KR100742088B1 - A reusing method of copper nitrate waste water as etching solution and copper ingot by etching process - Google Patents
A reusing method of copper nitrate waste water as etching solution and copper ingot by etching process Download PDFInfo
- Publication number
- KR100742088B1 KR100742088B1 KR1020050104918A KR20050104918A KR100742088B1 KR 100742088 B1 KR100742088 B1 KR 100742088B1 KR 1020050104918 A KR1020050104918 A KR 1020050104918A KR 20050104918 A KR20050104918 A KR 20050104918A KR 100742088 B1 KR100742088 B1 KR 100742088B1
- Authority
- KR
- South Korea
- Prior art keywords
- copper
- waste liquid
- electrolytic
- nitric acid
- copper nitrate
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/05—Conductivity or salinity
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/06—Controlling or monitoring parameters in water treatment pH
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/10—Energy recovery
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/16—Regeneration of sorbents, filters
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Description
도 1은 전해채취 공정에서 음극에서 석출된 전해동 사진이며, 1 is a photograph of the electrolytic copper precipitated from the cathode in the electrowinning process,
도 2는 적정한 전해채취 조건 하에서 음극에서 석출된 전해동의 사진이다.Figure 2 is a photograph of the electrolytic copper precipitated on the cathode under appropriate electrolytic extraction conditions.
본 발명은 동, 질산 함유 에칭폐액을 진공증발하여 에칭액과 전해동으로 재사용하는 방법을 제공하는 것으로, 질산동 폐액으로부터 고형 슬러지를 여과하는 단계와, 상기 질산동 폐액을 진공증발시켜서 질산을 회수하여 동 폐액을 형성하는 단계와, 상기 동 폐액의 전해채취 조건을 조절하도록 조성을 조절하는 단계와, 상기 동 폐액을 전해채취하여 전해동을 회수하는 단계로 구성되어 고가의 화공약품을 사용하지 않고 질산동 폐액을 친환경적으로 처리하고 질산과 전해동을 경제적으로 회수하는 방법에 관한 것이다.The present invention provides a method of vacuum-evaporating copper and nitric acid-containing etching waste liquid to reuse the etching liquid and electrolytic copper. The method includes filtering solid sludge from the copper nitrate waste liquid and recovering nitric acid by vacuum evaporating the copper nitrate waste liquid. Forming a waste liquid, adjusting the composition to control the electrolytic collection conditions of the waste liquid, and recovering the electrolytic copper by electrolytically collecting the waste liquid, thereby eliminating expensive chemicals. Environmentally friendly treatment and economic recovery of nitric acid and electrolytic copper.
동회로 기판의 에칭 공정에서 발생하는 질산동 폐액은 초강산성을 지니며 보통 300 g/l가 넘는 고농도의 질산과 농도 80 g/l 이상의 동이온이 함유되어 있다.Copper nitrate wastes from the etching process of copper circuit boards are super acidic and contain high concentrations of nitric acid of more than 300 g / l and copper ions of more than 80 g / l.
종래에는 초강산성인 질산동 폐액을 중화제인 가성소다를 투입하여 침전시키는 중화침전법으로 처리하거나, 알칼리제를 투입하여 pH를 상승시켜서 수산화동을 침전시키고 여과한 후에 잔류된 분말을 가열하여 산화동으로 제조하여 재사용하는 방법을 사용하였다. Conventionally, the super acidic copper nitrate waste solution is treated by neutralization precipitation method by precipitating by adding caustic soda as a neutralizing agent, or by adding an alkaline agent to raise the pH to precipitate copper hydroxide, and filtering the residual powder to produce copper oxide. To reuse.
이러한 방법중에서 중화침전법은 중화 과정에서 고가의 중화제인 가성소다를 다량으로 사용하여야 하고, 침전 후 여러 단계의 수처리 공정 또는 산화동 회수 공정을 거쳐야 하기 때문에 처리 비용이 매우 높으며 2차 폐수의 발생으로 환경에 영향을 미친다. 특히, 총질소 규제(청정지역 30ppm, 일반지역 60ppm)로 인하여 질산성 질소가 함유된 2차 폐수의 완벽한 수처리가 선행되어야 하지만, 총질소 제거방법의 공지된 기술은 생물학적 방법이 유일한 방법이며 미생물의 먹이로 총질소량의 3배의 메탄올을 투입해야 하기 때문에 처리비용과 초기투자비용도 매우 높기 때문에 경제적이지 못하다는 문제점이 있다.Among these methods, the neutralization precipitation method uses a large amount of caustic soda, which is an expensive neutralizer, during the neutralization process, and the treatment cost is very high because the wastewater has to go through several stages of water treatment process or copper oxide recovery process after precipitation. Affects. In particular, total nitrogen regulation (30 ppm in clean area, 60 ppm in general area) should be preceded by the complete water treatment of the secondary wastewater containing nitrate nitrogen, but the known technique of total nitrogen removal method is the only biological method and Since the amount of methanol to be added three times the total nitrogen as food, there is a problem that it is not economical because the processing cost and initial investment cost is very high.
또한, 질산동 폐액 중에는 300 g/l 이상인 고농도의 질산과 농도 80 g/l 이상인 동이온이 함유되어 있기 때문에 중화침전법으로 처리할 경우 질산 함유량에 비례하는 다량의 가성소다가 소요되며 고가인 다량의 동이 폐기물로 버려지게 된다. In addition, the copper nitrate waste contains high concentrations of nitric acid of more than 300 g / l and copper ions of concentrations of 80 g / l or more, which requires a large amount of caustic soda in proportion to the nitric acid content. The movement is thrown away as waste.
따라서, 동회로 기판의 에칭 공정에서 발생하는 질산동 폐액을 고가의 화공약품을 사용하지 않고 동을 회수하여 고부가가치화하는 경제적이고 친환경적인 기술의 개발이 요구된다.Therefore, it is required to develop an economical and environmentally friendly technique for recovering copper nitrate waste generated in the etching process of the copper circuit board without using expensive chemicals to add copper.
이러한 요구에 따라서, 질산동 폐액을 확산투석막을 적용하여 질산과 동을 회수하는 확산투석법이 개발되었으나, 동이온과 질산이온의 강력하게 착체되어 용액 중에서 질화동이온으로 존재하기 때문에 다음의 표 1에서 도시한 바와 같이, 회수된 질산동 용액에서 동이온이 상당량 함유하게 되고, 이는 회수된 질산동 용액을 질산에칭액으로 재활용하는데 장애 요인이 되며, 전해동의 회수율도 감소하게 된다는 문제점이 있다.In accordance with these requirements, a diffusion dialysis method for recovering nitric acid and copper by applying a diffusion dialysis membrane to a copper nitrate waste solution was developed. However, since copper ions are strongly complexed and exist as copper nitride ions in the solution, the following Table 1 As shown in FIG. 2, copper ions are contained in the recovered copper nitrate solution, which is a barrier in recycling the recovered copper nitrate solution to the nitrate etching solution, and the recovery rate of the electrolytic copper is also reduced.
[표 1] 질산동 폐액에 대한 확산투석시험 결과TABLE 1 Diffusion Dialysis Test Results for Copper Nitrate Wastes
이러한 문제점을 해결하기 위하여, 본 발명의 목적은 동, 질산 함유 질산동 폐액을 진공증발시켜서 질산을 회수하고, 잔류하는 동폐액으로부터 전해채취법을 이용하여 전해동을 회수하므로서 고가의 화공약품을 사용하지 않고 질산과 동을 회수하여 재활용할 수 있는 방법을 제공하는데 있다.In order to solve this problem, an object of the present invention is to recover the nitric acid by vacuum evaporation of copper and nitric acid-containing copper nitrate waste liquid, and to recover the electrolytic copper from the remaining copper waste liquid by using the electrolytic extraction method without using expensive chemicals To provide a way to recover and recycle nitric acid and copper.
본 발명의 질산동 폐액으로부터 고형 슬러지를 여과하는 단계;와, 상기 질산동 폐액을 진공증발시켜서 질산을 회수하여 동이온 농도가 증가된 동 폐액을 형성하는 단계;와, 상기 동 폐액의 전해채취 조건인 전류밀도 300 ~ 560 A/m2, 동이온 농도 20 g/l 이상, 유리산 초기농도 50 g/l 이하, pH -0.18 이상, 전도도 100 mS/cm 이상을 충족하도록 그 조성을 조절하는 단계;와, 상기 동 폐액을 전해채취하여 전해동을 회수하는 단계;로 구성되는 특징이 있다.Filtering solid sludge from the copper nitrate waste liquid of the present invention; and recovering nitric acid by vacuum evaporating the copper nitrate waste liquid to form a copper waste liquid having an increased copper ion concentration; and electrolytic extraction conditions of the copper waste liquid. Adjusting the composition so as to meet a phosphorus current density of 300 to 560 A / m 2 , a copper ion concentration of 20 g / l or more, an initial concentration of free acid of 50 g / l or less, a pH of -0.18 or more, and a conductivity of 100 mS / cm or more; And recovering the electrolytic copper by electrolytically collecting the copper waste solution.
또한, 동 폐액이 유리산(Free acid)도 50 g/l 이하, 동이온 농도 20 g/l 이상이 되도록 질산동 폐액을 진공증발시킨다.In addition, the copper nitrate waste liquid is evaporated in a vacuum such that the waste liquid has a free acid of 50 g / l or less and a copper ion concentration of 20 g / l or more.
또한, 동 폐액의 전해채취 조건은 전류밀도 380 A/m2, 전도도 640 mS/cm이다.In addition, the electrolytic extraction conditions of the waste liquid is a current density of 380 A / m 2 , conductivity 640 mS / cm.
동 폐액을 전해채취할 때 상기 동 폐액의 유리산도가 80 g/l 이상으로 증대되면 전해채취를 정지하고 전해채취 조건을 충족하도록 동 폐액을 보액하여 조성을 다시 조절하는 단계를 포함한다.If the free acidity of the waste liquid is increased to 80 g / l or more when the electrolytic liquid is collected, the electrolytic extraction is stopped and the composition is re-adjusted by replenishing the waste liquid to meet the electrolytic collection conditions.
이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명에서는 동회로기판의 에칭 공정에서 발생하는 질산동 폐액을 진공증발법으로 처리하여 회수된 질산은 에칭액으로 재활용하고, 잔류된 동 폐액을 전해채취하여 전해동을 회수하여 재활용하는 경제적이고 친환경적인 재활용 방법을 제공한다.In the present invention, an economical and eco-friendly recycling method for treating copper nitrate waste generated in the etching process of the copper circuit board by vacuum evaporation to recover the recovered silver nitrate with etching liquid, and recovering and recycling electrolytic copper by electrolytically collecting the remaining copper waste liquid. To provide.
동회로 기판의 에칭 공정에서 발생하는 질산동 폐액의 성분조성 범위를 다음의 표 2에서 도시한다.The composition range of the composition of the copper nitrate waste liquid generated in the etching process of the copper circuit board is shown in Table 2 below.
[표 2] 동회로 기판의 에칭 공정에서 발생하는 질산동 폐액의 성분조성 범위TABLE 2 Composition range of composition of copper nitrate waste liquid generated in etching process of copper circuit board
상기 표 2에서 나타난 바와 같이, 동회로 기판의 에칭 공정에서 발생하는 질산동 폐액의 성분 조성중에서 질산 농도가 370 g/l 이상, 동이온 농도가 80 g/l 이상으로 매우 높으며. 그 외의 성분이 미소량 함유되어 있다. 따라서, 질산과 동이온을 적절한 방법으로 분리하여 회수한다면 효율적으로 재활용할 수 있다. As shown in Table 2, the nitrate concentration is 370 g / l or more and the copper ion concentration is 80 g / l or more in the component composition of the copper nitrate waste liquid generated in the etching process of the copper circuit board. A small amount of other components is contained. Therefore, if nitric acid and copper ions are separated and recovered by an appropriate method, they can be efficiently recycled.
본 발명에서는 질산, 동이온 함유 질산동 폐액을 처리함에 있어서 우선, 질산동 폐액에 포함된 고형 슬러지 성분을 마이크로 카트리지 필터를 이용하여 여과하여 제거함으로서 다음 단계인 진공증발 및 전해채취 단계에서 반응조 내부의 오염을 사전에 방지한다.In the present invention, in treating the nitric acid and copper ion-containing copper nitrate waste liquid, first, by removing the solid sludge component contained in the copper nitrate waste liquid by using a micro-cartridge filter, the inside of the reactor in the vacuum evaporation and electrolytic extraction step of the next step Prevent contamination
상기와 같이 여과 처리된 질산동 폐액을 진공증발시켜서 질산을 회수하여 에칭액으로 재활용하되, 잔류되는 동 용액을 초기 유리산도가 50 g/l 이하로, 동이온농도가 20 g/l 이상이 되도록 한다.Vacuum-evaporate the filtered copper nitrate waste solution as above to recover the nitric acid and recycle it as an etching solution, but the remaining copper solution has an initial free acidity of 50 g / l or less and a copper ion concentration of 20 g / l or more. .
질산동 폐액으로부터 잔류되는 동 폐액의 유리산 초기농도가 50 g/l 이상이면 다음 과정인 전해채취 공정에서 수소 발생이 극심하여 가스 처리 장치가 별도로 필요하게 되는 등 작업성이 저하되며, 특히 수소과전압이 크게 발생하여 전해동의 전해채취가 매우 곤란해진다. 또한, 동이온 농도가 20 g/l 이상으로 확보되어야 전해채취에 의한 전회동의 회수가 가능해지며, 전해채취 과정에서 동이온의 농도가 20 g/l 이하로 감소하면 동 폐액을 폐기처분하여야 한다.If the initial concentration of free acid in the copper waste liquid remaining from the copper nitrate waste liquid is 50 g / l or more, workability is deteriorated, such as the need for a separate gas treatment device due to the generation of hydrogen in the electrolytic extraction process, which is the next step. This greatly occurs, and electrolytic copper is extremely difficult to collect. In addition, the copper ion concentration must be secured to 20 g / l or more to recover the whole turnover by electrolytic extraction. If the copper ion concentration decreases to 20 g / l or less during the electrolytic extraction, the waste liquid must be disposed of.
진공증발 과정에서 질산을 회수하고 잔류한 동 폐액의 전류밀도가 300 ~ 560 A/m2가 되도록 조성을 조절하고 전해채취하여 전해동을 회수한다. 전해채취에 관련된 다양한 전기화학적 인자 중에서도 전류밀도가 가장 중요한 인자이기 때문에 다음과 같이 전류밀도의 조절 방법에 대하여 기술한다. 동 폐액의 전류밀도가 380 A/m2 미만이면 다른 전해 조건을 다양하게 적용하여도 음극에서의 전해동의 전착 상태가 양호하지 않으며, 전류밀도가 560 A/m2를 초과하면 음극에 동이온 뿐만 아니라 다른 종류의 이온까지 전착되어 회수된 전착동의 순도가 저하된다. 따라서, 전해조건에 대한 전반적 분석에 의하면 전류밀도 300 ~ 560 A/m2, 동이온 농도 20 g/l 이상, 유리산 초기농도 50 g/l 이하, pH -0.18 이상, 전도도 100 mS/cm 이상 이여야 하는 것으로 나타났다. In the vacuum evaporation process, nitric acid is recovered and the composition is adjusted and electrolyzed to recover the electrolytic copper so that the current density of the remaining copper waste liquid is 300 to 560 A / m 2 . Since the current density is the most important factor among various electrochemical factors related to electrolysis, the following describes a method of controlling the current density. If the current density of the copper waste fluid is less than 380 A / m 2 , the electrodeposition state of the electrolytic copper at the cathode is not good even if various electrolytic conditions are applied. If the current density is higher than 560 A / m 2 , the copper ion is not only However, the purity of the electrodeposited copper recovered by electrodeposition to other kinds of ions is lowered. Therefore, according to the overall analysis of the electrolytic conditions, the current density is 300 ~ 560 A / m 2 , copper ion concentration 20 g / l or more, free acid initial concentration 50 g / l or less, pH -0.18 or more, conductivity 100 mS / cm or more It turns out that this should be.
또한, 동 폐액을 전해채취할 때, 상기 동 폐액의 농도가 80 g/l 이상으로 증대되면 전해채취를 정지하고 상기한 전해채취 조건을 충족하도록 동 폐액을 보액하여 성분을 다시 조절한다.In addition, when electrolytically collecting the waste liquid, if the concentration of the waste liquid is increased to 80 g / l or more, the electrolytic extraction is stopped and the component is re-adjusted by replenishing the waste liquid so as to meet the above-mentioned electrolytic collection conditions.
이하, 실시예를 참조하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to Examples.
[실시예]EXAMPLE
전처리 여과 장치는 내산성 카트리지 필터와 내산성 마그네트 펌프를 포함하는 장치를 적용하며, 처리용량은 2,000 ml/min이다. The pretreatment filtration device applies an apparatus including an acid resistant cartridge filter and an acid resistant magnet pump, and has a treatment capacity of 2,000 ml / min.
후공정인 진공증발 및 전해채취공정에서 반응조의 내부오염을 방지하기 위하여 상기 전처리 여과 장치에서 질산동 폐액으로부터 고형 슬러지를 여과하고, 여과 처리된 질산동 폐액을 진공증발 장치로 이송한다.In order to prevent internal contamination of the reaction tank in the vacuum evaporation and electrolytic extraction process, which is a post-process, solid sludge is filtered from the copper nitrate waste liquid in the pretreatment filtration apparatus, and the filtered copper nitrate waste liquid is transferred to the vacuum evaporation apparatus.
상기 진공증발 장치는 반응조를 1,000ml 파이렉스 유리용기로 구성하고, 상기 반응조의 내부 하부에 히터를 형성하고, -750mmHg까지 진공도를 유지할 수 있는 진공고펌프를 포함한다. 실험 조건은 진공도 -720mmHg, 온도 60~90 ℃를 적용하였으며 실험에서는 물, 저농도 질산수용액, 고농도 질산수용액 순으로 진공증발하였으나 분석에서는 상기 물, 저농도 질산수용액, 고농도 질산수용액 전체를 혼합한 용액의 산농도를 측정하였다. 이러한 산농도 분석 방법은 수산화나트륨(NaOH)를 이용한 습식 적정법을 적용하였다.The vacuum evaporation apparatus comprises a vacuum high pump capable of constituting the reaction vessel with a 1,000 ml Pyrex glass container, forming a heater in the lower portion of the reaction vessel, and maintaining a vacuum degree up to -750 mmHg. The experimental conditions were vacuum -720mmHg and a temperature of 60 ~ 90 ℃. In the experiment, vacuum was evaporated in the order of water, low concentration nitric acid solution, high concentration nitric acid solution, but in the analysis, the acid of the mixture of the water, low concentration nitric acid solution and high concentration nitric acid solution was The concentration was measured. The acid concentration analysis method was applied to the wet titration method using sodium hydroxide (NaOH).
진공증발법에 의한 질산동 폐액으로부터의 질산 회수 및 동 폐액 제조의 실험결과를 다음의 표 3에 나타내었다. The experimental results of the recovery of nitric acid from the copper nitrate waste liquid by vacuum evaporation method and the production of the waste liquid are shown in Table 3 below.
[표 3] 질산동 폐액에 대한 진공증발 실험 결과 TABLE 3 Vacuum Evaporation Test Results for Copper Nitrate Wastes
상기와 같이, 질산동 폐액에서 분리, 회수된 질산에서의 동이온 농도는 0.01g/l로서 거의 100% 분리, 회수된 것으로 나타났으며, 진공증발후 잔류되어 전 해채취 용액으로 사용할 동 폐액중의 동이온 농도는 원폐액인 질산동 폐액의 동이온 농도와 거의 동일한 것으로 나타났다. 이러한 결과로부터 고순도로 회수된 질산을 에칭 용액으로 재활용함에 있어 문제가 없으며 활용도도 높아진다는 것을 알 수 있다. 또한, 고농도의 동 폐액을 전해채취할 수 있어 동 회수율도 한층 증가시킬 수 있는 것으로 나타났다.As described above, the concentration of copper ions in the nitric acid separated and recovered from the copper nitrate waste solution was 0.01 g / l, which was found to be almost 100% separated and recovered. The copper ion concentration of was almost the same as the copper ion concentration of copper nitrate waste. From these results, it can be seen that there is no problem in recycling the nitric acid recovered with high purity into the etching solution and the utilization is also increased. In addition, the high concentration of copper waste can be electrolytically collected, and the recovery rate can be further increased.
전해채취 장치는 음극으로 스테인레스강인 STS 316, 양극으로 산화이리듐이 코팅된 티타늄판을 적용하였으며, 내산성 펌프, 항온조, 전해액 순환식 전해 장치를 포함한다. Electrolytic picking device is applied to the stainless steel plate STS 316 as a negative electrode, iridium oxide coated titanium plate as a positive electrode, and includes an acid-resistant pump, a thermostat, electrolyte circulating electrolytic device.
진공증발 과정에서 얻어진 동 폐액을 이용하여 다양한 실험 조건하에서 전해채취를 실시하고 그 시험결과를 다음의 표 4, 표 5 및 도 1, 도 2에 나타내었다. Using the copper waste liquid obtained in the vacuum evaporation process was carried out under various experimental conditions and the test results are shown in Table 4, Table 5 and Figures 1 and 2.
전해채취 실험에서는 동 폐액중의 동이온이 음극에서 전착되어 동이온 형태로 석출되도록 다양한 전해조건을 적용한다. 여기에서는 다양한 전기화학적 인자가 존재하지만 환원전류밀도가 가장 크게 영향을 미친다는 점에서 전류밀도를 변화시키면서 음극 표면의 전착물을 조사하였다. 전해채취 실험 조건은 음극으로 동판, 양극산화이리듐이 코팅된 티타늄판, 전류밀도 280 ~ 560A /m2, pH -0.4 ~ 1.0, 동이온 농도 8 ~ 70 g/l, 온도 20 ~ 25 ℃로 적용하였다.In the electrowinning experiment, various electrolytic conditions are applied so that copper ions in copper wastes are deposited on the cathode and precipitated as copper ions. Although various electrochemical factors exist here, the electrodeposition material on the surface of the cathode was investigated while changing the current density in that the reduction current density had the greatest effect. Electrolytic collection test conditions were applied to copper plate as a cathode, titanium plate coated with iridium anodized, current density 280 ~ 560A / m 2 , pH -0.4 ~ 1.0, copper ion concentration 8 ~ 70 g / l, temperature 20 ~ 25 ℃ It was.
전해채취시험의 결과를 다음의 표 4에 도시하고, 상기 표 4에 의거하여 설정된 다양한 전해채취 실험 결과에 의한 음극의 전해동 전착 상태의 각 사진들을 The results of the electrolytic extraction test are shown in Table 4 below, and photographs of the electrolytic copper electrodeposition state of the negative electrode according to the results of the various electrochemical sampling experiments set according to Table 4 above are shown.
도 2에 나타내었다.2 is shown.
[표 4] 질산동폐액으로부터 전해동 제조 전해채취시험 결과TABLE 4 Test results of electrolytic copper production from copper nitrate waste
상기 표 4에서 도시한 바와 같이, 전류밀도가 280 A/m2 인 경우에는 다른 전해 조건을 다양하게 적용하여도 음극에서의 전해동의 전착 상태가 양호하지 않으며, 전류밀도가 560 A/m2인 경우에는 초기 유리산농도가 50 g/l 이하, 동이온 농도가 20 g/l 이상인 경우에만 정상적인 전해동을 획득할 수 있었다. 또한, 도 1의 사진 중에서도 전류밀도가 560 A/m2인 경우에는 초기 유리산농도가 50 g/l 이하, 동이온 농도가 20 g/l 이상인 조건을 충족하는 시편 번호, D, E, F, G에서만 전해동의 전착 상태가 양호한 것으로 나타났다.As shown in Table 4, in the case where the current density is 280 A / m 2 , the electrodeposition state of the electrolytic copper at the cathode is not good even when various other electrolytic conditions are applied, and the current density is 560 A / m 2 . In this case, normal electrolytic copper could be obtained only when the initial free acid concentration was 50 g / l or less and the copper ion concentration was 20 g / l or more. In addition, in the photograph of FIG. 1, when the current density is 560 A / m 2 , specimen numbers satisfying conditions of initial free acid concentration of 50 g / l or less and copper ion of 20 g / l or more, D, E, F , G showed good electrodeposition state of electrolytic copper.
상기 표 4와 도 1에 의거한 전해조건에 대한 전반적 분석에 의하면 전류밀도 300 ~ 560 A/m2, 동이온 농도 20 g/l 이상, 유리산 초기농도 50 g/l 이하, pH -0.18 이상, 전도도 100 mS/cm 이상이여야 하는 것으로 나타났다.According to the overall analysis of the electrolytic conditions based on Table 4 and Figure 1 according to the current density 300 ~ 560 A / m 2 , copper ion concentration 20 g / l or more, free acid initial concentration 50 g / l or less, pH -0.18 or more It has been shown that the conductivity should be at least 100 mS / cm.
또한, 전해채취의 적정한 조건인 전류밀도 380 A/m2, 전도도 640 mS/cm에서의 전해채취 실험 결과에 의한 음극의 전해동 전착 상태의 사진을 도 2에 나타내었다. 도 2에서 나타난 바와 같이, 144 시간동안 전해채취하여 매우 양호한 상태인 622 g의 전해동을 획득할 수 있는 것으로 나타났으며, 상기 전해동에 대한 순도 분석 결과를 표 5에서 나타내었다. Also, FIG. 2 shows a photograph of the electrodeposited copper electrode electrodeposition state of the cathode according to the results of the electrochemical extraction experiment at the current density of 380 A / m 2 and the conductivity of 640 mS / cm, which are appropriate conditions for the electrolytic extraction. As shown in FIG. 2, it was found that 622 g of electrolytic copper was obtained in a very good state by electrolytic extraction for 144 hours, and the results of purity analysis for the electrolytic copper are shown in Table 5.
[표 5] 동 폐액으로부터 전해채취한 전해동의 순도 분석 결과TABLE 5 Purity analysis result of the electrolytic copper electrolyzed from the waste liquid
상기 표 5에서는 거의 99.99%의 고순도 전해동이 회수된 것으로 나타났다.Table 5 shows that almost 99.99% of high purity electrolytic copper was recovered.
본 발명의 방법에 의해 동회로 기판 제조 공정에서 발생하는 질산, 동 함유 질산동 폐액을 질산 및 전해동으로 회수하여 재활용하기 때문에 종래의 질산동 폐액의 수처리 혹은 재활용에 소요되던 높은 처리비용이 절감될 수 있을 뿐만 아니라 종래에 폐기되던 폐자원을 유가자원으로 재활용할 수 있다.Since the method of the present invention recovers and recycles the nitrate and copper-containing copper nitrate wastes generated in the copper circuit board manufacturing process to nitric acid and electrolytic copper, the high processing cost required for the water treatment or recycling of the conventional copper nitrate wastes can be reduced. In addition, waste resources that have been disposed of in the past can be recycled as valuable resources.
또한, 종래 수처리 혹은 재활용 공정에서 발생하는 슬러지 매립 문제를 해소하고 처리 곤란한 중금속 악성폐액에 의한 2차 오염을 방지할 수 있어 환경적 측면에서도 유익하다.In addition, the problem of sludge landfill caused in the conventional water treatment or recycling process can be solved, and secondary pollution by the heavy metal malignant waste liquid, which is difficult to treat, can be prevented.
상기와 같이 본 발명은 기재된 실시예를 중심으로 상세하게 설명하였지만, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변형 및 수정이 가능하다는 것은 당업자에 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.As described above, the present invention has been described in detail with reference to the described embodiments, but it will be apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present invention. It is also natural to fall within the scope.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050104918A KR100742088B1 (en) | 2005-11-03 | 2005-11-03 | A reusing method of copper nitrate waste water as etching solution and copper ingot by etching process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050104918A KR100742088B1 (en) | 2005-11-03 | 2005-11-03 | A reusing method of copper nitrate waste water as etching solution and copper ingot by etching process |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100742088B1 true KR100742088B1 (en) | 2007-07-23 |
Family
ID=38499383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050104918A KR100742088B1 (en) | 2005-11-03 | 2005-11-03 | A reusing method of copper nitrate waste water as etching solution and copper ingot by etching process |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100742088B1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102730891A (en) * | 2012-08-02 | 2012-10-17 | 华夏新资源有限公司 | System for cyclically utilizing nitric acid in wet process of surface treatment |
CN102730892A (en) * | 2012-08-02 | 2012-10-17 | 华夏新资源有限公司 | Method for cyclically utilizing nitric acid in wet process of surface treatment |
CN103213957A (en) * | 2013-03-12 | 2013-07-24 | 华夏新资源有限公司 | Waste acid recovery system |
TWI501918B (en) * | 2012-06-04 | 2015-10-01 | Triumphant Gate Ltd | Recycling Method of Nitric Acid in Surface Treatment Wet Process |
TWI501919B (en) * | 2012-06-04 | 2015-10-01 | Triumphant Gate Ltd | Surface Treatment of Nitric Acid in Wet Process |
CN113816558A (en) * | 2021-10-27 | 2021-12-21 | 迈玺(深圳)智能动力有限公司 | Method and device for refining copper heavy metal in acid pickling copper wastewater |
CN114855221A (en) * | 2022-04-18 | 2022-08-05 | 定颖电子(黄石)有限公司 | System and method for recovering copper-containing nitric acid waste liquid of circuit board |
CN115044769A (en) * | 2021-05-31 | 2022-09-13 | 阮氏化工(常熟)有限公司 | Combined production line and production method of stripping liquid and copper nitrate, copper sulfate and tin crystals |
CN115231763A (en) * | 2022-07-21 | 2022-10-25 | 湖南金龙新材料有限公司 | Treatment method of copper-containing circulating cooling water |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04365889A (en) * | 1991-06-11 | 1992-12-17 | Hitachi Cable Ltd | Electrolytic refining method for copper |
JP2003119580A (en) | 2001-10-15 | 2003-04-23 | Nippon Aqua Kk | Recycling system |
KR20050065031A (en) * | 2003-12-24 | 2005-06-29 | 재단법인 포항산업과학연구원 | A reusing method of waste water comprising copper and nitric acid as etching solution and copper |
-
2005
- 2005-11-03 KR KR1020050104918A patent/KR100742088B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04365889A (en) * | 1991-06-11 | 1992-12-17 | Hitachi Cable Ltd | Electrolytic refining method for copper |
JP2003119580A (en) | 2001-10-15 | 2003-04-23 | Nippon Aqua Kk | Recycling system |
KR20050065031A (en) * | 2003-12-24 | 2005-06-29 | 재단법인 포항산업과학연구원 | A reusing method of waste water comprising copper and nitric acid as etching solution and copper |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI501918B (en) * | 2012-06-04 | 2015-10-01 | Triumphant Gate Ltd | Recycling Method of Nitric Acid in Surface Treatment Wet Process |
TWI501919B (en) * | 2012-06-04 | 2015-10-01 | Triumphant Gate Ltd | Surface Treatment of Nitric Acid in Wet Process |
CN102730891A (en) * | 2012-08-02 | 2012-10-17 | 华夏新资源有限公司 | System for cyclically utilizing nitric acid in wet process of surface treatment |
CN102730892A (en) * | 2012-08-02 | 2012-10-17 | 华夏新资源有限公司 | Method for cyclically utilizing nitric acid in wet process of surface treatment |
CN103213957A (en) * | 2013-03-12 | 2013-07-24 | 华夏新资源有限公司 | Waste acid recovery system |
CN115044769A (en) * | 2021-05-31 | 2022-09-13 | 阮氏化工(常熟)有限公司 | Combined production line and production method of stripping liquid and copper nitrate, copper sulfate and tin crystals |
CN115044769B (en) * | 2021-05-31 | 2023-10-27 | 阮氏化工(常熟)有限公司 | Combined production line and production method of stripping solution and copper nitrate, copper sulfate and tin crystal |
CN113816558A (en) * | 2021-10-27 | 2021-12-21 | 迈玺(深圳)智能动力有限公司 | Method and device for refining copper heavy metal in acid pickling copper wastewater |
CN114855221A (en) * | 2022-04-18 | 2022-08-05 | 定颖电子(黄石)有限公司 | System and method for recovering copper-containing nitric acid waste liquid of circuit board |
CN114855221B (en) * | 2022-04-18 | 2023-12-01 | 超颖电子电路股份有限公司 | System and method for recovering copper-containing nitric acid waste liquid of circuit board |
CN115231763A (en) * | 2022-07-21 | 2022-10-25 | 湖南金龙新材料有限公司 | Treatment method of copper-containing circulating cooling water |
CN115231763B (en) * | 2022-07-21 | 2024-05-14 | 湖南金龙新材料有限公司 | Treatment method of copper-containing circulating cooling water |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100742088B1 (en) | A reusing method of copper nitrate waste water as etching solution and copper ingot by etching process | |
CN111560615B (en) | Method for on-line recovery of copper and chlorine from acidic etching waste liquid and regeneration of etching liquid | |
EA032371B1 (en) | Devices and method for recycling of lead acid batteries without use of smelting furnaces | |
CN111304444B (en) | Treatment method for separating and recovering copper, iron, zinc, nickel and chromium from chromium-containing sludge | |
JPH04314899A (en) | Method and device for electrolytically sampling heavy metal from waste bath | |
CN113707352A (en) | Method for treating radioactive comprehensive wastewater | |
CN101974756A (en) | Device for regenerating waste microetching liquid and recovering copper | |
CN114016034A (en) | Recycling treatment method of etching waste liquid mixed acid | |
JP5844558B2 (en) | Recycling method for waste liquid containing tetraalkylammonium hydroxide | |
CN110668614A (en) | Method for treating etching waste liquid by combining electrocatalytic oxidation with electromagnetic composite material | |
CN106673285B (en) | A kind of recycling recoverying and utilizing method containing golden electroplating wastewater | |
CN112299615A (en) | Device and method for recycling nickel-containing wastewater resources | |
JP2005076103A (en) | Method of treating plating waste liquid | |
CN1942608B (en) | Recovery of Gallium | |
CN213865747U (en) | Device for recycling nickel-containing wastewater resources | |
CN101654293B (en) | Reclamation method for hot galvanizing acid waste liquid | |
KR20030050911A (en) | Method for reuse of wastewater in continuous electroplating lines | |
US4416745A (en) | Process for recovering nickel from spent electroless nickel plating solutions | |
KR20050065030A (en) | A reusing method of waste water comprising copper and hydrochloric acid as etching solution and cucl powder | |
CN112250226A (en) | Brownification waste liquid treatment method | |
CN107253781B (en) | Method for recycling acidic copper-containing waste liquid | |
KR20050065031A (en) | A reusing method of waste water comprising copper and nitric acid as etching solution and copper | |
CN105540948B (en) | High-copper board wastewater processing method based on gradient function anode electrolysis | |
CN104556498A (en) | System for treating low-concentration copper-containing waste water | |
JP2006176353A (en) | Method for recovering hydrochloric acid and copper from copper etching waste liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
J201 | Request for trial against refusal decision | ||
B701 | Decision to grant | ||
GRNT | Written decision to grant | ||
G170 | Publication of correction | ||
FPAY | Annual fee payment |
Payment date: 20130710 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20140716 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20150709 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20160713 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20170712 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20180711 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20190709 Year of fee payment: 13 |