JP2012089460A - Separator for fuel cell and plasma processing apparatus therefor - Google Patents

Separator for fuel cell and plasma processing apparatus therefor Download PDF

Info

Publication number
JP2012089460A
JP2012089460A JP2010246832A JP2010246832A JP2012089460A JP 2012089460 A JP2012089460 A JP 2012089460A JP 2010246832 A JP2010246832 A JP 2010246832A JP 2010246832 A JP2010246832 A JP 2010246832A JP 2012089460 A JP2012089460 A JP 2012089460A
Authority
JP
Japan
Prior art keywords
pair
substrate
plasma processing
fuel cell
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010246832A
Other languages
Japanese (ja)
Inventor
Masanori Watanabe
正則 渡邉
Yasuo Suzuki
泰雄 鈴木
Tadao Toda
忠夫 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plasma Ion Assist Co Ltd
Original Assignee
Plasma Ion Assist Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plasma Ion Assist Co Ltd filed Critical Plasma Ion Assist Co Ltd
Priority to JP2010246832A priority Critical patent/JP2012089460A/en
Publication of JP2012089460A publication Critical patent/JP2012089460A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a separator for a solid polymer type fuel cell having superior corrosion resistance and using a metal substrate with low contact resistance, and to provide a plasma processing technology and a plasma processing device which are excellent in productivity.SOLUTION: On the surface of a metallic separator substrate, a silicon-containing carbon based film is deposited of which the contact resistance is 10 mΩcm2 or less and the water repellent angle is 80 degrees or more. A first substrate electrode group 2a and a second substrate electrode group 2b, which are formed by arranging each of a plurality of metal substrates 3 in substantially parallel to a pair of substrate supports 2 and locking them at equal intervals, are arranged in a plasma processing container while being meshed with each other at substantially equal intervals, high-frequency power is fed to a pair of substrate electrode groups via capacitors 7, and a negative pulsating voltage or pulse voltage is applied to the pair of the substrate electrode groups via low-pass filters 12.

Description

本発明は、耐食性に優れ、アノード及びカドード電極との接触電気抵抗が小さい個体高分子型燃料電池用セパレータ、及びそのプラズマ処理装置に関する。  The present invention relates to a solid polymer fuel cell separator excellent in corrosion resistance and having a small contact electric resistance with an anode and a cathode electrode, and a plasma processing apparatus thereof.

近年、地球環境問題やエネルギー問題を解決するエネルギー源として燃料電池が注目されている。特に、固体高分子型燃料電池は低い温度で動作可能であること、小型化・軽量化が可能であることから家庭用電源や燃料電池自動車への適用が検討されている。  In recent years, fuel cells have attracted attention as energy sources for solving global environmental problems and energy problems. In particular, since the polymer electrolyte fuel cell can be operated at a low temperature and can be reduced in size and weight, application to a household power source or a fuel cell vehicle is being studied.

一般的な固体高分子型燃料電池を構成する重要部品の一つにセパレータがある。このセパレータに要求される特性としては、酸性雰囲気における耐食性に優れていること、振動等に対する機械的強度が大きいこと、アノード及びカソード電極となるカーボンペーパーとの接触抵抗が小さいこと、溝加工等の加工性に優れ、軽量かつ安価であることなどである。  One of the important parts that constitute a general polymer electrolyte fuel cell is a separator. The properties required for this separator include excellent corrosion resistance in an acidic atmosphere, high mechanical strength against vibration, etc., low contact resistance with carbon paper serving as the anode and cathode electrodes, groove processing, etc. It is excellent in workability, light and inexpensive.

最近では、上記諸特性を満たすセパレータの基材として、ステンレス鋼板などの金属板が主として検討されている。ステンレス鋼やチタン及びその合金などの金属を用いたセパレータは、表面に不動態皮膜を形成することによって良好な耐食性を得ているが、この不動態皮膜がアノード及びカソード電極との接触抵抗を高くするため、導電性を阻害し、燃料電池の発電効率を低下させることが知られている。また、耐食性も十分ではなく、溶出したイオンが触媒特性を劣化させたり、固体高分子膜のイオン伝導性を低下させたりするため、結果的に燃料電池の発電特性を劣化させることが知られている。  Recently, a metal plate such as a stainless steel plate has been mainly studied as a base material for a separator that satisfies the above-mentioned various characteristics. Separators using metals such as stainless steel, titanium, and alloys thereof have good corrosion resistance by forming a passive film on the surface, but this passive film increases contact resistance with the anode and cathode electrodes. Therefore, it is known that the conductivity is hindered and the power generation efficiency of the fuel cell is lowered. In addition, the corrosion resistance is not sufficient, and the eluted ions are known to degrade the catalyst characteristics and the ionic conductivity of the solid polymer membrane, resulting in degradation of the power generation characteristics of the fuel cell. Yes.

このため、耐食性金属材料、例えばステンレス鋼表面に炭化物系または硼化物系金属介在物などを析出させて、不動態皮膜による導電性阻害要因を除去するもの(特許文献1参照)、金属基板表面に導電性セラミックス微粒子と導電性樹脂の混合被膜を形成するもの(特許文献2参照)、金属基板表面にアモルファスカーボンと導電部を有する被膜層を形成するもの(特許文献3参照)などが検討されている。  For this reason, a corrosion-resistant metal material, for example, a carbide-based or boride-based metal inclusion is deposited on the surface of stainless steel to remove the conductivity-inhibiting factor due to the passive film (see Patent Document 1). The one that forms a mixed film of conductive ceramic fine particles and conductive resin (see Patent Document 2), the one that forms a film layer having amorphous carbon and a conductive portion on the surface of a metal substrate (see Patent Document 3), etc. have been studied. Yes.

特許文献1には、ステンレス鋼を800℃〜1200℃で長時間熱処理することによってステンレス鋼中の炭素又は/及び硼素をクロム系炭化物及びクロム系硼化物の微粒子として基材表面に析出させる技術が開示されている。これらの微粒子は低抵抗率であって、その表面に不動態皮膜を形成しないので、接触抵抗を十分低くできるとされている。しかし、ステンレス鋼基材が露出しているため、電解液中に金属イオンが溶出する、またステンレス鋼基材を800℃〜1200℃で長時間熱処理する必要があるなどの課題があった。  Patent Document 1 discloses a technique for precipitating carbon or / and boron in stainless steel as fine particles of chromium carbide and chromium boride on the surface of the substrate by heat-treating stainless steel at 800 ° C. to 1200 ° C. for a long time. It is disclosed. These fine particles have a low resistivity and do not form a passive film on the surface thereof, so that the contact resistance can be sufficiently lowered. However, since the stainless steel substrate is exposed, metal ions are eluted in the electrolytic solution, and it is necessary to heat treat the stainless steel substrate at 800 ° C. to 1200 ° C. for a long time.

特許文献2では、金属基板表面に少なくとも1層の導電性樹脂層を被覆した耐食性に優れた燃料電池セパレータ技術が開示されている。前記導電性樹脂層の導電性セラミックスとバインダー樹脂の質量比を30/70〜70/30とし、導電性樹脂層の厚みを0.5〜10μmの範囲とすることによって耐食性が改善され、アノード及びカソード電極との接触抵抗を15mΩ・cm程度に低減できることが記載されている。しかし、最近では、5mΩ・cm以下の接触抵抗が要求されていて実用化に至っていない。Patent Document 2 discloses a fuel cell separator technology excellent in corrosion resistance in which a metal substrate surface is coated with at least one conductive resin layer. Corrosion resistance is improved by setting the mass ratio of the conductive ceramics and the binder resin in the conductive resin layer to 30/70 to 70/30 and the thickness of the conductive resin layer in the range of 0.5 to 10 μm. It is described that the contact resistance with the cathode electrode can be reduced to about 15 mΩ · cm 2 . However, recently, a contact resistance of 5 mΩ · cm 2 or less has been required, and has not been put into practical use.

特許文献3では、金属基板上にアモルファスカーボン層と導電部とからなる被覆層を有する燃料電池用セパレータ技術が開示されている。当該セパレータは、アモルファスカーボン層と、アモルファスカーボン層と黒鉛微粒子で構成される導電部とからなる被覆層を備えることを特徴とする。耐食性は改善されるが、アモルファスカーボンは絶縁性膜であるため、接触抵抗は10mΩ・cm程度で、十分低くできないという課題があった。Patent Document 3 discloses a fuel cell separator technology having a coating layer composed of an amorphous carbon layer and a conductive portion on a metal substrate. The separator includes an amorphous carbon layer and a coating layer including a conductive portion composed of the amorphous carbon layer and graphite fine particles. Although the corrosion resistance is improved, since amorphous carbon is an insulating film, there is a problem that the contact resistance is about 10 mΩ · cm 2 and cannot be sufficiently lowered.

特開2003−193206号公報JP 2003-193206 A 特開2007−273458号公報JP 2007-273458 A 特開2008−204876号公報JP 2008-204876 A 特願2008−184765号公報Japanese Patent Application No. 2008-184765

ECI Symposium Series,Volume RP5,Tomar,Portugal,July 1−7,2007,P.221−228ECI Symposium Series, Volume RP5, Tomar, Portugal, July 1-7, 2007, P.A. 221-228

本発明が解決しようとする課題は、耐食性に優れ、かつ接触抵抗が低くい金属基板を用いた固体高分子型燃料電池用セパレータを安価に提供すること、及び生産性に優れたプラズマ処理装置を提供することにある。また、これによって表面処理された燃料電池用セパレータ、及び当該燃料電池用セパレータを用いた固体高分子型燃料電池を安価に提供することにある。  The problem to be solved by the present invention is to provide a low-cost separator for a polymer electrolyte fuel cell using a metal substrate having excellent corrosion resistance and low contact resistance, and a plasma processing apparatus excellent in productivity. It is to provide. Another object of the present invention is to provide a fuel cell separator surface-treated and a polymer electrolyte fuel cell using the fuel cell separator at low cost.

本願は、上記課題を解決するために成されたもので下記の発明を提供する。  The present application has been made to solve the above problems, and provides the following inventions.

本発明の請求項1に係る燃料電池用セパレータは、金属製セパレータ基板表面に接触抵抗が10mΩ・cm以下、水の撥水角が80°以上の炭素系被膜を被着してなることを特徴とする。The separator for a fuel cell according to claim 1 of the present invention is formed by depositing a carbon-based film having a contact resistance of 10 mΩ · cm 2 or less and a water repellent angle of 80 ° or more on a metal separator substrate surface. Features.

本発明の請求項2に係る燃料電池用セパレータは、請求項1に記載の前記炭素系被膜が5原子%乃至35原子%のシリコン元素を含むことを特徴とする。  A fuel cell separator according to claim 2 of the present invention is characterized in that the carbon-based coating film according to claim 1 contains 5 atomic% to 35 atomic% of silicon element.

本発明の請求項3に係る燃料電池用セパレータは、請求項1及び2に記載の前記炭素系被膜の厚さが0.05μm乃至2μmであることを特徴とする。A fuel cell separator according to a third aspect of the present invention is characterized in that the carbon-based film according to the first and second aspects has a thickness of 0.05 μm to 2 μm.

本発明の請求項4に係るプラズマ処理装置は、プラズマ処理容器と、該プラズマ処理容器内に被加工基板を支持する一対の基板支持具と、前記被加工基板を加熱する加熱手段と、前記一対の基板支持具に高周波電力を給電する高周波電源と、前記一対の基板支持具にバイアス電圧を重畳して給電するバイアス電源とを備えたプラズマ処理装置において、前記一対の基板支持具にそれぞれ複数枚の金属基板をほぼ平行、且つ等間隔に係止した第1の基板電極群と同じく第2の基板電極群とをほぼ等間隔に相互に噛み合わせて一対の対向電極板とし、該一対の対向電極板にコンデンサーを介して高周波電力を給電し、且つ前記一対の対向電極板にローパスフィルタを介してバイアス電圧を給電できる構成であることを特徴とする。  A plasma processing apparatus according to a fourth aspect of the present invention includes a plasma processing container, a pair of substrate supports that support the substrate to be processed in the plasma processing container, a heating unit that heats the substrate to be processed, and the pair. In a plasma processing apparatus comprising a high-frequency power source that feeds high-frequency power to a substrate support member and a bias power source that feeds power by superimposing a bias voltage on the pair of substrate support members, a plurality of each of the pair of substrate support members A pair of opposing electrode plates is formed by meshing the second substrate electrode group and the second substrate electrode group, which are substantially parallel and equally spaced, with the second substrate electrode group meshing with each other at substantially equal intervals. A high-frequency power is supplied to the electrode plates via a capacitor, and a bias voltage can be supplied to the pair of counter electrode plates via a low-pass filter.

本発明の請求項5に係るプラズマ処理装置は、請求項4に記載の前記一対の対向電極板の間隔が20mm〜80mmであることを特徴とする。  A plasma processing apparatus according to claim 5 of the present invention is characterized in that a distance between the pair of counter electrode plates according to claim 4 is 20 mm to 80 mm.

本発明の請求項6に係るプラズマ処理装置は、請求項4及び5に記載の前記バイアス電源が周波数50Hz〜100kHzの負の脈流電圧、矩形波電圧、パルス電圧のいずれかの電圧を給電できることを特徴とする。  The plasma processing apparatus according to claim 6 of the present invention is such that the bias power supply according to claims 4 and 5 can supply a negative pulsating voltage, a rectangular wave voltage, or a pulse voltage having a frequency of 50 Hz to 100 kHz. It is characterized by.

本発明の請求項7に係るプラズマ処理装置は、請求項4から6のいずれかに記載の前記バイアス電源が周波数50Hz〜100kHzの正弦波電圧を両波整流した負の脈流電圧を前記一対の対向電極板に交互に印加する構成であることを特徴とする。  According to a seventh aspect of the present invention, there is provided a plasma processing apparatus, wherein the bias power source according to any one of the fourth to sixth aspects generates a negative pulsating voltage obtained by performing both-wave rectification on a sine wave voltage having a frequency of 50 Hz to 100 kHz. It is the structure which is applied to a counter electrode plate alternately.

本発明の請求項8に係るプラズマ処理装置は、請求項4から7のいずれかに記載の前記加熱手段が前記一対の対向電極板を200℃乃至500℃に加熱し、当該温度に保持する制御装置を有することを特徴とする。  The plasma processing apparatus according to claim 8 of the present invention is a control in which the heating means according to any one of claims 4 to 7 heats the pair of counter electrode plates to 200 ° C. to 500 ° C. and maintains the temperature at the temperature. It has the apparatus.

本発明の請求項9に係る高分子固体電解質型燃料電池は、請求項1から3のいずれかに記載の燃料電池用セパレータ又は/及び請求項4から8に記載のプラズマ処理装置によって表面処理された燃料電池用セパレータを適用したことを特徴とする。  A solid polymer electrolyte fuel cell according to a ninth aspect of the present invention is surface-treated by the fuel cell separator according to any one of the first to third aspects and / or the plasma processing apparatus according to the fourth to eighth aspects. Further, a fuel cell separator is applied.

本発明によって、耐食性に優れ、かつ接触抵抗が低くい金属基板を用いた固体高分子型燃料電池用のセパレータを提供し、生産性に優れた製造技術を提供することができる。また、これによって製造された燃料電池用セパレータ、及び当該燃料電池用セパレータを用いた固体高分子型燃料電池を安価に提供することができる。  According to the present invention, a separator for a polymer electrolyte fuel cell using a metal substrate having excellent corrosion resistance and low contact resistance can be provided, and a manufacturing technique excellent in productivity can be provided. Moreover, the separator for fuel cells manufactured by this, and the polymer electrolyte fuel cell using the said separator for fuel cells can be provided at low cost.

本発明に係るプラズマ処理装置の要部構成の概略図面である。It is a schematic drawing of the principal part composition of the plasma treatment apparatus concerning the present invention. 本発明に係る一対の対向電極板の構成を示す概略図面である。It is a schematic drawing which shows the structure of a pair of counter electrode plate which concerns on this invention. 本発明に係る導電性DLC被膜を被着したセパレータ基板の動電位分極測定結果を示す図面である。It is drawing which shows the dynamic potential polarization measurement result of the separator board | substrate which adhered the electroconductive DLC film which concerns on this invention. 本発明に係る導電性被膜のシリコン含有率と撥水率の関係を示す図である。It is a figure which shows the relationship between the silicon content rate and water repellency of the electroconductive film which concerns on this invention. 本発明に係る他のプラズマ処理装置の要部構成の概略図面である。It is the schematic of the principal part structure of the other plasma processing apparatus which concerns on this invention.

本発明に係る燃料電池用セパレータは、金属製セパレータ基板表面に接触抵抗が10mΩ・cm以下、水の撥水角が80°以上の炭素系被膜を被着してなることを特徴とする。前記炭素系被膜はシリコン元素を5原子%乃至35原子%含む導電性ダイヤモンドライクカーボン(以下、導電性DLCとも記す)である。通常のダイヤモンドライクカーボン(以下、DLCとも記す)は絶縁性で、水に対する撥水角は65°乃至70°であるが、シリコン元素を5原子%から35原子%含む導電性DLC被膜の撥水角は80°から100°に向上することが知られている(非特許文献1参照)。The fuel cell separator according to the present invention is characterized in that a carbon-based film having a contact resistance of 10 mΩ · cm 2 or less and a water repellent angle of 80 ° or more is applied to the surface of a metal separator substrate. The carbon-based film is conductive diamond-like carbon (hereinafter also referred to as conductive DLC) containing 5 atomic% to 35 atomic% of silicon element. Ordinary diamond-like carbon (hereinafter also referred to as DLC) is insulative and has a water repellency angle of 65 ° to 70 ° with respect to water, but the water repellency of a conductive DLC film containing 5 to 35 atomic percent of silicon element. It is known that the angle improves from 80 ° to 100 ° (see Non-Patent Document 1).

厚さ1μm、抵抗率10Ω・cm以下の導電性DLC被膜を被着した場合、1平方センチメートル当たりの抵抗値は1mΩ以下となるから実用上、抵抗率10Ω・cm以下の導電性DLC被膜であればよい。しかし、接触抵抗を10mΩ・cm以下にするためには導電性DLC被膜の抵抗率は0.1Ω・cm以下であることが望ましい。発明者らの実験結果によれば、抵抗率10mΩ・cmの導電性DLC被膜が得られている(特許文献4参照)。When a conductive DLC film having a thickness of 1 μm and a resistivity of 10 Ω · cm or less is applied, since the resistance value per square centimeter is 1 mΩ or less, practically a conductive DLC film having a resistivity of 10 Ω · cm or less is used. Good. However, in order to reduce the contact resistance to 10 mΩ · cm 2 or less, the resistivity of the conductive DLC film is desirably 0.1 Ω · cm or less. According to the experiment results of the inventors, a conductive DLC film having a resistivity of 10 mΩ · cm is obtained (see Patent Document 4).

一方、通常のDLC被膜は耐薬品性に優れた被膜であって、酸性溶液やアルカリ性溶液に侵されることはないが、製造コストを考慮したDLC被膜には必ずといってよいほど数ミクロン程度、或いはそれ以下のピンホールが存在し、このピンホールを通じて溶液が浸透して下地の金属基材を腐食する。しかし、前記シリコン元素を添加した導電性DLC被膜は90°以上の撥水角を有し、当該導電性DLC被膜を被着した燃料電池用セパレータはミクロン程度、或いはそれ以下のピンホールが存在しても、このピンホールを通じて溶液は浸透できないため金属基材が腐食されることはない。即ち、孔食の発生を抑制し、実質的に優れた耐食性を示す導電性DLC被膜となる。  On the other hand, a normal DLC film is a film having excellent chemical resistance and is not affected by an acidic solution or an alkaline solution. Alternatively, there are pinholes smaller than that, and the solution permeates through the pinholes to corrode the underlying metal substrate. However, the conductive DLC film to which the silicon element is added has a water repellency angle of 90 ° or more, and the fuel cell separator coated with the conductive DLC film has a pinhole of about micron or less. However, since the solution cannot penetrate through the pinhole, the metal substrate is not corroded. That is, it becomes a conductive DLC film which suppresses the occurrence of pitting corrosion and exhibits substantially excellent corrosion resistance.

また、前記導電性DLC被膜中のシリコン元素含有量を表面側に向かって大きくした傾斜組成被膜、或いはシリコン元素含有量の異なる被膜を積層することによって、被膜表面の撥水角を大きくして耐食性を向上することもできる。本発明に係る燃料電池用セパレータに適用する場合は、前記炭素系被膜の厚さは0.05μm乃至2μmであることが望ましい。  Further, by laminating a gradient composition film in which the silicon element content in the conductive DLC film is increased toward the surface side, or a film having a different silicon element content, the water repellency angle on the film surface is increased and the corrosion resistance is increased. Can also be improved. When applied to the fuel cell separator according to the present invention, the thickness of the carbon-based film is preferably 0.05 μm to 2 μm.

図1に本発明に係るプラズマ処理装置の要部構成の概略図を示す。また、図2には一対の基板支持具2と第1の基板電極群2a及び第2の基板電極群2bの概念図を示す。プラズマ処理容器1と、該プラズマ処理容器内に被加工基板3を支持する一対の基板支持具2と、前記一対の基板支持具に高周波電力を給電する高周波電源5と、前記一対の基板支持具2にバイアス電圧を重畳して給電するバイアス電源8とを備えたプラズマ処理装置であって、前記一対の基板支持具2にそれぞれ複数枚の金属基板3をほぼ平行、且つ等間隔に係止した第1の基板電極群2aと同じく第2の基板電極群2bとをほぼ等間隔に相互に噛み合わせて一対の対向電極板4とし、該一対の対向電極板にコンデンサー7を介して高周波電力を給電し、且つ前記一対の対向電極板4にローパスフィルタ12を介してバイアス電圧を給電する。  FIG. 1 shows a schematic diagram of a main configuration of a plasma processing apparatus according to the present invention. FIG. 2 shows a conceptual diagram of a pair of substrate support 2 and the first substrate electrode group 2a and the second substrate electrode group 2b. A plasma processing container 1; a pair of substrate supports 2 that support a substrate 3 to be processed in the plasma processing container; a high-frequency power source 5 that supplies high-frequency power to the pair of substrate supports; and the pair of substrate supports 2 is a plasma processing apparatus including a bias power supply 8 that feeds power by superimposing a bias voltage on 2, and a plurality of metal substrates 3 are engaged with the pair of substrate support members 2 at substantially equal intervals. Like the first substrate electrode group 2a, the second substrate electrode group 2b is meshed with each other at substantially equal intervals to form a pair of counter electrode plates 4, and high frequency power is applied to the pair of counter electrode plates via a capacitor 7. Power is supplied, and a bias voltage is supplied to the pair of counter electrode plates 4 via a low-pass filter 12.

前記プラズマ処理容器内に原料ガスを導入し、前記一対の対向電極板4に高周波電力を給電して放電プラズマを発生させ、同時に負のバイアス電圧を印加して前記基板電極群の基板両面に導電性DLC被膜を被着する。前記高周波電源5には、例えば周波数13.56MHz、出力300W乃至3kWの出力を有するものを使用することができる。  A raw material gas is introduced into the plasma processing vessel, high frequency power is supplied to the pair of counter electrode plates 4 to generate discharge plasma, and a negative bias voltage is simultaneously applied to conduct both surfaces of the substrate electrode group on the substrate. A protective DLC film is applied. As the high frequency power source 5, for example, one having a frequency of 13.56 MHz and an output of 300 W to 3 kW can be used.

バイアス電源8には、出力300V乃至5kVの負の脈流電圧又は/及び負のパルス電圧を給電できるものを使用することができる。図1に負の脈流電圧発生の概念図を示す。交流電圧発生器9の出力電圧を変圧器10の一次側に給電し、二次側の出力電圧をダイオード11によって両波整流して負の脈流電圧を発生させる。ローパスフィルタ12を介して前記一対の対向電極板4に前記脈流電圧を交互に給電する。前記交流電圧の周波数は、特定されるものではないが、50Hz乃至200kHzが好適である。更に、好ましくは1kHz乃至100kHzである。  As the bias power source 8, a power source capable of supplying a negative pulsating current voltage of 300 V to 5 kV or / and a negative pulse voltage can be used. FIG. 1 shows a conceptual diagram of generation of a negative pulsating voltage. The output voltage of the AC voltage generator 9 is fed to the primary side of the transformer 10, and the secondary output voltage is rectified by the diode 11 to generate a negative pulsating voltage. The pulsating voltage is alternately supplied to the pair of counter electrode plates 4 through the low-pass filter 12. The frequency of the AC voltage is not specified, but is preferably 50 Hz to 200 kHz. Furthermore, it is preferably 1 kHz to 100 kHz.

本発明によれば、前記導電性DLC被膜の形成には、主として前記高周波電力によって原料ガスの放電プラズマを発生させ、前記脈流電圧の給電によって所望の導電性DLC被膜を形成することができる。本発明の他の実施形態によれば、原料ガスの放電プラズマ発生に前記高周波電力を補助的に使用し、前記バイアス電源8からの脈流電圧によって放電プラズマを維持して所望の導電性DLC被膜を形成することもできる。更に、前記脈流電圧の給電のみによって所望の導電性DLC被膜を形成することも可能である。  According to the present invention, the conductive DLC film can be formed by generating discharge plasma of a source gas mainly by the high-frequency power and supplying the pulsating current voltage. According to another embodiment of the present invention, the high-frequency power is supplementarily used for generating discharge plasma of the source gas, and the discharge plasma is maintained by the pulsating voltage from the bias power source 8 to obtain a desired conductive DLC film. Can also be formed. Furthermore, it is possible to form a desired conductive DLC film only by supplying the pulsating voltage.

また、本発明の他の実施形態によれば、バイアス電源として図4に示すように、前記一対の対向電極板4に負のパルス電圧を交互に印加できるバイアス電源20を使用することができる。前記第1の基板電極群2aと第2の基板電極群2bに負のパルス電圧を交互に印加することによって両基板電極間に電位差を発生させることができ、この電位差で加速されたプラズマ中のイオンが基板の両表面に入射して導電性DLC被膜を形成する。  According to another embodiment of the present invention, as shown in FIG. 4, a bias power source 20 that can alternately apply a negative pulse voltage to the pair of counter electrode plates 4 can be used as a bias power source. By alternately applying a negative pulse voltage to the first substrate electrode group 2a and the second substrate electrode group 2b, a potential difference can be generated between both substrate electrodes, and the plasma in the plasma accelerated by this potential difference can be generated. Ions are incident on both surfaces of the substrate to form a conductive DLC film.

前記加熱手段はプラズマ処理容器の内壁面に沿って加熱手段(図示せず)を設置し、該加熱板からの輻射熱によって前記一対の対向電極板4を200℃乃至500℃に加熱する。本発明によれば、基板温度は導電性DLC被膜の形成に不可欠で、その好適な温度範囲は350℃乃至450℃である。  The heating means is provided with a heating means (not shown) along the inner wall surface of the plasma processing vessel, and the pair of counter electrode plates 4 are heated to 200 ° C. to 500 ° C. by radiant heat from the heating plate. According to the present invention, the substrate temperature is indispensable for the formation of the conductive DLC film, and the preferred temperature range is 350 ° C. to 450 ° C.

図1及び図2に示す如く、一対の基板支持具2にA6サイズのステンレス製セパレータ基板(SUS304)3をそれぞれ3枚、8cm間隔でほぼ平行に係止して第1の基板電極群2aと第2の基板電極群2bとを構成し、ほぼ等間隔に相互に噛み合わせて一対の対向電極板4とした。電極間隔は約4cmとした。該一対の対向電極板を前記プラズマ処理容器内に設置し、その一方の給電端子を整合器6とコンデンサー7を介して高周波電源5の出力端子に接続し、他方の給電端子をコンデンサー7を介して接地した。また、前記一対の対向電極板4の給電端子はローパスフィルタ12を介してバイアス電源8に接続した。  As shown in FIGS. 1 and 2, three A6 size stainless steel separator substrates (SUS304) 3 are engaged with a pair of substrate supports 2 in parallel at intervals of 8 cm, and the first substrate electrode group 2a. The second substrate electrode group 2b is configured and meshed with each other at substantially equal intervals to form a pair of counter electrode plates 4. The electrode interval was about 4 cm. The pair of counter electrode plates are installed in the plasma processing container, and one of the power supply terminals is connected to the output terminal of the high-frequency power source 5 through the matching unit 6 and the capacitor 7, and the other power supply terminal is connected through the capacitor 7. And grounded. The power supply terminals of the pair of counter electrode plates 4 are connected to a bias power source 8 through a low-pass filter 12.

前記プラズマ処理容器の内壁面に沿って熱遮蔽材を挟んで設置した加熱手段によって前記一対の対向電極板を400℃に加熱した。前記プラズマ処理装置内を予め高真空に排気して十分ガス出しした後、水素ガス20%とアルゴンガス80%の混合ガスを導入してガス圧力0.6パスカルに調整し、周波数13.56MHz、出力1kWの高周波電力を給電して放電プラズマを発生させた。前記一対の対向電極板に500Vの脈流電圧を印加して基材表面をクリーニングした。基板表面の自然酸化膜や吸着ガスを除去した。  The pair of counter electrode plates was heated to 400 ° C. by a heating means installed with a heat shielding material sandwiched along the inner wall surface of the plasma processing vessel. After exhausting the inside of the plasma processing apparatus to a high vacuum in advance and sufficiently discharging the gas, a mixed gas of hydrogen gas 20% and argon gas 80% is introduced to adjust the gas pressure to 0.6 Pascal, the frequency is 13.56 MHz, Discharge plasma was generated by supplying high-frequency power with an output of 1 kW. The substrate surface was cleaned by applying a pulsating voltage of 500 V to the pair of counter electrode plates. The natural oxide film and adsorbed gas on the substrate surface were removed.

次ぎに、原料ガスとしてフッ化炭素(CF)ガス、アセチレン(C)ガス及びヘキサメチルジシロキサン((CHSiOSi(CH、以下、HMDSOとも記す)ガスを流量比2:1:1の割合で導入してガス圧力を0.5パスカルに調整し、前記一対の対向電極板に1kWの高周波電力を給電して放電プラズマを発生させた。同時に、前記バイアス電源8から周波数33kHz、750Vの負の脈流電圧を前記一対の対向電極板に重畳して印加して導電性DLC被膜を形成した。Next, a fluorocarbon (CF 4 ) gas, an acetylene (C 2 H 2 ) gas, and a hexamethyldisiloxane ((CH 3 ) 3 SiOSi (CH 3 ) 3 , hereinafter also referred to as HMDSO) gas are flowed as raw material gases. The gas pressure was adjusted to 0.5 Pascal by introducing at a ratio of 2: 1: 1, and 1 kW high frequency power was supplied to the pair of counter electrode plates to generate discharge plasma. At the same time, a negative pulsating voltage having a frequency of 33 kHz and 750 V was applied from the bias power supply 8 while being superimposed on the pair of counter electrode plates to form a conductive DLC film.

被膜形成時間6分で厚さ160nmの導電性DLC被膜を得た。該被膜のフッ素含有量は2.5原子%、シリコン含有量は25原子%及び酸素含有量は22原子%であった。被膜全体の硬度は12GPa、水の接触角は91°であった。図3にHMDSOガスの流量比を変えてシリコン含有率と撥水率の関係を測定した結果を示す。撥水率はシリコン含有率にほぼ比例して増加することが解る。  A conductive DLC film having a thickness of 160 nm was obtained with a film formation time of 6 minutes. The coating had a fluorine content of 2.5 atomic%, a silicon content of 25 atomic%, and an oxygen content of 22 atomic%. The hardness of the entire coating was 12 GPa and the water contact angle was 91 °. FIG. 3 shows the results of measuring the relationship between the silicon content and the water repellency by changing the flow rate ratio of the HMDSO gas. It can be seen that the water repellency increases in proportion to the silicon content.

4探針測定器Napson、RT−7による抵抗率の測定結果、前記導電性DLC被膜の抵抗率は12mΩ・cmであった。また、前記導電性DLC被膜を被着した試料を3cm角に切断し、アルミニウム電極間に両面にカーボンペーパーを挟んでセットし、圧力10kgf/cm、電流密度−2.0〜+2.A/cmの範囲で接触抵抗を評価した。その結果、5〜10mΩ・cmの接触抵抗を得た。As a result of measuring the resistivity with a four-probe measuring instrument Napson, RT-7, the resistivity of the conductive DLC film was 12 mΩ · cm. Further, the sample coated with the conductive DLC film was cut into 3 cm squares, set with carbon paper sandwiched between both sides of an aluminum electrode, a pressure of 10 kgf / cm 2 , a current density of −2.0 to +2. Contact resistance was evaluated in the range of A / cm 2 . As a result, a contact resistance of 5 to 10 mΩ · cm 2 was obtained.

本実施例で得られた導電性DLC被膜を被着したセパレータ基板の耐食性を評価するため、0.05モル硫酸溶液中、常温における動電位分極測定を行った。測定には電気化学測定装置(ソーラトロン社製、SI 1280B)を使用した。測定結果を図4に示す。曲線▲1▼はステンレス基板の動電位分極を、▲2▼は導電性DLC被膜を被着したステンレス基板の動電位分極を示す。導電性DLC被膜を被着することによって、電流密度が約1桁減少し、不動態保持電位が高電位側に移動して耐食性が改善されたことが解る。  In order to evaluate the corrosion resistance of the separator substrate coated with the conductive DLC film obtained in this example, a potentiodynamic polarization measurement was performed at room temperature in a 0.05 molar sulfuric acid solution. An electrochemical measuring device (manufactured by Solartron, SI 1280B) was used for the measurement. The measurement results are shown in FIG. Curve (1) shows the dynamic potential polarization of the stainless steel substrate, and (2) shows the dynamic potential polarization of the stainless steel substrate coated with the conductive DLC film. It can be seen that by applying the conductive DLC film, the current density is reduced by about an order of magnitude, the passive holding potential moves to the high potential side, and the corrosion resistance is improved.

本実施例では、セパレータ基板の温度を400℃に保持して導電性DLC被膜を形成したが、抵抗率10Ω・cm程度の被膜を形成する場合は、前記セパレータ基板の温度を250℃に保持して導電性DLC被膜を形成することができる。  In this example, the temperature of the separator substrate was maintained at 400 ° C. to form a conductive DLC film. However, when a film having a resistivity of about 10 Ω · cm was formed, the temperature of the separator substrate was maintained at 250 ° C. Thus, a conductive DLC film can be formed.

実施例1と同様に、一対の基板支持具2にA6サイズのステンレス製セパレータ基板3をそれぞれ3枚、8cm間隔でほぼ平行に係止して第1の基板電極群2aと第2の基板電極群2bとを製作し、ほぼ等間隔に相互に噛み合わせて一対の対向電極板4とした。電極間隔は約4cmとした。該一対の対向電極板を前記プラズマ処理容器内に設置し、その一方の給電端子を整合器6とコンデンサー7を介して高周波電源5の出力端子に接続し、もう一方の給電端子をコンデンサー7を介して接地した。また、前記一対の対向電極板の給電端子はローパスフィルタ12を介してバイアス電源8に接続した。  As in the first embodiment, three A6 size stainless steel separator substrates 3 are locked to a pair of substrate supports 2 in parallel with each other at an interval of 8 cm, and the first substrate electrode group 2a and the second substrate electrode The group 2b was manufactured and meshed with each other at substantially equal intervals to form a pair of counter electrode plates 4. The electrode interval was about 4 cm. The pair of counter electrode plates are installed in the plasma processing vessel, one power supply terminal is connected to the output terminal of the high-frequency power source 5 through the matching unit 6 and the capacitor 7, and the other power supply terminal is connected to the capacitor 7. Grounded through. The power supply terminals of the pair of counter electrode plates were connected to a bias power source 8 via a low-pass filter 12.

前記一対の対向電極板を300℃に加熱して前記プラズマ処理装置内を予め高真空に排気して十分ガス出しした後、水素ガス20%とアルゴンガス80%の混合ガスを導入、周波数13.56MHz、出力1kWの高周波電力を給電して放電プラズマを発生させ、前記一対の対向電極板の基材表面をクリーニングした。  After the pair of counter electrode plates are heated to 300 ° C. and the inside of the plasma processing apparatus is evacuated to a high vacuum in advance and sufficiently degassed, a mixed gas of hydrogen gas 20% and argon gas 80% is introduced, frequency 13. A high frequency power of 56 MHz and an output of 1 kW was supplied to generate discharge plasma, and the substrate surfaces of the pair of counter electrode plates were cleaned.

次ぎに、原料ガスとしてフッ化炭素ガス、アセチレンガス及びテトラメチルシランガス(Si(CH)を流量比3:1:1の割合で導入してガス圧力を15パスカルに調整し、前記一対の対向電極板に500Wの高周波電力を給電して放電プラズマを発生させた。同時に、前記バイアス電源8から周波数33kHz、950Vの負の脈流電圧を前記一対の対向電極板に重畳して印加して導電性DLC被膜を形成した。本実施例では、前記高周波電力は放電の開始、安定放電を容易にするための補助的電源として使用し、前記バイアス電源から給電する脈流電圧によって高密度プラズマを発生させて前記一対の電極板表面に導電性DLC被膜を形成した。Next, fluorocarbon gas, acetylene gas and tetramethylsilane gas (Si (CH 3 ) 4 ) are introduced as source gases at a flow ratio of 3: 1: 1 to adjust the gas pressure to 15 Pascals, The counter electrode plate was supplied with 500 W of high frequency power to generate discharge plasma. At the same time, a negative pulsating voltage with a frequency of 33 kHz and 950 V was applied from the bias power supply 8 while being superimposed on the pair of counter electrode plates to form a conductive DLC film. In this embodiment, the high-frequency power is used as an auxiliary power source for facilitating the start of discharge and stable discharge, and high-density plasma is generated by the pulsating voltage supplied from the bias power source, thereby the pair of electrode plates. A conductive DLC film was formed on the surface.

被膜形成時間6分で厚さ230nmの導電性DLC被膜を得た。該被膜のフッ素含有量は6原子%、シリコン元素含有量は32原子%、被膜全体の硬度は15GPa、水の接触角は95乃至110°であった。4探針測定器Napson、RT−7による抵抗率の測定結果、前記導電性DLC被膜の抵抗率は5.5Ω・cmであった。接触抵抗は実施例1とほぼ同等であった。  A conductive DLC film having a thickness of 230 nm was obtained in a film formation time of 6 minutes. The coating had a fluorine content of 6 atomic%, a silicon element content of 32 atomic%, a total hardness of 15 GPa, and a water contact angle of 95 to 110 °. As a result of measuring the resistivity with a four-probe measuring instrument Napson, RT-7, the resistivity of the conductive DLC film was 5.5 Ω · cm. The contact resistance was almost the same as in Example 1.

図5に本発明の他の実施態様を示す。本実施例で用いたプラズマ処理装置の要部構成及びバイアス電源20の概略図を示す。前記バイアス電源20は直流電源23、パルス信号発生器22及びスイッチング素子21a、21bで構成されている。前記直流電源23は300V乃至10kVの負の直流電圧を発生する可変直流電源である。また、前記パルス信号発生器22は前記スイッチング素子21a及び21bを交互に動作させるパルス信号発生器で、繰り返し周波数500Hz乃至5kHz、パルス幅500μs乃至5μsのパルス信号を発生する。  FIG. 5 shows another embodiment of the present invention. The main part structure of the plasma processing apparatus used by the present Example, and the schematic of the bias power supply 20 are shown. The bias power source 20 includes a DC power source 23, a pulse signal generator 22, and switching elements 21a and 21b. The DC power source 23 is a variable DC power source that generates a negative DC voltage of 300 V to 10 kV. The pulse signal generator 22 is a pulse signal generator that alternately operates the switching elements 21a and 21b, and generates a pulse signal having a repetition frequency of 500 Hz to 5 kHz and a pulse width of 500 μs to 5 μs.

前記バイアス電源の出力端子はローパスフィルタ12を介して前記第1の基板電極群2a及び第2の基板電極群2bに接続されている。前記パルス信号をスイッチング素子21a及び21bに印加することによって、第1の基板電極群2aと第2の基板電極群2bに任意の負のパルス電圧を交互に印加することができる。  An output terminal of the bias power source is connected to the first substrate electrode group 2a and the second substrate electrode group 2b through a low-pass filter 12. By applying the pulse signal to the switching elements 21a and 21b, an arbitrary negative pulse voltage can be alternately applied to the first substrate electrode group 2a and the second substrate electrode group 2b.

実施例1と同様に、前記一対の対向電極板を400℃に加熱して前記プラズマ処理装置内を予め高真空に排気して十分ガス出しした後、水素ガス20%とアルゴンガス80%の混合ガスを導入、周波数13.56MHz、出力300Wの高周波電力を給電して放電プラズマを発生させ、バイアス電源から繰り返し周波数1kHz、パルス電圧5kV、パルス幅10μsの負のパルス電圧を印加して前記一対の対向電極板の基材表面をクリーニングした。  As in Example 1, the pair of counter electrode plates was heated to 400 ° C., and the plasma processing apparatus was evacuated to a high vacuum in advance to sufficiently outgas, and then mixed with 20% hydrogen gas and 80% argon gas. Gas is introduced, high-frequency power having a frequency of 13.56 MHz and an output of 300 W is supplied to generate discharge plasma, and a negative pulse voltage having a repetition frequency of 1 kHz, a pulse voltage of 5 kV, and a pulse width of 10 μs is applied from a bias power source. The substrate surface of the counter electrode plate was cleaned.

次ぎに、原料ガスとしてフッ化炭素ガス、アセチレンガス及びテトラメチルシランガスを流量比2:1:1の割合で導入してガス圧力を0.6パスカルに調整し、前記一対の対向電極板に500Wの高周波電力を給電して放電プラズマを発生させた。同時に、前記バイアス電源20から周波数3kHz、パルス電圧−5kVの負のパルス電圧を前記一対の対向電極板に交互に印加して導電性DLC被膜を形成した。本実施例では、前記高周波電力で放電プラズマを励起し、前記バイアス電源20から給電する高電圧パルス電圧によって高密度プラズマを発生させることができ、前記一対の電極板表面に導電性DLC被膜を形成することができた。  Next, fluorocarbon gas, acetylene gas and tetramethylsilane gas are introduced as raw material gases at a flow ratio of 2: 1: 1 to adjust the gas pressure to 0.6 Pascal, and 500 W is applied to the pair of counter electrode plates. The high-frequency power was fed to generate discharge plasma. At the same time, a negative pulse voltage having a frequency of 3 kHz and a pulse voltage of −5 kV was alternately applied from the bias power source 20 to the pair of counter electrode plates to form a conductive DLC film. In this embodiment, discharge plasma is excited by the high-frequency power, and high-density plasma can be generated by a high voltage pulse voltage fed from the bias power source 20, and a conductive DLC film is formed on the surfaces of the pair of electrode plates. We were able to.

被膜形成時間10分で厚さ190nmの導電性DLC被膜を得た。該被膜のシリコン元素含有量は33原子%、被膜全体の硬度は15GPa、水の接触角は実施例2とほぼ同じであった。4探針測定器Napson、RT−7による抵抗率の測定結果、前記導電性DLC被膜の抵抗率は8.5mΩ・cmであった。  A conductive DLC film having a thickness of 190 nm was obtained in a film formation time of 10 minutes. The silicon element content of the coating was 33 atomic%, the hardness of the entire coating was 15 GPa, and the contact angle of water was almost the same as in Example 2. As a result of measuring the resistivity with a four-probe measuring instrument Napson, RT-7, the resistivity of the conductive DLC film was 8.5 mΩ · cm.

上記実施例では、セパレータ基板材料としてステンレスSUS304基板に適用したが、これに限定されるものではなく、チタニウム、ニッケル、マグネシウム、アルミニウムなど非鉄金属材料及びこれらの合金材料にも適用できることは云うまでもない。  In the above embodiment, the separator substrate material is applied to the stainless steel SUS304 substrate. However, the present invention is not limited to this, and it can be applied to non-ferrous metal materials such as titanium, nickel, magnesium, aluminum, and alloy materials thereof. Absent.

1:真空容器、2:基板支持具、2a、2b:基板電極群、3:被加工基板、4:対向電極板、5:高周波電源、6:整合器、7:コンデンサー、8:バイアス電源、9:交流電圧発生器、10:変圧器、11:ダイオード、12:ローパスフィルタ、13:フィードスルー、20:バイアス電源、21a、21b:スイッチング素子、22:パルス信号発生器、23:直流電源、  1: vacuum vessel, 2: substrate support, 2a, 2b: substrate electrode group, 3: substrate to be processed, 4: counter electrode plate, 5: high frequency power supply, 6: matching unit, 7: capacitor, 8: bias power supply, 9: AC voltage generator, 10: Transformer, 11: Diode, 12: Low-pass filter, 13: Feedthrough, 20: Bias power supply, 21a, 21b: Switching element, 22: Pulse signal generator, 23: DC power supply,

Claims (9)

金属製燃料電池用セパレータ基板表面に、接触抵抗が10mΩ・cm以下、水の撥水角が80°以上の炭素系被膜を被着してなることを特徴とする燃料電池用セパレータ。A fuel cell separator, comprising a metal fuel cell separator substrate surface coated with a carbon-based coating having a contact resistance of 10 mΩ · cm 2 or less and a water repellent angle of 80 ° or more. 前記炭素系被膜が5原子%乃至35原子%のシリコン元素を含むことを特徴とする請求項1に記載の燃料電池用セパレータ。  2. The fuel cell separator according to claim 1, wherein the carbon-based coating contains 5 atomic% to 35 atomic% of silicon element. 前記炭素系被膜の厚さが0.05μm乃至2μmであることを特徴とする請求項1及び2に記載の燃料電池用セパレータ。  3. The fuel cell separator according to claim 1, wherein the carbon-based coating has a thickness of 0.05 μm to 2 μm. プラズマ処理容器と、該プラズマ処理容器内に被加工基板を支持する一対の基板支持具と、前記被加工基板を加熱する加熱手段と、前記一対の基板支持具に高周波電力を給電する高周波電源と、前記一対の基板支持具にバイアス電圧を重畳して給電するバイアス電源とを備えたプラズマ処理装置において、前記一対の基板支持具にそれぞれ複数枚の金属基板をほぼ平行、且つ等間隔に係止した第1の基板電極群と同じく第2の基板電極群とをほぼ等間隔に相互に噛み合わせて一対の対向電極板とし、該一対の対向電極板にコンデンサーを介して高周波電力を給電し、且つ前記一対の対向電極板にローパスフィルタを介してバイアス電圧を給電できる構成であることを特徴とするプラズマ処理装置。  A plasma processing container, a pair of substrate supports that support the substrate to be processed in the plasma processing container, a heating unit that heats the substrate to be processed, and a high-frequency power source that supplies high-frequency power to the pair of substrate supports In the plasma processing apparatus comprising a bias power supply for supplying a bias voltage by superimposing a bias voltage on the pair of substrate supports, a plurality of metal substrates are locked to the pair of substrate supports substantially in parallel and at equal intervals, respectively. The first substrate electrode group and the second substrate electrode group are meshed with each other at substantially equal intervals to form a pair of counter electrode plates, and high frequency power is fed to the pair of counter electrode plates via a capacitor, The plasma processing apparatus is configured to supply a bias voltage to the pair of counter electrode plates via a low-pass filter. 前記一対の対向電極板の間隔が20mm〜80mmであることを特徴とする請求項4に記載のプラズマ処理装置。  The plasma processing apparatus according to claim 4, wherein an interval between the pair of counter electrode plates is 20 mm to 80 mm. 前記バイアス電圧が、周波数50Hz〜100kHzの負の脈流電圧、矩形波電圧、パルス電圧のいずれかであることを特徴とする請求項4及び5に記載のプラズマ処理装置。  6. The plasma processing apparatus according to claim 4, wherein the bias voltage is any one of a negative pulsating voltage, a rectangular wave voltage, and a pulse voltage having a frequency of 50 Hz to 100 kHz. 前記バイアス電源が、周波数50Hz〜100kHzの正弦波電圧を両波整流した負の脈流電圧を前記一対の対向電極板に交互に印加する構成であることを特徴とする請求項4から6のいずれかに記載のプラズマ処理装置。  The bias power supply is configured to alternately apply a negative pulsating voltage obtained by performing both-wave rectification of a sine wave voltage having a frequency of 50 Hz to 100 kHz to the pair of counter electrode plates. A plasma processing apparatus according to claim 1. 前記加熱手段が前記一対の対向電極板を200℃乃至500℃に加熱し、当該温度に保持する制御装置を有することを特徴とする請求項4から7のいずれかに記載のプラズマ処理装置。  The plasma processing apparatus according to claim 4, wherein the heating unit includes a control device that heats the pair of counter electrode plates to 200 ° C. to 500 ° C. and maintains the temperature at the temperature. 請求項1から3のいずれかに記載の燃料電池用セパレータ又は/及び請求項4から8に記載のプラズマ処理装置によって製造された燃料電池用セパレータを適用したことを特徴とする高分子固体電解質型燃料電池。  A solid polymer electrolyte type comprising the fuel cell separator according to any one of claims 1 to 3 and / or the fuel cell separator produced by the plasma processing apparatus according to claims 4 to 8. Fuel cell.
JP2010246832A 2010-10-15 2010-10-15 Separator for fuel cell and plasma processing apparatus therefor Pending JP2012089460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010246832A JP2012089460A (en) 2010-10-15 2010-10-15 Separator for fuel cell and plasma processing apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010246832A JP2012089460A (en) 2010-10-15 2010-10-15 Separator for fuel cell and plasma processing apparatus therefor

Publications (1)

Publication Number Publication Date
JP2012089460A true JP2012089460A (en) 2012-05-10

Family

ID=46260856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010246832A Pending JP2012089460A (en) 2010-10-15 2010-10-15 Separator for fuel cell and plasma processing apparatus therefor

Country Status (1)

Country Link
JP (1) JP2012089460A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105350A (en) * 2012-11-27 2014-06-09 Yamaguchi Prefectural Industrial Technology Institute Plasma cvd apparatus and film production method
WO2016132562A1 (en) * 2015-02-18 2016-08-25 株式会社ユーテック Water-repellent high-hardness film, mold, and method for manufacturing water-repellent high-hardness film
JP2017149605A (en) * 2016-02-24 2017-08-31 株式会社長町サイエンスラボ Conductive dlc structure and manufacturing method therefor
CN109803477A (en) * 2019-03-20 2019-05-24 河南先途智能科技有限公司 A kind of equal dissolubilities ion generator
JP2019133838A (en) * 2018-01-31 2019-08-08 トヨタ自動車株式会社 Fuel cell separator
CN111893455A (en) * 2020-09-08 2020-11-06 河北美普兰地环保科技有限公司 Metal substrate carbon nano-film material manufacturing equipment and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105350A (en) * 2012-11-27 2014-06-09 Yamaguchi Prefectural Industrial Technology Institute Plasma cvd apparatus and film production method
WO2016132562A1 (en) * 2015-02-18 2016-08-25 株式会社ユーテック Water-repellent high-hardness film, mold, and method for manufacturing water-repellent high-hardness film
JPWO2016132562A1 (en) * 2015-02-18 2017-12-14 株式会社ユーテック Water-repellent high hardness film, mold and method for producing water-repellent high hardness film
JP2017149605A (en) * 2016-02-24 2017-08-31 株式会社長町サイエンスラボ Conductive dlc structure and manufacturing method therefor
JP2019133838A (en) * 2018-01-31 2019-08-08 トヨタ自動車株式会社 Fuel cell separator
CN109803477A (en) * 2019-03-20 2019-05-24 河南先途智能科技有限公司 A kind of equal dissolubilities ion generator
CN111893455A (en) * 2020-09-08 2020-11-06 河北美普兰地环保科技有限公司 Metal substrate carbon nano-film material manufacturing equipment and preparation method thereof
CN111893455B (en) * 2020-09-08 2023-10-03 河北美普兰地环保科技有限公司 Metal substrate carbon nano film material manufacturing equipment and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5378552B2 (en) Amorphous carbon film, method for forming amorphous carbon film, conductive member provided with amorphous carbon film, and separator for fuel cell
CN101928954B (en) Conductive diamond electrode and ozone generator using the same
JP2012089460A (en) Separator for fuel cell and plasma processing apparatus therefor
Dong et al. Study on conductivity and corrosion resistance of N-doped and Cr/N co-doped DLC films on bipolar plates for PEMFC
JP6014807B2 (en) FUEL CELL SEPARATOR OR FUEL CELL COLLECTING MEMBER AND METHOD FOR PRODUCING THE SAME
Hu et al. The effect of duty cycle and bias voltage for graphite-like carbon film coated 304 stainless steel as metallic bipolar plate
Yu et al. Vertical‐graphene‐reinforced titanium alloy bipolar plates in fuel cells
CN101617428A (en) The manufacture method of separator for fuel battery, separator for fuel battery and fuel cell
US20130341204A1 (en) Carbon Electrode Devices for Use with Liquids and Associated Methods
JP2010248572A (en) Titanium-based material and production method of the same, and fuel cell separator
Solovyev et al. Scale‐up of solid oxide fuel cells with magnetron sputtered electrolyte
JP2006286457A (en) Manufacturing method of fuel cell separator
CN113249683A (en) MAX phase solid solution composite coating with high conductivity, corrosion resistance and long service life, and preparation method and application thereof
Huang et al. Cr2O3/C composite coatings on stainless steel 304 as bipolar plate for proton exchange membrane fuel cell
JP4150789B2 (en) Amorphous carbon nitride film and manufacturing method thereof
Mani et al. Formation of a protective nitride layer by electrochemical nitridation on 316L SS bipolar plates for a proton exchange membrane fuel cell (PEMFC)
Han et al. Corrosion resistance of DLC film-coated SUS316L steel prepared by ion beam enhanced deposition
JP4134315B2 (en) Carbon thin film and manufacturing method thereof
Yang et al. Corrosion protection of 304 stainless steel bipolar plates of PEMFC by coating SnO2 film
CN114447354B (en) Diamond-like carbon composite coating for metal polar plate and preparation method thereof
JP2012146616A (en) Fuel cell separator and method for producing the same
Qin et al. Corrosion behavior of TiC/amorphous carbon coated stainless steel as bipolar plate for proton exchange membrane fuel cell
CN115000444B (en) Multilayer composite carbon coating, preparation method and application thereof, fuel cell bipolar plate and fuel cell
CN104051743A (en) Metal bipolar plate and preparation method thereof
JP2013004511A (en) Fuel cell separator and method for manufacturing the same