貫通孔の周囲の台座部の表面に凹凸が形成されている。これにより、弁体と台座部との接触面積が減少するとともに、弁体と台座部の間に結露した冷媒をこれらの接触部分から排除でき、結露した冷媒の表面張力で弁体が台座に張り付いて吸着式ヒートポンプが動作停止するといった不具合を防止できる。   In the disclosed adsorption heat pump and an information processing system using the same, irregularities are formed on the surface of the pedestal around the through hole. As a result, the contact area between the valve body and the pedestal portion is reduced, and refrigerant condensed between the valve body and the pedestal portion can be excluded from these contact portions, and the valve body is stretched on the pedestal by the surface tension of the condensed refrigerant. In addition, it is possible to prevent the problem that the adsorption heat pump stops operating.

また、吸着剤の破片を凹凸内に収容することができるので、バルブが完全に閉じなくなって吸着式ヒートポンプの性能が低下するという不具合も防止できる。   Further, since the adsorbent debris can be accommodated in the unevenness, it is possible to prevent a problem that the performance of the adsorption heat pump is deteriorated because the valve is not completely closed.

図1は、吸着式ヒートポンプの断面図である。FIG. 1 is a cross-sectional view of an adsorption heat pump. 図2は、図1の吸着式ヒートポンプのバルブの断面図である。FIG. 2 is a cross-sectional view of the valve of the adsorption heat pump of FIG. 図3は、第1実施形態に係る吸着式ヒートポンプの断面図である。FIG. 3 is a cross-sectional view of the adsorption heat pump according to the first embodiment. 図4は、第1実施形態に係る吸着式ヒートポンプのバルブの図である。FIG. 4 is a view of a valve of the adsorption heat pump according to the first embodiment. 図5は、図4のバルブの動作を説明する断面図である。FIG. 5 is a cross-sectional view for explaining the operation of the valve of FIG. 図6は、図4のバルブへの親水加工及び撥水加工の一例を示す断面図である。FIG. 6 is a cross-sectional view showing an example of hydrophilic processing and water repellent processing on the valve of FIG. 図7は、第2実施形態に係るバルブの台座部を示す図である。FIG. 7 is a view showing a pedestal portion of the valve according to the second embodiment. 図8は、第2実施形態に係るバルブの動作を説明する断面図である。FIG. 8 is a cross-sectional view for explaining the operation of the valve according to the second embodiment. 図9は、第3実施形態に係る情報処理システムのブロック図である。FIG. 9 is a block diagram of an information processing system according to the third embodiment.

(1)予備的事項
実施の形態の説明に先立ち、基礎となる予備的事項について説明する。
(1) Preliminary items Prior to the description of the embodiments, basic preliminary items will be described.

図1は、吸着式ヒートポンプの断面図である。   FIG. 1 is a cross-sectional view of an adsorption heat pump.

この吸着式ヒートポンプ30は、何れも内部が減圧された第1の吸着器1、第2の吸着器2、蒸発器3、及び凝縮器4と、これらの間に設けられたバルブ11とを有する。   The adsorption heat pump 30 includes a first adsorber 1, a second adsorber 2, an evaporator 3, and a condenser 4 each having a reduced pressure inside, and a valve 11 provided therebetween. .

このうち、第1及び第2の吸着器1、2には吸着剤17としてシリカゲルが収容され、蒸発器3には冷媒18として水が収容される。なお、シリカゲルに代えてゼオライトを吸着剤17として用いてもよい。   Among these, silica gel is accommodated as the adsorbent 17 in the first and second adsorbers 1 and 2, and water as the refrigerant 18 is accommodated in the evaporator 3. Note that zeolite may be used as the adsorbent 17 instead of silica gel.

一方、バルブ11は、第1及び第2の吸着器1、2、蒸発器3及び凝縮器4の間を仕切る隔壁に図示のように設けられている。   On the other hand, the valve 11 is provided on a partition wall that partitions the first and second adsorbers 1 and 2, the evaporator 3, and the condenser 4 as illustrated.

図2は図1の吸着式ヒートポンプのバルブの断面図である。各バルブ11は、図2(a)に示すように、複数の貫通孔31aが設けられた台座部31と、その台座部31の上に設けられたフィルム状の弁体32とを備えている。この弁体32は、一端が台座部31上に接合されており、他端(自由端)側が台座部31の下側の領域と上側の領域との圧力差に応じて変形することで、バルブ11を開閉する。例えば、台座部31の下側の領域の圧力P1が上側の領域の圧力P2よりも高くなると(P1>P2)、弁体32の自由端側が図2(a)のように浮上してバルブ11が開いた状態となる。また、隔壁31の下側の領域の圧力P1が上側の領域の圧力P2よりも低くなると(P1<P2)、弁体32が図2(b)のように貫通孔31aを覆うようにして塞ぎ、バルブ11が閉じた状態となる。 FIG. 2 is a cross-sectional view of the valve of the adsorption heat pump of FIG. As shown in FIG. 2A, each valve 11 includes a pedestal portion 31 provided with a plurality of through holes 31 a and a film-like valve body 32 provided on the pedestal portion 31. . One end of the valve body 32 is joined on the pedestal portion 31, and the other end (free end) side is deformed according to the pressure difference between the lower region and the upper region of the pedestal portion 31. 11 is opened and closed. For example, when the pressure P 1 in the lower region of the pedestal 31 is higher than the pressure P 2 in the upper region (P 1 > P 2 ), the free end side of the valve body 32 floats as shown in FIG. As a result, the valve 11 is opened. When the pressure P 1 in the lower region of the partition wall 31 becomes lower than the pressure P 2 in the upper region (P 1 <P 2 ), the valve body 32 covers the through hole 31a as shown in FIG. In this way, the valve 11 is closed.

このバルブ11が、第1及び第2の吸着器1、2内の圧力(蒸気圧)の変化に応じて自発的に開閉することで、第1及び第2の吸着器1、2の吸着工程及び脱着工程が切り替わる。   The valve 11 is opened and closed spontaneously according to changes in pressure (vapor pressure) in the first and second adsorbers 1 and 2, so that the adsorption process of the first and second adsorbers 1 and 2 is performed. And the desorption process is switched.

例えば、図1のようなバルブ11の開閉状態では、第1の吸着器1において吸着工程が行われ、第2の吸着器2において脱着工程が行われる。   For example, in the open / closed state of the valve 11 as shown in FIG. 1, the adsorption process is performed in the first adsorber 1, and the desorption process is performed in the second adsorber 2.

吸着工程が行われている第1の吸着器1では、吸着剤17に冷媒18の蒸気が吸着されて減少するため、第1の吸着器1内の蒸気圧が蒸発器3及び凝縮器4よりも低くなる。そのため、第1の吸着器1の下側のバルブ11が開き上側のバルブ11が閉じる。そして、蒸発器3において蒸発した冷媒18の蒸気が下側のバルブ11を介して第1の吸着器1に供給され、その蒸気が吸着剤17によって吸着される。吸着時に吸着剤17で発生する熱は、内部配管7を流れる冷却水等の冷却流体9によって冷却される。   In the first adsorber 1 in which the adsorption step is performed, the vapor of the refrigerant 18 is reduced by being adsorbed by the adsorbent 17, so that the vapor pressure in the first adsorber 1 is lower than that of the evaporator 3 and the condenser 4. Also lower. Therefore, the lower valve 11 of the first adsorber 1 is opened and the upper valve 11 is closed. Then, the vapor of the refrigerant 18 evaporated in the evaporator 3 is supplied to the first adsorber 1 through the lower valve 11, and the vapor is adsorbed by the adsorbent 17. The heat generated in the adsorbent 17 at the time of adsorption is cooled by a cooling fluid 9 such as cooling water flowing through the internal pipe 7.

冷却流体9は、例えば冷却水であって、その温度は第1の吸着器1に入る直前で約25℃である。そして、第1の吸着器1を出た直後の冷却流体9は、冷媒18を吸着したことで発熱した吸着剤17によって30℃程度に温められる。   The cooling fluid 9 is, for example, cooling water, and its temperature is about 25 ° C. immediately before entering the first adsorber 1. The cooling fluid 9 immediately after exiting the first adsorber 1 is warmed to about 30 ° C. by the adsorbent 17 that has generated heat by adsorbing the refrigerant 18.

一方、脱着工程が行われている第2の吸着器2では、サーバ等の電子機器から廃熱を運んできた加熱流体6が内部配管7に流され、その熱によって吸着剤17から冷媒18が脱着される。これにより第2の吸着器2内の蒸気圧が高くなるため、第2の吸着器2の上側のバルブ11が開き、下側のバルブ11が閉じる。このとき、吸着剤17が吸熱するので、加熱流体6が冷却されることになる。例えば、第2の吸着器2に入る直前の加熱流体の温度が75℃の場合、第2の吸着器2を出た直後では加熱流体6の温度は70℃程度に低下する。   On the other hand, in the second adsorber 2 in which the desorption process is performed, the heating fluid 6 carrying the waste heat from the electronic device such as the server is flowed to the internal pipe 7, and the refrigerant 18 is transferred from the adsorbent 17 by the heat. Desorbed. As a result, the vapor pressure in the second adsorber 2 is increased, so that the upper valve 11 of the second adsorber 2 is opened and the lower valve 11 is closed. At this time, since the adsorbent 17 absorbs heat, the heating fluid 6 is cooled. For example, when the temperature of the heating fluid immediately before entering the second adsorber 2 is 75 ° C., the temperature of the heating fluid 6 decreases to about 70 ° C. immediately after leaving the second adsorber 2.

このように冷却された加熱流体6は、電子機器の冷却に使用された後、再び第2の吸着器2に戻って冷却される。   The heated fluid 6 thus cooled is used to cool the electronic device, and then returns to the second adsorber 2 to be cooled again.

蒸発器3には、冷媒18が溜められていると共に、水などの循環流体5が流される循環配管10が通されている。そして、第1の吸着器1で吸着工程が行われているとき、冷媒18の気化熱によって循環流体5が冷やされ、蒸発器3に入る前よりも5℃程度低い温度に循環流体5を冷やすことができる。   The evaporator 3 stores a refrigerant 18 and a circulation pipe 10 through which a circulating fluid 5 such as water flows. When the adsorption process is performed in the first adsorber 1, the circulating fluid 5 is cooled by the heat of vaporization of the refrigerant 18, and the circulating fluid 5 is cooled to a temperature about 5 ° C. lower than that before entering the evaporator 3. be able to.

一方、凝縮器4には、脱着工程が行われている第2の吸着器2から冷媒18の蒸気が供給される。その蒸気は、冷却配管8を流れる冷却水15により冷却されて液化した後、冷媒回収配管16を通って再び蒸発器18に戻される。冷却水15は、凝縮器4に入る直前ではその温度が25℃程度であるが、凝縮器4から出た直後ではその温度は30℃程度に上昇する。   On the other hand, the vapor | steam of the refrigerant | coolant 18 is supplied to the condenser 4 from the 2nd adsorption device 2 in which the desorption process is performed. The vapor is cooled and liquefied by the cooling water 15 flowing through the cooling pipe 8 and then returned to the evaporator 18 through the refrigerant recovery pipe 16. The temperature of the cooling water 15 is about 25 ° C. immediately before entering the condenser 4, but the temperature rises to about 30 ° C. immediately after leaving the condenser 4.

このような一連のプロセスでは、加熱流体6の熱によって吸着剤17から冷媒18を脱離させ、更に蒸発器3における冷媒18の気化熱によって循環流体5を冷却しており、加熱流体6の熱が循環流体5の冷熱の生成に再利用されていることになる。その冷熱は、例えばサーバルームやラック内に冷風を供給するのに使用される。   In such a series of processes, the refrigerant 18 is desorbed from the adsorbent 17 by the heat of the heating fluid 6, and the circulating fluid 5 is cooled by the heat of vaporization of the refrigerant 18 in the evaporator 3. Is reused to generate cold heat of the circulating fluid 5. The cold heat is used, for example, to supply cold air into a server room or a rack.

ここで、上記のように第2の吸着器2において脱着工程を行っていると、第2の吸着器2における吸着剤17の乾燥が進み、吸着剤17の吸熱を利用した加熱流体6の冷却効率が次第に低下する。   Here, when the desorption process is performed in the second adsorber 2 as described above, the drying of the adsorbent 17 in the second adsorber 2 proceeds, and the heating fluid 6 is cooled using the heat absorption of the adsorbent 17. Efficiency decreases gradually.

そのため、第2の吸着器2における吸着剤17から所定の量の冷媒18が脱離した時点で、各吸着器1、2における吸着工程と脱着工程とを切り替える。その切り替えは、加熱流体6を第1の吸着器1の内部配管7に流し、冷却流体9を第2の吸着器2の内部配管7に流すことで行われる。   Therefore, when a predetermined amount of the refrigerant 18 is desorbed from the adsorbent 17 in the second adsorber 2, the adsorption process and the desorption process in each of the adsorbers 1 and 2 are switched. The switching is performed by flowing the heating fluid 6 through the internal pipe 7 of the first adsorber 1 and flowing the cooling fluid 9 through the internal pipe 7 of the second adsorber 2.

ところで、上記の吸着式ヒートポンプ30を長期間運転していると、作動停止や冷却効率が低下する不具合が生じることがある。   By the way, if the adsorption heat pump 30 is operated for a long period of time, there may be a problem that the operation is stopped or the cooling efficiency is lowered.

本願発明者らが種々の調査を行った結果、吸着式ヒートポンプ30の動作停止は、バルブ11の周辺で結露した冷媒の表面張力により、弁体32(図2(b)参照)と台座部31とが強く密着してバルブ11が開かなくなることが原因と判明した。   As a result of various investigations by the inventors of the present application, the operation stop of the adsorption heat pump 30 is caused by the valve body 32 (see FIG. 2B) and the pedestal portion 31 due to the surface tension of the refrigerant condensed around the valve 11. It became clear that the cause was that the valve 11 could not be opened due to the close contact.

また、吸着式ヒートポンプ30の冷却効率の低下は、何らかの理由で吸着剤17の破片や粉末が弁体32と台座部31との間に付着し、この粉末によってバルブ11が完全に閉鎖しなくなることで発生することが明らかとなった。   In addition, the cooling efficiency of the adsorption heat pump 30 decreases because, for some reason, debris or powder of the adsorbent 17 adheres between the valve body 32 and the pedestal 31 and the valve 11 is not completely closed by this powder. It became clear that it occurred at.

本願発明者は、このような知見に基づき、以下に説明するような実施形態を着想した。   The inventor of the present application has come up with an embodiment described below based on such knowledge.

(2)第1実施形態
図3は、本実施形態に係る吸着式ヒートポンプの断面図であり、図4は図3の吸着式ヒートポンプのバルブの図である。
(2) First Embodiment FIG. 3 is a cross-sectional view of the adsorption heat pump according to the present embodiment, and FIG. 4 is a view of the valve of the adsorption heat pump of FIG.

図3に示すように、この吸着式ヒートポンプ40は、第1及び第2の吸着器1、2と、蒸発器3と、蒸発器4と、これらの隔壁23の間に設けられたバルブ21とを備える。なお、本実施形態の吸着式ヒートポンプ40は、バルブ21以外は図1を参照しつつ説明した吸着式ヒートポンプ30と同様であり、同一の要素には同一符号を付してその説明を省略する。   As shown in FIG. 3, the adsorption heat pump 40 includes first and second adsorbers 1 and 2, an evaporator 3, an evaporator 4, and a valve 21 provided between the partition walls 23. Is provided. The adsorption heat pump 40 of the present embodiment is the same as the adsorption heat pump 30 described with reference to FIG. 1 except for the valve 21, and the same components are denoted by the same reference numerals and the description thereof is omitted.

バルブ21は、図4(a)に示すように、隔壁23の開口23aに取り付けられた台座部41と、その台座部41の上方を覆うように配置された弁体42とを備えている。   As illustrated in FIG. 4A, the valve 21 includes a pedestal portion 41 attached to the opening 23 a of the partition wall 23, and a valve body 42 disposed so as to cover the pedestal portion 41.

弁体42は、例えばPET(Poly-Ethylene Terephthalate)樹脂などの柔軟な樹脂フィルムよりなり、その一端(固定端)が図4(a)に示すように隔壁23にねじ止め等の方法で固定されている。   The valve body 42 is made of a flexible resin film such as PET (Poly-Ethylene Terephthalate) resin, and one end (fixed end) thereof is fixed to the partition wall 23 by a method such as screwing as shown in FIG. ing.

一方、台座部41は、図4(b)の平面図に示すように、矩形状の板状部材に、厚さ方向に貫通する複数の貫通孔41aを設けたものであり、その台座部41の上面には、貫通孔41aの周囲を囲むように環状の凹部(溝)41bが設けられている。この凹部41bは、バルブ11で凝縮した冷媒や吸着剤17の粉末を収容するのに十分な幅及び深さに形成する。但し、バルブ11が閉じた際に、凹部41bから冷媒が漏れるのを防ぐために、凹部41bは台座部41の厚さ方向に貫通しない程度の深さとする。   On the other hand, as shown in the plan view of FIG. 4 (b), the pedestal portion 41 is a rectangular plate-like member provided with a plurality of through holes 41 a penetrating in the thickness direction. An annular recess (groove) 41b is provided on the upper surface of the substrate so as to surround the periphery of the through hole 41a. The recess 41b is formed to have a width and depth sufficient to accommodate the refrigerant condensed by the valve 11 and the adsorbent 17 powder. However, in order to prevent the refrigerant from leaking from the recess 41b when the valve 11 is closed, the recess 41b has a depth that does not penetrate in the thickness direction of the pedestal 41.

図5(a)、(b)は、バルブ21の動作を説明する断面図である。   5A and 5B are cross-sectional views for explaining the operation of the valve 21. FIG.

図5(a)のように、バルブ21の下側の領域の圧力P1が上側の領域の圧力P2よりも高い場合(P1>P2)には、その圧力差によってフィルム状の弁体42の自由端側が浮き上がり、バルブ21が開いた状態となる。この状態では、貫通孔41aを通じて冷媒の蒸気がバルブ21を通過する。 When the pressure P 1 in the lower area of the valve 21 is higher than the pressure P 2 in the upper area (P 1 > P 2 ) as shown in FIG. The free end side of the body 42 is lifted and the valve 21 is opened. In this state, the refrigerant vapor passes through the valve 21 through the through hole 41a.

一方、図5(b)のように、隔壁35の下側の領域の圧力P1が上側の領域の圧力P2よりも低い場合(P1<P2)には、その圧力差によって弁体42が台座部41の上面に押し付けられる。そして、弁体42が貫通孔41aと凹部41bとの間の台座部41の上面に密着することで、貫通孔41aが閉塞されてバルブ21が閉じた状態となる。 On the other hand, when the pressure P 1 in the lower region of the partition wall 35 is lower than the pressure P 2 in the upper region (P 1 <P 2 ) as shown in FIG. 42 is pressed against the upper surface of the pedestal 41. The valve body 42 is in close contact with the upper surface of the pedestal 41 between the through hole 41a and the recess 41b, so that the through hole 41a is closed and the valve 21 is closed.

このとき、台座部41の表面に凹部41bを設けているので、台座部41と弁体42との間で結露した冷媒は凹部41bに排除される。また、凹部41bによって弁体42と台座部41との接触面積が小さくなる。そのため、仮に結露した冷媒が弁体42と台座部41との間に残っていても、結露した冷媒の表面張力による弁体42と台座部41との密着力を弱めることができる。これにより、結露した冷媒の表面張力で弁体42が台座部41に張り付いて動かなくなる不具合を防止できる。   At this time, since the concave portion 41b is provided on the surface of the pedestal portion 41, the refrigerant condensed between the pedestal portion 41 and the valve body 42 is excluded in the concave portion 41b. Moreover, the contact area of the valve body 42 and the base part 41 becomes small by the recessed part 41b. Therefore, even if the condensed refrigerant remains between the valve body 42 and the pedestal portion 41, the adhesion force between the valve body 42 and the pedestal portion 41 due to the surface tension of the condensed refrigerant can be weakened. Thereby, the malfunction which the valve body 42 sticks to the base part 41 and cannot move with the surface tension of the condensed refrigerant | coolant can be prevented.

また、凹部41bは、台座部41に落下した吸着剤17の粉末をある程度まで収容することができるため、吸着式ヒートポンプ40の動作効率の低下を防ぐことができる。   Moreover, since the recessed part 41b can accommodate the powder of the adsorbent 17 dropped to the pedestal part 41 to some extent, it is possible to prevent the operation efficiency of the adsorption heat pump 40 from being lowered.

なお、上記のバルブ21において、下記に説明するように台座部41の凹部41aの内部に選択的に親水性加工を施すとともに、台座部41の弁体42と接触する面に撥水性加工を施してもよい。   In the valve 21 described above, hydrophilic processing is selectively performed on the inside of the recess 41a of the pedestal portion 41 as described below, and the surface of the pedestal portion 41 that contacts the valve body 42 is subjected to water repellency processing. May be.

図6は、台座部41の親水性加工及び撥水性加工の一例を説明する模式図である。   FIG. 6 is a schematic diagram illustrating an example of hydrophilic processing and water repellent processing of the pedestal portion 41.

まず、図6(a)のように、台座部41を用意する。この台座部41は、例えばアルミ板等の金属板に貫通孔41a及び凹部41bを機械加工で形成して作製される。   First, as shown in FIG. 6A, a pedestal portion 41 is prepared. The pedestal portion 41 is produced by, for example, forming a through hole 41a and a recess 41b in a metal plate such as an aluminum plate by machining.

次に、図6(b)のように、台座部41の凹部41bを除く上面に、マスク46を形成する。マスク46は、例えば所定形状に整形されたマスキングテープを貼り付ける方法や、油性塗料を刷毛等で凸部に塗布する方法で形成できる。   Next, as shown in FIG. 6B, a mask 46 is formed on the upper surface of the pedestal portion 41 excluding the concave portion 41 b. The mask 46 can be formed by, for example, a method of attaching a masking tape shaped into a predetermined shape, or a method of applying an oil-based paint to the convex portion with a brush or the like.

次いで、図6(c)のように、台座部41の上側から、例えば市販のシリカ系コーティング液等の親水剤を塗布してマスク46、台座部41の凹部41b及び貫通孔41aの内壁を親水性材料47で覆う。   Next, as shown in FIG. 6C, from the upper side of the pedestal 41, a hydrophilic agent such as a commercially available silica-based coating solution is applied to make the mask 46, the recess 41b of the pedestal 41, and the inner walls of the through holes 41a hydrophilic. Covering with a material 47.

その後、図6(d)のようにマスク46上の親水性材料47をマスク46とともに除去して、貫通孔41a及び凹部41bにのみ親水性材料を残す。   Thereafter, as shown in FIG. 6D, the hydrophilic material 47 on the mask 46 is removed together with the mask 46 to leave the hydrophilic material only in the through holes 41a and the recesses 41b.

次に、図6(e)のように、台座部41の上面の凹部41b以外の部分に、撥水剤を選択的に塗布して撥水材料48で覆う。ここでは、撥水材料48には、例えば市販されているテフロンコーティング液を用いることができ、これを適当な粘度に調整して刷毛等で塗布すれば、凹部41b以外の上面に選択的に撥水材料48を塗布できる。   Next, as shown in FIG. 6E, a water repellent agent is selectively applied to a portion other than the concave portion 41 b on the upper surface of the pedestal portion 41 and covered with a water repellent material 48. Here, as the water repellent material 48, for example, a commercially available Teflon coating liquid can be used. If this is adjusted to an appropriate viscosity and applied with a brush or the like, it is selectively repelled on the upper surface other than the recess 41 b. A water material 48 can be applied.

以上のようにして、台座部41の凹部41bを除く上面に撥水加工が行われ、凹部41bに親水加工が施された台座部41が得られる。このような親水加工及び撥水加工が施された台座部41によれば、台座部41と弁体42との接触部分から凹部41b側に結露した冷媒が流れやすくなる。そのため、弁体42が台座部41との接触部分に冷媒の液滴をより排除しやすくなり、弁体42の台座部41への張り付きがさらに起こり難くなる。   As described above, a water repellent process is performed on the upper surface of the pedestal part 41 excluding the recessed part 41b, and the pedestal part 41 in which the recessed part 41b is subjected to a hydrophilic process is obtained. According to the pedestal portion 41 subjected to such hydrophilic processing and water repellent processing, the condensed refrigerant easily flows from the contact portion between the pedestal portion 41 and the valve body 42 to the concave portion 41b side. Therefore, it becomes easier for the valve body 42 to remove the refrigerant droplets at the contact portion with the pedestal portion 41, and the sticking of the valve body 42 to the pedestal portion 41 is less likely to occur.

なお、凹部41bだけでなく、弁体42の台座部41側の面に親水加工を施してもよい。   In addition, you may give a hydrophilic process not only to the recessed part 41b but to the surface by the side of the base part 41 of the valve body 42. FIG.

(3)第1実施形態の実験例
以下、本願発明者らが行った実験例について説明する。
(3) Experimental example of 1st Embodiment Hereinafter, the experimental example which this inventor performed is demonstrated.

第1及び第2の吸着器1、2(図3参照)内に、吸着剤17として200gのシリカゲル(富士シリシア化学社製RD2060)を充填した。また、蒸発器3には冷媒として水を充填した。   200 g of silica gel (RD2060 manufactured by Fuji Silysia Chemical Ltd.) was filled as the adsorbent 17 in the first and second adsorbers 1 and 2 (see FIG. 3). The evaporator 3 was filled with water as a refrigerant.

第1の吸着器1、第2の吸着器2、蒸発器3及び凝縮器4の接続部には、図4に示すバルブ21を設置した。ここでは、バルブ21の台座部41には直径φが5mmの貫通孔41aを15mmのピッチで、60mm×50mmの領域の中に合計15個設けた。また、各貫通孔41aの周囲には、直径φが10mm、幅が2mm及び深さが2mmの円環状の溝からなる凹部41bを設け、その凹部41b内に親水加工を施した。   A valve 21 shown in FIG. 4 was installed at the connection portion of the first adsorber 1, the second adsorber 2, the evaporator 3, and the condenser 4. Here, a total of 15 through holes 41a having a diameter φ of 5 mm are provided in a pedestal portion 41 of the bulb 21 in a region of 60 mm × 50 mm at a pitch of 15 mm. Further, around each through hole 41a, a recess 41b made of an annular groove having a diameter φ of 10 mm, a width of 2 mm and a depth of 2 mm was provided, and hydrophilic processing was performed in the recess 41b.

また、弁体42は面積が約60mm×50mmのPET樹脂フィルムで形成し、台座部41と接触する面に親水加工を施した。   In addition, the valve body 42 was formed of a PET resin film having an area of about 60 mm × 50 mm, and the surface in contact with the pedestal 41 was subjected to hydrophilic processing.

このような吸着式ヒートポンプの一方の吸着器に65℃の温水(加熱流体)を2L/minで供給し、他方の吸着器には25℃の水(冷却流体)を2L/minで供給した。そして各吸着器への温水及び冷水の供給を10分ごとに切り替えて運転した。   One adsorber of such an adsorption heat pump was supplied with 65 ° C. warm water (heating fluid) at 2 L / min, and the other adsorber was supplied with 25 ° C. water (cooling fluid) at 2 L / min. The operation was performed by switching the supply of hot water and cold water to each adsorber every 10 minutes.

なお、蒸発器3には、冷水取り出し温度が15℃及び戻り温度が18℃となるように、循環流体を流量1L/minで循環させた。   Note that the circulating fluid was circulated through the evaporator 3 at a flow rate of 1 L / min so that the cold water take-out temperature was 15 ° C. and the return temperature was 18 ° C.

以上のような実験例において、バルブ21で結露した水(冷媒)を台座部41の凹部41bに除去でき、バルブ21の開閉の不具合を防止できることが確認できた。また、凹部41bに集められた水は、バルブ21の開閉動作の際に気化し、凹部41bに水が蓄積し続けることなく連続して動作することが確認できた。   In the experimental examples as described above, it was confirmed that water (refrigerant) condensed by the valve 21 can be removed to the concave portion 41b of the pedestal portion 41, and the opening / closing failure of the valve 21 can be prevented. Further, it was confirmed that the water collected in the recess 41b was vaporized during the opening / closing operation of the valve 21 and operated continuously without water being accumulated in the recess 41b.

(4)第2実施形態
本実施形態では、バルブの台座部の形状が図4に示すバルブ21の台座部41の形状と異なる。
(4) 2nd Embodiment In this embodiment, the shape of the base part of a valve differs from the shape of the base part 41 of the valve | bulb 21 shown in FIG.

図7は、本実施形態に係るバルブの台座部を示す図である。   FIG. 7 is a view showing a pedestal portion of the valve according to the present embodiment.

この台座部51には、図7(a)の斜視図に示すように、厚さ方向に貫通する複数の貫通孔51aと、環状の凹部(溝)51bと、直線状の溝51cとが形成されている。貫通孔51aの上端側は面取りされて、すり鉢状の傾斜面51eが形成されている。この傾斜面51eにより、弁体42と台座部51との接触面積が減少するとともに、結露した冷媒を貫通孔41a側に流れやすくしている。さらに、貫通孔51aの内壁には台座部51の厚さ方向に延在する溝51dが複数設けられている。この溝51dによって、貫通孔51a内に流れ込んだ冷媒の液滴が貫通孔51a内に溜まることなく下方に流れる。   As shown in the perspective view of FIG. 7A, the pedestal 51 is formed with a plurality of through holes 51a penetrating in the thickness direction, an annular recess (groove) 51b, and a linear groove 51c. Has been. The upper end side of the through hole 51a is chamfered to form a mortar-shaped inclined surface 51e. The inclined surface 51e reduces the contact area between the valve body 42 and the pedestal 51, and makes it easier for the condensed refrigerant to flow to the through hole 41a side. Furthermore, a plurality of grooves 51d extending in the thickness direction of the pedestal 51 are provided on the inner wall of the through hole 51a. The groove 51d allows the coolant droplets flowing into the through hole 51a to flow downward without accumulating in the through hole 51a.

台座部51の上面の直線状の溝51cは、台座部51の周縁部にまで延在するとともに、図7(b)の部分拡大図に示すように凹部51bと接続されている。これにより、凹部51bに集められた冷媒の液滴を溝51cを通じて台座部51の外部に排出できるようになっている。   The linear groove 51c on the upper surface of the pedestal 51 extends to the peripheral edge of the pedestal 51, and is connected to the recess 51b as shown in the partially enlarged view of FIG. As a result, the coolant droplets collected in the recess 51b can be discharged to the outside of the pedestal 51 through the groove 51c.

図8(a)、(b)は、本実施形態に係るバルブの動作を示す断面図である。   8A and 8B are cross-sectional views showing the operation of the valve according to this embodiment.

図8(a)のように、バルブ50の下側の領域の圧力P1が上側の領域の圧力P2よりも高い場合(P1>P2)には、台座部51の上面側に配置された弁体42の自由端側が圧力差によって浮き上がる。そして、台座部51の貫通孔51aを通じてバルブ50を冷媒の蒸気が通過する。 As shown in FIG. 8A, when the pressure P 1 in the lower region of the valve 50 is higher than the pressure P 2 in the upper region (P 1 > P 2 ), it is arranged on the upper surface side of the pedestal 51. The free end side of the valve body 42 is lifted by the pressure difference. And the vapor | steam of a refrigerant | coolant passes through the valve | bulb 50 through the through-hole 51a of the base part 51. FIG.

一方、図8(b)のように、バルブ50の下側の領域の圧力P1が上側の領域の圧力P2よりも低い場合(P1<P2)には、弁体42が圧力差によって台座部51の上面側に押し付けられ、貫通孔51aが閉塞されバルブ50が閉じる。 On the other hand, when the pressure P 1 in the lower region of the valve 50 is lower than the pressure P 2 in the upper region (P 1 <P 2 ) as shown in FIG. Is pressed against the upper surface side of the pedestal 51, the through hole 51a is closed, and the valve 50 is closed.

このとき、バルブ50で結露した冷媒は、弁体42と台座部51との接触部分から凹部51b又は傾斜面51eに排除され、溝51c又は貫通孔の溝51dを通じて台座部51外に排出される。これにより、凹部51b内への冷媒の蓄積を防ぐことができる。また、凹部51bに加えて傾斜面51e及び溝51cが形成されているため、弁体42と台座部51との接触面積がさらに減少し、結露した冷媒の表面張力による弁体42と台座部51との密着力を抑制できる。   At this time, the refrigerant condensed in the valve 50 is removed from the contact portion between the valve body 42 and the pedestal 51 to the recess 51b or the inclined surface 51e, and is discharged outside the pedestal 51 through the groove 51c or the groove 51d of the through hole. . Thereby, accumulation | storage of the refrigerant | coolant in the recessed part 51b can be prevented. Further, since the inclined surface 51e and the groove 51c are formed in addition to the recess 51b, the contact area between the valve body 42 and the pedestal portion 51 is further reduced, and the valve body 42 and the pedestal portion 51 due to the surface tension of the condensed refrigerant. The adhesion strength with can be suppressed.

また、台座部51の表面に落ちた吸着剤17の粉末を冷媒と共に溝51cを通じて台座部51の外部に流出させることができるため、バルブ50が閉じなくなる不具合を起こし難くなっている。   Moreover, since the powder of the adsorbent 17 that has fallen on the surface of the pedestal 51 can flow out together with the refrigerant to the outside of the pedestal 51 through the groove 51c, it is difficult for the valve 50 to be closed.

このように、本実施形態に係るバルブ50によればバルブの開閉の不具合をより効果的に防止でき、吸着式ヒートポンプ40を長期間安定して運転できる。   As described above, according to the valve 50 according to the present embodiment, it is possible to more effectively prevent the valve from opening and closing, and the adsorption heat pump 40 can be stably operated for a long period of time.

なお、本実施形態でも、台座部51の凹部51b、溝51c、傾斜面51eの表面に親水加工を施し、台座部51と弁体42との接触する部分に撥水加工を施してもよい。   In this embodiment as well, hydrophilic processing may be applied to the surfaces of the recess 51b, the groove 51c, and the inclined surface 51e of the pedestal 51, and water repellent processing may be applied to the portion where the pedestal 51 and the valve body 42 are in contact.

(5)第3実施形態
図9は、第3実施形態に係る情報処理システムのブロック図である。
(5) Third Embodiment FIG. 9 is a block diagram of an information processing system according to a third embodiment.

この情報処理システム80は、吸着式ヒートポンプ40と、電子機器70と、流体切替器61と、冷却タワー62と、空調機63とを備えている。なお、本実施形態の吸着式ヒートポンプ40は、図3に示す吸着式ヒートポンプ40(第1実施形態)と同じであり、同一の要素には同一符号を付してその説明を省略する。   The information processing system 80 includes an adsorption heat pump 40, an electronic device 70, a fluid switch 61, a cooling tower 62, and an air conditioner 63. The adsorption heat pump 40 of the present embodiment is the same as the adsorption heat pump 40 (first embodiment) shown in FIG. 3, and the same elements are denoted by the same reference numerals and description thereof is omitted.

電子機器70は、例えばサーバ等であり、その内部にはCPU71、HDD(Hard Disc Drive)72、及び電源装置73等の比較的発熱量が多い電子部品が内蔵されている。また、電子機器70の内部には、これらの電子部品を冷却するための冷却配管74が設けられている。電子機器70内の電子部品は、冷却配管74内を流れる加熱流体6によって冷却される。電子機器70を冷却することで温度上昇した加熱流体6は、流体切替器61を介して吸着式ヒートポンプ40に送られる。   The electronic device 70 is, for example, a server or the like, and electronic components such as a CPU 71, an HDD (Hard Disc Drive) 72, and a power supply device 73 that have a relatively large amount of heat generation are incorporated therein. A cooling pipe 74 for cooling these electronic components is provided inside the electronic device 70. Electronic components in the electronic device 70 are cooled by the heating fluid 6 flowing in the cooling pipe 74. The heated fluid 6 whose temperature has been increased by cooling the electronic device 70 is sent to the adsorption heat pump 40 via the fluid switch 61.

一方、冷却タワー62は、外気との熱交換により吸着式ヒートポンプ40からの冷却流体9及び冷却水15を冷却する。   On the other hand, the cooling tower 62 cools the cooling fluid 9 and the cooling water 15 from the adsorption heat pump 40 by heat exchange with the outside air.

流体切替器61は、内蔵した制御装置の制御の下で、第1の吸着器1及び第2の吸着器2に供給する加熱流体6及び冷却流体9を一定時間(例えば10分)毎に切り替える。第1の吸着器1及び第2の吸着器2では、吸着工程及び脱着工程が交互に行われる。   The fluid switch 61 switches the heating fluid 6 and the cooling fluid 9 supplied to the first adsorber 1 and the second adsorber 2 at regular intervals (for example, 10 minutes) under the control of the built-in control device. . In the first adsorber 1 and the second adsorber 2, the adsorption process and the desorption process are alternately performed.

凝縮器4には冷却タワー62から冷却水15が供給され、脱着工程で蒸発した冷媒の蒸気が凝縮される。凝縮器4で凝縮された冷媒は、冷媒回収配管16を通じて蒸発室3に戻される。   Cooling water 15 is supplied to the condenser 4 from the cooling tower 62, and the refrigerant vapor evaporated in the desorption process is condensed. The refrigerant condensed in the condenser 4 is returned to the evaporation chamber 3 through the refrigerant recovery pipe 16.

蒸発器3では、連続的に冷媒が蒸発して冷熱が発生し、この冷熱が配管64を通る循環流体5を介して空調機63に供給される。空調機63は、この冷熱を利用して電子機器70が設置されたサーバルーム内の冷房を行う。   In the evaporator 3, the refrigerant continuously evaporates to generate cold heat, and this cold heat is supplied to the air conditioner 63 through the circulating fluid 5 passing through the pipe 64. The air conditioner 63 cools the inside of the server room in which the electronic device 70 is installed using this cold energy.

上記のような情報処理システム80では、吸着式ヒートポンプ40を用いるので、電子機器70の冷却とその廃熱を利用した冷房を長時間にわたって安定して行うことができる。   In the information processing system 80 as described above, since the adsorption heat pump 40 is used, cooling of the electronic device 70 and cooling using the waste heat can be stably performed for a long time.

以上の諸実施形態に関し、更に以下の付記を開示する。   The following additional notes are disclosed with respect to the above embodiments.

(付記1)冷媒を蒸発させる蒸発器と、
前記蒸発器と接続され、前記蒸発器で蒸発した冷媒の吸着と吸着した冷媒の脱着とを交互に切り替えて行う吸着器と、
前記吸着器に接続され、前記吸着器から脱着された冷媒を凝縮させる凝縮器と、を備え、
前記蒸発器と吸着器との間及び前記吸着器と凝縮器との間の少なくとも一方にバルブが配設され、
前記バルブは、貫通孔が形成された台座部と前記台座部上に設置されたシート状の弁体 とを含み、前記貫通孔の周囲の前記台座部の表面には、凹凸が形成されていること
を特徴とする吸着式ヒートポンプ。
(Appendix 1) an evaporator for evaporating the refrigerant;
An adsorber that is connected to the evaporator and alternately switches between adsorption of the refrigerant evaporated by the evaporator and desorption of the adsorbed refrigerant;
A condenser connected to the adsorber and condensing the refrigerant desorbed from the adsorber, and
A valve is disposed between at least one of the evaporator and the adsorber and between the adsorber and the condenser;
The valve includes a pedestal portion in which a through hole is formed and a sheet-like valve body installed on the pedestal portion, and an unevenness is formed on a surface of the pedestal portion around the through hole. This is an adsorption heat pump.

(付記2)前記貫通孔の側壁には、前記台座部の厚さ方向に延在する溝が形成されていることを特徴とする付記1に記載の吸着式ヒートポンプ。   (Additional remark 2) The adsorption | suction heat pump of Additional remark 1 characterized by the groove | channel extended in the thickness direction of the said base part being formed in the side wall of the said through-hole.

(付記3)前記貫通孔の前記弁体側の端部が面取りされていることを特徴とする付記1又は付記2に記載の吸着式ヒートポンプ。   (Appendix 3) The adsorption heat pump according to appendix 1 or appendix 2, wherein the end of the through hole on the valve body side is chamfered.

(付記4)前記凹凸は、前記貫通孔の周囲に形成された環状の凹部と、該凹部と接続されて前記台座部の周縁部にまで延在する溝とを備えることを特徴とする付記1乃至付記3の何れか1項に記載の吸着式ヒートポンプ。   (Additional remark 4) The said unevenness | corrugation is equipped with the cyclic | annular recessed part formed in the circumference | surroundings of the said through-hole, and the groove | channel extended to the peripheral part of the said base part connected with this recessed part, The additional note 1 characterized by the above-mentioned. The adsorption heat pump of any one of thru | or appendix 3.

(付記5)前記冷媒は水であり、前記凹凸のうちの凹部が親水性の材料で覆われていることを特徴とする付記1乃至付記4の何れか1項に記載の吸着式ヒートポンプ。   (Additional remark 5) The said refrigerant | coolant is water, The recessed part of the said unevenness | corrugation is covered with the hydrophilic material, The adsorption heat pump of any one of Additional remark 1 thru | or Additional remark 4 characterized by the above-mentioned.

(付記6)前記台座部の前記弁体と接触する部分が撥水性の材料で覆われていることを特徴とする付記5に記載の吸着式ヒートポンプ。   (Additional remark 6) The part which contacts the said valve body of the said base part is covered with the water-repellent material, The adsorption heat pump of Additional remark 5 characterized by the above-mentioned.

(付記7)前記台座部の貫通孔は円柱状に形成され、前記凹凸は前記貫通孔の周囲に同心円状に形成された凹部からなることを特徴とする付記1乃至6の何れか1項に記載の吸着式ヒートポンプ。   (Appendix 7) In any one of appendices 1 to 6, wherein the through hole of the pedestal portion is formed in a columnar shape, and the concave and convex portions are concave portions formed concentrically around the through hole. The adsorption heat pump described.

(付記8)前記弁体の前記台座部側の面が親水性の材料で覆われていることを特徴とする付記5又は付記6に記載の吸着式ヒートポンプ。   (Additional remark 8) The adsorption type heat pump of Additional remark 5 or Additional remark 6 characterized by the surface of the said base part side of the said valve body being covered with the hydrophilic material.

(付記9)冷媒を蒸発させる蒸発器と、前記蒸発器と接続され、前記蒸発器で蒸発した冷媒の吸着と吸着した冷媒の脱着とを交互に切り替えて行う吸着器と、前記吸着器に接続され、前記吸着器から脱着された冷媒を凝縮させる凝縮器と、を備え、前記蒸発器と吸着器との間及び前記吸着器と凝縮器との間の少なくとも一方にバルブが配設され、前記バルブは、貫通孔が形成された台座部と前記台座部上に設置されたシート状の弁体とを含み、前記貫通孔の周囲の前記台座部の表面には、凹凸が形成された吸着式ヒートポンプと、
前記吸着式ヒートポンプによって冷却される電子機器と、
を有することを特徴とする情報処理システム。
(Supplementary note 9) An evaporator for evaporating a refrigerant, an adsorber connected to the evaporator, and alternately switching between adsorption of the refrigerant evaporated by the evaporator and desorption of the adsorbed refrigerant, and connection to the adsorber A condenser for condensing the refrigerant desorbed from the adsorber, and a valve is disposed between at least one of the evaporator and the adsorber and between the adsorber and the condenser, The valve includes a pedestal portion in which a through hole is formed and a sheet-like valve body installed on the pedestal portion, and a surface of the pedestal portion around the through hole has an unevenness formed on the surface. A heat pump,
Electronic equipment cooled by the adsorption heat pump;
An information processing system comprising:

(付記10)前記吸着器に供給する冷却流体を冷却する冷却タワーと、
前記電子機器により加熱された加熱流体と前記冷却タワーで冷却された冷却流体とを一定時間ごとに切り替えながら前記吸着器に供給する流体切替器と、
前記蒸発器で発生した冷熱で冷房を行う空調機と、
を備えたことを特徴とする付記9に記載の情報処理システム。
(Supplementary Note 10) A cooling tower for cooling the cooling fluid supplied to the adsorber;
A fluid switch that supplies the adsorber while switching the heating fluid heated by the electronic device and the cooling fluid cooled by the cooling tower at regular intervals;
An air conditioner for cooling with the cold generated in the evaporator;
The information processing system according to claim 9, further comprising:

1…第1の吸着器、2…第2の吸着器、3…蒸発器、4…凝縮器、5…循環流体、6…加熱流体、7…内部配管、8…冷却配管、9…冷却流体、10…循環配管、11、21、50…バルブ、15…冷却水、16…冷媒回収配管、17…吸着剤、18…冷媒、30、40…吸着式ヒートポンプ、31、41、51…台座部、31a、41a、51a…貫通孔、32、42…弁体、33…隔壁、41b、51b…凹部、46…マスク、47…親水性材料、48…撥水性材料、51c、51d…溝、51e…傾斜面。   DESCRIPTION OF SYMBOLS 1 ... 1st adsorber, 2 ... 2nd adsorber, 3 ... Evaporator, 4 ... Condenser, 5 ... Circulating fluid, 6 ... Heating fluid, 7 ... Internal piping, 8 ... Cooling piping, 9 ... Cooling fluid DESCRIPTION OF SYMBOLS 10 ... Circulation piping, 11, 21, 50 ... Valve, 15 ... Cooling water, 16 ... Refrigerant recovery piping, 17 ... Adsorbent, 18 ... Refrigerant, 30, 40 ... Adsorption heat pump, 31, 41, 51 ... Pedestal part 31a, 41a, 51a ... through-hole, 32, 42 ... valve body, 33 ... partition wall, 41b, 51b ... recess, 46 ... mask, 47 ... hydrophilic material, 48 ... water repellent material, 51c, 51d ... groove, 51e ... Inclined surface.

Claims (5)

冷媒を蒸発させる蒸発器と、
前記蒸発器と接続され、前記蒸発器で蒸発した冷媒の吸着と吸着した冷媒の脱着とを交互に切り替えて行う吸着器と、
前記吸着器に接続され、前記吸着器から脱着された冷媒を凝縮させる凝縮器と、を備え、
前記蒸発器と吸着器との間及び前記吸着器と凝縮器との間の少なくとも一方にバルブが配設され、
前記バルブは、貫通孔が形成された台座部と前記台座部上に設置されたシート状の弁体 とを含み、前記貫通孔の周囲の前記台座部の表面には、凹凸が形成されていること
を特徴とする吸着式ヒートポンプ。
An evaporator for evaporating the refrigerant;
An adsorber that is connected to the evaporator and alternately switches between adsorption of the refrigerant evaporated by the evaporator and desorption of the adsorbed refrigerant;
A condenser connected to the adsorber and condensing the refrigerant desorbed from the adsorber, and
A valve is disposed between at least one of the evaporator and the adsorber and between the adsorber and the condenser;
The valve includes a pedestal portion in which a through hole is formed and a sheet-like valve body installed on the pedestal portion, and an unevenness is formed on a surface of the pedestal portion around the through hole. This is an adsorption heat pump.
前記貫通孔の側壁には、前記台座部の厚さ方向に延在する溝が形成されていることを特徴とする請求項1に記載の吸着式ヒートポンプ。   The adsorption heat pump according to claim 1, wherein a groove extending in a thickness direction of the pedestal portion is formed in a side wall of the through hole. 前記貫通孔の前記弁体側の端部が面取りされていることを特徴とする請求項1又は請求項2に記載の吸着式ヒートポンプ。   The adsorption heat pump according to claim 1 or 2, wherein an end of the through hole on the valve body side is chamfered. 前記凹凸は、前記貫通孔の周囲に形成された環状の凹部と、該凹部と接続されて前記台座部の周縁部にまで延在する溝とを備えることを特徴とする請求項1乃至請求項3の何れか1項に記載の吸着式ヒートポンプ。   The said unevenness | corrugation is equipped with the cyclic | annular recessed part formed in the circumference | surroundings of the said through-hole, and the groove | channel extended to the peripheral part of the said base part connected with this recessed part, The Claim 1 thru | or Claim characterized by the above-mentioned. 4. The adsorption heat pump according to any one of 3 above. 冷媒を蒸発させる蒸発器と、前記蒸発器と接続され、前記蒸発器で蒸発した冷媒の吸着と吸着した冷媒の脱着とを交互に切り替えて行う吸着器と、前記吸着器に接続され、前記吸着器から脱着された冷媒を凝縮させる凝縮器と、を備え、前記蒸発器と吸着器との間及び前記吸着器と凝縮器との間の少なくとも一方にバルブが配設され、前記バルブは、貫通孔が形成された台座部と前記台座部上に設置されたシート状の弁体とを含み、前記貫通孔の周囲の前記台座部の表面には、凹凸が形成された吸着式ヒートポンプと、
前記吸着式ヒートポンプによって冷却される電子機器と、
を有することを特徴とする情報処理システム。
An evaporator that evaporates the refrigerant; an adsorber that is connected to the evaporator and alternately switches between adsorption of the refrigerant evaporated by the evaporator and desorption of the adsorbed refrigerant; and is connected to the adsorber and the adsorption A condenser for condensing the refrigerant desorbed from the condenser, and a valve is disposed between at least one of the evaporator and the adsorber and between the adsorber and the condenser. An adsorption heat pump in which irregularities are formed on the surface of the pedestal portion around the through hole, including a pedestal portion in which a hole is formed and a sheet-like valve body installed on the pedestal portion;
Electronic equipment cooled by the adsorption heat pump;
An information processing system comprising:
JP2011145254A 2011-06-30 2011-06-30 Adsorption heat pump and information processing system using the same Active JP5747683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011145254A JP5747683B2 (en) 2011-06-30 2011-06-30 Adsorption heat pump and information processing system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011145254A JP5747683B2 (en) 2011-06-30 2011-06-30 Adsorption heat pump and information processing system using the same

Publications (2)

Publication Number Publication Date
JP2013011417A true JP2013011417A (en) 2013-01-17
JP5747683B2 JP5747683B2 (en) 2015-07-15

Family

ID=47685429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011145254A Active JP5747683B2 (en) 2011-06-30 2011-06-30 Adsorption heat pump and information processing system using the same

Country Status (1)

Country Link
JP (1) JP5747683B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200050065A (en) * 2018-10-31 2020-05-11 한국생산기술연구원 Adsorption type refrigerant device having damper-shaped valve to ensure a channel for refrigerant vapor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09152221A (en) * 1995-11-29 1997-06-10 Denso Corp Adsorption type refrigerator
JPH1047497A (en) * 1996-07-31 1998-02-20 Kubota Corp Butterfly valve
JP2005042695A (en) * 2003-07-07 2005-02-17 Calsonic Kansei Corp Valve structure of compressor
JP2011064352A (en) * 2009-09-15 2011-03-31 Fujitsu Ltd Heat recovery device and cooling system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09152221A (en) * 1995-11-29 1997-06-10 Denso Corp Adsorption type refrigerator
JPH1047497A (en) * 1996-07-31 1998-02-20 Kubota Corp Butterfly valve
JP2005042695A (en) * 2003-07-07 2005-02-17 Calsonic Kansei Corp Valve structure of compressor
JP2011064352A (en) * 2009-09-15 2011-03-31 Fujitsu Ltd Heat recovery device and cooling system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200050065A (en) * 2018-10-31 2020-05-11 한국생산기술연구원 Adsorption type refrigerant device having damper-shaped valve to ensure a channel for refrigerant vapor
KR102122430B1 (en) * 2018-10-31 2020-06-15 한국생산기술연구원 Adsorption type refrigerant device having damper-shaped valve to ensure a channel for refrigerant vapor

Also Published As

Publication number Publication date
JP5747683B2 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
US6349760B1 (en) Method and apparatus for improving the thermal performance of heat sinks
KR102251473B1 (en) Air-to-air heat exchanger bypass for wet cooling tower apparatus and method
JP5599565B2 (en) System and method for managing the water content of a fluid
JP5725201B2 (en) Adsorption heat pump system and drive method of adsorption heat pump
KR20190082523A (en) Cooling device using thermo-electric module
US20150181756A1 (en) Cooling device, electric automobile and electronic device equipped with said cooling device
US11397055B2 (en) Two-phase thermodynamic system having a porous microstructure sheet with varying surface energy to optimize utilization of a working fluid
JP2016540180A (en) Method and system for a turbulent corrosion resistant heat exchanger
JP2008538602A (en) Apparatus and method for preventing icing, and manufactured article that prevents icing
KR20050032888A (en) Flat plate heat transfer device
US7394655B1 (en) Absorptive cooling for electronic devices
JP2009228999A (en) Refrigerating cycle device, refrigerating-air conditioning device, and hot water supply device
KR101755853B1 (en) M0isture decomposing apparatus for headlamp
JP5747683B2 (en) Adsorption heat pump and information processing system using the same
US10420252B2 (en) Electronic apparatus
US20070138662A1 (en) Closed evaporative cooling tower
JP6187232B2 (en) Adsorption heat pump and driving method thereof
JP6083123B2 (en) Adsorption heat pump system and drive method of adsorption heat pump
JP2004031783A (en) Cooling device, base for evaporator, base for capacitor, method for manufacturing electronic equipment and cooling device
CN110854091A (en) Anti-condensation device based on liquid cooling plate soaking
JP5747702B2 (en) Adsorption heat pump and information processing system
JP2008045803A (en) Energy-saving air conditioning system
WO2018072315A1 (en) Internal heat exchange component of absorption refrigeration unit, and absorption refrigeration unit and matrix
TWI314208B (en) Micro droplet cooling apparatus
JP2014528567A (en) Indoor cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150427

R150 Certificate of patent or registration of utility model

Ref document number: 5747683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150