JP2013008829A - FORMATION METHOD OF Sn-Ag BASED ALLOY SOLDER BUMPS - Google Patents

FORMATION METHOD OF Sn-Ag BASED ALLOY SOLDER BUMPS Download PDF

Info

Publication number
JP2013008829A
JP2013008829A JP2011140382A JP2011140382A JP2013008829A JP 2013008829 A JP2013008829 A JP 2013008829A JP 2011140382 A JP2011140382 A JP 2011140382A JP 2011140382 A JP2011140382 A JP 2011140382A JP 2013008829 A JP2013008829 A JP 2013008829A
Authority
JP
Japan
Prior art keywords
concentration
plating solution
solder bumps
solder bump
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011140382A
Other languages
Japanese (ja)
Inventor
Kenji Hatta
健志 八田
Akihiro Masuda
昭裕 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011140382A priority Critical patent/JP2013008829A/en
Publication of JP2013008829A publication Critical patent/JP2013008829A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/0347Manufacturing methods using a lift-off mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • H01L2224/1146Plating
    • H01L2224/11462Electroplating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/1147Manufacturing methods using a lift-off mask

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a formation method of solder bumps which keeps the composition of metal components constant when the solder bumps, having a pattern with a high aspect ratio, are formed by an Sn-Ag based alloy.SOLUTION: In a formation method, openings 13 are formed on electrodes 11, formed on a surface of a wafer 1, by a resist layer 12, and a plating liquid of an Sn-Ag alloy is supplied to the openings 13 by electrolytic plating to form solder bumps 15. The Ag concentration is set so as to be higher than an initial setting concentration according to the rise of the acid concentration in the plating liquid.

Description

本発明は、被処理基板にSn−Ag系合金のはんだバンプを形成する方法に関する。   The present invention relates to a method of forming Sn-Ag alloy solder bumps on a substrate to be processed.

近年、電子部品の高密度実装への要求が高くなっており、狭いピッチで形成されたはんだバンプによる接合が用いられるようになってきている。はんだバンプを用いた接合では、半導体素子の表面の電極上にはんだバンプを形成するが、このはんだバンプの形成方法として、電解めっきを利用する方法が知られている(特許文献1及び特許文献2)。   In recent years, the demand for high-density mounting of electronic components has increased, and joining by solder bumps formed at a narrow pitch has come to be used. In bonding using solder bumps, solder bumps are formed on the electrodes on the surface of the semiconductor element, and as a method for forming the solder bumps, methods using electrolytic plating are known (Patent Document 1 and Patent Document 2). ).

特許文献1及び特許文献2に開示の発明では、レジスト(絶縁膜)によって基板の表面の電極部分に開口部を設けておき、電解めっきにより開口部内に金属を供給することにより、はんだバンプを形成している。狭いピッチではんだバンプを形成する場合、はんだバンプの面積は小さくなるので、めっき膜の高さを高くして、はんだの量を確保することが必要となるが、この方法によれば、レジストを厚くすることで、背の高い、高アスペクト比のはんだバンプを容易に形成することができる。   In the invention disclosed in Patent Document 1 and Patent Document 2, an opening is provided in the electrode portion on the surface of the substrate with a resist (insulating film), and a metal is supplied into the opening by electrolytic plating to form a solder bump. is doing. When solder bumps are formed at a narrow pitch, the area of the solder bumps becomes small. Therefore, it is necessary to increase the height of the plating film and ensure the amount of solder. By increasing the thickness, it is possible to easily form a tall, high aspect ratio solder bump.

ところで、このようなはんだバンプの形成方法においては、めっき液を連続的に使用する場合、めっき液中の金属成分の濃度を一定に維持するために、金属成分を補給することが必要となる。
特許文献1及び特許文献2に開示の発明では、共にSn−Pb系合金のめっき液を用いてはんだバンプを形成しているが、これらのめっき液においては、可溶性アノードを用いることが可能などの理由により、安定した組成で形成することができる。
By the way, in such a solder bump forming method, when the plating solution is used continuously, it is necessary to replenish the metal component in order to keep the concentration of the metal component in the plating solution constant.
In the inventions disclosed in Patent Document 1 and Patent Document 2, solder bumps are formed using a Sn—Pb alloy plating solution. In these plating solutions, which can use a soluble anode? For the reason, it can be formed with a stable composition.

特開平9−186161号公報Japanese Patent Laid-Open No. 9-186161 特開平6−13382号公報JP-A-6-13382

しかしながら、Pbフリー化に伴って、Sn−Pb系合金はんだバンプに代えてSn−Ag系合金はんだバンプが使用されるようになってきた。Sn−Ag系合金は、Snに対してAgの組成比が微量であるため、Agの組成比を安定して維持するのが難しい。
特に高アスペクト比のパターンにおいては、Sn−Ag系合金のめっき液を連続的に使用していると、パターンの下部においてAgの析出が抑制される傾向にあり、めっき液中のAg濃度を一定に保っても、はんだバンプの金属組成(Ag組成)を一定に保つことが困難である。
However, with the Pb-free use, Sn—Ag alloy solder bumps have been used instead of Sn—Pb alloy solder bumps. Since the Sn-Ag alloy has a very small Ag composition ratio with respect to Sn, it is difficult to stably maintain the Ag composition ratio.
In particular, in a pattern with a high aspect ratio, if a plating solution of Sn-Ag alloy is continuously used, the precipitation of Ag tends to be suppressed at the lower part of the pattern, and the Ag concentration in the plating solution is constant. However, it is difficult to keep the metal composition (Ag composition) of the solder bumps constant.

本発明は、このような事情に鑑みてなされたものであって、Sn−Ag系合金により高アスペクト比のパターンを有するはんだバンプを形成する際において、金属成分の組成を一定に保つことのできるはんだバンプの形成方法を提供する。   The present invention has been made in view of such circumstances, and the composition of the metal component can be kept constant when a solder bump having a pattern with a high aspect ratio is formed from an Sn-Ag alloy. A method for forming a solder bump is provided.

本発明のSn−Ag系合金はんだバンプの形成方法は、被処理基板の表面に形成された電極上に絶縁膜により開口部を形成しておき、前記開口部に電解めっきによりSn−Ag系合金のめっき液を供給してはんだバンプを形成する方法であって、前記めっき液中の酸濃度の上昇に応じてAg濃度を初期設定濃度よりも高くすることを特徴とする。   In the method for forming a Sn-Ag alloy solder bump of the present invention, an opening is formed by an insulating film on an electrode formed on the surface of a substrate to be processed, and the Sn-Ag alloy is formed by electrolytic plating in the opening. In this method, the solder bump is formed by supplying the plating solution, and the Ag concentration is made higher than the initial concentration according to the increase in the acid concentration in the plating solution.

高アスペクト比のはんだバンプを形成する場合、めっき液の粘度上昇に伴ってAgの析出が抑制される傾向があるが、めっき液は使用の初期において適切な組成比で析出されるように成分調整される。このめっき液を連続的に使用していると、めっき液の補給等により液中の酸濃度(FA濃度)などが増加し、それに伴ってめっき液の粘度が上昇する。そのため、Ag濃度が初期設定濃度に維持されていても、レジストパターンの開口内部へのAgの拡散係数が低下することが理由で、はんだバンプにおける合金内のAg濃度が低下する。   When forming solder bumps with a high aspect ratio, the deposition of Ag tends to be suppressed as the viscosity of the plating solution increases, but the component adjustment is made so that the plating solution is deposited at an appropriate composition ratio at the beginning of use. Is done. When this plating solution is used continuously, the acid concentration (FA concentration) in the solution increases due to replenishment of the plating solution, and the viscosity of the plating solution increases accordingly. Therefore, even if the Ag concentration is maintained at the initial setting concentration, the Ag concentration in the alloy in the solder bump is lowered because the diffusion coefficient of Ag into the opening of the resist pattern is lowered.

この場合、酸濃度の上昇に対応して、酸液を調整することにより、酸濃度を低下させることも考えられるが、その分、金属成分などの補給量や廃液量も多く必要になり好ましくない。そこで、めっき液の酸濃度の上昇に応じて、めっき液中のAg濃度を初期設定濃度よりも高くすることにより、連続的にめっき液を使用した場合にも、はんだバンプのAg組成を一定に保っている。このように、酸濃度に基づいてめっき液中のAg濃度を調整することにより、Agの析出量を一定に保つことができる。   In this case, it may be possible to reduce the acid concentration by adjusting the acid solution in response to the increase in the acid concentration. . Thus, by increasing the Ag concentration in the plating solution from the initial concentration in accordance with the increase in the acid concentration of the plating solution, the Ag composition of the solder bumps is kept constant even when the plating solution is used continuously. I keep it. Thus, by adjusting the Ag concentration in the plating solution based on the acid concentration, it is possible to keep the precipitation amount of Ag constant.

本発明のSn−Ag系合金はんだバンプの形成方法において、電流密度が1〜20A/dmであり、前記酸濃度が初期設定濃度に対して30g/L以上上昇した場合に、前記Ag濃度を初期設定濃度0.3〜2.5g/Lに対して、酸濃度が30%上昇する毎に5〜20%上昇させるとよい。
また、本発明のSn−Ag系合金はんだバンプの形成方法において、前記開口部は、開口径が120μm以下であり、前記開口径に対する前記絶縁膜の高さの比率が、1.0以上であることを特徴とする。
In the method for forming a Sn-Ag alloy solder bump of the present invention, when the current density is 1 to 20 A / dm 2 and the acid concentration is increased by 30 g / L or more with respect to the initial setting concentration, the Ag concentration is set to The initial concentration of 0.3 to 2.5 g / L may be increased by 5 to 20% every time the acid concentration increases by 30%.
In the method for forming a Sn—Ag alloy solder bump of the present invention, the opening has an opening diameter of 120 μm or less, and a ratio of the height of the insulating film to the opening diameter is 1.0 or more. It is characterized by that.

本発明によれば、高アスペクト比のはんだバンプを形成する際に、めっき液の酸濃度を監視し、その結果を反映してめっき液中のAg濃度を調整することにより、連続的にめっき液を使用する場合でも、はんだバンプの金属組成を一定に保つことができる。   According to the present invention, when forming a high aspect ratio solder bump, the plating solution is continuously monitored by monitoring the acid concentration of the plating solution and adjusting the Ag concentration in the plating solution to reflect the result. Even when using, the metal composition of the solder bumps can be kept constant.

本発明のSn−Ag系合金はんだバンプの形成方法を説明する断面図であり、(a)がはんだバンプ形成前の状態、(b)がめっき後の状態、(c)がレジスト除去後のはんだバンプが形成された状態を示す。It is sectional drawing explaining the formation method of the Sn-Ag type alloy solder bump of this invention, (a) is the state before solder bump formation, (b) is the state after plating, (c) is the solder after resist removal. The state in which the bump was formed is shown.

以下、本発明に係るはんだバンプの形成方法の実施形態を、図面を参照しながら説明する。
図1は、本発明のはんだバンプの形成方法を説明する図である。図1(a)に示すように、ウエハ1の表面には、集積回路に接続された電極11が形成されており、電極11を除く部分がレジスト層12(絶縁膜)により被覆されている。このように、ウエハ1には、予め電極11の位置に開口部13が形成されたレジスト層12が積層されており、その開口部13内に電解めっきにより金属を供給することにより(図1(b))、はんだバンプ15が形成される(図1(c))。
Hereinafter, an embodiment of a solder bump forming method according to the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating a method for forming solder bumps according to the present invention. As shown in FIG. 1A, an electrode 11 connected to an integrated circuit is formed on the surface of the wafer 1, and a portion excluding the electrode 11 is covered with a resist layer 12 (insulating film). As described above, the resist layer 12 having the opening 13 formed in advance at the position of the electrode 11 is laminated on the wafer 1, and a metal is supplied into the opening 13 by electrolytic plating (FIG. 1 ( b)), solder bumps 15 are formed (FIG. 1C).

レジスト層12は、ウエハ1上に所定の厚み(例えば、120μm)で一様に形成されており、ドライフィルムあるいはコート樹脂等の電気絶縁性が良好な材料が使用される。
開口部13は、円形状等に開口して形成されており、開口部13の穴径は60〜120μmとされ、レジスト層12の厚みに対して穴径が小さく形成された高アスペクト比(アスペクト比1.0以上)の開口部13となっている。なお、本発明のはんだバンプ形成方法は、それら高アスペクト比の開口部13の中でも、アスペクト比1.5以上2.0以下の開口部に対して、より有効である。
そして、このように形成された開口部13内に、電解めっきによりはんだバンプ15を形成する金属を供給することによりめっき層14が形成される(図1(b))。次いで、レジスト層12を剥離することで、はんだバンプ15が形成される(図1(c))。
The resist layer 12 is uniformly formed on the wafer 1 with a predetermined thickness (for example, 120 μm), and a material having good electrical insulation such as a dry film or a coating resin is used.
The opening 13 is formed in a circular shape or the like. The opening 13 has a hole diameter of 60 to 120 μm, and has a high aspect ratio (aspect ratio) in which the hole diameter is smaller than the thickness of the resist layer 12. The opening portion 13 has a ratio of 1.0 or more. The solder bump forming method of the present invention is more effective for openings having an aspect ratio of 1.5 or more and 2.0 or less among the openings 13 having a high aspect ratio.
Then, the plating layer 14 is formed in the opening 13 formed in this manner by supplying a metal for forming the solder bump 15 by electrolytic plating (FIG. 1B). Next, the solder bump 15 is formed by peeling the resist layer 12 (FIG. 1C).

はんだバンプ15を形成する金属として、Sn−Ag合金が使用される。Sn−Ag合金のめっき液中には、酸液と、はんだバンプ15を組成する金属(Sn,Ag)の他、添加剤が配合されている。本実施形態で使用されるSn−Ag合金のめっき液は、例えば、酸液としてアルキルスルホン酸、添加剤として酸化防止剤と界面活性剤が用いられ、以下の配合で構成される。
アルキルスルホン酸;100〜300g/L
Sn;30〜100g/L
Ag;0.3〜2.5g/L
(添加剤);30〜150mL/L
An Sn—Ag alloy is used as a metal for forming the solder bump 15. In addition to the acid solution and the metal (Sn, Ag) composing the solder bump 15, an additive is blended in the Sn—Ag alloy plating solution. The plating solution of the Sn—Ag alloy used in the present embodiment includes, for example, an alkyl sulfonic acid as an acid solution and an antioxidant and a surfactant as additives, and has the following composition.
Alkyl sulfonic acid; 100-300 g / L
Sn: 30-100 g / L
Ag: 0.3 to 2.5 g / L
(Additive); 30-150 mL / L

なお、はんだバンプ15を形成する金属としては、前述のSn−Ag合金の他、Sn−Cu合金、Sn−Ag−Cu合金又はSn−Ag−Al合金等が挙げられる。また、これらの金属に対して溶解性に優れる酸性溶液の成分としては、エタンスルホン酸やメタンスルホン酸といったアルキルスルホン酸などが挙げられる。   In addition, as a metal which forms the solder bump 15, Sn-Ag alloy, Sn-Ag-Cu alloy, Sn-Ag-Al alloy, etc. other than the above-mentioned Sn-Ag alloy are mentioned. In addition, examples of the component of the acidic solution excellent in solubility with respect to these metals include alkylsulfonic acid such as ethanesulfonic acid and methanesulfonic acid.

上述のように構成された高アスペクト比のはんだバンプ15を形成する際には、Snに対してAgの組成比が微量であるために、めっき液中のAg濃度を一定に保っていても、連続的に使用されるめっき液の粘度上昇に伴って、Agの析出が抑制される傾向がある。
従来の一般的なめっき液の成分調整は、Agに関しては、その濃度を監視し、濃度が低下したらAgを補給して初期設定濃度を維持するようにしている。これに対して、本実施形態においては、酸濃度を計測することにより、めっき液の粘度をモニタリングし、めっき液中の酸濃度の上昇に応じて、めっき液中のAg濃度を初期設定濃度よりも高くするように調整している。
When forming the high-aspect-ratio solder bump 15 configured as described above, the composition ratio of Ag with respect to Sn is very small, so even if the Ag concentration in the plating solution is kept constant, As the viscosity of the plating solution used continuously increases, the precipitation of Ag tends to be suppressed.
In the conventional general plating solution component adjustment, the concentration of Ag is monitored, and when the concentration decreases, Ag is replenished to maintain the initial concentration. On the other hand, in this embodiment, by measuring the acid concentration, the viscosity of the plating solution is monitored, and the Ag concentration in the plating solution is set from the initial concentration according to the increase in the acid concentration in the plating solution. It is adjusted to be higher.

例えば、電流密度(ASD)が1〜20A/dmであり、前述した酸濃度が初期設定濃度に対して30%以上上昇した場合に、Ag濃度を初期設定濃度0.3〜2.5g/Lに対して酸濃度が30%上昇する毎に5〜20%上昇させるとよい。すなわち、酸濃度の上昇に伴う粘度上昇により、開口部13内の下部でAgが析出しにくくなることに対して、めっき液中のAg濃度を初期設定濃度よりも過剰な濃度にすることにより、開口部13に供給されるめっき液中のAg濃度を高めて、連続的にめっき液を使用した場合においても、はんだバンプ15のAg組成を一定に保つことができる。このように、めっき液中のAg濃度とは関係なく、酸濃度に基づいてAg濃度を調整することにより、Agの析出量を一定に保つことができる。 For example, when the current density (ASD) is 1 to 20 A / dm 2 and the acid concentration is increased by 30% or more with respect to the initial setting concentration, the Ag concentration is changed to the initial setting concentration of 0.3 to 2.5 g / The acid concentration may be increased by 5 to 20% every time the acid concentration is increased by 30% with respect to L. That is, by increasing the viscosity accompanying the increase in acid concentration, it becomes difficult for Ag to precipitate at the lower part in the opening 13, whereas by making the Ag concentration in the plating solution excessively higher than the initial setting concentration, Even when the Ag concentration in the plating solution supplied to the opening 13 is increased and the plating solution is continuously used, the Ag composition of the solder bump 15 can be kept constant. Thus, regardless of the Ag concentration in the plating solution, the amount of Ag deposited can be kept constant by adjusting the Ag concentration based on the acid concentration.

なお、めっき液中の成分濃度は、分析器でサンプリングして分析することができる。また、ウエハ2上にめっき層14を形成するためのめっき装置としては、特に制約はなく、一般的なめっき装置を使用することができる。   The component concentration in the plating solution can be sampled and analyzed by an analyzer. Moreover, there is no restriction | limiting in particular as a plating apparatus for forming the plating layer 14 on the wafer 2, A general plating apparatus can be used.

以下、上述したはんだバンプの形成方法の実施例について説明する。
レジスト層12の厚みが120μm、開口径が80μm(アスペクト比1.5)の開口部13が形成されたウエハ1に対して、Ag濃度1.2g/L、酸濃度120g/Lのめっき液を用い、電流密度(ASD)6A/dmでSn−Ag合金のはんだバンプ15を形成した。その際の新液(めっき開始時のめっき液であり、初期設定濃度のめっき液である。)においては、はんだバンプ15中に析出したAg組成は約2.5質量%であった。
Hereinafter, examples of the above-described solder bump forming method will be described.
A plating solution having an Ag concentration of 1.2 g / L and an acid concentration of 120 g / L is applied to the wafer 1 on which the resist layer 12 has a thickness of 120 μm and an opening 13 having an opening diameter of 80 μm (aspect ratio of 1.5). A solder bump 15 made of Sn—Ag alloy was formed at a current density (ASD) of 6 A / dm 2 . In the new solution at that time (the plating solution at the start of plating and the plating solution having an initial concentration), the Ag composition deposited in the solder bumps 15 was about 2.5 mass%.

一方、電解量約20AH/Lまで使用しためっき液においては、酸濃度は約160g/Lまで上昇しており、このめっき液において、新液の場合と同じ条件ではんだバンプを形成した場合には、はんだバンプ中のAg組成は約2.3質量%となり、新液でのAg組成と比較して0.2%減少した。
さらに、電解量を約40AH/Lまで使用しためっき液においては、酸濃度は約200g/Lまで上昇しており、このめっき液においても、新液の場合と同じ条件ではんだバンプを形成した場合に、はんだバンプ中のAg組成は約2.1質量%となり、新液でのAg組成と比較して0.4%減少した。
つまり、近似的には酸濃度が20g/L上昇する毎にはんだバンプ中のAg組成が0.1質量%(相対比として4%)減少していることがわかる。
On the other hand, in the plating solution used up to about 20 AH / L, the acid concentration has increased to about 160 g / L. In this plating solution, when solder bumps are formed under the same conditions as the new solution, The Ag composition in the solder bumps was about 2.3% by mass, which was 0.2% lower than the Ag composition in the new solution.
Furthermore, in the plating solution using an electrolysis amount of up to about 40 AH / L, the acid concentration has increased to about 200 g / L. In this plating solution as well, when solder bumps are formed under the same conditions as in the new solution Furthermore, the Ag composition in the solder bumps was about 2.1% by mass, which was 0.4% lower than the Ag composition in the new solution.
That is, it can be seen that the Ag composition in the solder bump decreases by 0.1 mass% (relative ratio: 4%) every time the acid concentration is increased by 20 g / L.

そこで、はんだバンプ中のAg組成を新液の場合と同じ2.5質量%に保持するために、めっき液中のAg濃度を、酸濃度が20g/L上昇する毎に約0.5g/L(相対比として4%)ずつ上昇するように、Agイオン補給液を添加させていく条件にてはんだバンプを形成した。この場合、電解量が約40AH/L(酸濃度は約200g/L)の条件においては、めっき液中のAg濃度は1.4g/Lとなった。この条件ではんだバンプを形成したところ、はんだバンプ中のAg組成を新液と同じ2.5質量%に保持することができた。
以上説明したように、本発明によれば、高アスペクト比に形成されたはんだバンプでありながら、その金属組成を一定に保持することができる。
Therefore, in order to keep the Ag composition in the solder bumps at 2.5% by mass as in the case of the new solution, the Ag concentration in the plating solution is about 0.5 g / L each time the acid concentration increases by 20 g / L. Solder bumps were formed under the condition of adding an Ag ion replenisher so as to increase by 4% (relative ratio). In this case, the Ag concentration in the plating solution was 1.4 g / L under the condition where the amount of electrolysis was about 40 AH / L (acid concentration was about 200 g / L). When solder bumps were formed under these conditions, the Ag composition in the solder bumps could be maintained at 2.5% by mass, the same as the new solution.
As described above, according to the present invention, the metal composition can be kept constant while the solder bump is formed with a high aspect ratio.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.

1 ウエハ(被処理基板)
11 電極
12 レジスト層
13 開口部
14 めっき層
15 はんだバンプ
1 Wafer (substrate to be processed)
11 Electrode 12 Resist layer 13 Opening 14 Plating layer 15 Solder bump

Claims (3)

被処理基板の表面に形成された電極上に絶縁膜により開口部を形成しておき、前記開口部に電解めっきによりSn−Ag系合金のめっき液を供給してはんだバンプを形成する方法であって、前記めっき液中の酸濃度の上昇に応じてAg濃度を初期設定濃度よりも高くすることを特徴とするSn−Ag系合金はんだバンプの形成方法。   In this method, an opening is formed by an insulating film on an electrode formed on the surface of a substrate to be processed, and a solder bump is formed by supplying a plating solution of Sn—Ag alloy to the opening by electrolytic plating. A method for forming a Sn-Ag alloy solder bump, wherein the Ag concentration is made higher than the initial concentration in accordance with an increase in the acid concentration in the plating solution. 電流密度が1〜20A/dmであり、前記酸濃度が初期設定濃度に対して30%以上上昇した場合に、前記Ag濃度を初期設定濃度0.3〜2.5g/Lに対して、酸濃度が30%上昇する毎に5〜20%上昇させることを特徴とする請求項1記載のSn−Ag系合金はんだバンプの形成方法。 When the current density is 1 to 20 A / dm 2 and the acid concentration is increased by 30% or more with respect to the initial setting concentration, the Ag concentration is set to the initial setting concentration of 0.3 to 2.5 g / L. The method for forming a Sn-Ag alloy solder bump according to claim 1, wherein the acid concentration is increased by 5 to 20% every time the acid concentration is increased by 30%. 前記開口部は、開口径が120μm以下であり、前記開口径に対する前記絶縁膜の高さの比率が、1.0以上であることを特徴とする請求項1又は2に記載のSn−Ag系合金はんだバンプの形成方法。
The Sn-Ag system according to claim 1 or 2, wherein the opening has an opening diameter of 120 µm or less, and a ratio of a height of the insulating film to the opening diameter is 1.0 or more. Alloy solder bump formation method.
JP2011140382A 2011-06-24 2011-06-24 FORMATION METHOD OF Sn-Ag BASED ALLOY SOLDER BUMPS Withdrawn JP2013008829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011140382A JP2013008829A (en) 2011-06-24 2011-06-24 FORMATION METHOD OF Sn-Ag BASED ALLOY SOLDER BUMPS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011140382A JP2013008829A (en) 2011-06-24 2011-06-24 FORMATION METHOD OF Sn-Ag BASED ALLOY SOLDER BUMPS

Publications (1)

Publication Number Publication Date
JP2013008829A true JP2013008829A (en) 2013-01-10

Family

ID=47675932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011140382A Withdrawn JP2013008829A (en) 2011-06-24 2011-06-24 FORMATION METHOD OF Sn-Ag BASED ALLOY SOLDER BUMPS

Country Status (1)

Country Link
JP (1) JP2013008829A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160145191A (en) 2014-10-10 2016-12-19 이시하라 케미칼 가부시키가이샤 Method for manufacturing alloy bump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160145191A (en) 2014-10-10 2016-12-19 이시하라 케미칼 가부시키가이샤 Method for manufacturing alloy bump
US10062657B2 (en) 2014-10-10 2018-08-28 Ishihara Chemical Co., Ltd. Method for manufacturing alloy bump

Similar Documents

Publication Publication Date Title
JP6133056B2 (en) Tin or tin alloy plating solution
KR101867796B1 (en) Solder material, solder joint and method of inspecting solder material
JP6393526B2 (en) Cyan-based electrolytic gold plating bath and bump forming method using the same
JP6678490B2 (en) Plating method
JP2006131926A (en) Plating method for micropore, method for forming gold bump using the same, method for producing semiconductor device, and semiconductor device
US8822326B2 (en) Method for manufacturing Sn alloy bump
JP2013008829A (en) FORMATION METHOD OF Sn-Ag BASED ALLOY SOLDER BUMPS
TWI683604B (en) Method of forming a solderable solder deposit on a contact pad and printed circuit board exposing on an activated contact pad a solderable solder deposit
CN111263979B (en) Multi-layer nickel alloy as diffusion barrier layer
TWI790062B (en) Plated structure with Ni plating film and lead frame including the plated structure
KR20140018086A (en) Method for etching of copper and copper alloys
JP2013093360A (en) Semiconductor chip mounting substrate and manufacturing method of the same
JP2009242860A (en) Pretreating agent for acidic copper and plating method using the same
US20050269673A1 (en) Pure copper-coated copper foil and method of producing the same, and TAB tape and method of producing the same
JP2009167506A (en) Acid copper electroplating solution and method for producing fine wiring circuit using the same
JP4472673B2 (en) Manufacturing method of copper wiring and electrolytic solution for copper plating
KR101493358B1 (en) Method of fabricating copper plating layer using electroless copper plating solution
JP5682678B2 (en) Semiconductor chip mounting substrate and manufacturing method thereof
US20190330753A1 (en) Nickel (alloy) electroplating solution
JP2016121377A (en) Nickel plating solution
JP2013057127A (en) Acid copper electroplating solution
WO2024219418A1 (en) Cu PILLAR JOINED BODY AND METHOD FOR MANUFACTURING Cu PILLAR JOINED BODY
KR102533369B1 (en) Tin-silver plating solution and method of forming tin-silver solder bumps using the same
TW201033404A (en) Method for forming projection electrode and substituted gold plating solution
TW201346076A (en) Copper electroplating solution composition and electroplating method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902