JP2013004511A - Fuel cell separator and method for manufacturing the same - Google Patents

Fuel cell separator and method for manufacturing the same Download PDF

Info

Publication number
JP2013004511A
JP2013004511A JP2011149554A JP2011149554A JP2013004511A JP 2013004511 A JP2013004511 A JP 2013004511A JP 2011149554 A JP2011149554 A JP 2011149554A JP 2011149554 A JP2011149554 A JP 2011149554A JP 2013004511 A JP2013004511 A JP 2013004511A
Authority
JP
Japan
Prior art keywords
fuel cell
substrate
separator
cell separator
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011149554A
Other languages
Japanese (ja)
Inventor
Masanori Watanabe
正則 渡邉
Yasuo Suzuki
泰雄 鈴木
Tadao Toda
忠夫 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plasma Ion Assist Co Ltd
Original Assignee
Plasma Ion Assist Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plasma Ion Assist Co Ltd filed Critical Plasma Ion Assist Co Ltd
Priority to JP2011149554A priority Critical patent/JP2013004511A/en
Publication of JP2013004511A publication Critical patent/JP2013004511A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid polymer fuel cell separator manufactured using a metal substrate excellent in corrosion resistance and low in contact resistance, and to provide a method for manufacturing the solid polymer fuel cell separator.SOLUTION: A laminated coat including a conductive carbon coat and a metal oxycarbide coat is deposited on at least one surface of a metal substrate of a fuel cell separator. A manufacturing method according to the present invention includes the steps of: placing a separator substrate in a plasma processing vessel and heating the separator substrate to 100-450°C in a non-oxidation gas atmosphere; performing plasma treatment on a surface of the separator substrate; forming a conductive carbon coat by means of discharge plasma CVD; and forming a coat mainly containing chromium oxycarbide on a surface of the conductive carbon coat.

Description

本発明は、耐食性に優れ、カーボンペーパーとの接触電気抵抗が小さく、安価な個体高分子型燃料電池用セパレータ、及びその製造方法に関する。  The present invention relates to a solid polymer fuel cell separator that is excellent in corrosion resistance, has low contact electrical resistance with carbon paper, and is inexpensive, and a method for producing the same.

近年、地球環境問題やエネルギー問題を解決するエネルギー源として燃料電池が注目されている。特に、固体高分子型燃料電池は低い温度で動作可能であること、小型化・軽量化が可能であることから家庭用電源や燃料電池自動車への適用が検討されている。  In recent years, fuel cells have attracted attention as energy sources for solving global environmental problems and energy problems. In particular, since the polymer electrolyte fuel cell can be operated at a low temperature and can be reduced in size and weight, application to a household power source or a fuel cell vehicle is being studied.

一般的な固体高分子型燃料電池を構成する重要部品の一つにセパレータがある。このセパレータに要求される特性としては、酸性雰囲気における耐食性に優れていること、振動等に対する機械的強度が大きいこと、アノード及びカソード電極となるカーボンペーパーとの接触抵抗が小さいこと、溝加工等の加工性に優れ、軽量かつ安価であることなどである。  One of the important parts that constitute a general polymer electrolyte fuel cell is a separator. The properties required for this separator include excellent corrosion resistance in an acidic atmosphere, high mechanical strength against vibration, etc., low contact resistance with carbon paper serving as the anode and cathode electrodes, groove processing, etc. It is excellent in workability, light and inexpensive.

最近では、上記諸特性を満たすセパレータの基材として、ステンレス鋼板などの金属板が主として検討されている。ステンレス鋼やチタン及びその合金などの金属を用いたセパレータは、表面に不動態皮膜を形成することによって良好な耐食性を得ているが、この不動態皮膜がアノード及びカソード電極との接触抵抗を高くするため、導電性を阻害し、燃料電池の発電効率を低下させることが知られている。また、安価なセパレータ基材としてアルミニウムやマグネシウム金属などが検討されているが、基材表面に絶縁性の酸化被膜が形成され易く、耐食性も十分ではなく、溶出したイオンが触媒特性を劣化させたり、固体高分子膜のイオン伝導性を低下させたりするため、結果的に燃料電池の発電特性を劣化させることが知られている。  Recently, a metal plate such as a stainless steel plate has been mainly studied as a base material for a separator that satisfies the above-mentioned various characteristics. Separators using metals such as stainless steel, titanium, and alloys thereof have good corrosion resistance by forming a passive film on the surface, but this passive film increases contact resistance with the anode and cathode electrodes. Therefore, it is known that the conductivity is hindered and the power generation efficiency of the fuel cell is lowered. In addition, aluminum or magnesium metal has been studied as an inexpensive separator base material. However, an insulating oxide film is easily formed on the surface of the base material, corrosion resistance is not sufficient, and eluted ions deteriorate catalyst characteristics. In order to reduce the ionic conductivity of the solid polymer membrane, it is known that the power generation characteristics of the fuel cell are deteriorated as a result.

このため、耐食性金属材料、例えばステンレス鋼表面に炭化物系または硼化物系金属介在物などを析出させて、不動態皮膜による導電性阻害要因を除去するもの(特許文献1参照)、金属基板表面にアモルファスカーボンと導電部を有する被膜層を形成するもの(特許文献2参照)、金属基板表面にクロムオキシカーバイド被膜を形成するもの(特許文献3参照)、などが検討されている。  For this reason, a corrosion-resistant metal material, for example, a carbide-based or boride-based metal inclusion is deposited on the surface of stainless steel to remove the conductivity-inhibiting factor due to the passive film (see Patent Document 1). Studies have been made on those that form a film layer having amorphous carbon and a conductive portion (see Patent Document 2), and those that form a chromium oxycarbide film on the surface of a metal substrate (see Patent Document 3).

特許文献1には、ステンレス鋼を800℃〜1200℃で長時間熱処理することによってステンレス鋼中の炭素又は/及び硼素をクロム系炭化物及びクロム系硼化物の微粒子として基材表面に析出させる技術が開示されている。これらの微粒子は低抵抗率であって、その表面に不動態皮膜を形成しないので、接触抵抗を十分低くできるとされている。しかし、ステンレス鋼基材が露出しているため、電解液中に金属イオンが溶出する、またステンレス鋼基材を800℃〜1200℃で長時間熱処理する必要があるなどの課題があった。  Patent Document 1 discloses a technique for precipitating carbon or / and boron in stainless steel as fine particles of chromium carbide and chromium boride on the surface of the substrate by heat-treating stainless steel at 800 ° C. to 1200 ° C. for a long time. It is disclosed. These fine particles have a low resistivity and do not form a passive film on the surface thereof, so that the contact resistance can be sufficiently lowered. However, since the stainless steel substrate is exposed, metal ions are eluted in the electrolytic solution, and it is necessary to heat treat the stainless steel substrate at 800 ° C. to 1200 ° C. for a long time.

特許文献2では、金属基板上にアモルファスカーボン層と導電部とからなる被覆層を有する燃料電池用セパレータ技術が開示されている。当該セパレータは、アモルファスカーボン層と、アモルファスカーボン層と黒鉛微粒子で構成される導電部とからなる被覆層を備えることを特徴とする。アモルファスカーボンは絶縁性膜であるため、接触抵抗は10mΩ・cm程度で、十分低くできないという課題があった。また、アモルファスカーボン被覆層は耐食性に優れているとされているが、電位+1Vにあるアモルファスカーボン被覆層はpH2の硫酸液中で溶解するという課題があった。Patent Document 2 discloses a fuel cell separator technology having a coating layer composed of an amorphous carbon layer and a conductive portion on a metal substrate. The separator includes an amorphous carbon layer and a coating layer including a conductive portion composed of the amorphous carbon layer and graphite fine particles. Since amorphous carbon is an insulating film, the contact resistance is about 10 mΩ · cm 2 , and there is a problem that it cannot be lowered sufficiently. Moreover, although the amorphous carbon coating layer is said to be excellent in corrosion resistance, there is a problem that the amorphous carbon coating layer at a potential of +1 V is dissolved in a sulfuric acid solution having a pH of 2.

特許文献3では、燃料電池セパレータ基板上にクロムオキシカーバイド又はクロムオキシカーバイドを主成分とする被膜を備えた固体高分子型又はリン酸型燃料電池セパレータ、及びその製造方法として燃料電池セパレータ基板を300℃〜500℃に保持して、ヘキサカルボニルクロムを原料として化学蒸着法により、前記基板上にクロムオキシカーバイド又はクロムオキシカーバイドを主成分とする被膜を形成する技術が開示されている。しかし、アルミニウムやマグネシウムなどの安価な金属基板表面に酸素を含む雰囲気中で前記クロムオキシカーバイド被膜を形成すると、金属基板とクロムオキシカーバイド被膜との界面に絶縁性の酸化膜が形成され、接合抵抗が大きくなるという課題があった。  In Patent Document 3, a solid polymer type or phosphoric acid type fuel cell separator provided with a coating mainly composed of chromium oxycarbide or chromium oxycarbide on a fuel cell separator substrate, and a fuel cell separator substrate 300 as a manufacturing method thereof. A technique is disclosed in which chromium oxycarbide or a film containing chromium oxycarbide as a main component is formed on the substrate by chemical vapor deposition using hexacarbonylchromium as a raw material while being kept at a temperature of from 500 ° C to 500 ° C. However, when the chromium oxycarbide film is formed on an inexpensive metal substrate surface such as aluminum or magnesium in an atmosphere containing oxygen, an insulating oxide film is formed at the interface between the metal substrate and the chromium oxycarbide film, and the junction resistance There was a problem of increasing.

特開2003−193206号公報JP 2003-193206 A 特開2008−204876号公報JP 2008-204876 A 特開2006−278040号公報JP 2006-278040 A 特願2008−184765号公報Japanese Patent Application No. 2008-184765

本発明が解決しようとする課題は、耐食性に優れ、かつ接触抵抗が低くい固体高分子型燃料電池用セパレータを安価に提供すること、及びその製造方法を提供することにある。また、これによって表面処理された燃料電池用セパレータ、及び当該燃料電池用セパレータを用いた固体高分子型燃料電池を安価に提供することにある。  The problem to be solved by the present invention is to provide a polymer electrolyte fuel cell separator having excellent corrosion resistance and low contact resistance at low cost, and to provide a method for producing the same. Another object of the present invention is to provide a fuel cell separator surface-treated and a polymer electrolyte fuel cell using the fuel cell separator at low cost.

本発明は、上記課題を解決するために成されたもので下記の燃料電池用セパレータ及び燃料電池用セパレータの製造方法を提供する。  The present invention has been made to solve the above problems, and provides the following fuel cell separator and method for producing the fuel cell separator.

請求項1に係る発明は、鉄、チタニウム、ニッケル、クロミウム、アルミニウム、マグネシウム、又はこれらの金属の合金材料、又はこれらの群から選ばれる金属の積層材料からなる燃料電池セパレータ基板であって、少なくとも一方の主面が、導電性炭素被膜と金属オキシカーバイド被膜との積層被膜で被覆されていることを特徴とする燃料電池用セパレータである。  The invention according to claim 1 is a fuel cell separator substrate made of iron, titanium, nickel, chromium, aluminum, magnesium, an alloy material of these metals, or a laminated material of metals selected from these groups, and at least One main surface is a fuel cell separator characterized in that it is coated with a laminated film of a conductive carbon film and a metal oxycarbide film.

請求項2に係る発明は、請求項1に記載の前記燃料電池セパレータ基板が、鉄板又は鉄合金板表面にアルミニウムをメッキした積層材料であることを特徴とする請求項1に記載の燃料電池用セパレータである。  The invention according to claim 2 is the fuel cell separator according to claim 1, wherein the fuel cell separator substrate according to claim 1 is a laminated material in which aluminum is plated on the surface of an iron plate or an iron alloy plate. It is a separator.

請求項3に係る発明は、請求項1に記載の前記導電性炭素被膜が導電性ダイヤモンドライクカーボン被膜であって、その厚さが0.03μm乃至1μmであることを特徴とする燃料電池用セパレータである。  The invention according to claim 3 is the fuel cell separator, wherein the conductive carbon film according to claim 1 is a conductive diamond-like carbon film having a thickness of 0.03 μm to 1 μm. It is.

請求項4に係る発明は、請求項1から3のいずれかに記載の前記金属オキシカーバイド被膜がクロムオキシカーバイドを主成分とする被膜層であって、その厚さが0.03μm乃至3μmであることを特徴とする燃料電池用セパレータである。  According to a fourth aspect of the present invention, the metal oxycarbide coating according to any one of the first to third aspects is a coating layer containing chromium oxycarbide as a main component, and the thickness thereof is 0.03 μm to 3 μm. This is a fuel cell separator.

請求項5に係る発明は、燃料電池セパレータ基板をプラズマ処理容器内に設置し、高真空中又は非酸化性ガス雰囲気中で前記燃料電池セパレータ基板を100℃乃至450℃に加熱する第1工程と、不活性ガス又は非酸化性ガス雰囲気中で前記燃料電池セパレータ基板に高周波電力と負のバイアス電圧を給電して放電プラズマを発生させ、前記燃料電池セパレータ基板表面をイオン照射する第2工程と、炭素被膜形成用原料ガス雰囲気中で放電プラズマを発生させ、前記導電性炭素被膜を形成する第3工程と、引き続いて金属オキシカーバイド被膜形成用原料ガス雰囲気中で前記基板を300℃乃至450℃に保持して化学蒸着法によってクロムオキシカーバイドを主成分とする被膜を形成する第4工程とからなることを特徴とする燃料電池用セパレータの製造方法である。  The invention according to claim 5 includes a first step of installing the fuel cell separator substrate in a plasma processing vessel and heating the fuel cell separator substrate to 100 ° C. to 450 ° C. in a high vacuum or in a non-oxidizing gas atmosphere. A second step of supplying a high frequency power and a negative bias voltage to the fuel cell separator substrate in an inert gas or non-oxidizing gas atmosphere to generate discharge plasma, and irradiating the surface of the fuel cell separator substrate with ions; A discharge plasma is generated in a carbon film forming source gas atmosphere to form the conductive carbon film, and then the substrate is heated to 300 ° C. to 450 ° C. in a metal oxycarbide film forming source gas atmosphere. And a fourth step of forming a film mainly composed of chromium oxycarbide by chemical vapor deposition. It is a method of manufacturing the separator.

請求項6に係る発明は、複数枚の前記燃料電池セパレータ基板をほぼ平行、等間隔に配置し、奇数番目の前記セパレータ基板を電気的に結線して第1の基板電極とし、偶数番目のセパレータ基板を電気的に結線して第2の基板電極とし、前記第1の基板電極と前記第2の基板電極を対向電極として高周波電力を給電し、且つ両基板電極に交互に負のバイアス電圧を給電して請求項5に記載の第2工程及び第3工程を実施することを特長とする燃料電池用セパレータの製造方法である。  According to a sixth aspect of the present invention, a plurality of the fuel cell separator substrates are arranged substantially in parallel and at equal intervals, and the odd-numbered separator substrates are electrically connected to form a first substrate electrode. A substrate is electrically connected to form a second substrate electrode, high-frequency power is fed using the first substrate electrode and the second substrate electrode as counter electrodes, and a negative bias voltage is alternately applied to both substrate electrodes. A method for producing a separator for a fuel cell, wherein the second step and the third step according to claim 5 are carried out by supplying power.

請求項7に係る発明は、前記バイアス電圧が、負のパルス電圧又は負の脈流電圧であって、その波高値が300V乃至5000Vであることを特徴とする請求項5及び6に記載の燃料電池用セパレータの製造方法である。  The invention according to claim 7 is characterized in that the bias voltage is a negative pulse voltage or a negative pulsating voltage, and its peak value is 300V to 5000V. It is a manufacturing method of the separator for batteries.

請求項8に係る発明は、前記請求項1から5のいずれかに記載の燃料電池用セパレータ、又は前記請求項5から7のいずれかに記載の製造方法によって製造された燃料電池用セパレータを用いた個体高分子型燃料電池である。  The invention according to claim 8 uses the fuel cell separator according to any one of claims 1 to 5 or the fuel cell separator manufactured by the manufacturing method according to any of claims 5 to 7. It was a solid polymer fuel cell.

本発明によって、耐食性に優れ、かつ接触抵抗が低くい固体高分子型燃料電池用のセパレータを安価に提供し、生産性に優れた製造方法を提供することができる。また、これによって製造された燃料電池用セパレータ、及び当該燃料電池用セパレータを用いた固体高分子型燃料電池を安価に提供することができる。  According to the present invention, a separator for a polymer electrolyte fuel cell having excellent corrosion resistance and low contact resistance can be provided at low cost, and a production method excellent in productivity can be provided. Moreover, the separator for fuel cells manufactured by this, and the polymer electrolyte fuel cell using the said separator for fuel cells can be provided at low cost.

本発明に係る燃料電池用セパレータの断面概略図である。1 is a schematic cross-sectional view of a fuel cell separator according to the present invention. 本発明に係るプラズマ処理装置の要部構成を示す概略図面である。It is a schematic drawing which shows the principal part structure of the plasma processing apparatus which concerns on this invention.

本発明に係る燃料電池用セパレータは、安価な金属製セパレータ基板表面に導電性炭素被膜と金属オキシカーバイド被膜を積層してなることを特徴とする。前記炭素被膜は抵抗率10Ω・cm以下の導電性ダイヤモンドライクカーボン(以下、導電性DLCとも記す)とすることができる。通常のダイヤモンドライクカーボン(以下、DLCとも記す)は絶縁性であって使用できないが、抵抗率10Ω・cm以下の導電性DLC被膜であれば、厚さ1μmの被膜を形成すると、1平方センチメートル当たりの被膜抵抗は1mΩ以下となり、実用上は問題なく使用することができる。しかし、接触抵抗を10mΩ・cm以下にするためには導電性DLC被膜の抵抗率を0.1Ω・cm以下とすることが望ましい。本発明の製造方法によれば、抵抗率10mΩ・cmの導電性DLC被膜を得ることができる(特許文献4参照)。The fuel cell separator according to the present invention is characterized in that a conductive carbon film and a metal oxycarbide film are laminated on the surface of an inexpensive metal separator substrate. The carbon coating may be conductive diamond-like carbon (hereinafter also referred to as conductive DLC) having a resistivity of 10 Ω · cm or less. Ordinary diamond-like carbon (hereinafter also referred to as DLC) is insulative and cannot be used. However, if a conductive DLC film having a resistivity of 10 Ω · cm or less is formed, a 1 μm-thick film is formed per square centimeter. The film resistance is 1 mΩ or less, and can be used practically without any problem. However, in order to reduce the contact resistance to 10 mΩ · cm 2 or less, it is desirable that the resistivity of the conductive DLC film be 0.1 Ω · cm or less. According to the production method of the present invention, a conductive DLC film having a resistivity of 10 mΩ · cm can be obtained (see Patent Document 4).

一方、通常のDLC被膜は耐薬品性に優れた被膜であって、酸性溶液やアルカリ性溶液に侵されることはないとされているが、自然電位+1Vにある導電性DLC被膜はpH2の硫酸液中で溶解する。本発明は、前記導電性DLC被膜上に硫酸溶液にも耐食性を有する金属オキシカーバイド被膜を積層することによって前記課題を解決したものである。図1に本発明に係る燃料電池用セパレータの断面概略図を示す。  On the other hand, a normal DLC film is excellent in chemical resistance and is not affected by an acidic solution or an alkaline solution, but a conductive DLC film at a natural potential of +1 V is in a pH 2 sulfuric acid solution. Dissolve with. This invention solves the said subject by laminating | stacking the metal oxycarbide film which has corrosion resistance also on a sulfuric acid solution on the said electroconductive DLC film. FIG. 1 is a schematic sectional view of a fuel cell separator according to the present invention.

前記燃料電池セパレータ基板表面に導電性DLC被膜とクロムオキシカーバイドを主成分とする被膜を積層する本発明は、ステンレス基板以外の酸化され易い金属基板、例えば、鉄、チタニウム、マグネシウム、アルミニウム及びこれらの合金材料、又はこれらの群から選ばれる金属の積層材料など安価な基板材料にも適用することができる。  The present invention in which a conductive DLC film and a film mainly composed of chromium oxycarbide are laminated on the surface of the fuel cell separator substrate is a metal substrate that is easily oxidized other than a stainless steel substrate, such as iron, titanium, magnesium, aluminum, and the like. The present invention can also be applied to an inexpensive substrate material such as an alloy material or a laminated material of a metal selected from these groups.

しかし、前記セパレータ基板表面に導電性DLC被膜及びクロムオキシカーバイドを主成分とする被膜を形成する工程ではセパレータ基板表面に高抵抗の酸化被膜が生成され易い。これら酸化され易い金属セパレータ基板表面に対しては、その最表面に予め化学量論組成以下の窒素元素を含有する導電性窒化金属層を形成する。該導電性窒化物層はセパレータ基板表面に窒素イオンを照射することによって形成することができる。  However, in the step of forming a conductive DLC film and a film mainly composed of chromium oxycarbide on the separator substrate surface, a high-resistance oxide film is likely to be generated on the separator substrate surface. A conductive metal nitride layer containing a nitrogen element having a stoichiometric composition or less is formed in advance on the outermost surface of the metal separator substrate surface that is easily oxidized. The conductive nitride layer can be formed by irradiating the separator substrate surface with nitrogen ions.

特に、アルミニウムセパレータ基板の場合、窒化アルミニウムは窒化物の中で最も酸化に対して安定な材料で、前記導電性DLC被膜の形成工程及びクロムオキシカーバイドを主成分とする被膜の形成工程においてアルミニウムセパレータ基板表面の酸化を抑制し、セパレータ基板と前記導電性DLC被膜との接合抵抗を著しく低減することができる。  In particular, in the case of an aluminum separator substrate, aluminum nitride is the most stable oxide material among nitrides, and the aluminum separator is used in the conductive DLC film forming step and the film forming step mainly comprising chromium oxycarbide. Oxidation of the substrate surface can be suppressed, and the junction resistance between the separator substrate and the conductive DLC film can be significantly reduced.

本発明によれば、導電性窒化アルミニウム層の厚さは0.01μm〜0.1μmでその効果を発揮する。また、前記導電性DLC被膜の厚さは3μm以下、好ましくは0.03μm〜1μmである。前記クロムオキシカーバイドの抵抗率は約0.2mΩ・cmであって、前記クロムオキシカーバイドを主成分とする被膜の厚さは特定されるものではないが、生産性を考慮すれば5μm以下、好ましくは0.03μm〜3μmである。  According to the present invention, the conductive aluminum nitride layer has a thickness of 0.01 μm to 0.1 μm and exhibits its effect. The conductive DLC film has a thickness of 3 μm or less, preferably 0.03 μm to 1 μm. The resistivity of the chromium oxycarbide is about 0.2 mΩ · cm, and the thickness of the film mainly composed of the chromium oxycarbide is not specified, but it is preferably 5 μm or less in consideration of productivity. Is 0.03 μm to 3 μm.

本発明に係る燃料電池用セパレータの製造方法は、プラズマ処理容器内にセパレータ基板を設置し、非酸化性ガス雰囲気中で前記セパレータ基板を100℃乃至450℃に加熱する第1工程と、前記セパレータ基板表面をプラズマ処理する第2工程と、放電プラズマCVD法による導電性炭素被膜を形成する第3工程と、前記導電性炭素被膜表面にクロムオキシカーバイドを主成分とする被膜を形成する第4工程とからなる。本発明は同一プラズマ処理装置内で前記第1工程から前記第4工程まで原料ガスを切り替えることによって実施することができる特長を有する。  The method for manufacturing a separator for a fuel cell according to the present invention includes a first step of installing a separator substrate in a plasma processing vessel and heating the separator substrate to 100 ° C. to 450 ° C. in a non-oxidizing gas atmosphere; A second step of plasma-treating the substrate surface; a third step of forming a conductive carbon coating by a discharge plasma CVD method; and a fourth step of forming a coating composed mainly of chromium oxycarbide on the surface of the conductive carbon coating. It consists of. The present invention has a feature that can be implemented by switching the source gas from the first step to the fourth step in the same plasma processing apparatus.

図2に本発明に係るプラズマ処理装置の要部構成の概略図を示す。複数枚のセパレータ基板10をほぼ平行、等間隔に配置し、奇数番目のセパレータ基板を電気的に結線して第1の基板電極22aとし、偶数番目のセパレータ基板を電気的に結線して第2の基板電極22bとし、前記第1の基板電極22aと前記第2の基板電極22bを一対の基板電極24として、インピーダンス整合器26とコンデンサー27を介して高周波電源25から高周波電力を給電して放電プラズマを発生させ、且つバイアス電源28からローパスフィルタ32を介して両基板電極に交互に負のバイアス電圧を給電して前記第2工程から第3工程を実施する。  FIG. 2 shows a schematic diagram of the main configuration of the plasma processing apparatus according to the present invention. A plurality of separator substrates 10 are arranged substantially in parallel and at equal intervals, the odd-numbered separator substrates are electrically connected to form the first substrate electrode 22a, and the even-numbered separator substrates are electrically connected to the second. The first substrate electrode 22a and the second substrate electrode 22b are used as a pair of substrate electrodes 24, and a high frequency power is fed from a high frequency power supply 25 through an impedance matching device 26 and a capacitor 27 to discharge the substrate electrode 22b. Plasma is generated, and negative bias voltage is alternately supplied from the bias power source 28 to the both substrate electrodes via the low-pass filter 32, so that the second to third steps are performed.

前記第1工程では、前記プラズマ処理容器21内を真空排気した高真空中、又はアルゴンガス、窒素ガス等の非酸化性ガス雰囲気中で、プラズマ処理装置内に設置した加熱手段(図示せず)によって前記セパレータ基板を所定温度に加熱する。この工程では、前記セパレータ基板表面の酸化反応を抑制しながら100℃以上に加熱して十分にガス出しすると同時に、第3工程で導電性DLC被膜を形成する基板温度250℃〜450℃まで加熱することが好ましい。  In the first step, heating means (not shown) installed in the plasma processing apparatus in a high vacuum obtained by evacuating the plasma processing chamber 21 or in a non-oxidizing gas atmosphere such as argon gas or nitrogen gas. To heat the separator substrate to a predetermined temperature. In this step, while suppressing the oxidation reaction on the separator substrate surface, the substrate substrate is heated to 100 ° C. or more to sufficiently outgas, and at the same time, heated to a substrate temperature of 250 ° C. to 450 ° C. for forming a conductive DLC film in the third step It is preferable.

前記第2工程では、前記プラズマ処理容器21内に不活性ガス、例えばアルゴンガス又はアルゴンガスと水素の混合ガス等の非酸化性ガスを導入し、前記一対の基板電極22a、22bに高周波電力を給電して放電プラズマを発生させ、同時に負のバイアス電圧を印加して前記セパレータ基板の両面をイオン照射して基板表面の酸化被膜や付着物を除去する。前記高周波電源5には、例えば周波数13.56MHz、出力300W〜3kWを有するものを使用することができる。  In the second step, an inert gas, for example, a non-oxidizing gas such as argon gas or a mixed gas of argon gas and hydrogen is introduced into the plasma processing vessel 21, and high frequency power is applied to the pair of substrate electrodes 22a and 22b. Electric power is supplied to generate discharge plasma, and at the same time, a negative bias voltage is applied to irradiate both surfaces of the separator substrate with ions to remove oxide films and deposits on the substrate surface. As the high frequency power source 5, for example, one having a frequency of 13.56 MHz and an output of 300 W to 3 kW can be used.

また、バイアス電圧として前記一対の基板電極に交互に波高値300V〜5kVの負の脈流電圧又は/及び負のパルス電圧を印加する必要がある。その為に図2に示すように、交流電圧発生器29の出力電圧を変圧器30の一次側に給電し、二次側の出力電圧をダイオード31によって両波整流して負の脈流電圧を発生させ、ローパスフィルタ32を介して前記一対の基板電極24に前記脈流電圧を交互に給電することができる。前記交流電圧の周波数は、特定されるものではないが、50Hz乃至200kHzが好適である。更に、好ましくは1kHz乃至100kHzである。  Further, it is necessary to alternately apply a negative pulsating voltage or a negative pulse voltage having a peak value of 300 V to 5 kV to the pair of substrate electrodes as a bias voltage. For this purpose, as shown in FIG. 2, the output voltage of the AC voltage generator 29 is fed to the primary side of the transformer 30, and the secondary output voltage is rectified by a diode 31 to generate a negative pulsating voltage. The pulsating voltage can be alternately supplied to the pair of substrate electrodes 24 through the low-pass filter 32. The frequency of the AC voltage is not specified, but is preferably 50 Hz to 200 kHz. Furthermore, it is preferably 1 kHz to 100 kHz.

この工程では、必要に応じて前記アルゴンガスに窒素ガス等を混合して前記セパレータ基板表面に窒素イオン注入して窒化物層を形成する。アルゴンガスと窒素ガスの混合割合によって、窒化物層の窒素含有割合を制御することができる。例えば、アルミニウムセパレータ基板の場合、窒化アルミニウムは絶縁性であるが、窒素の含有量を50原子%未満、好ましくは25〜45原子%の窒素元素を含むアルミニウム層を形成することによって導電性の窒化アルミニウム層を形成することができる。  In this step, if necessary, nitrogen gas or the like is mixed with the argon gas and nitrogen ions are implanted into the surface of the separator substrate to form a nitride layer. The nitrogen content ratio of the nitride layer can be controlled by the mixing ratio of argon gas and nitrogen gas. For example, in the case of an aluminum separator substrate, aluminum nitride is insulative, but conductive nitridation is achieved by forming an aluminum layer containing nitrogen elements with a nitrogen content of less than 50 atomic percent, preferably 25 to 45 atomic percent. An aluminum layer can be formed.

前記第3工程では、前記プラズマ処理容器21内に設置した前記セパレータ基板10を250℃〜450℃に加熱し、原料ガスとしてメタン、アセチレン、トルエンガスなど炭化水素ガスと必要に応じて水素ガスを導入して前記一対の基板電極22a、22bに高周波電力を給電して放電プラズマを発生させる。高周波電力に重畳して負のバイアス電圧を印加して前記セパレータ基板の両面に導電性DLC被膜を形成することができる。  In the third step, the separator substrate 10 installed in the plasma processing vessel 21 is heated to 250 ° C. to 450 ° C., and a hydrocarbon gas such as methane, acetylene, toluene gas and a hydrogen gas as necessary are used as a raw material gas. Then, high frequency power is supplied to the pair of substrate electrodes 22a and 22b to generate discharge plasma. A conductive DLC film can be formed on both sides of the separator substrate by applying a negative bias voltage superimposed on the high frequency power.

前記導電性DLC被膜の形成には、前記セパレータ基板の温度が250℃以上であることと所定量のイオン照射が不可欠である。対向するセパレータ基板である前記第1の基板電極22aと前記第2の基板電極22bに交互に負のバイアス電圧を印加することによって前記セパレータ基板表面に導電性DLC被膜11を被着することができる。前記負のバイアス電圧として波高値300V〜5000Vの脈流電圧、或いはパルス電圧を印加することができる。  For the formation of the conductive DLC film, it is essential that the temperature of the separator substrate is 250 ° C. or higher and a predetermined amount of ion irradiation. The conductive DLC film 11 can be applied to the surface of the separator substrate by alternately applying a negative bias voltage to the first substrate electrode 22a and the second substrate electrode 22b which are the opposing separator substrates. . A pulsating voltage having a peak value of 300 V to 5000 V or a pulse voltage can be applied as the negative bias voltage.

本発明の他の実施形態によれば、原料ガスの放電プラズマの発生に前記高周波電力を補助的に使用し、前記バイアス電源28からの脈流電圧によって放電プラズマを維持して所望の導電性DLC被膜を形成することもできる。更に、前記バイアス電圧の給電のみによって所望の導電性DLC被膜を形成することも可能である。これらの導電性DLC被膜の形成方法も本発明に含む。  According to another embodiment of the present invention, the high frequency power is supplementarily used for generating the discharge plasma of the raw material gas, and the discharge plasma is maintained by the pulsating voltage from the bias power supply 28 to obtain a desired conductive DLC. A film can also be formed. Furthermore, it is possible to form a desired conductive DLC film only by supplying the bias voltage. A method for forming these conductive DLC films is also included in the present invention.

前記第4工程では、原料ガスとして金属ヘキサカルボニルガスを追加導入して金属ヘキサカルボニルガスを含む雰囲気中で基板温度を300℃〜450℃に保持して化学蒸着法によって金属オキシカーバイド被膜を形成する。この工程では、プラズマCVD法のみならず、熱CVD法によって金属オキシカーバイド被膜を形成することができる。プラズマCVDの場合は、セパレータ基板である前記一対の基板電極22a、22bに高周波電力を給電して放電プラズマを発生させることによって、基板表面における金属オキシカーバイド被膜の生成をアシストすることができる。本発明における化学蒸着法は、金属ヘキサカルボニルガスを原料とする熱CVD法、プラズマCVD法、反応性イオンプレーティング法等を指す。  In the fourth step, a metal hexacarbonyl gas is additionally introduced as a source gas, and the substrate temperature is maintained at 300 ° C. to 450 ° C. in an atmosphere containing the metal hexacarbonyl gas, and a metal oxycarbide film is formed by chemical vapor deposition. . In this step, the metal oxycarbide film can be formed not only by the plasma CVD method but also by the thermal CVD method. In the case of plasma CVD, generation of a metal oxycarbide coating on the substrate surface can be assisted by generating discharge plasma by supplying high-frequency power to the pair of substrate electrodes 22a and 22b, which are separator substrates. The chemical vapor deposition method in the present invention refers to a thermal CVD method using a metal hexacarbonyl gas as a raw material, a plasma CVD method, a reactive ion plating method, or the like.

図2に示すように、前記プラズマ処理容器内にA6サイズの鉄板表面にアルミニウムを溶融メッキしたアルミニウム基板6枚を絶縁体支持具にほぼ4cm間隔で平行に係止し、奇数番目の3枚を電気的に結線して第1の電極基板22aとし、偶数番目の3枚を電気的に結線して第2の電極基板22bとし、一対の対向電極板24とした。前記第1の電極基板22aの給電端子をインピーダンス整合器26とコンデンサー27を介して高周波電源25の出力端子に接続し、前記第2の電極基板22bの接地端子はコンデンサー27を介して接地した。また、前記一対の対向電極板24の給電端子及び接地端子はローパスフィルタ32を介してバイアス電源28に接続した。本実施例では比較のため、SUS基板表面にDLC膜11のみ被着した試料と前記アルミニウム基板10にDLC膜11のみ被着した試料を作製した。  As shown in FIG. 2, six aluminum substrates obtained by hot-plating aluminum on the surface of an A6 size iron plate in the plasma processing vessel are locked in parallel with an insulator support at intervals of about 4 cm, and the odd-numbered three pieces are attached. The first electrode substrate 22a was electrically connected, and the even-numbered three substrates were electrically connected to form the second electrode substrate 22b, thereby forming a pair of counter electrode plates 24. The power supply terminal of the first electrode substrate 22 a was connected to the output terminal of the high frequency power supply 25 via an impedance matching device 26 and a capacitor 27, and the ground terminal of the second electrode substrate 22 b was grounded via the capacitor 27. The power supply terminal and the ground terminal of the pair of counter electrode plates 24 are connected to a bias power source 28 through a low-pass filter 32. In this example, for comparison, a sample in which only the DLC film 11 was deposited on the SUS substrate surface and a sample in which only the DLC film 11 was deposited on the aluminum substrate 10 were prepared.

前記第1工程では、前記プラズマ処理容器1内を予め高真空に排気して十分にガス出した後、非酸化性ガスとして窒素ガス80%と水素ガス20%の混合ガスを導入して圧力約100Paに保持し、前記プラズマ処理容器の内壁面に沿って熱遮蔽材を介して設置した加熱手段によって前記一対の対向電極板を300℃まで加熱した。  In the first step, the inside of the plasma processing chamber 1 is evacuated to a high vacuum in advance and sufficiently discharged, and then a mixed gas of nitrogen gas 80% and hydrogen gas 20% is introduced as a non-oxidizing gas and the pressure is reduced to about The pair of counter electrode plates was heated to 300 ° C. by a heating means held at 100 Pa and installed along the inner wall surface of the plasma processing vessel via a heat shielding material.

前記第2工程では、前記プラズマ処理装置内に基板表面クリーニングガスとしてアルゴンガス80%と水素ガス20%の混合ガスを導入して圧力約1Paに保持し、前記一対の対向電極板24に周波数13.56MHz、出力500Wの高周波電力を給電して放電プラズマを発生させ、ローパスフィルタ32を介して前記一対の対向電極板24に周波数33kHz、−800Vの脈流電圧を交互に印加してセパレータ基材表面をクリーニングした。20分間のクリーニング処理によって基板表面の自然酸化膜や汚染物を除去した。  In the second step, a mixed gas of 80% argon gas and 20% hydrogen gas is introduced as a substrate surface cleaning gas into the plasma processing apparatus and maintained at a pressure of about 1 Pa, and a frequency of 13 is applied to the pair of counter electrode plates 24. A high frequency power of .56 MHz and an output of 500 W is supplied to generate discharge plasma, and a pulsating voltage with a frequency of 33 kHz and −800 V is alternately applied to the pair of counter electrode plates 24 through the low-pass filter 32 to form a separator base material. The surface was cleaned. The natural oxide film and contaminants on the substrate surface were removed by a cleaning process for 20 minutes.

前記第3工程では、前記セパレータ基板温度を300℃に保持し、導電性DLC被膜形成ガスとしてアセチレンガス80%と水素ガス20%の混合ガスを導入して圧力約5Paに保持し、前記一対の対向電極板24に周波数13.56MHz、出力700Wの高周波電力を給電して放電プラズマを発生させ、ローパスフィルタ32を介して前記一対の対向電極板に周波数33kHz、−800Vの脈流電圧を交互に印加して導電性DLC被膜を形成した。15分間の製膜で厚さ150nmの導電性DLC被膜を得た。  In the third step, the separator substrate temperature is maintained at 300 ° C., a mixed gas of acetylene gas 80% and hydrogen gas 20% is introduced as a conductive DLC film forming gas, and the pressure is maintained at about 5 Pa. A high-frequency power having a frequency of 13.56 MHz and an output of 700 W is supplied to the counter electrode plate 24 to generate discharge plasma, and a pulsating voltage having a frequency of 33 kHz and −800 V is alternately applied to the pair of counter electrode plates through the low-pass filter 32. This was applied to form a conductive DLC film. A conductive DLC film having a thickness of 150 nm was obtained by film formation for 15 minutes.

前記第4工程では、前記セパレータ基板温度を350℃に保持し、前記真空容器内にアセチレンガス及び水素をキャリヤガスとしてヘキサカルボニルクロムと水蒸気を導入して圧力約100Paに調整した。ヘキサカルボニルクロムの水素に対する分圧比は約0.01とした。本実施例ではセパレータ基板である前記一対の基板電極22a、22bに13.56MHz、300Wの高周波電力を給電して放電プラズマを発生させた。バイアス電圧は印加せず、10分間の製膜で厚さ260nmのクロムオキシカーバイド被膜12を積層した。  In the fourth step, the separator substrate temperature was maintained at 350 ° C., and hexacarbonyl chromium and water vapor were introduced into the vacuum vessel using acetylene gas and hydrogen as carrier gases to adjust the pressure to about 100 Pa. The partial pressure ratio of hexacarbonylchromium to hydrogen was about 0.01. In this embodiment, discharge plasma was generated by supplying high frequency power of 13.56 MHz and 300 W to the pair of substrate electrodes 22a and 22b which are separator substrates. A bias voltage was not applied, and a chromium oxycarbide coating 12 having a thickness of 260 nm was laminated by film formation for 10 minutes.

プラズマアシスト熱CVD法によるクロムオキシカーバイド被膜12の製法では、第3工程で製膜した導電性DLC膜11にピンホール等の微小欠陥が存在しても、原料ガスを微小欠陥内に浸入させることができ、前記欠陥内にクロムオキシカーバイド膜が生成されて封孔処理されるため、耐食性を著しく向上することができる。  In the manufacturing method of the chromium oxycarbide coating 12 by the plasma assisted thermal CVD method, even if a minute defect such as a pinhole is present in the conductive DLC film 11 formed in the third step, the source gas is allowed to enter the minute defect. Since a chromium oxycarbide film is formed in the defects and sealed, the corrosion resistance can be remarkably improved.

得られた導電性DLC膜とクロムオキシカーバイド被膜の積層被膜の評価結果を表1に示す。評価試料として有効表面積5.76cmについて腐食加速試験を行った。腐食加速試験は温度90℃、pH2の硫酸溶液中に浸漬してアノード分極試験を行った。硫酸溶液800ml、自然浸漬電位+0.8Vと+1V(SHE)で24時間の加速試験を行った。接触抵抗は、試料を面積4cmに切断し、カーボンペーパーを挟んで銅の電極間に挟み、40kgの荷重をかけて測定した。測定結果を表1に示す。Table 1 shows the evaluation results of the laminated film of the obtained conductive DLC film and chromium oxycarbide film. A corrosion acceleration test was performed on an effective surface area of 5.76 cm 2 as an evaluation sample. In the accelerated corrosion test, an anodic polarization test was conducted by dipping in a sulfuric acid solution at a temperature of 90 ° C. and pH 2. The acceleration test was conducted for 24 hours with 800 ml of sulfuric acid solution and natural immersion potentials +0.8 V and +1 V (SHE). The contact resistance was measured by cutting a sample into an area of 4 cm 2 , sandwiching carbon paper between copper electrodes, and applying a load of 40 kg. The measurement results are shown in Table 1.

Figure 2013004511
Figure 2013004511

前記SUS基板に導電性DLC被膜のみ被着した試料は、自然電位0.8Vでの腐食加速試験結果、DLC被膜は24時間後も殆ど溶解せず、SUS基板からの金属イオン溶出は微量で被膜は殆ど変化しなかった。接触抵抗は浸漬前2.7mΩ・cmであったものが6.3mΩ・cmまで増加したが殆ど変化しなかった。しかし、自然電位+1VのときDLC被膜は1時間以内に完全に溶解してSUS基板の金属イオンが溶出した。接触抵抗は浸漬前5.7mΩ・cmであったものが1700mΩ・cmまで増加した。これは導電性DLC膜が溶解し、SUS基板表面に酸化クロム被膜ができたことによるものと考えられる。As for the sample in which only the conductive DLC film was deposited on the SUS substrate, as a result of the accelerated corrosion test at a natural potential of 0.8 V, the DLC film was hardly dissolved even after 24 hours, and the metal ion elution from the SUS substrate was a trace amount. Changed little. The contact resistance, which was 2.7 mΩ · cm 2 before immersion, increased to 6.3 mΩ · cm 2 , but hardly changed. However, when the natural potential was +1 V, the DLC film was completely dissolved within 1 hour, and the metal ions of the SUS substrate were eluted. The contact resistance increased from 5.7 mΩ · cm 2 to 1700 mΩ · cm 2 before immersion. This is considered to be because the conductive DLC film was dissolved and a chromium oxide film was formed on the surface of the SUS substrate.

また、前記アルミニウム基板に導電性DLC被膜のみ被着した試料では、自然電位0.8Vでの腐食加速試験でDLC膜が完全に剥離した。これはDLC膜にピンホール等の微小欠陥が存在し、腐食液の侵入により剥離したものと考えられる。  Further, in the sample in which only the conductive DLC film was deposited on the aluminum substrate, the DLC film was completely peeled off in the accelerated corrosion test at a natural potential of 0.8V. This is thought to be due to the presence of minute defects such as pinholes in the DLC film and peeling due to the penetration of the corrosive liquid.

一方、本発明による導電性DLC被膜11とクロムオキシカーバイド被膜12の積層被膜を被着した試料については、イオンの溶出量は測定限界である0.01mg以下であった。また、自然電位+1Vにおける加速試験後の試料表面の目視評価では変化が認められなかった。接触抵抗は加速試験前3.5mΩ・cmであったものが、加速試験後4.2mΩ・cmまで増加したが殆ど変化しなかった。pH2の硫酸溶液中で自然電位+1Vにおける加速試験で金属イオンの溶出は認められず腐食しないことが明らかになった。On the other hand, for the sample coated with the laminated film of the conductive DLC film 11 and the chromium oxycarbide film 12 according to the present invention, the ion elution amount was 0.01 mg or less which is the measurement limit. In addition, no change was observed in the visual evaluation of the sample surface after the acceleration test at a natural potential of +1 V. Although the contact resistance was 3.5 mΩ · cm 2 before the acceleration test, it increased to 4.2 mΩ · cm 2 after the acceleration test, but hardly changed. In an accelerated test at a natural potential of +1 V in a sulfuric acid solution at pH 2, no elution of metal ions was observed and no corrosion occurred.

「実施形態の効果」
この実施形態によれば、耐食性に優れ、接触抵抗が極めて低い燃料電池用セパレータを安価に製造することができる。また、前記導電性DLC被膜に微小なピンホール等が存在しても、熱CVD法によって金属オキシカーバイドを積層すれば前記ピンホール部分も封孔処理され、ピンホールに起因する前記積層被膜の剥離や金属イオンの溶出は発生しないという効果がある。
"Effect of the embodiment"
According to this embodiment, a separator for a fuel cell having excellent corrosion resistance and extremely low contact resistance can be manufactured at low cost. Further, even if a minute pinhole or the like exists in the conductive DLC film, if the metal oxycarbide is laminated by the thermal CVD method, the pinhole part is also sealed, and the laminated film is peeled off due to the pinhole. And the elution of metal ions does not occur.

更に、この実施形態によれば、前記第2工程において基板表面クリーニングガスとしてアルゴンと水素の混合ガスに10%乃至30%の窒素ガスを添加することによって、基板表面をクリーニングすると同時に窒素イオン照射によって酸化され難い金属窒化層を形成することができる。チタニウム基板やアルミニウム基板など自然酸化よって金属酸化被膜が生成され易い金属基板の場合、表面に厚さ5nm乃至50nmの導電性の金属窒化層を形成することによって、前記第3工程において被着する導電性DLC被膜との接合抵抗を著しく低減する効果を有する。絶縁性の金属窒化層を生成する場合は、化学量論組成以下の窒素を注入することによって前記接合抵抗を低減することができる。  Further, according to this embodiment, by adding 10% to 30% nitrogen gas to the mixed gas of argon and hydrogen as the substrate surface cleaning gas in the second step, the substrate surface is cleaned and simultaneously irradiated with nitrogen ions. A metal nitride layer that is difficult to be oxidized can be formed. In the case of a metal substrate, such as a titanium substrate or an aluminum substrate, in which a metal oxide film is likely to be generated by natural oxidation, a conductive metal nitride layer having a thickness of 5 nm to 50 nm is formed on the surface, thereby forming a conductive film to be deposited in the third step. This has the effect of significantly reducing the junction resistance with the conductive DLC film. When an insulating metal nitride layer is formed, the junction resistance can be reduced by injecting nitrogen having a stoichiometric composition or less.

「他の実施形態」
上記実施形態では、セパレータ基板材料として鉄板表面にアルミニウムメッキした積層材料を用いたが、これに限定されるものではなく、鉄、アルミニウム、チタニウム、マグネシウム、銅、ニッケル及びこれらの合金材料、或いは、これらの金属の積層材料などにも適用できることは云うまでもない。また、必要に応じて前記金属オキシカーバイド被膜として前記クロムオキシカーバイド被膜にモリブデンオキシカーバイド又はタングステンオキシカーバイドを添加することができる。
"Other embodiments"
In the above embodiment, a laminated material obtained by plating the surface of the iron plate with aluminum is used as the separator substrate material, but the present invention is not limited to this, and iron, aluminum, titanium, magnesium, copper, nickel, and alloy materials thereof, or Needless to say, the present invention can also be applied to laminated materials of these metals. If necessary, molybdenum oxycarbide or tungsten oxycarbide can be added to the chromium oxycarbide coating as the metal oxycarbide coating.

上記実施形態では、セパレータ基板からなる前記一対の対向電極板に高周波電力を給電して放電プラズマを励起し、負の脈流電圧を交互に印加してセパレータ基板表面をクリーニングし、導電性DLC被膜及びクロムオキシカーバイド被膜を被着する製造方法について説明したが、上記製造方法に限定されるものではなく、原料ガスのICPプラズマ、ECRプラズマ雰囲気中にセパレータ基板を保持してバイアス電圧を印加することによって前記第2工程から第4工程を実施することができ、前記導電性DLC被膜及びクロムオキシカーバイド被膜を被着することができる。更に、クロムターゲットと酸化炭素ガスを原料とした反応性スパッタリング法、反応性イオンプレーティング法等によって前記導電性DLC被膜を被着することができる。  In the above embodiment, high frequency power is supplied to the pair of counter electrode plates made of the separator substrate to excite discharge plasma, and negative pulsating voltage is alternately applied to clean the surface of the separator substrate. In addition, the manufacturing method for depositing the chromium oxycarbide coating has been described. However, the present invention is not limited to the above manufacturing method, and the bias voltage is applied while holding the separator substrate in the ICP plasma or ECR plasma atmosphere of the source gas. Thus, the second to fourth steps can be performed, and the conductive DLC film and the chromium oxycarbide film can be applied. Further, the conductive DLC film can be applied by a reactive sputtering method, a reactive ion plating method, or the like using a chromium target and carbon oxide gas as raw materials.

更に、他の実施形態としては、前記第3工程において導電性DLC被膜を被着後にヘキサカルボニルクロムガスを導入し、前記セパレータ基板を300℃乃至500℃に保持して熱CVD法によってクロムオキシカーバイド被膜を被着する、或いは、放電プラズマと熱CVD法を併用してクロムオキシカーバイド被膜を被着することができる。  In another embodiment, hexacarbonyl chromium gas is introduced after the conductive DLC film is deposited in the third step, and the separator substrate is held at 300 ° C. to 500 ° C., and chromium oxycarbide is formed by a thermal CVD method. A coating can be applied, or a chromium oxycarbide coating can be applied using a combination of discharge plasma and thermal CVD.

10:セパレータ基板、11:導電性DLC被膜、12:クロムオキシカーバイド被膜、21:真空容器、22a、22b:基板電極、25:高周波電源、26:インピーダンス整合器、27:コンデンサー、28:バイアス電源、29:交流電圧発生器、30:変圧器、31:ダイオード、32:ローパスフィルタ、33:フィードスルー10: Separator substrate, 11: Conductive DLC coating, 12: Chromium oxycarbide coating, 21: Vacuum container, 22a, 22b: Substrate electrode, 25: High frequency power supply, 26: Impedance matching device, 27: Capacitor, 28: Bias power supply 29: AC voltage generator, 30: Transformer, 31: Diode, 32: Low-pass filter, 33: Feedthrough

Claims (8)

鉄、チタニウム、ニッケル、クロミウム、アルミニウム、マグネシウム、又はこれらの金属の合金材料、又はこれらの群から選ばれる金属の積層材料からなる燃料電池セパレータ基板であって、少なくとも一方の主面が、導電性炭素被膜と金属オキシカーバイド被膜との積層被膜で被覆されていることを特徴とする燃料電池用セパレータ。  A fuel cell separator substrate made of iron, titanium, nickel, chromium, aluminum, magnesium, or an alloy material of these metals, or a laminated material of metals selected from these groups, at least one main surface of which is conductive A fuel cell separator, wherein the separator is coated with a laminated film of a carbon film and a metal oxycarbide film. 前記燃料電池セパレータ基板が、鉄板又は鉄合金板表面にアルミニウムをメッキした積層材料であることを特徴とする請求項1に記載の燃料電池用セパレータ。  2. The fuel cell separator according to claim 1, wherein the fuel cell separator substrate is a laminated material in which aluminum is plated on the surface of an iron plate or an iron alloy plate. 前記導電性炭素被膜が導電性ダイヤモンドライクカーボン被膜であって、その厚さが0.03μm乃至1μmであることを特徴とする請求項1及び2に記載の燃料電池用セパレータ。  3. The fuel cell separator according to claim 1, wherein the conductive carbon film is a conductive diamond-like carbon film having a thickness of 0.03 μm to 1 μm. 前記金属オキシカーバイド被膜がクロムオキシカーバイドを主成分とする被膜層であって、その厚さが0.03μm乃至3μmであることを特徴とする請求項1から3のいずれかに記載の燃料電池用セパレータ。  4. The fuel cell according to claim 1, wherein the metal oxycarbide coating is a coating layer mainly composed of chromium oxycarbide and has a thickness of 0.03 μm to 3 μm. Separator. 燃料電池セパレータ基板をプラズマ処理容器内に設置し、高真空中又は非酸化性ガス雰囲気中で前記燃料電池セパレータ基板を100℃乃至450℃に加熱する第1工程と、不活性ガス又は非酸化性ガス雰囲気中で前記燃料電池セパレータ基板に高周波電力と負のバイアス電圧を給電して放電プラズマを発生させ、前記燃料電池セパレータ基板表面をイオン照射する第2工程と、炭素被膜形成用原料ガス雰囲気中で放電プラズマを発生させ、前記導電性炭素被膜を形成する第3工程と、引き続いて金属オキシカーバイド被膜形成用原料ガス雰囲気中で前記基板を300℃乃至450℃に保持して化学蒸着法によってクロムオキシカーバイドを主成分とする被膜を形成する第4工程とからなることを特徴とする燃料電池用セパレータの製造方法。  A first step of placing the fuel cell separator substrate in a plasma processing container and heating the fuel cell separator substrate to 100 ° C. to 450 ° C. in a high vacuum or non-oxidizing gas atmosphere; and an inert gas or non-oxidizing gas A second step of supplying a high frequency power and a negative bias voltage to the fuel cell separator substrate in a gas atmosphere to generate discharge plasma, and irradiating the surface of the fuel cell separator substrate with ions; In a third step of generating a discharge plasma in order to form the conductive carbon film, and subsequently maintaining the substrate at 300 ° C. to 450 ° C. in a source gas atmosphere for forming a metal oxycarbide film, chromium is deposited by chemical vapor deposition. And a fourth step of forming a coating mainly composed of oxycarbide. 複数枚の前記燃料電池セパレータ基板をほぼ平行、等間隔に配置し、奇数番目の前記セパレータ基板を電気的に結線して第1の基板電極とし、偶数番目のセパレータ基板を電気的に結線して第2の基板電極とし、前記第1の基板電極と前記第2の基板電極を対向電極として高周波電力を給電し、且つ両基板電極に交互に負のバイアス電圧を給電して請求項5に記載の第2工程及び第3工程を実施することを特長とする燃料電池用セパレータの製造方法。  A plurality of the fuel cell separator substrates are arranged substantially in parallel and at equal intervals, the odd-numbered separator substrates are electrically connected to form a first substrate electrode, and the even-numbered separator substrates are electrically connected. 6. The high frequency power is supplied as a second substrate electrode, the first substrate electrode and the second substrate electrode as counter electrodes, and a negative bias voltage is alternately supplied to both substrate electrodes. The manufacturing method of the separator for fuel cells characterized by implementing the 2nd process and 3rd process of these. 前記バイアス電圧が、負のパルス電圧又は負の脈流電圧であって、その波高値が300V乃至5000Vであることを特徴とする請求項5及び6に記載の燃料電池用セパレータの製造方法。  The method for manufacturing a fuel cell separator according to claim 5 or 6, wherein the bias voltage is a negative pulse voltage or a negative pulsating voltage, and a peak value thereof is 300V to 5000V. 前記請求項1から5のいずれかに記載の燃料電池用セパレータ、又は前記請求項5から7のいずれかに記載の製造方法によって製造された燃料電池用セパレータを用いた個体高分子型燃料電池。  A solid polymer fuel cell using the fuel cell separator according to any one of claims 1 to 5 or the fuel cell separator produced by the production method according to any one of claims 5 to 7.
JP2011149554A 2011-06-17 2011-06-17 Fuel cell separator and method for manufacturing the same Withdrawn JP2013004511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011149554A JP2013004511A (en) 2011-06-17 2011-06-17 Fuel cell separator and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011149554A JP2013004511A (en) 2011-06-17 2011-06-17 Fuel cell separator and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013004511A true JP2013004511A (en) 2013-01-07

Family

ID=47672841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011149554A Withdrawn JP2013004511A (en) 2011-06-17 2011-06-17 Fuel cell separator and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013004511A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080372A1 (en) * 2014-11-20 2016-05-26 株式会社プラズマイオンアシスト Separator for fuel cell or current collecting member for fuel cell, and manufacturing method thereof
CN108666585A (en) * 2017-03-28 2018-10-16 北京亿华通科技股份有限公司 The pole plate production method of fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080372A1 (en) * 2014-11-20 2016-05-26 株式会社プラズマイオンアシスト Separator for fuel cell or current collecting member for fuel cell, and manufacturing method thereof
US10693169B2 (en) 2014-11-20 2020-06-23 Plasma Ion Assist Co., Ltd. Separator for fuel cell or current collecting member for fuel cell, and manufacturing method thereof
US11588168B2 (en) 2014-11-20 2023-02-21 Plasma Ion Assist Co., Ltd. Separator for fuel cell or current collecting member for fuel cell, and solid polymer electrolyte fuel cell
CN108666585A (en) * 2017-03-28 2018-10-16 北京亿华通科技股份有限公司 The pole plate production method of fuel cell

Similar Documents

Publication Publication Date Title
EP2817430B1 (en) Coating with conductive and corrosion resistance characteristics
JP5378552B2 (en) Amorphous carbon film, method for forming amorphous carbon film, conductive member provided with amorphous carbon film, and separator for fuel cell
US11588168B2 (en) Separator for fuel cell or current collecting member for fuel cell, and solid polymer electrolyte fuel cell
JP4673696B2 (en) Conductive diamond electrode and manufacturing method thereof
CA2925498C (en) Fuel cell separator and manufacturing method of fuel cell separator
CN101617428A (en) The manufacture method of separator for fuel battery, separator for fuel battery and fuel cell
CN105047958A (en) Composite graphene coating for fuel cell metal polar plate and preparation method thereof
JP2010248572A (en) Titanium-based material and production method of the same, and fuel cell separator
Yan et al. Corrosion-resistant and interfacial conductive AlTiVCrMo high-entropy alloy and (AlTiVCrMo) Nx high-entropy ceramics coatings for surface modification of bipolar plates in proton exchange membrane fuel cells
JP2012089460A (en) Separator for fuel cell and plasma processing apparatus therefor
CN113249683A (en) MAX phase solid solution composite coating with high conductivity, corrosion resistance and long service life, and preparation method and application thereof
KR20140122114A (en) Metal separator for fuel cell and manufacturing method of the same
JP2012146616A (en) Fuel cell separator and method for producing the same
JP2018104806A (en) Titanium material, separator, cell and solid polymer fuel battery
JP4134315B2 (en) Carbon thin film and manufacturing method thereof
JP2013004511A (en) Fuel cell separator and method for manufacturing the same
KR100897323B1 (en) Method for coating thin film on material by Plasma-enhanced chemical vapor deposition and physical vapor deposition
CN115000444B (en) Multilayer composite carbon coating, preparation method and application thereof, fuel cell bipolar plate and fuel cell
JP6229771B2 (en) Fuel cell separator or fuel cell current collector
CN108832153B (en) Flow field plate of proton exchange membrane fuel cell
Feng et al. Effect of Magnetic Field on Corrosion Behaviors of Gold-Coated Titanium as Cathode Plates for Proton Exchange Membrane Fuel Cells
KR20100088346A (en) Coating film and method for coating cr(n)-c:h on separator using proton exchange membrane fuel cell
CN114959737B (en) Preparation method of titanium bipolar plate for hydrogen production by water electrolysis of proton exchange membrane
TW201347976A (en) Aluminum foil having a conducting layer thereon and manufacturing method thereof
Ban et al. Electrodeposition of diamond-like carbon (DLC) films on mg by plasma electrolysis

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902