JP2013010988A - Method for regenerating waste liquor containing tetraalkylammonium hydroxide - Google Patents
Method for regenerating waste liquor containing tetraalkylammonium hydroxide Download PDFInfo
- Publication number
- JP2013010988A JP2013010988A JP2011143886A JP2011143886A JP2013010988A JP 2013010988 A JP2013010988 A JP 2013010988A JP 2011143886 A JP2011143886 A JP 2011143886A JP 2011143886 A JP2011143886 A JP 2011143886A JP 2013010988 A JP2013010988 A JP 2013010988A
- Authority
- JP
- Japan
- Prior art keywords
- taah
- liquid
- anode
- circulating
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000005622 tetraalkylammonium hydroxides Chemical class 0.000 title claims abstract description 207
- 239000002699 waste material Substances 0.000 title claims abstract description 139
- 238000000034 method Methods 0.000 title claims abstract description 71
- 230000001172 regenerating effect Effects 0.000 title claims abstract description 8
- 238000006386 neutralization reaction Methods 0.000 claims abstract description 139
- 239000007864 aqueous solution Substances 0.000 claims abstract description 103
- 239000000243 solution Substances 0.000 claims abstract description 100
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 79
- 230000003472 neutralizing effect Effects 0.000 claims abstract description 16
- 239000007788 liquid Substances 0.000 claims description 339
- 238000011282 treatment Methods 0.000 claims description 153
- 239000012535 impurity Substances 0.000 claims description 76
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 74
- 239000001569 carbon dioxide Substances 0.000 claims description 37
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 37
- 239000012528 membrane Substances 0.000 claims description 33
- 229920002120 photoresistant polymer Polymers 0.000 claims description 28
- 238000005341 cation exchange Methods 0.000 claims description 25
- 239000012530 fluid Substances 0.000 claims description 20
- 238000001914 filtration Methods 0.000 claims description 18
- 238000011069 regeneration method Methods 0.000 claims description 14
- 230000008929 regeneration Effects 0.000 claims description 13
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 8
- 125000005207 tetraalkylammonium group Chemical group 0.000 claims description 6
- 238000004064 recycling Methods 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 2
- 238000003672 processing method Methods 0.000 claims description 2
- 238000000691 measurement method Methods 0.000 abstract description 9
- 125000002091 cationic group Chemical group 0.000 abstract 1
- 239000003014 ion exchange membrane Substances 0.000 abstract 1
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 154
- WJZPIORVERXPPR-UHFFFAOYSA-L tetramethylazanium;carbonate Chemical compound [O-]C([O-])=O.C[N+](C)(C)C.C[N+](C)(C)C WJZPIORVERXPPR-UHFFFAOYSA-L 0.000 description 32
- 238000011084 recovery Methods 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 238000011161 development Methods 0.000 description 10
- 230000018109 developmental process Effects 0.000 description 10
- 238000001704 evaporation Methods 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 9
- 238000011109 contamination Methods 0.000 description 9
- 230000008020 evaporation Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000012546 transfer Methods 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 238000007664 blowing Methods 0.000 description 4
- 239000003729 cation exchange resin Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000000909 electrodialysis Methods 0.000 description 4
- 238000001728 nano-filtration Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000009295 crossflow filtration Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- 238000005374 membrane filtration Methods 0.000 description 2
- 238000001471 micro-filtration Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- -1 tetraalkylammonium ions Chemical class 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- RJFMDYQCCOOZHJ-UHFFFAOYSA-L 2-hydroxyethyl(trimethyl)azanium dihydroxide Chemical compound [OH-].[OH-].C[N+](C)(C)CCO.C[N+](C)(C)CCO RJFMDYQCCOOZHJ-UHFFFAOYSA-L 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000010812 mixed waste Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Images
Landscapes
- Photosensitive Polymer And Photoresist Processing (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
この発明は、フォトレジスト現像液やアルカリ洗浄液として水酸化テトラアルキルアンモニウム水溶液を用いる半導体装置、液晶表示装置、プリント基板等の電子部品の製造工程で発生し、水酸化テトラアルキルアンモニウムと共にフォトレジストや界面活性剤等の有機不純物を含む水酸化テトラアルキルアンモニウム含有廃液の再生処理方法に関する。 This invention occurs in the manufacturing process of electronic components such as semiconductor devices, liquid crystal display devices, printed circuit boards, etc. using a tetraalkylammonium hydroxide aqueous solution as a photoresist developer or an alkaline cleaning solution. The present invention relates to a method for recycling a tetraalkylammonium hydroxide-containing waste liquid containing organic impurities such as an activator.
半導体装置、液晶表示装置、プリント基板等の電子部品の製造工程では、近年の電子技術の発展に伴って、フォトエッチング後の現像工程で使用されるフォトレジスト現像液や、シリコンウエハや液晶ガラス基板の洗浄工程で使用されるアルカリ洗浄液の使用量が増大し、これに伴ってこれらの製造工程から排出されるフォトレジスト現像廃液やアルカリ洗浄廃液等のアルカリ廃液の排出量も急増している。また、このような電子部品の製造工程で使用されるフォトレジスト現像液やアルカリ洗浄液については、半導体装置における超高集積度化や、プリント基板や液晶表示装置等におけるパターン微細化により、極めて高純度であること、特に金属不純物に関して高純度であることが要求されており、この要求に応えるために、例えば水酸化テトラメチルアンモニウム(TMAH)や水酸化β-ヒドロキシエチルトリメチルアンモニウム(コリン)等の水酸化テトラアルキルアンモニウム(TAAH)の水溶液が主として用いられている。 In the manufacturing process of electronic parts such as semiconductor devices, liquid crystal display devices, printed circuit boards, etc., with the development of electronic technology in recent years, photoresist developers used in the development process after photoetching, silicon wafers and liquid crystal glass substrates The amount of alkaline cleaning liquid used in this cleaning process has increased, and along with this, the discharge amount of alkaline waste liquid such as photoresist developing waste liquid and alkaline cleaning waste liquid discharged from these manufacturing processes has also increased rapidly. In addition, the photoresist developer and alkali cleaning solution used in the manufacturing process of such electronic components are extremely high in purity due to ultra-high integration in semiconductor devices and pattern miniaturization in printed circuit boards and liquid crystal display devices. In particular, in order to meet this requirement, water such as tetramethylammonium hydroxide (TMAH) or β-hydroxyethyltrimethylammonium hydroxide (choline) is required. An aqueous solution of tetraalkylammonium oxide (TAAH) is mainly used.
そして、これらの電子部品の製造工程から排出されるアルカリ廃液については、フォトレジスト現像液やアルカリ洗浄液に由来するTAAHが含まれているほか、例えばフォトレジスト現像廃液にはフォトレジストや界面活性剤等に由来する有機不純物が含まれている等、現像工程や洗浄工程からの種々の有機不純物が含まれており、これをそのまま廃棄処理することができない。 And about the alkaline waste liquid discharged | emitted from the manufacturing process of these electronic components, besides containing TAAH derived from a photoresist developing solution or an alkaline cleaning liquid, for example, a photoresist, a surfactant, etc. Various organic impurities from the development process and the washing process are included, such as organic impurities derived from the above, and cannot be disposed of as they are.
そこで、従来においては、中和処理後に大規模な設備で活性汚泥処理をして放流する方法、あるいは、蒸発法、逆浸透膜法等の手段で濃縮し焼却する等の廃棄処分をする方法等が行われており、また、テトラアルキルアンモニウムイオン(TAA+;TAAイオン)を陽イオン交換樹脂に吸着させて除去する方法も提案されている。 Therefore, conventionally, activated sludge treatment with a large-scale facility after neutralization treatment and release, or disposal such as concentration and incineration by means of evaporation method, reverse osmosis membrane method, etc. In addition, a method for removing tetraalkylammonium ions (TAA + ; TAA ions) by adsorbing them on a cation exchange resin has been proposed.
また、このようなフォトレジスト現像廃液やアルカリ洗浄廃液等のTAAイオン(TAA+)を含むアルカリ廃液(すなわち、TAAH含有廃液)中に含まれるTAAHは、それ自体が有機アルカリとして極めて有用な物質であることから、これを回収して再利用することも多々試みられている。例えば、フォトレジスト現像廃液から高純度のTAAHを回収して再利用する方法としては、特許文献1(特開平07-328,642号公報)には電気透析による方法が、特許文献2(特開平11-142,380号公報)にはクロマト分離による方法が、更に、特許文献3(特開2002-361,249号公報)にはナノフィルトレーション膜(NF膜)を用いる方法が、更にまた、特許文献4(特開2003-190,949号公報)には陽イオン交換樹脂を用いる方法が、それぞれ開示されている。 In addition, TAAH contained in an alkaline waste solution containing TAA ions (TAA + ) such as a photoresist development waste solution and an alkaline cleaning waste solution (that is, a TAAH-containing waste solution) itself is an extremely useful substance as an organic alkali. For this reason, many attempts have been made to collect and reuse it. For example, as a method of recovering and reusing high-purity TAAH from a photoresist developing waste solution, Patent Document 1 (Japanese Patent Laid-Open No. 07-328,642) discloses a method by electrodialysis, and Patent Document 2 (Japanese Patent Laid-Open No. 11-116). 142,380) is a method using chromatographic separation, and Patent Document 3 (Japanese Patent Laid-Open No. 2002-361,249) is a method using a nanofiltration membrane (NF film). JP 2003-190,949 A) discloses a method using a cation exchange resin.
また、上記の方法とは別に、フォトレジスト現像液等として使用された後の有機不純物含有のTAAH含有廃液を塩酸や炭酸ガス等と接触させてこのTAAH含有廃液中のTAAHを中和し、得られたTAAHの塩酸塩や炭酸塩を含む中和処理液を、陽イオン交換膜で区画された陽極室及び陰極室を備えた電解槽の陽極室側に導入し、このTAAHの塩を電気分解してTAAHを濃縮すると共に精製し、高純度の水酸化テトラアルキルアンモニウム水溶液(TAAH水溶液)として回収し再利用する、いわゆる「電解法」についても、幾つかの提案がなされている。 Further, separately from the above method, the TAAH-containing waste liquid containing organic impurities after being used as a photoresist developer or the like is brought into contact with hydrochloric acid or carbon dioxide gas to neutralize TAAH in the TAAH-containing waste liquid. The neutralized solution containing TAAH hydrochloride and carbonate is introduced into the anode chamber side of the electrolytic cell having an anode chamber and a cathode chamber partitioned by a cation exchange membrane, and the salt of TAAH is electrolyzed. Several proposals have also been made on the so-called “electrolysis method” in which TAAH is concentrated and purified, recovered as a high-purity tetraalkylammonium hydroxide aqueous solution (TAAH aqueous solution), and reused.
例えば、特許文献5(特開平04-228,587号公報)には、現像廃液(有機不純物含有のTAAH含有廃液)を濃縮し、次いで得られた濃縮後の現像廃液を脱COD処理してCOD成分を除去し、この脱COD処理後の現像廃液を陽イオン交換膜で区画された電解槽の陽極室に導入して電解処理し、この電解槽の陰極室から高純度のTAAH水溶液を回収することが開示されており、また、特許文献6(特許第3,110,513号公報)には電解処理を多段で行うことが提案されている。 For example, in Patent Document 5 (Japanese Patent Laid-Open No. 04-228,587), a developing waste liquid (TAAH-containing waste liquid containing organic impurities) is concentrated, and then the resulting concentrated developing waste liquid is de-COD treated to remove COD components. It is possible to remove the developed COD-treated developer waste solution into the anode chamber of the electrolytic cell partitioned with a cation exchange membrane and perform electrolytic treatment, and recover a high-purity TAAH aqueous solution from the cathode chamber of this electrolytic cell. In addition, Patent Document 6 (Patent No. 3,110,513) proposes performing electrolytic treatment in multiple stages.
また、特許文献7(特許第3,216,998号公報)には、有機不純物含有のTAAH含有廃液を濃縮し、次いで中和処理して不溶化不純物を除去した後に、活性炭処理して有機不純物を吸着除去し、更に陽イオン交換膜で区画された陽極室及び陰極室を備えた電解槽を用いて電気透析を行い、高純度のTAAH水溶液を回収することが開示されており、更に、特許文献8(WO 2006/059760 A1)には、所定の金属不純物量を超える現像廃液(有機不純物含有のTAAH含有廃液)を未使用の現像液等で希釈して所定の金属不純物量以下に調整した後、中和・分離処理してフォトレジストを分離除去し、次いで陽イオン交換膜で区画された陽極室及び陰極室を備えた電解槽を用いて電解処理し、TAAH水溶液を再生することが開示されており、更にまた、特許文献9(特許第3,543,915号公報)及び特許文献10(特許第4,085,987号公報)には、電気透析及び/又は電解と陽イオン交換樹脂や陰イオン交換樹脂を用いる不純物の吸着除去とを組み合わせてフォトレジスト現像廃液(有機不純物含有のTAAH含有廃液)を再生処理する方法が開示されている。 In Patent Document 7 (Patent No. 3,216,998), TAAH-containing waste liquid containing organic impurities is concentrated, then neutralized to remove insolubilized impurities, and then treated with activated carbon to adsorb and remove organic impurities. Furthermore, it is disclosed that electrodialysis is performed using an electrolytic cell having an anode chamber and a cathode chamber partitioned by a cation exchange membrane, and a high-purity TAAH aqueous solution is recovered. Patent Document 8 (WO 2006) / 059760 A1) includes a developer waste solution (TAAH-containing waste solution containing organic impurities) that exceeds the specified amount of metal impurities, diluted with an unused developer solution, etc. It is disclosed that the photoresist is separated and removed by separation treatment, and then electrolytic treatment is performed using an electrolytic cell having an anode chamber and a cathode chamber partitioned by a cation exchange membrane to regenerate the TAAH aqueous solution. Patent Document 9 (Patent No. 3,543,915) Publication No. 4) and Patent Document 10 (Patent No. 4,085,987) are combined with electrodialysis and / or electrolysis and adsorption / removal of impurities using a cation exchange resin or anion exchange resin to produce a photoresist developing waste solution (containing organic impurities). (TAAH-containing waste liquid) is reclaimed.
これらの電解法により有機不純物含有のTAAH含有廃液から高純度のTAAH水溶液を回収する方法は、電解槽の陽イオン交換膜を介して陰極室側に濃縮されるTAAイオンをTAAH水溶液として回収するものであり、TAAH含有廃液中に含まれているフォトレジストや界面活性剤等に由来する有機不純物及び重金属イオンを効率的に分離除去することが可能であり、また、連続操業も可能であるほか、電気透析と比較して電解膜が1枚で対応可能であって構造が単純であり、更に、従来のTAAHの電解製造プロセスと同様の技術及び設備で容易に対応可能であることから、他の方法に比べて有効な方法である。 The method of recovering high-purity TAAH aqueous solution from TAAH-containing waste liquid containing organic impurities by these electrolysis methods is to recover TAA ions concentrated on the cathode chamber side through the cation exchange membrane of the electrolytic cell as TAAH aqueous solution. It is possible to efficiently separate and remove organic impurities and heavy metal ions derived from photoresists and surfactants contained in TAAH-containing waste liquid, and continuous operation is also possible. Compared with electrodialysis, it can be handled with a single electrolytic membrane, has a simple structure, and can be easily handled with the same technology and equipment as the conventional TAAH electrolytic manufacturing process. This method is more effective than the method.
しかるに、この電解法においては、電解処理中に、陽極室内の陽電極や、陽極室と陰極室とを区画する陽イオン交換膜に、TAAH含有廃液中の有機不純物由来のタール状物質が付着し、次第に堆積して陽極室内の陽電極や陽イオン交換膜の表面を覆い、電解処理の際の電解効率を著しく損なうほか、高価な陽電極や陽イオン交換膜を損傷する原因になる。 However, in this electrolytic method, tar-like substances derived from organic impurities in the TAAH-containing waste liquid adhere to the positive electrode in the anode chamber and the cation exchange membrane that partitions the anode chamber and the cathode chamber during the electrolytic treatment. In addition to gradually depositing and covering the surface of the positive electrode or cation exchange membrane in the anode chamber, the electrolytic efficiency during the electrolytic treatment is remarkably impaired, and the expensive positive electrode or cation exchange membrane is damaged.
そこで、従来おいては、TAAH含有廃液を塩酸や炭酸ガス等で中和し、得られた中和処理液の電解処理に先駆けて、この中和処理液中に発生した不溶化不純物を加及的に分離除去することが行われている。 Therefore, conventionally, the TAAH-containing waste liquid is neutralized with hydrochloric acid, carbon dioxide gas, etc., and the insolubilized impurities generated in the neutralized liquid are added prior to the electrolytic treatment of the obtained neutralized liquid. Separation and removal are performed.
しかしながら、このように不溶化不純物を分離除去した後に中和処理液の電解処理を行った場合においても、実験室的な規模の処理操作では上述したタール状物質付着の問題はあまり問題にならないが、工業的な実機規模の処理操作においては、依然としてこのタール状物質付着の問題が発生し、電解効率の低下や陽電極及び陽イオン交換膜の損傷という問題が発生する。このため、工業的実機規模でのTAAH含有廃液の電解処理においては、たとえ事前に中和処理液中の不溶化不純物の分離除去を行ったとしても、陽極室中で電解が進行するにつれてTAAH含有廃液中の有機不純物が濃縮され、タール状物質が陽電極や電解膜等に付着することは避けられず、電解膜の損傷や陰極室のTAAH水溶液中への有機不純物の漏洩等の発生を防ぐために、陽極室内液の全交換が必要になり、また、陽電極や陽イオン交換膜の交換も必要になる等、コストのかかる電解槽の維持管理が不可避である。 However, even when the electrolytic treatment of the neutralization treatment liquid is performed after separating and removing the insolubilized impurities in this way, the above-described problem of tar-like substance adhesion does not become a serious problem in laboratory-scale treatment operations. In industrial scale processing operations, this problem of tar-like substance adhesion still occurs, resulting in problems such as a reduction in electrolytic efficiency and damage of the positive electrode and cation exchange membrane. Therefore, in the electrolytic treatment of TAAH-containing waste liquid on an industrial scale, even if the insolubilized impurities in the neutralization treatment liquid are separated and removed in advance, the TAAH-containing waste liquid as the electrolysis proceeds in the anode chamber In order to prevent the occurrence of organic impurity leakage and leakage of organic impurities into the TAAH aqueous solution in the cathode chamber, it is inevitable that the organic impurities in the inside are concentrated and the tar-like substance adheres to the positive electrode or the electrolytic membrane. In addition, it is inevitable to maintain and manage the electrolytic cell in a costly manner, such as the total exchange of the anode chamber liquid and the exchange of the positive electrode and the cation exchange membrane.
しかも、電解処理の前に行われるTAAH含有廃液の中和処理液に対する不溶化不純物の分離除去においては、通常、精密ろ過(MF)、限外ろ過(UF)、ナノろ過(NF)、逆浸透法(RO)等の膜ろ過法によるろ過操作が行われるが、これらのろ過操作においては、TAAH含有廃液中の有機不純物(フォトレジストや界面活性剤等)に由来する中和処理液中の不溶化不純物により、ろ過膜が容易に汚染されてその目詰りが発生し、電解槽で円滑な電解処理を行うためにはろ過膜の頻繁な交換が必要になり、しかも、これらのろ過膜は一般に高価なものであつて、ろ過膜交換にコストがかかり過ぎるという問題があり、このために、電解法がTAAH含有廃液の再生処理方法として有効な方法であるにもかかわらず、必ずしも満足できる程度に普及していないのが実情である。しかも、このような電解槽でのタール状物質付着の問題や電解処理前の中和処理液に対する不溶化不純物の分離除去の際の問題は、TAAH含有廃液がフォトレジスト由来の有機不純物を含むフォトレジスト現像廃液においてより顕著に発現する。 In addition, the separation and removal of insolubilized impurities from the neutralized solution of TAAH-containing waste liquid before electrolytic treatment is usually performed by microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis method. (RO) and other membrane filtration methods are used. In these filtration operations, insolubilized impurities in the neutralized liquid derived from organic impurities (photoresist, surfactant, etc.) in the TAAH-containing waste liquid As a result, the filter membrane is easily contaminated and clogged, and it is necessary to frequently replace the filter membrane in order to carry out smooth electrolytic treatment in the electrolytic cell, and these filter membranes are generally expensive. Therefore, there is a problem that the replacement of the filter membrane is too costly.For this reason, although the electrolysis method is an effective method for regenerating the TAAH-containing waste liquid, it has not necessarily spread to a satisfactory level. Not Is information. Moreover, the problem of such tar-like substance adhesion in the electrolytic bath and the problem of separating and removing insolubilized impurities from the neutralizing solution before the electrolytic treatment are the photoresists in which the TAAH-containing waste liquid contains organic impurities derived from the photoresist. It appears more remarkably in the developing waste liquid.
更に、本発明者らによる幾多の検討によると、TAAH含有廃液の中和処理を行って得られた中和処理液について、上述した膜ろ過法によるろ過操作を行って不溶化不純物を分離除去した場合においても、その後に電解工程でTAACの電解を行うことにより高純度のTAAH水溶液として回収されるTAAHの回収率が必ずしも向上しないことが判明した。 Furthermore, according to various studies by the present inventors, the neutralization treatment liquid obtained by performing the neutralization treatment of the TAAH-containing waste liquid, when the insoluble impurities are separated and removed by performing the filtration operation by the membrane filtration method described above. However, it has been found that the recovery rate of TAAH recovered as a high-purity TAAH aqueous solution is not necessarily improved by performing electrolysis of TAAC in the subsequent electrolysis step.
そこで、本発明者らは、上述した電解法の利点を生かしつつ、この電解法の問題点を解決することができる水酸化テトラアルキルアンモニウム含有廃液の再生処理方法について鋭意検討した結果、意外なことには、TAAH含有廃液を炭酸ガスで中和処理して得られた中和処理液の濁度(JIS K0101測定法)を所定の値以下に管理し、その上で、電解槽の陽極室内を循環する陽極循環液の流速(線速度)を所定の値に維持することにより、電解槽の陽電極や陽イオン交換膜に対するTAAH含有廃液中の有機不純物由来のタール状物質の付着を大幅に低減すること(電解槽の汚染防止)ができるだけでなく、電解槽の陽極室側に導入される中和処理液のろ過操作に対する負荷を大幅に軽減すること(ろ過負荷の軽減)ができ、しかも、電解槽の陰極室側から所定のTAAH濃度及び高純度のTAAH水溶液を製品として回収すること(TAAH回収率の向上)ができ、結果として、工業的に有利にTAAH含有廃液を再生処理し、製品として高純度のTAAH水溶液を回収できることを見出し、本発明を完成した。 Therefore, the present inventors have made an unexpected investigation as a result of earnestly examining a method for recycling a tetraalkylammonium hydroxide-containing waste liquid that can solve the problems of the electrolytic method while taking advantage of the electrolytic method described above. The turbidity (JIS K0101 measurement method) of the neutralized solution obtained by neutralizing the TAAH-containing waste solution with carbon dioxide gas is controlled to a predetermined value or less, and the inside of the anode chamber of the electrolytic cell is then maintained. By maintaining the flow rate (linear velocity) of the circulating anodic circulating fluid at a specified value, adhesion of tar-like substances derived from organic impurities in the TAAH-containing waste liquid to the positive electrode and cation exchange membrane of the electrolytic cell is greatly reduced. Not only to prevent contamination of the electrolytic cell, but also to greatly reduce the load on the filtration operation of the neutralization liquid introduced to the anode chamber side of the electrolytic cell (reduction of the filtration load), From the cathode chamber side of the electrolytic cell It is possible to recover TAAH aqueous solution with a constant TAAH concentration and high purity as a product (improvement of TAAH recovery rate). The present invention was completed by finding that it can be recovered.
また、本発明者らは、電解工程終了後の電解槽の陽極室内に残留した残留陽極液をそのまま廃棄することなく、この残留陽極液に中和処理液を追加して陽極循環液を調製し、この陽極循環液についてテトラアルキルアンモニウム炭酸塩(TAAC)濃度を所定の値に管理すると共に濁度(JIS K0101測定法)を所定の値以下に管理し、また、電解槽の陽極室内を循環する陽極循環液の流速(線速度)を所定の値に維持することにより、上述した電解槽の汚染防止、ろ過負荷の軽減、及びTAAH回収率の向上を更に改善でき、結果として、工業的に有利にTAAH含有廃液を再生処理し、製品として高純度のTAAH水溶液を回収できることを見出し、本発明を完成した。 Further, the present inventors prepared an anode circulation liquid by adding a neutralization treatment liquid to the residual anolyte without discarding the residual anolyte remaining in the anode chamber of the electrolytic cell after the electrolysis step. In this circulating anode fluid, the tetraalkylammonium carbonate (TAAC) concentration is controlled to a predetermined value and the turbidity (JIS K0101 measurement method) is controlled to a predetermined value or less, and is circulated in the anode chamber of the electrolytic cell. By maintaining the flow rate (linear velocity) of the anodic circulating fluid at a predetermined value, it is possible to further improve the above-described electrolytic cell contamination prevention, reduction of filtration load, and improvement of TAAH recovery rate. As a result, it is industrially advantageous. The present inventors completed the present invention by regenerating the waste liquid containing TAAH and recovering a high-purity TAAH aqueous solution as a product.
従って、本願発明の目的は、比較的簡単な操作でかつ工業的に有利にTAAH含有廃液を再生処理し、高純度のTAAH水溶液を効率良く製品として回収することができるTAAH含有廃液の再生処理方法を提供することにある。 Accordingly, an object of the present invention is to regenerate a TAAH-containing waste liquid with a relatively simple operation and industrially advantageously, and to recover a TAAH-containing waste liquid that can efficiently recover a high-purity TAAH aqueous solution as a product. Is to provide.
すなわち、本願の第1の発明は、水酸化テトラアルキルアンモニウム(TAAH)及び有機不純物を含むTAAH含有廃液中に炭酸ガスを吹き込み、このTAAH含有廃液中の水酸化テトラアルキルアンモニウムを中和する中和工程と、この中和工程で生成したテトラアルキルアンモニウム炭酸塩(TAAC)を含む中和処理液を、陽イオン交換膜で陽極室と陰極室とに区画された電解槽の陽極室側に導入し、前記TAACの電気分解を行うことにより陰極室側から精製されたTAAH水溶液を回収する電解工程とを有し、
前記電解工程において、陽極室側ではこの陽極室内に導入された中和処理液を陽極循環液として循環させると共に、陰極室側ではこの陰極室から回収されるTAAH水溶液よりも低濃度のTAAH水溶液を陰極循環液として循環させ、前記TAAH含有廃液から有機不純物を除去して高純度の製品TAAH水溶液を回収する水酸化テトラアルキルアンモニウム含有廃液の処理方法であり、
前記中和工程で得られ、前記電解工程において電解槽の陽極室側に導入される中和処理液の濁度(JIS K0101測定法)を5000ppm以下に管理すると共に、
前記電解工程において、陽極室内を循環する陽極循環液の流速(線速度)を1.5×10-3〜25×10-3m/秒の範囲内に維持し、また、
電解槽の陰極室側からは、TAAH濃度15〜30質量%の陰極循環液を製品TAAH水溶液として回収することを特徴とする水酸化テトラアルキルアンモニウム含有廃液の再生処理方法である。
That is, the first invention of the present application is a neutralization that neutralizes tetraalkylammonium hydroxide in the TAAH-containing waste liquid by blowing carbon dioxide into the TAAH-containing waste liquid containing tetraalkylammonium hydroxide (TAAH) and organic impurities. And a neutralization treatment solution containing tetraalkylammonium carbonate (TAAC) produced in this neutralization step is introduced into the anode chamber side of the electrolytic cell partitioned into an anode chamber and a cathode chamber by a cation exchange membrane. An electrolysis step of recovering a TAAH aqueous solution purified from the cathode chamber side by performing electrolysis of the TAAC,
In the electrolysis step, the neutralization treatment liquid introduced into the anode chamber is circulated as an anode circulation liquid on the anode chamber side, and a TAAH aqueous solution having a lower concentration than the TAAH aqueous solution collected from the cathode chamber is circulated on the cathode chamber side. Circulating as a cathode circulation liquid, removing organic impurities from the TAAH-containing waste liquid to recover a high-purity product TAAH aqueous solution, a method for treating a tetraalkylammonium hydroxide-containing waste liquid,
While controlling the turbidity (JIS K0101 measurement method) of the neutralization treatment liquid obtained in the neutralization step and introduced into the anode chamber side of the electrolytic cell in the electrolysis step to 5000 ppm or less,
In the electrolysis step, the flow rate (linear velocity) of the anode circulating liquid circulating in the anode chamber is maintained within a range of 1.5 × 10 −3 to 25 × 10 −3 m / sec,
From the cathode chamber side of the electrolytic cell, a tetraalkylammonium hydroxide-containing waste liquid regeneration treatment method is characterized in that a cathode circulating liquid having a TAAH concentration of 15 to 30% by mass is recovered as a product TAAH aqueous solution.
また、本願の第2の発明は、水酸化テトラアルキルアンモニウム(TAAH)及び有機不純物を含むTAAH含有廃液中に炭酸ガスを吹き込み、このTAAH含有廃液中の水酸化テトラアルキルアンモニウムを中和する中和工程と、この中和工程で生成したテトラアルキルアンモニウム炭酸塩(TAAC)を含む中和処理液を、陽イオン交換膜で陽極室と陰極室とに区画された電解槽の陽極室側に導入し、前記TAACの電気分解を行うことにより陰極室側から精製されたTAAH水溶液を回収する電解工程とを有し、
前記電解工程において、陽極室側ではこの陽極室内に導入された中和処理液を陽極循環液として循環させると共に、陰極室側ではこの陰極室から回収されるTAAH水溶液よりも低濃度のTAAH水溶液を陰極循環液として循環させ、前記TAAH含有廃液から有機不純物を除去して高純度の製品TAAH水溶液を回収する水酸化テトラアルキルアンモニウム含有廃液の処理方法であり、
前記電解工程では、電解工程での電気分解を終了して電解槽の陰極室から製品TAAH水溶液を回収した後に、前記電解槽の陽極室内に残留した残留陽極液に前記中和処理液を追加して陽極循環液を調製し、得られた陽極循環液の電気分解を行って再び陰極室側から精製されたTAAH水溶液を回収する電解処理を複数回繰り返して行い、
前記中和工程で得られ、前記電解工程において電解槽の陽極室側に導入される中和処理液の濁度(JIS K0101測定法)を5000ppm以下に管理すると共に、電解工程において電解槽の陽極室内に調製される電解処理前の陽極循環液の濁度(JIS K0101測定法)を5000ppm以下に管理し、
前記電解工程において、陽極室内を循環する陽極循環液のTAAC濃度を18〜30質量%の範囲内に維持すると共に、陽極循環液の流速(線速度)を1.5×10-3〜25×10-3m/秒の範囲内に維持し、また、電解槽の陰極室側からはTAAH濃度15〜30質量%の陰極循環液を製品TAAH水溶液として回収することを特徴とする水酸化テトラアルキルアンモニウム含有廃液の再生処理方法である。
In addition, the second invention of the present application is a neutralization in which carbon dioxide gas is blown into a TAAH-containing waste liquid containing tetraalkylammonium hydroxide (TAAH) and organic impurities, and the tetraalkylammonium hydroxide in the TAAH-containing waste liquid is neutralized. And a neutralization treatment solution containing tetraalkylammonium carbonate (TAAC) produced in this neutralization step is introduced into the anode chamber side of the electrolytic cell partitioned into an anode chamber and a cathode chamber by a cation exchange membrane. An electrolysis step of recovering a TAAH aqueous solution purified from the cathode chamber side by performing electrolysis of the TAAC,
In the electrolysis step, the neutralization treatment liquid introduced into the anode chamber is circulated as an anode circulation liquid on the anode chamber side, and a TAAH aqueous solution having a lower concentration than the TAAH aqueous solution collected from the cathode chamber is circulated on the cathode chamber side. Circulating as a cathode circulation liquid, removing organic impurities from the TAAH-containing waste liquid to recover a high-purity product TAAH aqueous solution, a method for treating a tetraalkylammonium hydroxide-containing waste liquid,
In the electrolysis step, after the electrolysis in the electrolysis step is completed and the product TAAH aqueous solution is recovered from the cathode chamber of the electrolytic cell, the neutralization solution is added to the residual anolyte remaining in the anode chamber of the electrolytic cell. An anodic circulating fluid is prepared, electrolysis of the obtained anodic circulating fluid is performed, and the electrolytic treatment for recovering the purified TAAH aqueous solution from the cathode chamber side is repeated a plurality of times,
The turbidity (JIS K0101 measurement method) of the neutralization treatment solution obtained in the neutralization step and introduced into the anode chamber side of the electrolytic cell in the electrolysis step is controlled to 5000 ppm or less, and the electrolytic cell anode in the electrolysis step The turbidity (JIS K0101 measurement method) of the anode circulating liquid before electrolytic treatment prepared indoors is controlled to 5000 ppm or less,
In the electrolysis step, the TAAC concentration of the anode circulating liquid circulating in the anode chamber is maintained within a range of 18 to 30% by mass, and the flow rate (linear velocity) of the anode circulating liquid is 1.5 × 10 −3 to 25 ×. The tetraalkyl hydroxide is maintained within a range of 10 −3 m / sec, and the cathode circulating solution having a TAAH concentration of 15 to 30% by mass is recovered as a product TAAH aqueous solution from the cathode chamber side of the electrolytic cell. This is a method for recycling an ammonium-containing waste liquid.
本願発明において、再生処理の対象となるTAAH含有廃液については、このTAAH含有廃液中に炭酸ガスを吹き込んでTAACを含む中和処理液とすることができる廃液であれば特に制限は無く、例えば有機不純物を含むTAAH水溶液や、TAAHの一部又はその多くがTAACとして含まれているTAAC水溶液であってもよく、一般的には、電子部品の製造工程で使用されるフォトレジスト現像液やアルカリ洗浄液等に由来するフォトレジスト現像廃液やアルカリ洗浄廃液、更にはこれらの廃液が混合した混合廃液等がその対象として挙げられる。 In the present invention, the TAAH-containing waste liquid to be subjected to regeneration treatment is not particularly limited as long as it is a waste liquid that can be made into a neutralization treatment liquid containing TAAC by blowing carbon dioxide into the TAAH-containing waste liquid. TAAH aqueous solution containing impurities or TAAC aqueous solution in which part or most of TAAH is contained as TAAC may be used. Generally, a photoresist developer or an alkaline cleaning solution used in the manufacturing process of electronic components Examples thereof include photoresist developing waste liquids and alkali cleaning waste liquids, and mixed waste liquids obtained by mixing these waste liquids.
そして、このようなTAAH含有廃液中に炭酸ガスを吹き込んで廃液中のTAAHを中和する中和工程については、TAAH含有廃液中のTAAHがTAACになればよく、その中和処理の処理条件等について特に制限されるものではなく、従来から行われているTAAH含有廃液の炭酸ガスによる中和処理の条件をそのまま採用することができる。このTAAH含有廃液の中和処理として、特に好ましいのは、次の電解工程において、電解槽の陽極室側からTAACの電気分解に基づく炭酸ガスが発生するので、好ましくはこの発生した炭酸ガスを、配管を通じてエアーポンプにより中和工程に導入することにより、TAAH含有廃液の中和処理に利用するのがよく、これによって電解工程の電解処理で発生する炭酸ガスを大気中に放出することなく、中和工程での中和処理に循環使用することができる。 And about the neutralization process which neutralizes TAAH in waste liquid by blowing carbon dioxide into such TAAH-containing waste liquid, TAAH in TAAH-containing waste liquid should just become TAAC, the processing conditions of the neutralization process, etc. There is no particular limitation on the conditions, and the conditions for neutralizing the TAAH-containing waste liquid with carbon dioxide gas that have been conventionally used can be employed as they are. As the neutralization treatment of the TAAH-containing waste liquid, carbon dioxide gas based on the electrolysis of TAAC is generated from the anode chamber side of the electrolytic cell in the next electrolysis step. Therefore, the generated carbon dioxide gas is preferably used. By introducing it into the neutralization process with an air pump through a pipe, it is better to use it for neutralization of TAAH-containing waste liquid, so that the carbon dioxide generated in the electrolysis process of the electrolysis process is released into the atmosphere, It can be recycled for neutralization treatment in the sum process.
なお、このようにTAAH含有廃液の中和処理に用いる炭酸ガスとして、TAACの電解処理で発生した炭酸ガスを循環させて使用する場合において、TAAH含有廃液の中和処理で必要とする炭酸ガス量を賄いきれなくなる場合が予想されるが、このような場合には、新鮮な炭酸ガスを導入してもよいことは勿論であり、また、TAAHの製造設備としてTAACの電解設備がある場合には、このTAAC電解設備で発生する炭酸ガスを回収して利用してもよい。このようなTAACの電解工程で発生する炭酸ガスを回収してTAAH含有廃液の中和処理に利用することにより、炭酸ガスの大気への放出を可及的に減少することができる。 In addition, as the carbon dioxide gas used for neutralizing the TAAH-containing waste liquid in this way, the amount of carbon dioxide required for neutralizing the TAAH-containing waste liquid when the carbon dioxide generated by the TAAC electrolytic treatment is circulated. However, in such a case, fresh carbon dioxide gas may be introduced, and if there is a TAAC electrolysis facility as a TAAH manufacturing facility, Carbon dioxide generated in this TAAC electrolysis facility may be recovered and used. By recovering the carbon dioxide gas generated in the TAAC electrolysis step and using it for the neutralization treatment of the TAAH-containing waste liquid, the release of carbon dioxide gas to the atmosphere can be reduced as much as possible.
本願の第1及び第2の発明において、この中和工程で得られた中和処理液は、次に電解工程に導入され、この電解工程では、陽イオン交換膜で陽極室と陰極室とに区画された電解槽の陽極室側に導入されて電気分解され、この電解処理によって有機不純物が可及的に除去された高純度のTAAH水溶液に再生され、この高純度のTAAH水溶液が電解槽の陰極室側から製品として回収されるが、この際に、陽極室側ではこの陽極室内に導入された中和処理液を陽極循環液として循環させると共に、陰極室側ではこの陰極室から回収されるTAAH水溶液よりも低濃度のTAAH水溶液を陰極循環液として循環させ、これによって、電解槽の陰極室側の陰極循環液(TAAH水溶液)のTAAH濃度が通常15質量%以上30質量%以下、好ましくは20質量%以上26質量%以下になるまでで下記分解を継続し、TAAH濃度15〜30質量%のTAAH水溶液を製品として回収する。回収される製品TAAH水溶液のTAAH濃度が15質量%より低いと電気伝導度が低下し電圧が高くなって電解効率が低下し、反対に、30質量%より高いと粘度上昇により電気伝導度が低下し電圧が高くなって電解効率が低下し、ひいては結晶化するという問題が生じる。 In the first and second inventions of the present application, the neutralization treatment liquid obtained in this neutralization step is then introduced into the electrolysis step, and in this electrolysis step, a cation exchange membrane is used to separate the anode chamber and the cathode chamber. It is introduced into the anode chamber side of the partitioned electrolytic cell and electrolyzed, and this electrolytic treatment regenerates a high-purity TAAH aqueous solution from which organic impurities are removed as much as possible. The product is recovered as a product from the cathode chamber side. At this time, the neutralization treatment liquid introduced into the anode chamber is circulated as an anode circulation solution on the anode chamber side, and is recovered from the cathode chamber on the cathode chamber side. A TAAH aqueous solution having a concentration lower than that of the TAAH aqueous solution is circulated as a cathode circulation solution, whereby the TAAH concentration of the cathode circulation solution (TAAH aqueous solution) on the cathode chamber side of the electrolytic cell is usually 15% by mass to 30% by mass, preferably 20% to 26% by mass The following decomposition is continued until a TAAH concentration of 15 to 30% by mass is recovered as a product. If the TAAH concentration of the recovered product TAAH aqueous solution is lower than 15% by mass, the electrical conductivity is lowered and the voltage is increased to lower the electrolysis efficiency. Conversely, if the TAAH concentration is higher than 30% by mass, the electrical conductivity is lowered due to an increase in viscosity. However, the voltage increases, the electrolytic efficiency decreases, and as a result, there arises a problem of crystallization.
ここで、電解工程で電解槽の陽極室側に導入される中和処理液については、JIS K0101測定法で測定された濁度が5000ppm以下、好ましくは3000ppm以下に維持されるように管理する必要があり、この中和処理液の濁度(JIS K0101)が5000ppmを超えると、電解工程において電解槽の陽極室内を循環する陽極循環液の流速(線速度)をたとえ1.5×10-3〜25×10-3m/秒の範囲内に維持しても、電解槽の陽電極や陽イオン交換膜にTAAH含有廃液中の有機不純物由来のタール状物質が付着するのを防止することが難しくなる。そして、この中和処理液の濁度(JIS K0101)の管理は、結果的に5000ppm以下に管理できればどのような方法で行ってもよいが、電解装置内にフィルターを配設することは、電解工程でフィルターにタール状物質が付着し、フィルターの目詰まりが発生し易く、メンテナンスが難しくなり、また、濃縮後にろ過することは、粘度が高くてろ過効率が悪いので、好ましくは中和処理液のろ過処理で行うのがよい。 Here, it is necessary to manage the neutralization solution introduced into the anode chamber side of the electrolytic cell in the electrolysis step so that the turbidity measured by the JIS K0101 measurement method is maintained at 5000 ppm or less, preferably 3000 ppm or less. When the turbidity (JIS K0101) of this neutralization treatment liquid exceeds 5000 ppm, the flow rate (linear velocity) of the anode circulating liquid circulating in the anode chamber of the electrolytic cell in the electrolysis process is 1.5 × 10 −3. Even if maintained within a range of ˜25 × 10 −3 m / sec, it is possible to prevent tar-like substances derived from organic impurities in the TAAH-containing waste liquid from adhering to the positive electrode or cation exchange membrane of the electrolytic cell. It becomes difficult. The turbidity (JIS K0101) of the neutralization solution can be controlled by any method as long as it can be controlled to 5000 ppm or less as a result. In the process, tar-like substances adhere to the filter, the filter is likely to be clogged, maintenance becomes difficult, and filtration after concentration is preferably a neutralizing solution because of high viscosity and poor filtration efficiency. It is better to carry out the filtration process.
また、本願の第1及び第2の発明において、電解工程においては、電解槽の陽極室内を循環する陽極循環液の流速(線速度)を1.5×10-3m/秒以上25×10-3m/秒以下、好ましくは2×10-3m/秒以上20×10-3m/秒以下の範囲内に維持する必要がある。この陽極循環液の流速(線速度)が1.5×10-3m/秒より遅いと、陽極室内においてTAACの電解により発生した炭酸ガスが陽電極や陽イオン交換膜の表面付近に滞留し、結果としてこれら陽電極や陽イオン交換膜の表面付近での中和処理液の流れが不規則になるほか流速が更に遅くなり、電解処理前の中和処理液に存在した、あるいは、この電解処理中に発生した不溶化不純物がタール状となって経時的に陽電極や陽イオン交換膜の表面に付着し、また反対に、陽極循環液の流速(線速度)が25×10-3m/sec.より速いと、電解槽の電極・電解板の損傷や、シールからの液漏れという別の問題が発生する。 In the first and second inventions of the present application, in the electrolysis process, the flow rate (linear velocity) of the anode circulating liquid circulating in the anode chamber of the electrolytic cell is set to 1.5 × 10 −3 m / sec or more and 25 × 10. -3 m / sec or less, preferably 2 x 10 -3 m / sec or more and 20 x 10 -3 m / sec or less. When the flow rate (linear velocity) of this anodic circulating fluid is slower than 1.5 × 10 −3 m / sec, carbon dioxide gas generated by the electrolysis of TAAC in the anode chamber stays near the surface of the positive electrode or cation exchange membrane. As a result, the flow of the neutralization solution near the surface of the positive electrode or the cation exchange membrane becomes irregular and the flow rate is further slowed down. The insolubilized impurities generated during the treatment become tar-like and adhere to the surface of the positive electrode or cation exchange membrane over time. On the contrary, the flow rate (linear velocity) of the anodic circulating liquid is 25 × 10 −3 m / sec. If it is faster, other problems such as damage to the electrode / electrolytic plate of the electrolytic cell and liquid leakage from the seal will occur.
そして、本願の第2の発明においては、この電解工程において、先の電解工程での電気分解を終了して電解槽の陰極室から製品TAAH水溶液を回収した後に、電解槽の陽極室内に残留した残留陽極液に前記中和処理液を追加して陽極循環液を調製し、得られた陽極循環液の電気分解を行って再び陰極室側から精製されたTAAH水溶液を回収する電解処理を複数回繰り返して行い、この際に、電解槽の陽極室内で調製された電解処理前の陽極循環液の濁度(JIS K0101測定法)を5000ppm以下に管理すると共に、陽極室内を循環する陽極循環液のTAAC濃度をTAAH換算で18質量%以上30質量%以下、好ましくは20質量%以上28質量%以下の範囲内に維持する。この陽極循環液のTAAC濃度が18質量%より低くなると、電気伝導度が低下し電圧が上昇して電解効率が低下し、また、濃縮中和処理液の添加により同一容量で上記の濃度範囲に維持することが困難になり、反対に、30質量%を超えて高くなると、粘度が高くなって流速が低下し、電気伝導度が低下して電圧が上昇し、電解効率が低下するという問題が生じる。 In the second invention of the present application, in this electrolysis process, after the electrolysis in the previous electrolysis process is completed and the product TAAH aqueous solution is recovered from the cathode chamber of the electrolytic cell, it remains in the anode chamber of the electrolytic cell. The neutralization treatment liquid is added to the residual anolyte to prepare an anode circulation liquid, and the resulting anode circulation liquid is electrolyzed to recover the purified TAAH aqueous solution from the cathode chamber side a plurality of times. At this time, the turbidity (JIS K0101 measurement method) of the anode circulating liquid prepared in the anode chamber of the electrolytic cell before electrolytic treatment is controlled to 5000 ppm or less, and the anode circulating liquid circulating in the anode chamber is controlled. The TAAC concentration is maintained within the range of 18% by mass to 30% by mass, preferably 20% by mass to 28% by mass in terms of TAAH. When the TAAC concentration of the anodic circulating liquid is lower than 18% by mass, the electric conductivity is lowered, the voltage is increased and the electrolysis efficiency is lowered, and the addition of the concentrated neutralizing liquid causes the same volume to be within the above concentration range. On the other hand, when it exceeds 30% by mass, the viscosity increases, the flow rate decreases, the electrical conductivity decreases, the voltage increases, and the electrolytic efficiency decreases. Arise.
本願の第2の発明において、前記陽極循環液を調製する際に残留陽極液に添加される中和処理液については、残留陽極液に添加することにより結果として陽極循環液のTAAC濃度を18〜30質量%の範囲内に維持することができればよく、特に制限されるものではないが、連続的にTAAC濃度を上記範囲内に維持するために、好ましくは予め中和処理液を濃縮して得られたTAAC濃度40質量%以上50質量%以下、より好ましくは42質量%以上48質量%以下の濃縮中和処理液を用いるのがよい。 In the second invention of the present application, the neutralization treatment liquid added to the residual anolyte when preparing the anodic circulating liquid is added to the residual anolyte, resulting in a TAAC concentration of 18 to Although it is not particularly limited as long as it can be maintained within the range of 30% by mass, it is preferably obtained by concentrating the neutralization solution in advance in order to continuously maintain the TAAC concentration within the above range. A concentrated neutralization treatment liquid having a TAAC concentration of 40% by mass to 50% by mass, more preferably 42% by mass to 48% by mass, is preferably used.
更に、本願の第1及び第2の発明において、電解工程で用いられる電解槽については、上記電解工程で陽極循環液及び陰極循環液をそれぞれ円滑に循環させるために、好ましくは陽極室内を循環する陽極循環液を一時的に収容する陽極循環液槽と陰極室内を循環する陰極循環液を一時的に収容する陰極循環液槽とを併設するのがよく、これによって電解槽の陽極室内での陽極循環液の流れ及び陰極室内での陰極循環液の流れを安定化させることができる。 Furthermore, in the first and second inventions of the present application, the electrolytic cell used in the electrolysis step is preferably circulated in the anode chamber in order to smoothly circulate the anode circulation solution and the cathode circulation solution in the electrolysis step. It is preferable that an anode circulating liquid tank for temporarily storing the anode circulating liquid and a cathode circulating liquid tank for temporarily storing the cathode circulating liquid circulating in the cathode chamber be provided side by side, whereby the anode in the anode chamber of the electrolytic cell is provided. The flow of the circulating liquid and the flow of the cathode circulating liquid in the cathode chamber can be stabilized.
本願の第1及び第2の発明によれば、電解工程から回収される製品TAAH水溶液は、そのTAAH濃度が15〜30質量%であって、有機不純物濃度が通常5mg/mol以下、好ましくは4mg/mol以下であり、また、電子部品の欠陥等の原因になることから金属不純物として問題になる鉄(Fe)の濃度(鉄濃度)が通常5mg/L以下、好ましくは4mg/Lであり、そのままでも半導体装置、液晶表示装置、プリント基板等の電子部品の製造工程でフォトレジスト現像液やアルカリ洗浄液として使用可能なレベルにまで高純度化される。 According to the first and second inventions of the present application, the product TAAH aqueous solution recovered from the electrolysis step has a TAAH concentration of 15 to 30% by mass and an organic impurity concentration of usually 5 mg / mol or less, preferably 4 mg. The concentration of iron (Fe), which is a problem as a metal impurity because it causes defects in electronic components, etc. (iron concentration) is usually 5 mg / L or less, preferably 4 mg / L. Even if it is as it is, it is highly purified to the level which can be used as a photoresist developing solution or an alkali washing liquid in the manufacturing process of electronic parts, such as a semiconductor device, a liquid crystal display device, and a printed board.
しかしながら、もし必要があれば、電解工程から回収された製品TAAH水溶液を陽イオン交換樹脂と接触させ、この製品TAAH水溶液中に残留する金属不純物を更に可及的に除去する脱金属不純物工程に導入し、この脱金属不純物工程から金属不純物を可及的に除去した超高純度の製品TAAH水溶液を回収するようにしてもよいことは勿論である。 However, if necessary, the product TAAH aqueous solution recovered from the electrolysis process is brought into contact with a cation exchange resin and introduced into a demetalization impurity process that further removes metal impurities remaining in the product TAAH aqueous solution as much as possible. Of course, an ultra-high purity TAAH aqueous solution from which metal impurities are removed as much as possible from this demetalization impurity step may be recovered.
本発明の水酸化テトラアルキルアンモニウム含有廃液の再生処理方法によれば、比較的簡単な操作で工業的に有利に水酸化テトラアルキルアンモニウム含有廃液を再生処理し、高純度の水酸化テトラアルキルアンモニウム水溶液を回収することができる。 According to the method for regenerating a tetraalkylammonium hydroxide-containing waste liquid of the present invention, a tetraalkylammonium hydroxide-containing waste liquid is industrially advantageously regenerated by a relatively simple operation to obtain a high-purity tetraalkylammonium hydroxide aqueous solution. Can be recovered.
以下、本発明の水酸化テトラアルキルアンモニウム含有廃液の再生処理方法について、添付図面に示す再生処理装置を用いた実施の一例に基づいて、その実施の形態を詳細に説明する。 Hereinafter, the embodiment of the method for reclaiming a tetraalkylammonium hydroxide-containing waste liquid according to the present invention will be described in detail based on an example of using a regeneration treatment apparatus shown in the accompanying drawings.
図1において、本発明のTAAH含有廃液の再生処理方法を実施するための再生処理装置の一例が示されている。この再生処理装置は、TAAH含有廃液の中和処理を行うための中和槽1と、この中和槽1でTAAH含有廃液を中和処理して得られた中和処理液を電解処理するための電解槽2と、前記中和槽1と電解槽2との間に配置され、中和槽1で得られた中和処理液を濃縮して電解槽2に供給するための蒸発濃縮器3とで構成されている。
FIG. 1 shows an example of a regeneration processing apparatus for carrying out the TAAH-containing waste liquid regeneration processing method of the present invention. This regeneration treatment apparatus is for performing a neutralization treatment for neutralizing a TAAH-containing waste liquid, and an electrolytic treatment for a neutralization treatment liquid obtained by neutralizing the TAAH-containing waste liquid in the neutralization tank 1. And an evaporation concentrator 3 for concentrating and supplying the neutralization solution obtained in the neutralization tank 1 to the
そして、前記電解槽2は、陽イオン交換膜4で区画された陽極室5と陰極室6とを備えていると共に、陽極室5内の陽極5aと陰極室6内の陰極6aとの間に所定の電流密度の電流を流すための直流電源7が設けられおり、また、前記陽極室5側には、この陽極室5に導入された中和処理液(陽極循環液)を電解した後に陽極室5から排出される電解処理後の陽極循環液を一旦収容し、再び陽極室5に導入して液循環を行うための陽極循環液槽8が設けられていると共に、前記陰極室6側には、中和処理液の電解処理により生成し、陽イオン交換膜4を通過したTAAイオンを含むTAAH水溶液(陰極循環液)が所定のTAAH濃度に到達するまで、この陰極循環液を一旦収容し、再び陰極室6に循環させるための陰極循環液槽9が設けられている。
The
この再生処理装置において、前記中和槽1には、この中和槽1内にTAAH含有廃液を導入する廃液導入ライン10が接続されていると共に、中和槽1内に炭酸ガスを導入する炭酸ガス導入ライン11が接続されており、また、この中和槽1と蒸発濃縮器3との間には中和槽1で生成した中和処理液を蒸発濃縮器3内に移送するための移送ライン12が設けられており、更に、この蒸発濃縮器3と前記電解槽2の陽極循環液槽8との間には必要により蒸発濃縮器3で中和処理液を濃縮して得られた濃縮中和処理液を陽極循環液槽8に移送するための移送ライン13が設けられている。
In this regeneration treatment apparatus, a waste
また、前記電解槽2には、その陽極室5の出口側から陽極循環液槽8を介して陽極室5の入口側に至る陽極側循環ライン14と陰極室6の出口側から陰極循環液槽9を介して陰極室6の入口側に至る陰極側循環ライン15とが設けられており、また、前記陽極側循環ライン14には、陽極循環液槽8から陽極室5の入口側に至る間に、送液ポンプ16が設けられていると共に、陽極循環液槽8は、電解処理終了後に、陽極室5、陽極循環液槽8及び陽極側循環ライン14内の陽極循環液を抜き出すための抜出ライン17が設けられており、また、陰極側循環ライン15には、陰極循環液槽9から陰極室6の入口側に至る間に、送液ポンプ16が設けられており、更に、陰極循環液槽9には、電解処理により高濃度に再生された陰極循環液(TAAH水溶液)を抜き出して回収するための回収ライン18が設けられ、そして、陽極室5の出口側には、電解処理中に陽極室5内で発生する炭酸ガスを回収して中和槽1内に導入するための炭酸ガス回収ライン19が設けられている。
Further, the
なお、前記陰極循環液槽9には、陽極室5内の陽極循環液(中和処理液)を電解処理する前に、陰極室6から回収される製品TAAH水溶液より低濃度のTAAH水溶液からなる陰極循環液を調製するのに必要な水やTAAH水溶液を供給する陰極循環液調製ライン20が設けられており、また、前記蒸発濃縮器3には、この蒸発濃縮器3で中和処理液中の水を蒸発させ、中和処理液を濃縮した際に排出される蒸気の排気ライン21が設けられている。
The cathode circulation liquid tank 9 is composed of a TAAH aqueous solution having a lower concentration than the product TAAH aqueous solution recovered from the
この再生処理装置を用いてTAAH含有廃液の再生処理を行う際には、先ず、廃液導入ライン10からTAAH含有廃液を中和槽1内に導入し、炭酸ガス導入ライン11からこの中和槽1内に導入される炭酸ガスと接触させてTAAH含有廃液の中和処理を行い(中和工程)、この中和工程で得られた中和処理液を、移送ライン12,13を介して、電解槽2の陽極室4側に設けられた陽極循環液槽8内に陽極循環液として導入し、また、電解槽2の陰極室6側に設けられた陰極循環液槽9には、陰極循環液調製ライン20を介して予め高純度で低濃度のTAAH水溶液(陰極循環液)を充填する。
When performing the regeneration treatment of the TAAH-containing waste liquid using this regeneration treatment apparatus, first, the TAAH-containing waste liquid is introduced into the neutralization tank 1 from the waste
ここで、陽極循環液槽8内に導入される陽極循環液(中和処理液)については、JIS K0101測定法によりその濁度を測定し、必要により陽極循環液(中和処理液)の一部又は全部について簡単なろ過処理を行い、濁度を5000ppm以下、好ましくは3000ppmに調整する。 Here, the turbidity of the anodic circulating liquid (neutralized liquid) introduced into the anodic circulating liquid tank 8 is measured by JIS K0101 measurement method. A simple filtration treatment is performed on the part or the whole, and the turbidity is adjusted to 5000 ppm or less, preferably 3000 ppm.
また、例えば第2の発明を実施する場合等の高いTAAC濃度での電解処理を行う場合には、前記中和工程で得られた中和処理液を移送ライン12から前記蒸発濃縮器3に導入し、この蒸発濃縮器3内で所定のTAAC濃度まで濃縮し、得られた濃縮中和処理液を移送ライン13から陽極循環液槽8内に導入し、この濃縮中和処理液を陽極循環液として用いる。勿論、この際には、陽極循環液槽8内に水を添加してTAAC濃度の濃度調整を行ってもよい。
なお、必要により、中和槽1と電解槽2の陽極循環液槽8との間に蒸発濃縮器3をバイパスする移送ラインを設け、あるいは、陽極循環液槽8に陽極循環液のTAAC濃度を調整するための水の導入ラインを設けてもよい。
For example, when carrying out electrolytic treatment at a high TAAC concentration, such as when carrying out the second invention, the neutralization solution obtained in the neutralization step is introduced into the evaporation concentrator 3 from the
If necessary, a transfer line that bypasses the evaporation concentrator 3 is provided between the neutralization tank 1 and the anode circulation liquid tank 8 of the
このように陽極循環液槽8内に陽極循環液(中和処理液)を導入し、また、陰極循環液槽9内に陰極循環液(高純度で低濃度のTAAH水溶液)を導入した後、陽極室5側の陽極側循環ライン14と陰極室6側の陰極側循環ライン15にそれぞれ設けた送液ポンプ16を駆動し、陽極室5側には陽極循環液を、また、陰極室6側には陰極循環液をそれぞれ循環させ、陽極循環液の流速を線速度で1.5×10-3m/sec.以上25×10-3m/sec.以下の範囲に維持しながら、直流電源7により陽極室5内の陽極5aと陰極室6内の陰極6aとの間に直流電圧を印加して所定の電流密度の電流を流し、陽極循環液(中和処理液)の電解処理を開始する(電解工程)。
After introducing the anode circulation liquid (neutralization liquid) into the anode circulation liquid tank 8 and introducing the cathode circulation liquid (high purity and low concentration TAAH aqueous solution) into the cathode circulation liquid tank 9, The liquid feed pumps 16 provided on the anode
ここで、本願の第1の発明においては、この電解工程での陽極循環液(中和処理液)の電解処理の間に、陽極室5側の陽極側循環ライン14を流れる陽極循環液のTAAC濃度を測定し、この陽極循環液が所定のTAAC濃度以下になる前に電解処理を停止し、前記陽極循環液槽8からは陽極室5内に残留した残留陽極液を抜出ライン17から抜き出すと共に、前記陰極循環液槽9からは所望のTAAH濃度にまで再生された陰極循環液(TAAH水溶液)を製品TAAH水溶液として回収ライン18から抜き出して回収する。
Here, in the first invention of the present application, during the electrolytic treatment of the anode circulation liquid (neutralization treatment liquid) in this electrolysis step, the TAAC of the anode circulation liquid flowing through the anode-
なお、この第1の発明における電解工程において、TAAC濃度が低下した残留陽極液の抜出操作と中和槽1からの中和処理液(又は濃縮中和処理液)の導入操作とによる陽極循環液(中和処理液)の交換を必要により複数回繰り返して行い、陰極室6側の陰極側循環ライン15を循環する陰極循環液(TAAH水溶液)のTAAH濃度が所定の濃度に到達したところで陽極循環液(中和処理液)の電解処理を終了し、陰極循環液槽8の回収ライン18から陰極循環液(TAAH水溶液)を高純度の製品TAAH水溶液として回収してもよい。
In the electrolysis process according to the first aspect of the invention, the anode circulation is performed by the operation of extracting the residual anolyte having a reduced TAAC concentration and the operation of introducing the neutralization treatment liquid (or concentrated neutralization treatment liquid) from the neutralization tank 1. Replacement of the liquid (neutralization liquid) is repeated several times as necessary, and when the TAAH concentration of the cathode circulation liquid (TAAH aqueous solution) circulating in the cathode
また、本願の第2の発明においては、前記電解工程での電解処理を終了し、電解槽2の陰極循環液槽9から製品TAAH水溶液を回収した後に、電解槽2の陽極循環液槽8内に残留した残留陽極液を抜き出すことなく、この陽極循環液槽8内の残留陽極液を利用して新たな陽極循環液を調製し、再び陽極循環液の電気分解を行って陰極循環液槽9から製品TAAH水溶液を回収する電解処理を複数回繰り返して行うが、この際に、前記陽極循環液槽8内の残留陽極液中に前記蒸発濃縮器3で濃縮して得られた濃縮中和処理液の所定量を追加して新たな陽極循環液を調製し、また、陰極循環液槽9内には新たな陰極循環液(高純度で低濃度のTAAH水溶液)を導入し、再び陽極循環液の電気分解を行う。
Moreover, in 2nd invention of this application, after complete | finishing the electrolysis process in the said electrolysis process, after collect | recovering product TAAH aqueous solution from the cathode circulation liquid tank 9 of the
この第2の発明の電解工程で実施される電解処理の繰返し回数は、陽極循環液を調製する際に使用される中和処理液や濃縮中和処理液の初期の濁度に依存し、少なくとも2回以上の回数で繰り返される。また、この第2の発明においても、電解処理を複数回繰り返して行う際に、各々の電解処理のたびに陰極循環液槽9から製品TAAH水溶液を回収することなく、陰極循環槽9内の陰極循環液が所望のTAAH濃度に到達するまで複数回の電解処理を繰り返した後にこの所望のTAAH濃度に到達した陰極循環液を製品TAAH水溶液として回収してもよい。 The number of repetitions of the electrolytic treatment carried out in the electrolysis step of the second invention depends on the initial turbidity of the neutralization treatment liquid and the concentrated neutralization treatment liquid used when preparing the anode circulating liquid, and at least Repeated twice or more. Also in the second aspect of the invention, when the electrolytic treatment is repeated a plurality of times, the product TAAH aqueous solution is not recovered from the cathode circulating liquid tank 9 for each electrolytic treatment, and the cathode in the cathode circulating tank 9 is recovered. After the electrolytic treatment is repeated a plurality of times until the circulating fluid reaches a desired TAAH concentration, the cathodic circulating fluid that reaches the desired TAAH concentration may be recovered as a product TAAH aqueous solution.
そして、この第2の発明の実施の際には、蒸発濃縮器3で濃縮して得られる濃縮中和処理液のTAAC濃度を調整することにより、陽極循環液槽8内で調製される陽極循環液のTAAC濃度を18〜30質量%の範囲内に維持すると共に、必要により前記濃縮中和処理液の一部又は全部、好ましくは濃縮中和処理液の20質量%以上80質量%以下、より好ましくは30質量%以上70質量%以下をろ過処理して濃縮中和処理液の濁度を調整することにより、陽極循環液槽8内で調製される陽極循環液の濁度(JIS K0101)を5000ppm以下に調整し、また、陽極循環液の流速を線速度で1.5×10-3m/sec.以上25×10-3m/sec.以下の範囲に維持する。 In carrying out the second aspect of the invention, the anode circulation prepared in the anode circulation liquid tank 8 is adjusted by adjusting the TAAC concentration of the concentrated neutralization treatment liquid obtained by concentration in the evaporation concentrator 3. The TAAC concentration of the liquid is maintained within the range of 18 to 30% by mass, and if necessary, part or all of the concentrated neutralized liquid, preferably 20% by mass to 80% by mass of the concentrated neutralized liquid. Preferably, the turbidity (JIS K0101) of the anodic circulating fluid prepared in the anodic circulating fluid tank 8 is adjusted by filtering the turbidity of the concentrated neutralizing solution by filtration of 30% by mass to 70% by mass. The flow rate of the circulating anode fluid is adjusted to 1.5 × 10 −3 m / sec. 25 × 10 −3 m / sec. Maintain within the following ranges.
本発明において、前記電解工程での陽極循環液(中和処理液)の電解処理の間に陽極室5の出口側から排出される炭酸ガスについては、好ましくは、炭酸ガス回収ライン18からこれを回収し、炭酸ガス導入ライン11を介して中和槽1内に導入し、この中和槽1内に供給されたTAAH含有廃液と接触させてこのTAAH含有廃液の中和処理に利用する。なお、この際に、電解処理の間に陽極室5の出口側から排出される炭酸ガスの量が中和槽1内に供給されたTAAH含有廃液を中和するのに充分な量でない場合には、不足する炭酸ガスを炭酸ガス導入ライン11から導入して補充する。
In the present invention, the carbon dioxide gas discharged from the outlet side of the
上述した本願の第1及び第2の発明に係るTAAH含有廃液の再生処理方法によれば、電解槽の陽電極や陽イオン交換膜に対するTAAH含有廃液中の有機不純物由来のタール状物質の付着を大幅に低減すること(電解槽の汚染防止)ができ、電解槽の陽極室側に導入される中和処理液のろ過操作に対する負荷を大幅に軽減すること(ろ過負荷の軽減)ができ、また、電解槽の陰極室側から所定のTAAH濃度及び高純度のTAAH水溶液を製品として回収すること(TAAH回収率の向上)ができる。 According to the TAAH-containing waste liquid regeneration method according to the first and second inventions of the present application described above, adhesion of tar-like substances derived from organic impurities in the TAAH-containing waste liquid to the positive electrode or cation exchange membrane of the electrolytic cell is prevented. It can be greatly reduced (prevention of electrolytic cell contamination), and the load on the filtration operation of the neutralization liquid introduced into the anode chamber side of the electrolytic cell can be greatly reduced (reduction of filtration load). A TAAH aqueous solution having a predetermined TAAH concentration and high purity can be recovered as a product from the cathode chamber side of the electrolytic cell (an improvement in the TAAH recovery rate).
〔実施例1〕
再生処理の対象のTAAH含有廃液として、フォトレジスト現像廃液をその水酸化テトラメチルアンモニウム(TMAH)の濃度が14.7質量%になるまで濃縮され、有機不純物濃度がレジスト量としてTMAH単位mol当り898mg/molであり、鉄(Fe)濃度が700ppbであるフォトレジスト現像廃液(TMAH含有廃液)を用いた。
[Example 1]
As a TAAH-containing waste liquid to be recycled, the photoresist development waste liquid is concentrated until the concentration of tetramethylammonium hydroxide (TMAH) is 14.7% by mass, and the organic impurity concentration is 898 mg per mol of TMAH as a resist amount. A photoresist developing waste solution (TMAH-containing waste solution) having an iron (Fe) concentration of 700 ppb was used.
また、中和工程では、このTMAH含有廃液に炭酸ガスを吹き込んでpH9.6まで中和し、この中和処理により、テトラメチルアンモニウム炭酸塩(TMAC)の濃度(TMAC濃度)がTMAH換算で14.8質量%であり、また、TMAH単位mol当りの有機不純物濃度(レジスト量)が510mg/molであって、この中和処理で発生したフォトレジスト由来の不溶化不純物を濁度(JIS K0101)として1028ppmの割合で含む中和処理液(TMAC水溶液)を得た。 Further, in the neutralization step, carbon dioxide gas is blown into the TMAH-containing waste liquid to neutralize to pH 9.6, and by this neutralization treatment, the tetramethylammonium carbonate (TMAC) concentration (TMAC concentration) is 14 in terms of TMAH. 8% by mass, and the organic impurity concentration (resist amount) per mol of TMAH is 510 mg / mol, and the insolubilized impurities derived from the photoresist generated by this neutralization treatment are defined as turbidity (JIS K0101). A neutralization treatment solution (TMAC aqueous solution) containing 1028 ppm was obtained.
次に、電解工程では、前記中和処理液の電解処理に用いる電解槽として、酸化膜被覆チタン板製の陽電極(面積:13.2cm2)と、ニッケル板製の陰電極(面積:13.2cm2)と、これら陽電極と陰電極の間に配設されて陽極室(容積:断面積1.52cm2×長さ6.97cm=10.6cm3)と陰極室(容積:断面積1.52cm2×長さ6.97cm=10.6cm3)に区画する陽イオン交換膜(デュポン製商品名:Nafion 324)とを備え、また、陽極室側には陽極循環液槽(容積:2000cm3)を、また、陰極室側には陰極循環液槽(容積:2000cm3)をそれぞれ備えた実験室用の電解槽を用いた。 Next, in the electrolysis process, as an electrolytic cell used for the electrolysis treatment of the neutralization solution, a positive electrode made of an oxide film-coated titanium plate (area: 13.2 cm 2 ) and a negative electrode made of nickel plate (area: 13.2 cm) and 2), it is disposed between the positive electrode and the negative electrode anode chamber (volume: cross-sectional area 1.52 cm 2 × length 6.97cm = 10.6cm 3) and cathode chamber (volume: cross-sectional area 1.52 cm 2 × length 6.97 cm = 10.6 cm 3 ) and a cation exchange membrane (DuPont product name: Nafion 324), and the anode chamber is equipped with an anode circulating liquid tank (volume: 2000 cm 3 ), and the cathode A laboratory electrolytic cell equipped with a cathode circulation liquid tank (volume: 2000 cm 3 ) was used on the chamber side.
この電解槽の陽極室側の陽極循環液槽には陽極循環液として上で得られた中和処理液1080mlを入れ、また、陰極室側の陰極循環液槽には陰極循環液として6.8質量%のTMAH水溶液705mlを入れ、陽極室側での陽極循環液(中和処理液)の循環速度と陰極室側での陰極循環液(TMAH水溶液)の循環速度とをそれぞれ流速(線速度)23.7×10-3m/秒とし、陽電極と陰電極との間には直流0.15A/cm2の定電流電圧(開始時電圧:17.0V及び最大電圧:17.0V)を印加し、また、温度は35℃となるようにして、中和処理液の電解処理を行った。 The anode circulating liquid tank on the anode chamber side of this electrolytic cell is filled with 1080 ml of the neutralized liquid obtained above as the anode circulating liquid, and the cathode circulating liquid tank on the cathode chamber side is 6.8 ml as the cathode circulating liquid. 705 ml of mass% TMAH aqueous solution is added, and the circulation rate of the anode circulation solution (neutralization solution) on the anode chamber side and the circulation rate of the cathode circulation solution (TMAH aqueous solution) on the cathode chamber side are respectively flow rates (linear velocity). A constant current voltage of 0.15 A / cm 2 DC (starting voltage: 17.0 V and maximum voltage: 17.0 V) was applied between the positive electrode and the negative electrode, 23.7 × 10 −3 m / sec. Moreover, the neutralization solution was subjected to electrolytic treatment so that the temperature was 35 ° C.
この電解工程での中和処理液の電解処理が終了した後、陽極循環液及び陰極循環駅の循環を停止し、陰極室側の陰極循環液槽から再生された製品TMAH水溶液(陰極循環液)905mlを回収し、そのTMAH濃度、有機不純物濃度(レジスト量)、金属不純物としての鉄(Fe)濃度、及び不溶化不純物濃度(濁度:JIS K0101)を測定すると共に、TMAH含有廃液中のTMAH含有量に対する製品TMAH水溶液中のTMAH含有量の割合を計算してTMAH回収率(wt%)を求め、また、電解処理後に電解装置の陽電極を取り外してこの陽電極へのタール状物質の付着状況(電極板の汚染状況)を目視にて観察し、○:付着なし、△:外周に若干の付着あり、及び×:全面に付着あり、の3段階で評価した。 After completion of the electrolysis of the neutralization solution in this electrolysis process, the circulation of the anode circulation solution and the cathode circulation station is stopped, and the product TMAH aqueous solution regenerated from the cathode circulation solution tank on the cathode chamber side (cathode circulation solution) Collect 905 ml and measure its TMAH concentration, organic impurity concentration (resist amount), iron (Fe) concentration as metal impurity, and insolubilized impurity concentration (turbidity: JIS K0101), and TMAH content in TMAH-containing waste liquid Calculate the TMAH recovery rate (wt%) by calculating the ratio of TMAH content in the product TMAH aqueous solution to the amount, and remove the positive electrode of the electrolyzer after electrolytic treatment, and the adhesion of tar-like substances to this positive electrode (Contamination state of electrode plate) was visually observed and evaluated in three stages: ○: no adhesion, Δ: slight adhesion on the outer periphery, and x: adhesion on the entire surface.
結果は、表1に示すとおり、陽電極へのタール状物質の付着は認められず、また、陰極室側から得られた製品TMAH水溶液は、そのTMAH濃度が16.5質量%であり、有機不純物濃度(レジスト量)が1.1mg/molであって、鉄(Fe)濃度が3.0ppmであった。また、TMAH回収率は35.6wt%であり、不溶化不純物濃度は1ppm未満であって検出されなかった。なお、電解終了後の陽極循環液(残留陽極液)の濁度(JIS K0101)は1800ppmに上昇していた。 As shown in Table 1, the adhesion of tar-like substances to the positive electrode was not observed, and the product TMAH aqueous solution obtained from the cathode chamber side had a TMAH concentration of 16.5% by mass and was organic. The impurity concentration (resist amount) was 1.1 mg / mol, and the iron (Fe) concentration was 3.0 ppm. Further, the recovery rate of TMAH was 35.6 wt%, and the concentration of insolubilized impurities was less than 1 ppm and was not detected. In addition, the turbidity (JIS K0101) of the anode circulating liquid (residual anolyte) after electrolysis was increased to 1800 ppm.
〔実施例2〕
TAAH含有廃液として実施例1で用いたものと同じフォトレジスト現像廃液を用い、陽極室側での中和処理液(陽極循環液)の流速(線速度)を2.63×10-3m/秒とした以外は、上記実施例1と同様にしてTAAH含有廃液の再生処理を行った。
結果を表1に示す。
[Example 2]
The same photoresist development waste liquid as that used in Example 1 was used as the TAAH-containing waste liquid, and the flow rate (linear velocity) of the neutralization treatment liquid (anode circulation liquid) on the anode chamber side was 2.63 × 10 −3 m / The TAAH-containing waste liquid was regenerated in the same manner as in Example 1 except that the second was used.
The results are shown in Table 1.
〔実施例3〕
TAAH含有廃液として実施例1で用いたと同じフォトレジスト現像廃液を用い、陽極室側での中和処理液(陽極循環液)の流速(線速度)を1.54×10-3m/秒とした以外は、上記実施例1と同様にしてTAAH含有廃液の再生処理を行った。
結果を表1に示す。
Example 3
The same photoresist development waste liquid as used in Example 1 was used as the TAAH-containing waste liquid, and the flow rate (linear velocity) of the neutralization treatment liquid (anode circulation liquid) on the anode chamber side was 1.54 × 10 −3 m / sec. A TAAH-containing waste liquid was regenerated in the same manner as in Example 1 except that.
The results are shown in Table 1.
〔実施例4〕
再生処理の対象のTAAH含有廃液として、フォトレジスト現像廃液をその水酸化テトラメチルアンモニウム(TMAH)の濃度が28.4質量%になるまで濃縮され、有機不純物濃度が898mg/molであるフォトレジスト現像廃液(TMAH含有廃液)を用い、中和工程ではこのTMAH含有廃液に炭酸ガスを吹き込んで中和し、この中和処理により、TMAC濃度(TMAH換算)が27.2質量%であり、また、TMAH単位mol当りの有機不純物濃度が520mg/molであって、不溶化不純物濃度(濁度:JIS K0101)が2600ppmである中和処理液(TMAC水溶液)を得た。
Example 4
As a TAAH-containing waste liquid to be recycled, the photoresist development waste liquid is concentrated until the tetramethylammonium hydroxide (TMAH) concentration is 28.4% by mass, and the organic impurity concentration is 898 mg / mol. Using the waste liquid (TMAH-containing waste liquid), the TMAH-containing waste liquid is neutralized by blowing carbon dioxide into the TMAH-containing waste liquid. By this neutralization treatment, the TMAC concentration (TMAH conversion) is 27.2% by mass, A neutralized solution (TMAC aqueous solution) having an organic impurity concentration of 520 mg / mol per mol of TMAH and an insolubilized impurity concentration (turbidity: JIS K0101) of 2600 ppm was obtained.
この中和処理液(TMAC水溶液)を陽極循環液として用い、また、5.2質量%のTMAH水溶液を陰極循環液として用い、更に、陽極室側での中和処理液(陽極循環液)の流速(線速度)を2.19×10-3m/秒とした以外は、上記実施例1と同様にしてTAAH含有廃液の再生処理を行った。
結果を表1に示す。
This neutralization treatment solution (TMAC aqueous solution) was used as the anode circulation solution, and 5.2% by mass of TMAH aqueous solution was used as the cathode circulation solution. Further, the neutralization treatment solution (anode circulation solution) on the anode chamber side The TAAH-containing waste liquid was regenerated in the same manner as in Example 1 except that the flow rate (linear velocity) was 2.19 × 10 −3 m / sec.
The results are shown in Table 1.
〔比較例1〕
TAAH含有廃液として実施例1で用いたと同じフォトレジスト現像廃液を用い、陽極室側での中和処理液(陽極循環液)の流速(線速度)を1.21×10-3m/秒とした以外は、上記実施例1と同様にしてTAAH含有廃液の再生処理を行った。
結果を表1に示す。
[Comparative Example 1]
The same photoresist development waste liquid as used in Example 1 was used as the TAAH-containing waste liquid, and the flow rate (linear velocity) of the neutralization treatment liquid (anode circulation liquid) on the anode chamber side was 1.21 × 10 −3 m / sec. A TAAH-containing waste liquid was regenerated in the same manner as in Example 1 except that.
The results are shown in Table 1.
〔比較例2〕
TAAH含有廃液として実施例1で用いたと同じフォトレジスト現像廃液を用い、陽極室側での中和処理液(陽極循環液)の流速(線速度)を1.02×10-3m/秒とした以外は、上記実施例1と同様にしてTAAH含有廃液の再生処理を行った。
結果を表1に示す。
[Comparative Example 2]
The same photoresist development waste liquid as used in Example 1 was used as the TAAH-containing waste liquid, and the flow rate (linear velocity) of the neutralization treatment liquid (anode circulation liquid) on the anode chamber side was 1.02 × 10 −3 m / sec. A TAAH-containing waste liquid was regenerated in the same manner as in Example 1 except that.
The results are shown in Table 1.
〔比較例3〕
上記実施例1と同様に中和処理まで実施して得られた中和処理液〔TMAC濃度(TMAH換算):14.8wt%;濁度:1028〕を、0.25μmの中空糸フィルター(旭化成社製商品名:マイクローザPMP-003)を用いたクロスフローろ過(80%回収)によりろ過し、テトラメチルアンモニウム炭酸塩(TMAC)の濃度(TMAC濃度)がTMAH換算で14.5wt%であって、不溶化不純物濃度(濁度:JIS K0101)が5400ppmである中和処理液(TMAC水溶液)を調製した。
この中和処理液(TMAC水溶液)を陽極循環液として用い、陽極室側での中和処理液(陽極循環液)の流速(線速度)を2.20×10-3m/秒とした以外は、上記実施例1と同様にしてTAAH含有廃液の再生処理を行った。
結果を表1に示す。
[Comparative Example 3]
A neutralization treatment solution [TMAC concentration (converted to TMAH): 14.8 wt%; turbidity: 1028] obtained by carrying out the neutralization treatment in the same manner as in Example 1 was applied to a 0.25 μm hollow fiber filter (Asahi Kasei Corporation). (Trade name: Microza PMP-003) using a cross flow filtration (80% recovery), and the tetramethylammonium carbonate (TMAC) concentration (TMAC concentration) is 14.5 wt% in terms of TMAH. A neutralization treatment solution (TMAC aqueous solution) having an insolubilizing impurity concentration (turbidity: JIS K0101) of 5400 ppm was prepared.
This neutralization solution (TMAC aqueous solution) was used as the anode circulation solution, and the flow rate (linear velocity) of the neutralization treatment solution (anode circulation solution) on the anode chamber side was 2.20 × 10 −3 m / sec. In the same manner as in Example 1, the TAAH-containing waste liquid was regenerated.
The results are shown in Table 1.
〔実施例5〕
上記実施例1と同様に中和処理まで実施して得られた中和処理液〔TMAC濃度(TMAH換算):14.8wt%;濁度:1028〕を、0.25μmの中空糸フィルター(旭化成社製商品名:マイクローザPMP-003)を用いたクロスフローろ過(80%回収)によりろ過し、不溶化不純物を濁度(JIS K0101)<1ppmまで除去した後、減圧蒸留(200mmHg)を実施してTMAC濃度(TMAH換算)40.4質量%のろ過後濃縮中和処理液Aを調製した。このろ過後濃縮中和処理液Aは、そのTMAH単位mol当りの有機不純物濃度(レジスト量:mg/mol)が760mg/molであり、不溶化不純物濃度(濁度:JIS K0101)が16ppmであった。
Example 5
A neutralization treatment solution [TMAC concentration (converted to TMAH): 14.8 wt%; turbidity: 1028] obtained by carrying out the neutralization treatment in the same manner as in Example 1 was applied to a 0.25 μm hollow fiber filter (Asahi Kasei Corporation). (Product name: Microza PMP-003) is filtered by cross-flow filtration (80% recovery), insoluble impurities are removed to turbidity (JIS K0101) <1 ppm, and then vacuum distillation (200 mmHg) is performed. A concentrated neutralization solution A after filtration having a TMAC concentration (TMAH conversion) of 40.4% by mass was prepared. The concentrated neutralization solution A after filtration had an organic impurity concentration (resist amount: mg / mol) per mol of TMAH of 760 mg / mol and an insolubilized impurity concentration (turbidity: JIS K0101) of 16 ppm. .
また、上記実施例1と同様に中和処理まで実施して得られた中和処理液〔TMAC濃度(TMAH換算):14.8wt%;濁度:1028〕の減圧蒸留(200mmHg)により、TMAC濃度(TMAH換算)が44.2質量%であり、また、有機不純物濃度(レジスト量)が750mg/molであり、更に、不溶化不純物濃度(濁度:JIS K0101)が3260ppmである未ろ過濃縮中和処理液Bを得た。 Further, the TMAC concentration was obtained by distillation under reduced pressure (200 mmHg) of a neutralization treatment solution [TMAC concentration (TMAH conversion): 14.8 wt%; turbidity: 1028] obtained by carrying out the neutralization treatment in the same manner as in Example 1 above. (TMAH conversion) is 44.2% by mass, organic impurity concentration (resist amount) is 750 mg / mol, and insoluble impurity concentration (turbidity: JIS K0101) is 3260 ppm. Treatment liquid B was obtained.
更に、上記のろ過後濃縮中和処理液Aと未ろ過濃縮中和処理液Bとを1:1の割合で混合し、TMAC濃度(TMAH換算)が42.2質量%であり、また、TMAH単位mol当りの有機不純物濃度(レジスト量)が755mg/molであり、更に、不溶化不純物濃度(濁度:JIS K0101)が1620ppmである濃縮中和処理液を調製し、次に、この濃縮中和処理液656mlに水325mlを添加して希釈し、TMAC濃度(TMAH換算)が27.0質量%であり、また、不溶化不純物濃度(濁度:JIS K0101)が1060ppmであるTMAC水溶液を調製し、このTMAC水溶液を電解工程の第1回目の電解処理で用いる陽極循環液とした。 Further, the concentrated neutralization treatment liquid A after filtration and the unfiltered concentration neutralization treatment liquid B are mixed at a ratio of 1: 1, the TMAC concentration (TMAH conversion) is 42.2% by mass, and TMAH A concentrated neutralization treatment solution having an organic impurity concentration (resist amount) per mol of 755 mg / mol and an insolubilized impurity concentration (turbidity: JIS K0101) of 1620 ppm is prepared, and then this concentration neutralization is performed. 325 ml of water was added to 656 ml of the treatment solution for dilution to prepare a TMAC aqueous solution with a TMAC concentration (TMAH conversion) of 27.0% by mass and an insolubilized impurity concentration (turbidity: JIS K0101) of 1060 ppm. This TMAC aqueous solution was used as the anodic circulating liquid used in the first electrolytic treatment of the electrolysis process.
上記実施例1と同様の電解槽を用い、この電解槽の陽極室側の陽極循環液槽には上で得られた陽極循環液1000mLを入れ、また、陰極室側の陰極循環液槽には陰極循環液としてTMAH濃度7.1質量%のTMAH水溶液を1000mlを入れ、陽極室側における陽極循環液の循環速度と陰極室側における陰極循環液の循環速度とをそれぞれ流速(線速度)11.0×10-3m/sec.とし、上記実施例1と同様にして第1回目の電解処理(開始時電圧:14.2V及び最大電圧:15.8V)を行った。 Using the same electrolytic cell as in Example 1 above, 1000 mL of the anode circulating liquid obtained above was placed in the anode circulating liquid tank on the anode chamber side of this electrolytic tank, and in the cathode circulating liquid tank on the cathode chamber side. As a cathode circulation liquid, 1000 ml of a TMAH aqueous solution having a TMAH concentration of 7.1% by mass is added, and the circulation speed of the anode circulation liquid on the anode chamber side and the circulation speed of the cathode circulation liquid on the cathode chamber side are respectively flow rates (linear velocity). The first electrolytic treatment (starting voltage: 14.2 V and maximum voltage: 15.8 V) was performed in the same manner as in Example 1 above, at 0 × 10 −3 m / sec.
この第1回目の電解処理が終了した後、陰極室側の陰極循環液槽内には再生されたTMAH水溶液(陰極循環液)1200mlが得られた。
この陰極循環液槽内中の陰極循環液750mlを製品TMAH水溶液として回収し、電解処理終了後の電極板の汚染状況を実施例1と同様にして調べると共に、陰極室側から回収された製品TMAH水溶液(陰極循環液)のTMAH濃度、TMAH単位mol当りの有機不純物濃度(レジスト量)、及び鉄(Fe)濃度を測定し、また、陽極室側の陽極循環液槽中に残留した残留陽極循環液のTMAC濃度(TMAH換算)及び濁度(JIS K0101)を測定した。結果を表2に示す。
After the completion of the first electrolytic treatment, 1200 ml of a regenerated TMAH aqueous solution (cathode circulating solution) was obtained in the cathode circulating solution tank on the cathode chamber side.
750 ml of the cathode circulation liquid in the cathode circulation liquid tank was recovered as a product TMAH aqueous solution, and the state of contamination of the electrode plate after the completion of the electrolytic treatment was examined in the same manner as in Example 1, and the product TMAH recovered from the cathode chamber side. TMAH concentration of aqueous solution (cathode circulating solution), organic impurity concentration (resist amount) per mol of TMAH, and iron (Fe) concentration are measured, and residual anode circulation remaining in the anode circulation solution tank on the anode chamber side The TMAC concentration (TMAH conversion) and turbidity (JIS K0101) of the liquid were measured. The results are shown in Table 2.
(第2回目電解処理)
次に、上記陽極室側の陽極循環液槽では、この陽極循環液槽中に残留した残留陽極循環液に上記濃縮中和処理液410mlを添加し合計1000mlに調整して第2回目の電解処理で用いる陽極循環液(TMAC濃度:27.6質量%)とし、また、陰極室側の陰極循環液槽では、残されたTMAH水溶液(陰極循環液)450mlに純水550mlを追加して合計1000mlの陰極循環液(TMAH濃度:6.8質量%)とした以外は、上記第1回目電解処理の場合と同様の条件(開始時電圧と電圧最大値を表1に示す。)で電解処理を行い、陰極室側の陰極循環液槽内に再生された1200mlのTMAH水溶液(陰極循環液)を得た。
(Second electrolytic treatment)
Next, in the anode circulation liquid tank on the anode chamber side, 410 ml of the concentrated neutralization treatment liquid is added to the remaining anode circulation liquid remaining in the anode circulation liquid tank to adjust the total to 1000 ml, and the second electrolytic treatment. In the cathode circulation liquid tank on the cathode chamber side, 550 ml of pure water was added to 450 ml of the remaining TMAH aqueous solution (cathode circulation liquid) to make a total of 1000 ml of cathode. Except for the circulating fluid (TMAH concentration: 6.8% by mass), the electrolytic treatment was carried out under the same conditions as in the first electrolytic treatment described above (starting voltage and maximum voltage are shown in Table 1). A 1200 ml TMAH aqueous solution (cathode circulating liquid) regenerated in the cathode circulating liquid tank on the side was obtained.
この第2回目の電解処理終了後に、第1回目と同様にして陰極循環液槽内中の陰極循環液750mlを製品TMAH水溶液として回収し、電解処理終了後の電極板の汚染状況を実施例1と同様にして調べると共に、陰極室側から回収された製品TMAH水溶液(陰極循環液)のTMAH濃度、TMAH単位mol当りの有機不純物濃度(レジスト量)、及び鉄(Fe)濃度を測定し、また、陽極室側の陽極循環液槽中に残留した残留陽極循環液のTMAC濃度(TMAH換算)及び濁度(JIS K0101)を測定した。結果を表2に示す。 After the completion of the second electrolytic treatment, 750 ml of the cathode circulating liquid in the cathode circulating liquid tank was recovered as a product TMAH aqueous solution in the same manner as in the first time, and the state of contamination of the electrode plate after the electrolytic treatment was completed in Example 1. The TMAH concentration of the product TMAH aqueous solution (cathode circulating solution) recovered from the cathode chamber side, the organic impurity concentration (resist amount) per mol of TMAH, and the iron (Fe) concentration are measured. Then, the TMAC concentration (TMAH conversion) and turbidity (JIS K0101) of the remaining anode circulating liquid remaining in the anode circulating liquid tank on the anode chamber side were measured. The results are shown in Table 2.
(第3〜8回目電解処理)
更に、上記第2回目の電解処理の場合と同様にして表1に示す陽極循環液及び陰極循環液を調製し、また、上記第1回目電解処理の場合と同様の条件(開始時電圧と電圧最大値を表1に示す。)で電解処理を行い、電解処理終了後の電極板の汚染状況を実施例1と同様にして調べると共に、第2回目と同様にして陰極循環液槽内中の陰極循環液の一部(750ml)を製品TMAH水溶液として回収し、回収された製品TMAH水溶液(陰極循環液)のTMAH濃度、TMAH単位mol当りの有機不純物濃度(レジスト量)、及び鉄(Fe)濃度を測定すると共に、陽極室側の陽極循環液槽中に残留した残留陽極循環液のTMAC濃度(TMAH換算)及び濁度(JIS K0101)を測定した。また、1〜7回の電解処理で得られた製品TMAH水溶液について、その合計TMAH量のTMAH含有廃液中のTMAH量に対する回収率(累積TMAH回収率)を求めた。結果を表2に示す。
(3rd-8th electrolytic treatment)
Further, the anode circulating solution and the cathode circulating solution shown in Table 1 were prepared in the same manner as in the second electrolytic treatment, and the same conditions (starting voltage and voltage as in the first electrolytic treatment) were prepared. The maximum value is shown in Table 1.) Electrolytic treatment is performed, and the state of contamination of the electrode plate after completion of the electrolytic treatment is examined in the same manner as in Example 1, and in the cathode circulation liquid tank as in the second time. Part of the cathode circulation liquid (750 ml) is recovered as a product TMAH aqueous solution, the TMAH concentration of the recovered product TMAH aqueous solution (cathode circulation liquid), the organic impurity concentration (resist amount) per mol of TMAH, and iron (Fe) The concentration was measured, and the TMAC concentration (TMAH conversion) and turbidity (JIS K0101) of the residual anode circulating liquid remaining in the anode circulating liquid tank on the anode chamber side were measured. Moreover, about the product TMAH aqueous solution obtained by 1-7 times of electrolytic treatment, the recovery rate (cumulative TMAH recovery rate) with respect to the TMAH amount in the TMAH containing waste liquid of the total TMAH amount was obtained. The results are shown in Table 2.
〔実施例6〕
上記実施例5で調製したろ過後濃縮中和処理液Aを濃縮中和処理液として用い、この濃縮中和処理液625mlに水375mlを添加して希釈し、TMAC濃度(TMAH換算)が24.1質量%であり、また、不溶化不純物濃度(濁度:JIS K0101)が11ppmであるTMAC水溶液を調製し、このTMAC水溶液を電解工程の第1回目の電解処理で用いる陽極循環液とした。
Example 6
Using the concentrated neutralization solution A after filtration prepared in Example 5 as the concentrated neutralization solution, 375 ml of water was added to 625 ml of the concentrated neutralization solution to dilute, and the TMAC concentration (TMAH conversion) was 24. A TMAC aqueous solution having a concentration of 1% by mass and an insolubilizing impurity concentration (turbidity: JIS K0101) of 11 ppm was prepared, and this TMAC aqueous solution was used as an anodic circulating fluid used in the first electrolytic treatment of the electrolysis process.
上記実施例5と同様にして濃縮中和処理液、陽極循環液、及び陰極循環液を調製し、表2に示す条件で第1〜9回の電解処理を行い、実施例5の場合と同様にして電極板の汚染状況と、製品TMAH水溶液(陰極循環液)のTMAH濃度、TMAH単位mol当りの有機不純物濃度(レジスト量)、及び鉄(Fe)濃度と、残留陽極循環液のTMAC濃度(TMAH換算)及び濁度(JIS K0101)と、1〜8回の累積TMAH回収率とを求めた。結果を表2に示す。 In the same manner as in Example 5, a concentrated neutralization treatment liquid, an anode circulation liquid, and a cathode circulation liquid were prepared, and the first to ninth electrolytic treatments were performed under the conditions shown in Table 2. The same as in Example 5 The contamination status of the electrode plate, the TMAH concentration of the product TMAH aqueous solution (cathode circulating solution), the organic impurity concentration (resist amount) per mol of TMAH, the iron (Fe) concentration, and the TMAC concentration of residual anode circulating solution ( TMAH conversion) and turbidity (JIS K0101) and 1 to 8 cumulative TMAH recoveries were determined. The results are shown in Table 2.
〔実施例7〜9〕
上記実施例5で調製した未ろ過濃縮中和処理液Bを濃縮中和処理液として用い、表4に示す添加量の濃縮中和処理液を水で希釈して1000mlとし、表4に示すTMAC濃度(TMAH換算)及び不溶化不純物濃度(濁度:JIS K0101)のTMAC水溶液を調製し、このTMAC水溶液を電解工程の第1回目の電解処理で用いる陽極循環液とした。
[Examples 7 to 9]
Using the unfiltered concentrated neutralized solution B prepared in Example 5 above as the concentrated neutralized solution, the concentrated neutralized solution of the addition amount shown in Table 4 was diluted with water to 1000 ml, and the TMAC shown in Table 4 was used. A TMAC aqueous solution having a concentration (in terms of TMAH) and an insolubilized impurity concentration (turbidity: JIS K0101) was prepared, and this TMAC aqueous solution was used as an anodic circulating liquid used in the first electrolytic treatment of the electrolysis step.
上記実施例5と同様にして濃縮中和処理液、陽極循環液、及び陰極循環液を調製し、表4に示す条件で第1〜3回の電解処理を行い、実施例5の場合と同様にして電極板の汚染状況と、製品TMAH水溶液(陰極循環液)のTMAH濃度、TMAH単位mol当りの有機不純物濃度(レジスト量)、及び鉄(Fe)濃度と、残留陽極循環液のTMAC濃度(TMAH換算)及び濁度(JIS K0101)と、1〜2回の累積TMAH回収率とを求めた。結果を表4に示す。 Concentrated neutralization treatment liquid, anode circulation liquid, and cathode circulation liquid were prepared in the same manner as in Example 5, and the first to third electrolytic treatments were performed under the conditions shown in Table 4, and the same as in Example 5 The contamination status of the electrode plate, the TMAH concentration of the product TMAH aqueous solution (cathode circulating solution), the organic impurity concentration (resist amount) per mol of TMAH, the iron (Fe) concentration, and the TMAC concentration of residual anode circulating solution ( TMAH conversion) and turbidity (JIS K0101) and the cumulative TMAH recovery rate of 1 to 2 times were determined. The results are shown in Table 4.
1…中和槽、2…電解槽、3…蒸発濃縮器、4…陽イオン交換膜、5…陽極室、6…陰極室、5a…陽極、6a…陰極、7…直流電源、8…陽極循環液槽、9…陰極循環液槽、10…廃液導入ライン、11…炭酸ガス導入ライン、12,13…移送ライン、14…陽極側循環ライン、15…陰極側循環ライン、16…送液ポンプ、17…抜出ライン、18…回収ライン、19…炭酸ガス回収ライン、20…陰極循環液調製ライン、21…排気ライン。
DESCRIPTION OF SYMBOLS 1 ... Neutralization tank, 2 ... Electrolysis cell, 3 ... Evaporative concentrator, 4 ... Cation exchange membrane, 5 ... Anode chamber, 6 ... Cathode chamber, 5a ... Anode, 6a ... Cathode, 7 ... DC power supply, 8 ... Anode Circulating fluid tank, 9 ... Cathode circulating fluid tank, 10 ... Waste liquid introduction line, 11 ... Carbon dioxide gas introduction line, 12, 13 ... Transfer line, 14 ... Anode side circulation line, 15 ... Cathode side circulation line, 16 ...
Claims (8)
前記電解工程において、陽極室側ではこの陽極室内に導入された中和処理液を陽極循環液として循環させると共に、陰極室側ではこの陰極室から回収されるTAAH水溶液よりも低濃度のTAAH水溶液を陰極循環液として循環させ、前記TAAH含有廃液から有機不純物を除去して高純度の製品TAAH水溶液を回収する水酸化テトラアルキルアンモニウム含有廃液の処理方法であり、
前記中和工程で得られ、前記電解工程において電解槽の陽極室側に導入される中和処理液の濁度(JIS K0101)を5000ppm以下に管理すると共に、
前記電解工程において、陽極室内を循環する陽極循環液の流速(線速度)を1.5×10-3〜25×10-3m/秒の範囲内に維持し、また、
電解槽の陰極室側からは、TAAH濃度15〜30質量%の陰極循環液を製品TAAH水溶液として回収することを特徴とする水酸化テトラアルキルアンモニウム含有廃液の再生処理方法。 Carbonate gas was blown into a TAAH-containing waste liquid containing tetraalkylammonium hydroxide (TAAH) and organic impurities, and the neutralization process for neutralizing the tetraalkylammonium hydroxide in the TAAH-containing waste liquid was generated in this neutralization process. By introducing a neutralization treatment solution containing tetraalkylammonium carbonate (TAAC) into the anode chamber side of an electrolytic cell partitioned into an anode chamber and a cathode chamber by a cation exchange membrane, and performing electrolysis of the TAAC An electrolysis step of recovering the purified TAAH aqueous solution from the cathode chamber side,
In the electrolysis step, the neutralization treatment liquid introduced into the anode chamber is circulated as an anode circulation liquid on the anode chamber side, and a TAAH aqueous solution having a lower concentration than the TAAH aqueous solution collected from the cathode chamber is circulated on the cathode chamber side. Circulating as a cathode circulation liquid, removing organic impurities from the TAAH-containing waste liquid to recover a high-purity product TAAH aqueous solution, a method for treating a tetraalkylammonium hydroxide-containing waste liquid,
While controlling the turbidity (JIS K0101) of the neutralization treatment liquid obtained in the neutralization step and introduced into the anode chamber side of the electrolytic cell in the electrolysis step to 5000 ppm or less,
In the electrolysis step, the flow rate (linear velocity) of the anode circulating liquid circulating in the anode chamber is maintained within a range of 1.5 × 10 −3 to 25 × 10 −3 m / sec,
A method for reclaiming a tetraalkylammonium hydroxide-containing waste liquid, wherein a cathode circulating liquid having a TAAH concentration of 15 to 30% by mass is recovered as a product TAAH aqueous solution from the cathode chamber side of the electrolytic cell.
前記電解工程において、陽極室側ではこの陽極室内に導入された中和処理液を陽極循環液として循環させると共に、陰極室側ではこの陰極室から回収されるTAAH水溶液よりも低濃度のTAAH水溶液を陰極循環液として循環させ、前記TAAH含有廃液から有機不純物を除去して高純度の製品TAAH水溶液を回収する水酸化テトラアルキルアンモニウム含有廃液の処理方法であり、
前記電解工程では、電解工程での電気分解を終了して電解槽の陰極室から製品TAAH水溶液を回収した後に、前記電解槽の陽極室内に残留した残留陽極液に前記中和処理液を追加して陽極循環液を調製し、得られた陽極循環液の電気分解を行って再び陰極室側から精製されたTAAH水溶液を回収する電解処理を複数回繰り返して行い、
前記中和工程で得られ、前記電解工程において電解槽の陽極室側に導入される中和処理液の濁度(JIS K0101)を5000ppm以下に管理すると共に、電解工程において電解槽の陽極室内に調製される電解処理前の陽極循環液の濁度(JIS K0101)を5000ppm以下に管理し、
前記電解工程において、陽極室内を循環する陽極循環液のTAAC濃度を18〜30質量%の範囲内に維持すると共に、陽極循環液の流速(線速度)を1.5×10-3〜25×10-3m/秒の範囲内に維持し、また、電解槽の陰極室側からはTAAH濃度15〜30質量%の陰極循環液を製品TAAH水溶液として回収することを特徴とする水酸化テトラアルキルアンモニウム含有廃液の再生処理方法。 Carbonate gas was blown into a TAAH-containing waste liquid containing tetraalkylammonium hydroxide (TAAH) and organic impurities, and the neutralization process for neutralizing the tetraalkylammonium hydroxide in the TAAH-containing waste liquid was generated in this neutralization process. By introducing a neutralization treatment solution containing tetraalkylammonium carbonate (TAAC) into the anode chamber side of an electrolytic cell partitioned into an anode chamber and a cathode chamber by a cation exchange membrane, and performing electrolysis of the TAAC An electrolysis step of recovering the purified TAAH aqueous solution from the cathode chamber side,
In the electrolysis step, the neutralization treatment liquid introduced into the anode chamber is circulated as an anode circulation liquid on the anode chamber side, and a TAAH aqueous solution having a lower concentration than the TAAH aqueous solution collected from the cathode chamber is circulated on the cathode chamber side. Circulating as a cathode circulation liquid, removing organic impurities from the TAAH-containing waste liquid to recover a high-purity product TAAH aqueous solution, a method for treating a tetraalkylammonium hydroxide-containing waste liquid,
In the electrolysis step, after the electrolysis in the electrolysis step is completed and the product TAAH aqueous solution is recovered from the cathode chamber of the electrolytic cell, the neutralization solution is added to the residual anolyte remaining in the anode chamber of the electrolytic cell. An anodic circulating fluid is prepared, electrolysis of the obtained anodic circulating fluid is performed, and the electrolytic treatment for recovering the purified TAAH aqueous solution from the cathode chamber side is repeated a plurality of times,
The turbidity (JIS K0101) of the neutralization solution obtained in the neutralization step and introduced into the anode chamber side of the electrolytic cell in the electrolysis step is controlled to 5000 ppm or less, and in the electrolytic chamber anode chamber. The turbidity (JIS K0101) of the anode circulating liquid before electrolytic treatment to be prepared is controlled to 5000 ppm or less,
In the electrolysis step, the TAAC concentration of the anode circulating liquid circulating in the anode chamber is maintained within a range of 18 to 30% by mass, and the flow rate (linear velocity) of the anode circulating liquid is 1.5 × 10 −3 to 25 ×. The tetraalkyl hydroxide is maintained within a range of 10 −3 m / sec, and the cathode circulating solution having a TAAH concentration of 15 to 30% by mass is recovered as a product TAAH aqueous solution from the cathode chamber side of the electrolytic cell. A method for recycling ammonium-containing waste liquid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011143886A JP5844558B2 (en) | 2011-06-29 | 2011-06-29 | Recycling method for waste liquid containing tetraalkylammonium hydroxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011143886A JP5844558B2 (en) | 2011-06-29 | 2011-06-29 | Recycling method for waste liquid containing tetraalkylammonium hydroxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013010988A true JP2013010988A (en) | 2013-01-17 |
JP5844558B2 JP5844558B2 (en) | 2016-01-20 |
Family
ID=47685107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011143886A Active JP5844558B2 (en) | 2011-06-29 | 2011-06-29 | Recycling method for waste liquid containing tetraalkylammonium hydroxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5844558B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103388155A (en) * | 2013-07-31 | 2013-11-13 | 自贡天龙化工有限公司 | Device and method for continuously preparing tetramethylammonium hydroxide |
CN108623052A (en) * | 2017-03-22 | 2018-10-09 | 三福化工股份有限公司 | The recovery method of tetramethylammonium hydroxide in the secondary liquid waste of development waste liquid |
JP2018195707A (en) * | 2017-05-17 | 2018-12-06 | 三福化工股▲分▼有限公司 | Method of collecting tetramethyl ammonium hydroxide (tmah) |
CN114570307A (en) * | 2022-03-18 | 2022-06-03 | 西安吉利电子新材料股份有限公司 | Preparation system and method for directly producing electronic-grade tetramethylammonium hydroxide from dimethyl carbonate |
US11975992B2 (en) | 2018-03-27 | 2024-05-07 | Lam Research Ag | Method of producing rinsing liquid |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61170588A (en) * | 1985-01-25 | 1986-08-01 | Tama Kagaku Kogyo Kk | Production of quaternary ammonium hydroxide |
JPH0517889A (en) * | 1991-07-12 | 1993-01-26 | Chlorine Eng Corp Ltd | Method for regenerating tetra-alkyl ammonium hydroxide |
JP2001212596A (en) * | 2000-02-03 | 2001-08-07 | Matsushita Environment Airconditioning Eng Co Ltd | Method for regenerating spent developer |
JP2001271193A (en) * | 2000-01-13 | 2001-10-02 | Atofina | Synthesis of tetramethylammonium hydroxide |
JP2007323095A (en) * | 1996-11-21 | 2007-12-13 | Japan Organo Co Ltd | Regeneration treatment method for waste photoresist developing solution |
JP2011045844A (en) * | 2009-08-27 | 2011-03-10 | Tokuyama Corp | Method for refining waste developing solution containing tetraalkylammonium hydroxide |
-
2011
- 2011-06-29 JP JP2011143886A patent/JP5844558B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61170588A (en) * | 1985-01-25 | 1986-08-01 | Tama Kagaku Kogyo Kk | Production of quaternary ammonium hydroxide |
JPH0517889A (en) * | 1991-07-12 | 1993-01-26 | Chlorine Eng Corp Ltd | Method for regenerating tetra-alkyl ammonium hydroxide |
JP2007323095A (en) * | 1996-11-21 | 2007-12-13 | Japan Organo Co Ltd | Regeneration treatment method for waste photoresist developing solution |
JP2001271193A (en) * | 2000-01-13 | 2001-10-02 | Atofina | Synthesis of tetramethylammonium hydroxide |
JP2001212596A (en) * | 2000-02-03 | 2001-08-07 | Matsushita Environment Airconditioning Eng Co Ltd | Method for regenerating spent developer |
JP2011045844A (en) * | 2009-08-27 | 2011-03-10 | Tokuyama Corp | Method for refining waste developing solution containing tetraalkylammonium hydroxide |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103388155A (en) * | 2013-07-31 | 2013-11-13 | 自贡天龙化工有限公司 | Device and method for continuously preparing tetramethylammonium hydroxide |
CN103388155B (en) * | 2013-07-31 | 2015-07-08 | 自贡天龙化工有限公司 | Device and method for continuously preparing tetramethylammonium hydroxide |
CN108623052A (en) * | 2017-03-22 | 2018-10-09 | 三福化工股份有限公司 | The recovery method of tetramethylammonium hydroxide in the secondary liquid waste of development waste liquid |
JP2018195707A (en) * | 2017-05-17 | 2018-12-06 | 三福化工股▲分▼有限公司 | Method of collecting tetramethyl ammonium hydroxide (tmah) |
US11975992B2 (en) | 2018-03-27 | 2024-05-07 | Lam Research Ag | Method of producing rinsing liquid |
CN114570307A (en) * | 2022-03-18 | 2022-06-03 | 西安吉利电子新材料股份有限公司 | Preparation system and method for directly producing electronic-grade tetramethylammonium hydroxide from dimethyl carbonate |
Also Published As
Publication number | Publication date |
---|---|
JP5844558B2 (en) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100361799B1 (en) | Method and apparatus for regenerating photoresist developing waste liquid | |
JP5844558B2 (en) | Recycling method for waste liquid containing tetraalkylammonium hydroxide | |
JP3383334B2 (en) | How to recycle sulfuric acid | |
KR100742088B1 (en) | A reusing method of copper nitrate waste water as etching solution and copper ingot by etching process | |
CN106587472A (en) | Resource recycling method for palladium-containing electroplating wastewater | |
CN107012466A (en) | A kind of acidic etching liquid method for recycling and system | |
JP2016123949A (en) | Non-wastewater treatment apparatus and method for treatment water to be hexavalent chromium substitute | |
CN110759554A (en) | Recycling and zero-discharge treatment method for ammonium adipate wastewater generated in aluminum foil formation | |
JP2010059502A (en) | Treatment method and device for copper etching waste solution | |
KR101021784B1 (en) | Recycling method and apparatus of waste etching solution | |
CN108341526A (en) | A kind of nickel-containing waste water online recycling water resource and extraction metal nickel resources new process | |
JP2008081791A (en) | Method and apparatus for recovering phosphoric acid from phosphoric ion-containing water | |
TW201305064A (en) | Processing method for collecting waste liquid containing fluorine and apparatus thereof | |
KR101070828B1 (en) | Method and apparatus for water treatment | |
JP3325488B2 (en) | Water purification equipment and cooling equipment | |
JP2009142733A (en) | Insoluble electrode and electrochemical liquid treatment apparatus | |
JPH11253968A (en) | Water recovering apparatus | |
CN108623052A (en) | The recovery method of tetramethylammonium hydroxide in the secondary liquid waste of development waste liquid | |
JP4277491B2 (en) | Circulation utilization system of fluorine aqueous solution or hydrofluoric acid aqueous solution and its circulation utilization method | |
JP3928484B2 (en) | Functional water recovery method | |
CN112624483A (en) | Treatment system and treatment method for circuit board production spray tower wastewater | |
CN109053423B (en) | Purification method of ammonium adipate waste liquid and recovery processing device thereof | |
JP4102526B2 (en) | Copper chloride etchant electrolytic regeneration system | |
KR100790370B1 (en) | Recycling method and apparatus of waste etching solution | |
TWI405050B (en) | Process for recovering and purifying tetraalkyl ammonium hydroxide from waste solution containing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140402 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140902 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141028 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150421 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150717 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150821 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20150826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151119 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5844558 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |