JP2013004194A - Method for manufacturing oxide superconducting wire - Google Patents

Method for manufacturing oxide superconducting wire Download PDF

Info

Publication number
JP2013004194A
JP2013004194A JP2011131124A JP2011131124A JP2013004194A JP 2013004194 A JP2013004194 A JP 2013004194A JP 2011131124 A JP2011131124 A JP 2011131124A JP 2011131124 A JP2011131124 A JP 2011131124A JP 2013004194 A JP2013004194 A JP 2013004194A
Authority
JP
Japan
Prior art keywords
layer
oxide superconducting
base material
oxide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011131124A
Other languages
Japanese (ja)
Other versions
JP5732323B2 (en
Inventor
Tomo Yoshida
朋 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2011131124A priority Critical patent/JP5732323B2/en
Publication of JP2013004194A publication Critical patent/JP2013004194A/en
Application granted granted Critical
Publication of JP5732323B2 publication Critical patent/JP5732323B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an oxide superconducting wire capable of manufacturing an oxide superconducting wire in which variations of the superconducting characteristics are reduced in the longitudinal direction of the wire.SOLUTION: A method for manufacturing an oxide superconducting wire includes: a first step S10 for preparing a superconductive laminate in which an intermediate layer, an oxide superconductive layer and a stabilization layer are laminated, in this order, on the surface of a tape-shaped base material; and a second step S20 for thinning the thickness of the base material by polishing the back surface of the base material of the superconductive laminate.

Description

本発明は、酸化物超電導線材の製造方法に関する。   The present invention relates to a method for producing an oxide superconducting wire.

近年になって発見されたRE−123系酸化物超電導体(REBaCu7−X:REはYを含む希土類元素)は、液体窒素温度以上で超電導性を示し、電流損失が低いため、実用上極めて有望な素材とされており、これを線材に加工して電力供給用の導体あるいは磁気コイル等として使用することが要望されている。この酸化物超電導体を線材に加工するための方法として、テープ状の金属基材上に成膜法により結晶配向性の良い中間層(多結晶中間薄膜)を形成し、この中間層上にRE−123系酸化物超電導体からなる酸化物超電導層を積層形成する技術が知られている(例えば、特許文献1、2参照。)。
また、このような超電導線材の実用化には、取り扱い性や加工性の観点から線材の薄型化が要求されている。超電導線材の薄型化の方法としては、通常100μm程度の厚さである金属基材に替えて、より薄い金属基材を用いる方法などがあり、例えば、厚さ75μmまで薄型化した超電導体用基材が開示されている(特許文献3参照)。
RE-123 oxide superconductor discovered in recent years (REBa 2 Cu 3 O 7-X, where RE is a rare earth element including Y) exhibits superconductivity above liquid nitrogen temperature and has low current loss. It is considered as a very promising material for practical use, and it is desired to process it into a wire and use it as a power supply conductor or a magnetic coil. As a method for processing this oxide superconductor into a wire, an intermediate layer (polycrystalline intermediate thin film) having good crystal orientation is formed on a tape-shaped metal substrate by a film forming method, and RE is formed on this intermediate layer. A technique for stacking and forming an oxide superconducting layer made of a −123 oxide superconductor is known (see, for example, Patent Documents 1 and 2).
In addition, in order to put such a superconducting wire into practical use, it is required to make the wire thinner from the viewpoint of handleability and workability. As a method of thinning the superconducting wire, there is a method of using a thinner metal substrate instead of a metal substrate that is usually about 100 μm thick. For example, a superconductor substrate thinned to a thickness of 75 μm A material is disclosed (see Patent Document 3).

特開2005−330533号公報JP 2005-330533 A 特開平11−86647号公報Japanese Patent Laid-Open No. 11-86647 特開2007−200831号公報Japanese Patent Laid-Open No. 2007-200831

この種のテープ状酸化物超電導線材を製造するには、成膜装置の成膜室内にテープ状の金属基材の送出リールと巻取リールを設け、送出リールから送り出した金属基材に必要な膜を積層形成した後、該金属基材を巻き取る必要がある。また、積層構造の酸化物超電導線材を製造する場合、拡散防止層や各種の下地層、配向性中間層、酸化物超電導層、安定化層など、種々の層をそれぞれの材料に合わせた複数の成膜装置で金属基材上に成膜する必要がある。更に、厚い層を成膜する場合、成膜効率を高めるため、成膜室の成膜領域を金属基材が複数回通過できるようにローラを組み合わせて設け、金属基材を成膜室の内部で複数回往復移動できるように構成した成膜装置を用いることもなされている。
しかし、通常よりも薄い金属基材を用いて、この金属基材上にこれまでと同じ条件で成膜すると、ローラを介して移動させる金属基材へのテンションや温度のかかり方が異なってしまい、良好な結晶配向性で酸化物超電導層を成膜できず、超電導特性の低い超電導線材となってしまう可能性がある。高性能の酸化物超電導線材を製造するには、成膜条件の最適化、成膜装置の改造などが必要となる。
In order to manufacture this type of tape-shaped oxide superconducting wire, a tape-shaped metal substrate feed reel and take-up reel are provided in the film forming chamber of the film forming apparatus, and this is necessary for the metal substrate fed from the send reel. After the film is laminated, the metal substrate needs to be wound up. Moreover, when manufacturing oxide superconducting wires having a laminated structure, a plurality of layers including various layers such as a diffusion preventing layer, various underlayers, an orientation intermediate layer, an oxide superconducting layer, and a stabilizing layer are combined with each material. It is necessary to form a film on a metal substrate with a film forming apparatus. Furthermore, when a thick layer is formed, in order to increase the film formation efficiency, a combination of rollers is provided so that the metal substrate can pass through the film formation region of the film formation chamber a plurality of times. It is also possible to use a film forming apparatus configured to reciprocate a plurality of times.
However, if a metal substrate thinner than usual is used and a film is formed on this metal substrate under the same conditions as before, the tension and temperature applied to the metal substrate moved through the roller will be different. There is a possibility that an oxide superconducting layer cannot be formed with good crystal orientation, resulting in a superconducting wire having low superconducting properties. In order to produce a high-performance oxide superconducting wire, it is necessary to optimize the film forming conditions and to modify the film forming apparatus.

また、本発明者が検討したところ、うねりがあるテープ状の金属基材上に中間層を介して酸化物超電導層を形成して超電導線材を作製すると、線材長手方向で超電導特性のばらつきが生じることが判明した。さらに、うねりの少ない金属基材を選択的に使用して超電導線材を作製した場合にも、同様に線材長手方向で超電導特性のばらつきが生じる場合があることが判明した。これは、長尺テープ状の金属基材を使用して超電導線材を製造する場合、通常は一方のリールに巻き付けた基材を他方のリールへと繰り出す間に成膜を行うリールトゥリール方式で各層の成膜を行うが、この成膜工程におけるリールへの巻取りにより金属基材にうねりや内部応力が発生する場合があることに起因すると考えられる。また、酸化物超電導層などの成膜時には高温環境に曝されるため、熱履歴により基材中に応力が残留する場合があることも一因と推定される。   Further, as a result of examination by the present inventors, when a superconducting wire is produced by forming an oxide superconducting layer on a wavy tape-like metal substrate via an intermediate layer, variation in superconducting characteristics occurs in the longitudinal direction of the wire. It has been found. Furthermore, it has been found that even when a superconducting wire is produced by selectively using a metal substrate with less waviness, variation in superconducting characteristics may also occur in the longitudinal direction of the wire. This is a reel-to-reel method in which when a superconducting wire is manufactured using a long tape-shaped metal substrate, film formation is usually performed while the substrate wound around one reel is fed out to the other reel. Although each layer is formed, it is considered that swell and internal stress may be generated in the metal substrate due to winding on the reel in this film forming process. In addition, since the oxide superconducting layer is exposed to a high-temperature environment when it is formed, it may be presumed that stress may remain in the base material due to thermal history.

本発明は、以上のような従来の実情に鑑みてなされたものであり、線材長手方向の超電導特性のばらつきが小さい酸化物超電導線材を製造できる酸化物超電導線材の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described conventional situation, and an object thereof is to provide an oxide superconducting wire manufacturing method capable of manufacturing an oxide superconducting wire with a small variation in superconducting characteristics in the longitudinal direction of the wire. And

上記課題を解決するため、本発明の酸化物超電導線材の製造方法は、テープ状の基材の表面上に中間層と酸化物超電導層と安定化層とがこの順に積層されてなる超電導積層体を準備する第1工程と、前記超電導積層体の前記基材の裏面を研磨して該基材の厚さを薄くする第2工程と、を備えることを特徴とする。
本発明の酸化物超電導線材の製造方法によれば、基材の表面側に中間層と酸化物超電導層と安定化層が積層された超電導積層体を準備し、この超電導積層体の基材の裏面を研磨することにより、基材のうねりを小さくし、基材の残留応力(歪み)を緩和することができる。従って、基材の長手方向における応力の分布が少なくなり、酸化物超電導層にかかる応力が小さく、かつ、線材長手方向で均一化されるので、線材の長手方向における超電導特性のばらつきが小さい酸化物超電導線材を製造できる。
また、本発明の酸化物超電導線材の製造方法は、超電導積層体を作製した後に、この超電導積層体の基材の裏面Aを研磨して基材の厚さを薄くする構成である。そのため、通常の厚さの基材を用いて最適化された条件で各層を形成できるので、結晶配向性が良好な酸化物超電導層を形成でき、その結晶配向性を保った状態で基材を研磨して薄くできるので、薄型で且つ良好な特性の酸化物超電導線材を製造することができる。
In order to solve the above problems, the method for producing an oxide superconducting wire according to the present invention includes a superconducting laminate in which an intermediate layer, an oxide superconducting layer, and a stabilizing layer are laminated in this order on the surface of a tape-like substrate. And a second step of polishing the back surface of the base material of the superconducting laminate to reduce the thickness of the base material.
According to the method for manufacturing an oxide superconducting wire of the present invention, a superconducting laminate in which an intermediate layer, an oxide superconducting layer, and a stabilizing layer are laminated on the surface side of the substrate is prepared, and the substrate of the superconducting laminate is prepared. By polishing the back surface, the swell of the substrate can be reduced, and the residual stress (strain) of the substrate can be reduced. Therefore, since the stress distribution in the longitudinal direction of the substrate is reduced, the stress applied to the oxide superconducting layer is small and uniform in the longitudinal direction of the wire, the oxide has a small variation in superconducting characteristics in the longitudinal direction of the wire Superconducting wire can be manufactured.
Moreover, the manufacturing method of the oxide superconducting wire of this invention is the structure which makes the thickness of a base material thin by grind | polishing the back surface A of the base material of this superconducting laminated body, after producing a superconducting laminated body. Therefore, each layer can be formed under optimized conditions using a base material having a normal thickness, so that an oxide superconducting layer with good crystal orientation can be formed, and the base material can be maintained in a state in which the crystal orientation is maintained. Since it can be thinned by polishing, a thin oxide superconducting wire having good characteristics can be manufactured.

本発明の酸化物超電導線材の製造方法は、前記第1工程において、テープ状の前記基材を送出リールに巻回し、該送出リールに巻回した前記基材の巻回終端部を引き出して巻取リールに設置し、前記送出リールと前記巻取リールの間に蒸着粒子が飛来する成膜領域を形成し、前記基材を前記送出リールから前記巻取リールへと繰り出し、前記成膜領域に前記基材を通過させて該基材上に前記蒸着粒子を堆積させることにより、前記中間層、前記酸化物超電導層および前記安定化層の少なくともいずれかの層を成膜することもできる。
この場合、基材上への各層の成膜工程においてリールへの巻取りなどにより、基材にうねりや内部応力が発生することがあるが、各層の成膜後に基材の裏面を研磨することにより、基材に発生したうねりを小さくし、基材の残留応力(歪み)を緩和することができる。従って、基材の長手方向における応力の分布が少なくなり、酸化物超電導層にかかる応力が小さく、かつ、線材長手方向で均一化されるので、線材の長手方向における超電導特性のばらつきが小さい酸化物超電導線材を製造できる。
In the method for producing an oxide superconducting wire according to the present invention, in the first step, the tape-shaped base material is wound around a delivery reel, and the winding termination portion of the base material wound around the delivery reel is drawn out and wound. A film formation region where vapor deposition particles fly between the delivery reel and the take-up reel, and the base material is fed from the supply reel to the take-up reel. By passing the substrate through and depositing the vapor deposition particles on the substrate, at least one of the intermediate layer, the oxide superconducting layer, and the stabilizing layer can be formed.
In this case, in the film forming process of each layer on the base material, undulation or internal stress may occur in the base material due to winding on a reel, etc., but the back surface of the base material is polished after the film formation of each layer. Thus, the swell generated in the base material can be reduced, and the residual stress (strain) of the base material can be reduced. Therefore, since the stress distribution in the longitudinal direction of the substrate is reduced, the stress applied to the oxide superconducting layer is small and uniform in the longitudinal direction of the wire, the oxide has a small variation in superconducting characteristics in the longitudinal direction of the wire Superconducting wire can be manufactured.

本発明によれば、線材長手方向の超電導特性のばらつきが小さい酸化物超電導線材を製造できる酸化物超電導線材の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the oxide superconducting wire which can manufacture the oxide superconducting wire with a small dispersion | variation in the superconducting characteristic of a wire longitudinal direction can be provided.

本発明の酸化物超電導線材の製造方法により得られる酸化物超電導線材の一例構造を模式的に示す断面斜視図である。It is a section perspective view showing typically an example structure of an oxide superconducting wire obtained by a manufacturing method of an oxide superconducting wire of the present invention. 本発明に係る酸化物超電導線材の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the oxide superconducting wire which concerns on this invention. 本発明に係る酸化物超電導線材の製造方法において、PLD法を用いて基材上に酸化物超電導層を形成する工程の一例を示す説明図である。In the manufacturing method of the oxide superconducting wire which concerns on this invention, it is explanatory drawing which shows an example of the process of forming an oxide superconducting layer on a base material using PLD method. 実施例1および比較例1の酸化物超電導線材における基材の裏面の相対高さを示すグラフである。It is a graph which shows the relative height of the back surface of the base material in the oxide superconducting wire of Example 1 and Comparative Example 1. 実施例1および比較例1の酸化物超電導線材における長手方向の臨界電流値の分布を示すグラフである。It is a graph which shows distribution of the critical current value of the longitudinal direction in the oxide superconducting wire of Example 1 and Comparative Example 1.

以下、本発明に係る酸化物超電導線材の製造方法の実施形態について図面に基づいて説明する。
図1は本発明に係る酸化物超電導線材の製造方法により得られる酸化物超電導線材の一例構造を模式的に示す断面斜視図であり、図2は本発明に係る酸化物超電導線材の製造方法の一例を示すフローチャートである。
Hereinafter, embodiments of a method for producing an oxide superconducting wire according to the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional perspective view schematically showing an example structure of an oxide superconducting wire obtained by the method for producing an oxide superconducting wire according to the present invention, and FIG. 2 shows an oxide superconducting wire producing method according to the present invention. It is a flowchart which shows an example.

本発明に係る酸化物超電導線材の製造方法により得られる酸化物超電導線材10は、図1に示すように長尺テープ状の基材11の一方の面(表面)上に、中間層12と酸化物超電導層13と安定化層14を順次積層してなる。
図1に示す構造の酸化物超電導線材10を得るため、本発明の酸化物超電導線材の製造方法は、テープ状の基材11の表面(一方の面)上に中間層12と酸化物超電導層13と安定化層14とがこの順に積層されてなる超電導積層体を準備する第1工程S10と、超電導積層体の基材11の裏面(他方の面)11Aを研磨して基材11の厚さを薄くする第2工程S20と、を備える。
図2に示すように、第1工程S10は基材11上に中間層12を形成する中間層形成工程S11と、中間層12上に酸化物超電導層13を形成する酸化物超電導層形成工程S12と、酸化物超電導層13上に安定化層14を形成する安定化層形成工程S13を備える。また、第2工程S20は、第1工程S10で形成した超電導積層体の基材11の裏面11Aを研磨する基材裏面の研磨工程S21を備える。以下、本発明の酸化物超電導線材の製造方法の各工程について、工程順に説明する。
The oxide superconducting wire 10 obtained by the method for manufacturing an oxide superconducting wire according to the present invention has an intermediate layer 12 and an oxidation layer on one surface (surface) of a long tape-like base material 11 as shown in FIG. The superconducting layer 13 and the stabilization layer 14 are sequentially laminated.
In order to obtain the oxide superconducting wire 10 having the structure shown in FIG. 1, an oxide superconducting wire manufacturing method according to the present invention includes an intermediate layer 12 and an oxide superconducting layer on the surface (one surface) of a tape-like substrate 11. The first step S10 for preparing a superconducting laminate in which 13 and the stabilizing layer 14 are laminated in this order, and the back surface (the other surface) 11A of the substrate 11 of the superconducting laminate are polished to obtain the thickness of the substrate 11 A second step S20 for reducing the thickness.
As shown in FIG. 2, the first step S10 includes an intermediate layer forming step S11 for forming the intermediate layer 12 on the substrate 11, and an oxide superconducting layer forming step S12 for forming the oxide superconducting layer 13 on the intermediate layer 12. And a stabilization layer forming step S13 for forming the stabilization layer 14 on the oxide superconducting layer 13. Moreover, 2nd process S20 is equipped with grinding | polishing process S21 of the base material back surface which grind | polishes the back surface 11A of the base material 11 of the superconducting laminated body formed at 1st process S10. Hereafter, each process of the manufacturing method of the oxide superconducting wire of this invention is demonstrated in process order.

[第1工程S10]
(中間層形成工程S11)
まず、テープ状の基材11を準備する。
テープ状の基材11は、通常の超電導線材の基材として使用し得るものであれば良く、耐熱性の金属からなるものが好ましい。ここで、テープ状の基材11とは、テープ状の他、長尺のプレート状、長尺のシート状のものを含む。耐熱性の金属の中でも、合金が好ましく、ニッケル(Ni)合金又は銅(Cu)合金がより好ましい。中でも、市販品であればハステロイ(商品名、ヘインズ社製)が好適であり、モリブデン(Mo)、クロム(Cr)、鉄(Fe)、コバルト(Co)等の成分量が異なる、ハステロイB、C、G、N、W等のいずれの種類も使用できる。また、基材11としてニッケル(Ni)合金などに集合組織を導入した配向金属基材を用いてもよい。
基材11の厚さは、目的に応じて適宜調整すれば良く、通常は、10〜500μmであることが好ましく、20〜200μmであることがより好ましい。下限値以上とすることで強度が一層向上し、上限値以下とすることでオーバーオールの臨界電流密度を一層向上させることができる。
[First step S10]
(Intermediate layer forming step S11)
First, the tape-shaped base material 11 is prepared.
The tape-shaped base material 11 may be any material that can be used as a base material for ordinary superconducting wires, and is preferably made of a heat-resistant metal. Here, the tape-shaped substrate 11 includes a long plate shape and a long sheet shape in addition to the tape shape. Among heat resistant metals, an alloy is preferable, and a nickel (Ni) alloy or a copper (Cu) alloy is more preferable. Among them, if it is a commercial product, Hastelloy (trade name, manufactured by Haynes) is suitable, and the amount of components such as molybdenum (Mo), chromium (Cr), iron (Fe), cobalt (Co) is different, Hastelloy B, Any kind of C, G, N, W, etc. can be used. Further, as the base material 11, an oriented metal base material in which a texture is introduced into a nickel (Ni) alloy or the like may be used.
What is necessary is just to adjust the thickness of the base material 11 suitably according to the objective, Usually, it is preferable that it is 10-500 micrometers, and it is more preferable that it is 20-200 micrometers. By setting the lower limit value or more, the strength can be further improved, and by setting the upper limit value or less, the critical current density of the overall can be further improved.

次に、基材11の表面上に中間層12を形成する。
中間層12は、酸化物超電導層13の結晶配向性を制御し、基材11中の金属元素の酸化物超電導層13への拡散を防止するものである。さらに、基材11と酸化物超電導層13との物理的特性(熱膨張率や格子定数等)の差を緩和するバッファー層として機能し、その材質は、物理的特性が基材11と酸化物超電導層13との中間的な値を示す金属酸化物が好ましい。中間層12の好ましい材質として具体的には、GdZr、MgO、ZrO−Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物が例示できる。
中間層12は、単層でも良いし、複数層でも良い。例えば、前記金属酸化物からなる層(金属酸化物層)は、結晶配向性を有していることが好ましく、複数層である場合には、最外層(最も酸化物超電導層13に近い層)が少なくとも結晶配向性を有していることが好ましい。
Next, the intermediate layer 12 is formed on the surface of the substrate 11.
The intermediate layer 12 controls the crystal orientation of the oxide superconducting layer 13 and prevents diffusion of the metal element in the base material 11 into the oxide superconducting layer 13. Furthermore, it functions as a buffer layer that alleviates the difference in physical properties (thermal expansion coefficient, lattice constant, etc.) between the base material 11 and the oxide superconducting layer 13, and the material has physical properties that are different from those of the base material 11 and oxide. A metal oxide showing an intermediate value with the superconducting layer 13 is preferable. Specifically, preferred materials for the intermediate layer 12 are Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2. Examples thereof include metal oxides such as O 3 , Zr 2 O 3 , Ho 2 O 3 , and Nd 2 O 3 .
The intermediate layer 12 may be a single layer or a plurality of layers. For example, the layer made of the metal oxide (metal oxide layer) preferably has crystal orientation, and when it is a plurality of layers, the outermost layer (the layer closest to the oxide superconducting layer 13). Preferably have at least crystal orientation.

中間層12は、基材11側にベッド層が介在された複数層構造でもよい。ベッド層は、耐熱性が高く、界面反応性を低減するためのものであり、その上に配される膜の配向性を得るために用いる。このようなベッド層は、必要に応じて配され、例えば、イットリア(Y)、窒化ケイ素(Si)、酸化アルミニウム(Al、「アルミナ」とも呼ぶ)等から構成される。このベッド層は、例えばスパッタリング法等の成膜法により形成することができ、その厚さは例えば10〜200nmである。 The intermediate layer 12 may have a multi-layer structure in which a bed layer is interposed on the substrate 11 side. The bed layer has high heat resistance and is used for reducing interfacial reactivity, and is used for obtaining the orientation of a film disposed thereon. Such a bed layer is arranged as necessary, and is made of, for example, yttria (Y 2 O 3 ), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 , also referred to as “alumina”), or the like. Is done. This bed layer can be formed, for example, by a film forming method such as a sputtering method, and the thickness thereof is, for example, 10 to 200 nm.

さらに、本発明において、中間層12は、基材11側に拡散防止層とベッド層が積層された複数層構造でもよい。この場合、基材11とベッド層との間に拡散防止層が介在された構造となる。拡散防止層は、基材11の構成元素拡散を防止する目的で形成されたもので、窒化ケイ素(Si)、酸化アルミニウム(Al)、あるいは希土類金属酸化物等から構成され、その厚さは例えば10〜400nmである。なお、拡散防止層の結晶性は問われないので、通常のスパッタ法等の成膜法により形成すればよい。
このように基材11とベッド層との間に拡散防止層を介在させることにより、中間層12を構成する他の層や酸化物超電導層13等を形成する際に、必然的に加熱されたり、熱処理される結果として熱履歴を受ける場合に、基材11の構成元素の一部がベッド層を介して酸化物超電導層13側に拡散することを効果的に抑制することができる。基材11とベッド層との間に拡散防止層を介在させる場合の例としては、拡散防止層としてAl、ベッド層としてYを用いる組み合わせを例示することができる。
Further, in the present invention, the intermediate layer 12 may have a multi-layer structure in which a diffusion prevention layer and a bed layer are laminated on the base material 11 side. In this case, a diffusion preventing layer is interposed between the base material 11 and the bed layer. The diffusion preventing layer is formed for the purpose of preventing the diffusion of the constituent elements of the substrate 11, and is composed of silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), rare earth metal oxide, or the like. The thickness is, for example, 10 to 400 nm. Note that since the crystallinity of the diffusion preventing layer is not questioned, it may be formed by a film forming method such as a normal sputtering method.
In this way, by interposing the diffusion preventing layer between the base material 11 and the bed layer, when forming the other layer constituting the intermediate layer 12, the oxide superconducting layer 13 or the like, it is inevitably heated. When receiving a thermal history as a result of the heat treatment, it is possible to effectively suppress a part of the constituent elements of the base material 11 from being diffused to the oxide superconducting layer 13 side through the bed layer. As an example of the case where a diffusion preventing layer is interposed between the base material 11 and the bed layer, a combination using Al 2 O 3 as the diffusion preventing layer and Y 2 O 3 as the bed layer can be exemplified.

また中間層12は、前記金属酸化物層の上に、さらにキャップ層が積層された複数層構造でも良い。キャップ層は、酸化物超電導層13の配向性を制御する機能を有するとともに、酸化物超電導層13を構成する元素の中間層12への拡散や、酸化物超電導層13積層時に使用するガスと中間層12との反応を抑制する機能等を有するものである。   The intermediate layer 12 may have a multi-layer structure in which a cap layer is further laminated on the metal oxide layer. The cap layer has a function of controlling the orientation of the oxide superconducting layer 13, diffuses the elements constituting the oxide superconducting layer 13 into the intermediate layer 12, and uses a gas and an intermediate used when the oxide superconducting layer 13 is laminated. It has a function of suppressing the reaction with the layer 12 and the like.

キャップ層は、前記金属酸化物層の表面に対してエピタキシャル成長し、その後、横方向(面方向)に粒成長(オーバーグロース)して、結晶粒が面内方向に選択成長するという過程を経て形成されたものが好ましい。このようなキャップ層は、前記金属酸化物層よりも高い面内配向度が得られる。
キャップ層の材質は、上記機能を発現し得るものであれば特に限定されないが、好ましいものとして具体的には、CeO、Y、Al、Gd、Zr、Ho、Nd等が例示できる。キャップ層の材質がCeOである場合、キャップ層は、Ceの一部が他の金属原子又は金属イオンで置換されたCe−M−O系酸化物を含んでいても良い。
The cap layer is formed through a process of epitaxially growing on the surface of the metal oxide layer, and then growing the grains in the lateral direction (plane direction) (overgrowth) and selectively growing the crystal grains in the in-plane direction. The ones made are preferred. Such a cap layer has a higher degree of in-plane orientation than the metal oxide layer.
The material of the cap layer is not particularly limited as long as it can exhibit the above functions, but specifically, preferred examples include CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , and Zr 2 O. 3 , Ho 2 O 3 , Nd 2 O 3 and the like. When the material of the cap layer is CeO 2 , the cap layer may contain a Ce—M—O-based oxide in which part of Ce is substituted with another metal atom or metal ion.

キャップ層は、PLD法(パルスレーザ蒸着法)、スパッタリング法等で成膜することができるが、大きな成膜速度を得られる点でPLD法を用いることが好ましい。
一例として、PLD法によりキャップ層としてCeO層を成膜するには、基材温度約500〜1000℃、約0.6〜100Paの酸素ガス雰囲気中で行うことができる。
The cap layer can be formed by a PLD method (pulse laser deposition method), a sputtering method, or the like, but it is preferable to use the PLD method from the viewpoint of obtaining a high film formation rate.
As an example, forming a CeO 2 layer as a cap layer by the PLD method can be performed in an oxygen gas atmosphere at a substrate temperature of about 500 to 1000 ° C. and about 0.6 to 100 Pa.

中間層12の厚さは、目的に応じて適宜調整すれば良いが、通常は、0.1〜5μmである。
中間層12が、前記金属酸化物層の上にキャップ層が積層された複数層構造である場合には、キャップ層の厚さは、通常は、0.1〜1.5μmである。
The thickness of the intermediate layer 12 may be appropriately adjusted according to the purpose, but is usually 0.1 to 5 μm.
When the intermediate layer 12 has a multi-layer structure in which a cap layer is laminated on the metal oxide layer, the thickness of the cap layer is usually 0.1 to 1.5 μm.

中間層12は、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法、イオンビームアシスト蒸着法(以下、IBAD法と略記する)等の物理的蒸着法;化学気相成長法(CVD法);塗布熱分解法(MOD法);溶射等、酸化物薄膜を形成する公知の方法で積層できる。特に、IBAD法で形成された前記金属酸化物層は、結晶配向性が高く、酸化物超電導層13やキャップ層の結晶配向性を制御する効果が高い点で好ましい。IBAD法とは、蒸着時に、結晶の蒸着面に対して所定の角度でイオンビームを照射することにより、結晶軸を配向させる方法である。通常は、イオンビームとして、アルゴン(Ar)イオンビームを使用する。例えば、GdZr、MgO又はZrO−Y(YSZ)からなる中間層12は、IBAD法における配向度を表す指標であるΔΦ(FWHM:半値全幅)の値を小さくできるため、特に好適である。 The intermediate layer 12 is formed by physical vapor deposition such as sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, ion beam assisted vapor deposition (hereinafter abbreviated as IBAD); chemical vapor deposition (CVD). ); Coating pyrolysis method (MOD method); lamination can be performed by a known method for forming an oxide thin film such as thermal spraying. In particular, the metal oxide layer formed by the IBAD method is preferable in that the crystal orientation is high and the effect of controlling the crystal orientation of the oxide superconducting layer 13 and the cap layer is high. The IBAD method is a method of orienting crystal axes by irradiating an ion beam at a predetermined angle with respect to a crystal deposition surface during deposition. Usually, an argon (Ar) ion beam is used as the ion beam. For example, the intermediate layer 12 made of Gd 2 Zr 2 O 7 , MgO, or ZrO 2 —Y 2 O 3 (YSZ) can reduce the value of ΔΦ (FWHM: full width at half maximum) that is an index representing the degree of orientation in the IBAD method. Therefore, it is particularly suitable.

(酸化物超電導層形成工程S12)
次に、中間層形成工程S11で形成した中間層12上に酸化物超電導層13を形成する。
酸化物超電導層13は通常知られている組成の酸化物超電導体からなるものを広く適用することができ、REBaCu(REはY、La、Nd、Sm、Er、Gd等の希土類元素を表す)なる材質のもの、具体的には、Y123(YBaCu)又はGd123(GdBaCu)を例示することができる。また、その他の酸化物超電導体、例えば、BiSrCan−1Cu4+2n+δなる組成等に代表される臨界温度の高い他の酸化物超電導体からなるものを用いても良いのは勿論である。
酸化物超電導層13は、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法等の物理的蒸着法;化学気相成長法(CVD法);塗布熱分解法(MOD法)等で積層でき、中でもレーザ蒸着法が好ましい。
酸化物超電導層13の厚みは、0.5〜5μm程度であって、均一な厚みであることが好ましい。
(Oxide superconducting layer forming step S12)
Next, the oxide superconducting layer 13 is formed on the intermediate layer 12 formed in the intermediate layer forming step S11.
The oxide superconducting layer 13 can be widely applied with an oxide superconductor having a generally known composition, such as REBa 2 Cu 3 O y (RE is Y, La, Nd, Sm, Er, Gd, etc. A material made of a material that represents a rare earth element, specifically, Y123 (YBa 2 Cu 3 O y ) or Gd123 (GdBa 2 Cu 3 O y ) can be exemplified. Further, other oxide superconductors, for example, Bi 2 Sr 2 Ca n- 1 Cu n for O 4 + 2n + δ becomes may be used in compositions such as those made of other oxide superconductors having high critical temperatures representative Of course.
The oxide superconducting layer 13 is laminated by physical vapor deposition such as sputtering, vacuum vapor deposition, laser vapor deposition, or electron beam vapor deposition; chemical vapor deposition (CVD); coating pyrolysis (MOD). Of these, laser vapor deposition is preferred.
The oxide superconducting layer 13 has a thickness of about 0.5 to 5 μm and preferably a uniform thickness.

(安定化層形成工程S13)
次に、安定化層形成工程S13で形成した酸化物超電導層13上に安定化層14を形成する。
安定化層14は、酸化物超電導層13の一部領域が常電導状態に遷移しようとした場合に、酸化物超電導層13からの電流のバイパス路として機能する。
安定化層14は、導電性が良好な金属からなるものが好ましく、具体的には、銀又は銀合金、銅などからなるものが例示できる。安定化層14は1層構造でも良いし、2層以上の積層構造であってもよい。安定化層14の厚さは、3〜300μmの範囲とすることができる。
(Stabilization layer forming step S13)
Next, the stabilization layer 14 is formed on the oxide superconducting layer 13 formed in the stabilization layer forming step S13.
The stabilization layer 14 functions as a bypass path for current from the oxide superconducting layer 13 when a partial region of the oxide superconducting layer 13 attempts to transition to the normal conducting state.
The stabilizing layer 14 is preferably made of a metal having good conductivity, and specifically, can be exemplified by silver, a silver alloy, copper or the like. The stabilization layer 14 may have a single layer structure or a laminated structure of two or more layers. The thickness of the stabilization layer 14 can be in the range of 3 to 300 μm.

安定化層14は、酸化物超電導層13側に形成される第1の安定化層と、この第1の安定化層上に形成される第2の安定化層の2層構造とすることが好ましい。
この場合、酸化物超電導層13側に形成する第1の安定化層は、Agなどの良電導性かつ酸化物超電導層13と接触抵抗が低くなじみの良い金属材料からなる層とすることが好ましい。
Agの第1の安定化層を成膜するには、スパッタ法、真空蒸着法、レーザー蒸着法、電子ビーム蒸着法物理的蒸着法、化学気相成長法(CVD法)などの成膜法を採用し、その厚さを1〜30μm程度に形成できる。
The stabilization layer 14 may have a two-layer structure of a first stabilization layer formed on the oxide superconducting layer 13 side and a second stabilization layer formed on the first stabilization layer. preferable.
In this case, the first stabilization layer formed on the oxide superconducting layer 13 side is preferably a layer made of a metal material having good conductivity such as Ag and low contact resistance with the oxide superconducting layer 13. .
In order to form the first stabilizing layer of Ag, film formation methods such as sputtering, vacuum deposition, laser deposition, electron beam deposition, physical vapor deposition, and chemical vapor deposition (CVD) are used. Adopted, the thickness can be formed to about 1 to 30 μm.

また、第1の安定化層上に形成する第2の安定化層は、酸化物超電導層13の安定化のために設けられ、酸化物超電導層13が常電導状態に転移することを防止するために電流のバイパス路として設けられているので、CuやAlまたはそれらの合金などの良導電性の金属材料から形成することが好ましい。なお、酸化物超電導線材10を限流器などの目的に適用する場合は第2の安定化層として高抵抗材料を用いることが好ましいので、NiCrなど、CuやAg、Alに対して高抵抗の金属材料から構成することができる。
第2の安定化層は、10〜300μm程度の厚さに形成する。その場合、半田や導電性接着剤による貼り付け法あるいはめっき法などを用いて第1の安定化層の上に形成することができる。
以上の工程により、基材11上に中間層12と酸化物超電導層13と安定化層14が順次積層された超電導積層体を作製することができる。
The second stabilization layer formed on the first stabilization layer is provided for stabilizing the oxide superconducting layer 13 and prevents the oxide superconducting layer 13 from transitioning to the normal conducting state. Therefore, it is preferably formed from a highly conductive metal material such as Cu, Al, or an alloy thereof. In addition, when applying the oxide superconducting wire 10 for the purpose of a current limiting device or the like, it is preferable to use a high resistance material as the second stabilization layer, so that it has high resistance to Cu, Ag, Al, such as NiCr It can be composed of a metal material.
The second stabilization layer is formed to a thickness of about 10 to 300 μm. In that case, it can be formed on the first stabilization layer using a soldering or conductive adhesive bonding method or a plating method.
Through the above steps, a superconducting laminate in which the intermediate layer 12, the oxide superconducting layer 13, and the stabilizing layer 14 are sequentially laminated on the substrate 11 can be produced.

上述したように、基材11の一面側に積層する中間層12、酸化物超電導層13、Agの安定化層14は、いずれもスパッタ法あるいはPLD法などの成膜法により形成される。通常、長尺の酸化物超電導線材を作製する場合には、長尺テープ状の基材11を一方のリールに巻き付けて、その巻き付け端部を引き出して他方のリールに設置し、一方のリールから他方のリールへと基材11を繰り出す間に、基材11の表面側に成膜を行うリールトゥリール方式で各層の成膜を行う。
図3に、中間層12を構成するキャップ層、あるいは、酸化物超電導層13の成膜に用いることができるパルスレーザー蒸着装置(PLD装置)の一例を示す。
As described above, the intermediate layer 12, the oxide superconducting layer 13, and the Ag stabilizing layer 14 laminated on one surface side of the substrate 11 are all formed by a film forming method such as a sputtering method or a PLD method. Usually, when producing a long oxide superconducting wire, a long tape-like base material 11 is wound around one reel, its winding end is pulled out and placed on the other reel, While the base material 11 is fed to the other reel, each layer is formed by a reel-to-reel method in which film formation is performed on the surface side of the base material 11.
FIG. 3 shows an example of a pulse laser deposition apparatus (PLD apparatus) that can be used for forming the cap layer constituting the intermediate layer 12 or the oxide superconducting layer 13.

この例のPLD装置Aは、真空ポンプなどの減圧装置50に接続された減圧容器51を備え、その内部に設置されたターゲット52に減圧容器51外部に設置されているレーザービームの照射装置53からパルスレーザービームを照射できるように構成されている。また、減圧容器51の内部に、送出リール55と巻取リール56とこれらの中間位置に転向搬送リール57、58とが設置され、送出リール55から転向搬送リール57、58を介して基材11を巻取リール56側に移動することができ、この移動中にターゲット52から発生させた粒子(蒸着粒子)が飛来する成膜領域54に基材11を通過させることにより、基材11の表面側に粒子を堆積させて成膜できるように構成されている。
なお、転向搬送リール57、58は図3では略しているが図3の紙面厚さ方向に同じ構成のものが複数配列されていて(例えば5列等)、基材11は複数の転向搬送リール57、58間を複数回ターンしながら最終的に巻取リール56に至るように構成されている。更に、転向搬送リール57、58間を複数回ターンしている基材11を目的の成膜温度に加熱するためのヒータ59を内蔵したヒータ装置60が転向搬送リール57、58の間に設けられている。
The PLD apparatus A in this example includes a decompression vessel 51 connected to a decompression device 50 such as a vacuum pump, and a target 52 installed in the interior of the PLD device A includes a laser beam irradiation device 53 installed outside the decompression vessel 51. It is configured to be able to irradiate a pulsed laser beam. Further, inside the decompression container 51, a delivery reel 55, a take-up reel 56, and turning conveyance reels 57, 58 are installed at an intermediate position between them, and the substrate 11 passes from the sending reel 55 via the turning conveyance reels 57, 58. Can be moved to the take-up reel 56 side, and the surface of the substrate 11 is passed by passing the substrate 11 through the film-forming region 54 where particles (vapor deposition particles) generated from the target 52 fly during this movement. It is configured so that particles can be deposited on the side to form a film.
Although the turning conveyance reels 57 and 58 are omitted in FIG. 3, a plurality of the same configurations are arranged in the thickness direction in FIG. 3 (for example, five rows), and the substrate 11 is composed of a plurality of turning conveyance reels. It is configured to finally reach the take-up reel 56 while turning between 57 and 58 a plurality of times. Further, a heater device 60 including a heater 59 for heating the base material 11 that is turned a plurality of times between the turning conveyance reels 57 and 58 to a target film forming temperature is provided between the turning conveyance reels 57 and 58. ing.

図3に示すように、長尺の基材11の一面側に各層を形成する際には、基材11には所定のテンションがかかった状態でリールによる巻取りが行われており、基材11にうねりが発生したり、応力がかかる状態となる。勿論、上述のように基材1上には複数の層を形成する必要があるので、各層の成膜工程において基材11のうねりや残留が増大する傾向にある。
また、図3に示す構成のPLD装置Aは、中間層12を構成するキャップ層あるいは酸化物超電導層13の成膜温度に好適な温度に基材11を加熱しながら成膜する。キャップ層あるいは酸化物超電導層の成膜温度は膜種によっても異なるが、通常のもので500〜900℃の範囲であって極めて高温であるので、基材11は送出リール55から巻取リール56側に移動する間に常温〜900℃までの間の熱履歴を複数回受ける。勿論、1つのPLD装置でキャップ層を形成し、他のPLD装置で酸化物超電導層13を形成する場合、基材11が受ける熱履歴は相当な数に達する。
As shown in FIG. 3, when each layer is formed on one side of the long base material 11, the base material 11 is wound by a reel in a state where a predetermined tension is applied. 11 is swelled or stressed. Of course, since it is necessary to form a plurality of layers on the base material 1 as described above, the undulation and the residue of the base material 11 tend to increase in the film forming process of each layer.
3 forms the film while heating the base material 11 to a temperature suitable for the film formation temperature of the cap layer or the oxide superconducting layer 13 constituting the intermediate layer 12. Although the film formation temperature of the cap layer or the oxide superconducting layer varies depending on the film type, it is a normal one in the range of 500 to 900 ° C. and extremely high temperature. While moving to the side, a thermal history between room temperature and 900 ° C. is received a plurality of times. Of course, when the cap layer is formed by one PLD device and the oxide superconducting layer 13 is formed by another PLD device, the thermal history received by the substrate 11 reaches a considerable number.

このように、基材11は中間層12や酸化物超電導層13などの成膜工程で、繰返し応力や熱履歴を受けている。そのため、各層形成後の基材11にはうねりや残留応力が生じた状態となることが多い。本発明者の検討によれば、基材11にうねりや残留応力がある場合、酸化物超電導線材の長手方向で超電導特性のばらつきが生じ易くなる。これは、基材11のうねりにより線材の長手方向で酸化物超電導層13にかかる応力に分布が生じることに起因している。酸化物超電導層13に引張応力がかかると酸化物超電導層13にマイクロクラックなどの欠陥を導入してしまう可能性が強く、この欠陥の導入により酸化物超電導層13の臨界電流密度を著しく低下させてしまう問題があるのに対し、酸化物超電導層13に圧縮応力がかかる場合には前記欠陥を導入させてしまう可能性が少ないためである。   Thus, the base material 11 is repeatedly subjected to stress and thermal history in the film forming process of the intermediate layer 12 and the oxide superconducting layer 13. For this reason, the substrate 11 after the formation of each layer is often in a state where waviness or residual stress is generated. According to the study of the present inventor, when the substrate 11 has waviness or residual stress, variations in superconducting characteristics tend to occur in the longitudinal direction of the oxide superconducting wire. This is because the stress applied to the oxide superconducting layer 13 is distributed in the longitudinal direction of the wire due to the undulation of the base material 11. When tensile stress is applied to the oxide superconducting layer 13, there is a strong possibility that defects such as microcracks will be introduced into the oxide superconducting layer 13, and by introducing these defects, the critical current density of the oxide superconducting layer 13 is significantly reduced. This is because there is little possibility of introducing the defects when compressive stress is applied to the oxide superconducting layer 13.

そこで、本発明においては、第1工程S10で基材11上に中間層12と酸化物超電導層13と安定化層14とが積層された超電導積層体を作製した後に、第2工程S20において基材11の裏面側を研磨して、基材11に生じたうねりを小さくするとともに、基材11中の残留応力(歪み)を緩和する。   Therefore, in the present invention, after producing a superconducting laminate in which the intermediate layer 12, the oxide superconducting layer 13 and the stabilizing layer 14 are laminated on the base material 11 in the first step S10, the base is formed in the second step S20. The back surface side of the material 11 is polished to reduce the undulation generated in the base material 11 and to reduce the residual stress (strain) in the base material 11.

[第2工程S20]
(基材裏面の研磨工程S21)
研磨工程S21においては、第1工程S10で作製した超電導積層体の基材11の裏面11A(基材11の中間層12や酸化物超電層13などが積層されていない側の面)を研磨加工により研磨して、基材11の厚さを薄くする。
研磨工程S21における研磨は、基材11の裏面11Aのうねりが、JIS B0601−2001に規定されるうねり曲線の最大山高さWp0.2μm以下となるまで研磨することが好ましい。基材11の裏面11Aを研磨して基材11のうねりを小さくすることにより、基材11中の残留応力(歪み)が緩和されて、酸化物超電導線材における応力の分布が小さくなり、線材長手方向における超電導特性のばらつきを小さくすることができる。
[Second step S20]
(Polishing the back surface of the substrate S21)
In the polishing step S21, the back surface 11A of the substrate 11 of the superconducting laminate produced in the first step S10 (the surface on the side where the intermediate layer 12 or the oxide superconductor layer 13 of the substrate 11 is not laminated) is polished. It polishes by processing and makes the thickness of the base material 11 thin.
The polishing in the polishing step S21 is preferably performed until the undulation of the back surface 11A of the substrate 11 is equal to or less than the maximum peak height Wp of 0.2 μm of the undulation curve defined in JIS B0601-2001. By polishing the back surface 11A of the base material 11 to reduce the waviness of the base material 11, the residual stress (strain) in the base material 11 is relaxed, the stress distribution in the oxide superconducting wire is reduced, and the length of the wire Variations in superconducting characteristics in the direction can be reduced.

基材11の裏面11Aを研磨する方法は、特に限定されず、例えば、機械研磨方式により使用する研磨シートや研磨剤の番手を調整して研磨する方法などが挙げられる。
研磨工程S21における研磨は、基材11の厚さが10μm程度薄くなるまで研磨すれば、基材11のうねりや残留応力を緩和することができる。基材11の研磨前後の厚さ変化量は特に制限されないが、10〜200μm程度とすることができる。研磨後の基材11の厚さも特に制限されず適宜調整可能であるが、10〜75μmの範囲とすることが好ましい。研磨後の基材11の厚さを10μm以上とすることにより、基材11としての強度を確保し、取扱い性も良好となる。また、研磨後の基材11の厚さを75μm以下とすることにより、酸化物超電導線材10を薄型化することができ、酸化物超電導線材10を加工して超電導コイルなどを作製する場合の取り扱い性が向上する。
以上の工程により、図1に示す酸化物超電導線材を製造できる。
A method for polishing the back surface 11A of the base material 11 is not particularly limited, and examples thereof include a method for polishing by adjusting a polishing sheet used by a mechanical polishing method or a count of an abrasive.
The polishing in the polishing step S21 can alleviate the undulation and residual stress of the base material 11 by polishing until the thickness of the base material 11 is reduced to about 10 μm. The amount of change in thickness of the substrate 11 before and after polishing is not particularly limited, but can be about 10 to 200 μm. The thickness of the substrate 11 after polishing is not particularly limited and can be adjusted as appropriate, but is preferably in the range of 10 to 75 μm. By setting the thickness of the base material 11 after polishing to 10 μm or more, the strength as the base material 11 is ensured and the handleability is also improved. Moreover, the oxide superconducting wire 10 can be thinned by setting the thickness of the substrate 11 after polishing to 75 μm or less, and handling when the oxide superconducting wire 10 is processed to produce a superconducting coil or the like. Improves.
Through the above steps, the oxide superconducting wire shown in FIG. 1 can be manufactured.

本発明の酸化物超電導線材の製造方法によれば、基材11の表面側に中間層12と酸化物超電導層13と安定化層14が積層された超電導積層体を準備し、この超電導積層体の基材11の裏面11Aを研磨することにより、基材11に元々あるうねりや、基材11上への各層の成膜工程により基材11に発生したうねりを小さくし、基材11の残留応力(歪み)を緩和することができる。従って、基材11の長手方向における応力の分布が少なくなり、酸化物超電導層13にかかる応力が小さく、かつ、線材長手方向で均一化されるので、線材の長手方向における超電導特性のばらつきが小さい酸化物超電導線材10を製造できる。   According to the method for manufacturing an oxide superconducting wire of the present invention, a superconducting laminate in which an intermediate layer 12, an oxide superconducting layer 13 and a stabilizing layer 14 are laminated on the surface side of a substrate 11 is prepared, and this superconducting laminate is prepared. By polishing the back surface 11 </ b> A of the base material 11, the undulation inherent in the base material 11 and the undulation generated in the base material 11 by the film forming process of each layer on the base material 11 are reduced, and the residual of the base material 11 Stress (strain) can be relaxed. Therefore, the stress distribution in the longitudinal direction of the substrate 11 is reduced, the stress applied to the oxide superconducting layer 13 is small, and is uniformized in the longitudinal direction of the wire, so that the dispersion of the superconducting characteristics in the longitudinal direction of the wire is small. The oxide superconducting wire 10 can be manufactured.

また、従来の方法で薄型の酸化物超電導線材を作製する場合、通常よりも薄い基材を使用して各層の成膜を行うと、成膜工程において基材へのテンションや温度のかかり方が変化して、結晶配向性が良好な酸化物超電導層を成膜することが難しく、製造される酸化物超電導線材の特性が低くなるという問題があった。この場合、成膜条件の最適化や成膜装置の改良などが必要となり、基材の厚さを変える毎に検討を行なわなければならなかった。
これに対し、本発明の酸化物超電導線材の製造方法は、基材11の表面側に中間層12と酸化物超電導層13と安定化層14を積層して超電導積層体を作製した後に、この超電導積層体の基材11の裏面11Aを研磨して基材11の厚さを薄くする構成である。そのため、通常の厚さの基材11を用いて最適化された条件で各層を形成できるので、結晶配向性が良好な酸化物超電導層13を形成でき、その結晶配向性を保った状態で基材11を研磨して薄くできるので、薄型で且つ良好な特性の酸化物超電導線材を製造することができる。
In addition, when a thin oxide superconducting wire is produced by a conventional method, if each layer is formed using a thinner substrate than usual, the tension or temperature is applied to the substrate in the film forming process. There has been a problem that it is difficult to form an oxide superconducting layer with good crystal orientation and the properties of the oxide superconducting wire to be manufactured are lowered. In this case, it is necessary to optimize the film forming conditions and improve the film forming apparatus, and it has been necessary to study each time the thickness of the base material is changed.
On the other hand, the manufacturing method of the oxide superconducting wire according to the present invention produces a superconducting laminate after laminating the intermediate layer 12, the oxide superconducting layer 13 and the stabilizing layer 14 on the surface side of the substrate 11. In this configuration, the back surface 11A of the substrate 11 of the superconducting laminate is polished to reduce the thickness of the substrate 11. Therefore, since each layer can be formed under the optimized conditions using the base material 11 having a normal thickness, the oxide superconducting layer 13 with good crystal orientation can be formed, and the base is maintained while maintaining the crystal orientation. Since the material 11 can be polished and thinned, a thin oxide superconducting wire having good characteristics can be manufactured.

以上、本発明の酸化物超電導線材の製造方法の実施形態について説明したが、上記実施形態において、酸化物超電導線材の各部は一例であって、本発明の範囲を逸脱しない範囲で適宜変更することが可能である。   As mentioned above, although embodiment of the manufacturing method of the oxide superconducting wire of this invention was described, in the said embodiment, each part of an oxide superconducting wire is an example, and it changes suitably in the range which does not deviate from the scope of the present invention. Is possible.

以下、実施例を示して本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited to these Examples.

(実施例1)
厚さ100μm、幅10mm、全長100mのテープ状のハステロイ(米国ヘインズ社製商品名)製の基材上に、スパッタ法によりAl(拡散防止層;膜厚150nm)を成膜した上に、イオンビームスパッタ法によりY(ベッド層;膜厚20nm)を成膜した。次いで、このベッド層上に、イオンビームアシスト蒸着法(IBAD法)によりMgO(中間層;膜厚10nm)を形成した上に、パルスレーザー蒸着法(PLD法)により0.5μm厚のCeO(キャップ層)を成膜した。次いでCeO層上にPLD法により成膜温度900℃で1.0μm厚のGdBaCu(酸化物超電導層)を形成し、さらに酸化物超電導層上にスパッタ法により7μm厚の銀層(安定化層)を形成することにより超電導積層体を作製した。
なお、Al層、Y層、MgO層、CeO層、GdBaCu層、銀層の各層の成膜にあたり、テープ状の基材は成膜装置の内部においてリールに巻回しておき、一方のリールから他方のリールに繰り出す間に成膜できるようにしてテープ状基材の全長にわたり、各層を形成した。
Example 1
A film of Al 2 O 3 (diffusion prevention layer; film thickness 150 nm) formed by sputtering on a tape-shaped Hastelloy (trade name, manufactured by Haynes, USA) having a thickness of 100 μm, a width of 10 mm, and a total length of 100 m. Then, Y 2 O 3 (bed layer; film thickness: 20 nm) was formed by ion beam sputtering. Next, MgO (intermediate layer; film thickness: 10 nm) was formed on the bed layer by ion beam assisted vapor deposition (IBAD method), and then 0.5 μm thick CeO 2 (PLD method) was formed by pulse laser vapor deposition (PLD method). (Cap layer) was formed. Next, a 1.0 μm thick GdBa 2 Cu 3 O 7 (oxide superconducting layer) is formed on the CeO 2 layer by a PLD method at a film forming temperature of 900 ° C., and further a 7 μm thick silver is formed on the oxide superconducting layer by a sputtering method. A superconducting laminate was produced by forming a layer (stabilization layer).
In forming the Al 2 O 3 layer, the Y 2 O 3 layer, the MgO layer, the CeO 2 layer, the GdBa 2 Cu 3 O 7 layer, and the silver layer, the tape-shaped substrate is placed inside the film forming apparatus. Each layer was formed over the entire length of the tape-shaped substrate so that it was wound around a reel and formed into a film while being fed from one reel to the other.

次に、エメリー紙もしくは砥石を用い、その番手を100番から1500番まで順に変えて、上記で作製した超電導積層体の基材の裏面(中間層や酸化物超電導層が形成されていない側の面)を研磨した。研磨後の基材の厚さは92μmであった。その後、さらに、粒度2μmのアルミナペーストを用いて研磨を行うことにより、基材の厚さを75μmとした。
なお、各研磨工程における研磨は、基材の裏面に研磨材を1000gの荷重をかけながら押し付けることにより行った。
以上の工程により酸化物超電導線材を作製した。
得られた酸化物超電導線材の長手方向の両端部に測定用端子を取り付け、線材の全長に亘って77K、0Tにおける超電導特性を測定したところ、臨界電流密度Jcは3.5MA/cmであった。
Next, using emery paper or a grindstone, the counts were changed in order from No. 100 to 1500, and the back surface of the base material of the superconducting laminate produced above (on the side where no intermediate layer or oxide superconducting layer was formed) Surface). The thickness of the substrate after polishing was 92 μm. Then, the thickness of the base material was set to 75 μm by further polishing using an alumina paste having a particle size of 2 μm.
In addition, grinding | polishing in each grinding | polishing process was performed by pressing an abrasives on the back surface of a base material, applying a 1000-g load.
An oxide superconducting wire was produced by the above process.
Terminals for measurement were attached to both ends in the longitudinal direction of the obtained oxide superconducting wire, and the superconducting characteristics at 77 K and 0 T were measured over the entire length of the wire. The critical current density Jc was 3.5 MA / cm 2. It was.

(比較例1)
基材の裏面を研磨しなかったこと以外は実施例1と同様にして酸化物超電導線材を作製した。得られた酸化物超電導線材の長手方向の両端部に測定用端子を取り付け、線材の全長に亘って77K、0Tにおける超電導特性を測定したところ、臨界電流密度Jcは3.6MA/cmであった。
(Comparative Example 1)
An oxide superconducting wire was produced in the same manner as in Example 1 except that the back surface of the substrate was not polished. Terminals for measurement were attached to both ends of the obtained oxide superconducting wire in the longitudinal direction, and the superconducting characteristics at 77 K and 0 T were measured over the entire length of the wire, and the critical current density Jc was 3.6 MA / cm 2. It was.

以上の結果より、実施例1と比較例1の酸化物超電導線材の臨界電流密度はほぼ同等であり、基材の表面上に中間層、酸化物超電導層、安定化層を形成した後に、基材の裏面を研磨を行っても、この研磨工程により超電導特性が劣化しないことが明らかとなった。従って、本発明によれば、薄型で且つ良好な超電導特性を有する酸化物超電導線材を製造できることを確認できた。   From the above results, the critical current densities of the oxide superconducting wires of Example 1 and Comparative Example 1 are substantially the same, and after forming the intermediate layer, oxide superconducting layer, and stabilizing layer on the surface of the base material, Even if the back surface of the material was polished, it was found that the superconducting characteristics were not deteriorated by this polishing process. Therefore, according to this invention, it has confirmed that the oxide superconducting wire which is thin and had a favorable superconducting characteristic can be manufactured.

また、実施例1および比較例1の酸化物超電導線材について、基材の裏面の表面性状をAmbios Technology社製のSurface Profilometer XP−100を用いて測定した。その結果を図4に示す。なお、図4において、縦軸は基材裏面の平均高さを「0」とした場合の相対高さを示す。
さらに、実施例1および比較例1の酸化物超電導線材について、THEVA社製のTAPESTARを用いて、77Kにおける線材の長手方向の臨界電流密度Icの分布を測定した。その結果を図5に示す。図5において、横軸は線材の長手方向における測定位置を示す。
Moreover, about the oxide superconducting wire of Example 1 and Comparative Example 1, the surface property of the back surface of the substrate was measured using Surface Profilometer XP-100 manufactured by Ambios Technology. The result is shown in FIG. In FIG. 4, the vertical axis represents the relative height when the average height of the back surface of the base material is “0”.
Further, for the oxide superconducting wires of Example 1 and Comparative Example 1, the distribution of critical current density Ic in the longitudinal direction of the wire at 77K was measured using TAPESTAR manufactured by THEVA. The result is shown in FIG. In FIG. 5, the horizontal axis indicates the measurement position in the longitudinal direction of the wire.

図4の結果より、実施例1の酸化物超電導線材の基材は、うねり曲線の最大山高さWp=0.15μmであり、比較例1の酸化物超電導線材の基材(Wp=1.0μm)よりもうねりが格段に小さくなっていた。
また、図5の結果より、実施例1の酸化物超電導線材は、比較例1の酸化物超電導線材と比較して、線材の長手方向における臨界電流密度のばらつきが小さくなっていた。
以上の結果より、本発明に係る実施例1では、基材の表面上に中間層や酸化物超電導層を形成した後に、基材の裏面を研磨することにより、基材の長手方向のうねりが小さくなり、且つ、基材中の残留応力が緩和されており、そのため、酸化物超電導線材の長手方向の特性のばらつきを小さくできることが確認された。
From the results of FIG. 4, the base material of the oxide superconducting wire of Example 1 has a maximum peak height Wp = 0.15 μm of the undulation curve, and the base material of the oxide superconducting wire of Comparative Example 1 (Wp = 1.0 μm). ) The swell was much smaller.
From the results of FIG. 5, the oxide superconducting wire of Example 1 showed less variation in critical current density in the longitudinal direction of the wire than the oxide superconducting wire of Comparative Example 1.
From the above results, in Example 1 according to the present invention, after forming the intermediate layer or the oxide superconducting layer on the surface of the base material, the back surface of the base material is polished, whereby the longitudinal undulation of the base material is obtained. It has been confirmed that the residual stress in the substrate is reduced and the variation in the longitudinal characteristics of the oxide superconducting wire can be reduced.

本発明は、例えば超電導モータ、限流器など、各種超電導機器に用いられる酸化物超電導線材に利用することができる。   The present invention can be used for oxide superconducting wires used in various superconducting devices such as superconducting motors and current limiters.

10…酸化物超電導線材、11…基材、11A…基材の裏面、12…中間層、13…酸化物超電導層、14…安定化層、50…減圧装置、51…減圧容器、52…ターゲット、53…照射装置、54…成膜領域、55…送出リール、56…巻取リール、57、58…転向搬送リール、59…ヒータ、60…ヒータ装置、A…PLD装置。   DESCRIPTION OF SYMBOLS 10 ... Oxide superconducting wire, 11 ... Base material, 11A ... Back surface of base material, 12 ... Intermediate layer, 13 ... Oxide superconducting layer, 14 ... Stabilization layer, 50 ... Decompression device, 51 ... Decompression vessel, 52 ... Target 53 ... Irradiation device, 54 ... Film formation region, 55 ... Sending reel, 56 ... Take-up reel, 57, 58 ... Turning conveyance reel, 59 ... Heater, 60 ... Heater device, A ... PLD device.

Claims (2)

テープ状の基材の表面上に中間層と酸化物超電導層と安定化層とがこの順に積層されてなる超電導積層体を準備する第1工程と、
前記超電導積層体の前記基材の裏面を研磨して該基材の厚さを薄くする第2工程と、
を備えることを特徴とする酸化物超電導線材の製造方法。
A first step of preparing a superconducting laminate in which an intermediate layer, an oxide superconducting layer, and a stabilizing layer are laminated in this order on the surface of a tape-shaped substrate;
A second step of polishing the back surface of the base material of the superconducting laminate to reduce the thickness of the base material;
A method for producing an oxide superconducting wire characterized by comprising:
前記第1工程において、
テープ状の前記基材を送出リールに巻回し、該送出リールに巻回した前記基材の巻回終端部を引き出して巻取リールに設置し、
前記送出リールと前記巻取リールの間に蒸着粒子が飛来する成膜領域を形成し、
前記基材を前記送出リールから前記巻取リールへと繰り出し、前記成膜領域に前記基材を通過させて該基材上に前記蒸着粒子を堆積させることにより、
前記中間層、前記酸化物超電導層および前記安定化層の少なくともいずれかの層を成膜することを特徴とする請求項1に記載の酸化物超電導線材の製造方法。
In the first step,
The tape-shaped base material is wound around a delivery reel, the winding end portion of the base material wound around the delivery reel is pulled out and installed on the take-up reel,
Forming a deposition region where vapor deposition particles fly between the delivery reel and the take-up reel;
By feeding the base material from the delivery reel to the take-up reel, passing the base material through the film formation region and depositing the vapor deposition particles on the base material,
2. The method of manufacturing an oxide superconducting wire according to claim 1, wherein at least one of the intermediate layer, the oxide superconducting layer, and the stabilizing layer is formed.
JP2011131124A 2011-06-13 2011-06-13 Manufacturing method of oxide superconducting wire Expired - Fee Related JP5732323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011131124A JP5732323B2 (en) 2011-06-13 2011-06-13 Manufacturing method of oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011131124A JP5732323B2 (en) 2011-06-13 2011-06-13 Manufacturing method of oxide superconducting wire

Publications (2)

Publication Number Publication Date
JP2013004194A true JP2013004194A (en) 2013-01-07
JP5732323B2 JP5732323B2 (en) 2015-06-10

Family

ID=47672597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011131124A Expired - Fee Related JP5732323B2 (en) 2011-06-13 2011-06-13 Manufacturing method of oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP5732323B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186647A (en) * 1997-09-02 1999-03-30 Fujikura Ltd Oxide superconducting conductor
JP2004031128A (en) * 2002-06-26 2004-01-29 Sumitomo Electric Ind Ltd Superconducting thin film wiring material and manufacturing method of the same, and superconducting cable conductor
JP2010123448A (en) * 2008-11-20 2010-06-03 Swcc Showa Cable Systems Co Ltd Oxide superconducting wire rod and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186647A (en) * 1997-09-02 1999-03-30 Fujikura Ltd Oxide superconducting conductor
JP2004031128A (en) * 2002-06-26 2004-01-29 Sumitomo Electric Ind Ltd Superconducting thin film wiring material and manufacturing method of the same, and superconducting cable conductor
JP2010123448A (en) * 2008-11-20 2010-06-03 Swcc Showa Cable Systems Co Ltd Oxide superconducting wire rod and its manufacturing method

Also Published As

Publication number Publication date
JP5732323B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP4268645B2 (en) Rare earth tape oxide superconductor and composite substrate used therefor
JP2009507358A (en) High temperature superconducting wire and coil
JP5634166B2 (en) Oxide superconducting wire and method for producing the same
JP5513154B2 (en) Oxide superconducting wire and manufacturing method of oxide superconducting wire
JP5799081B2 (en) Thick oxide film with single layer coating
WO2013002372A1 (en) Re-123 superconducting wire and method for manufacturing same
JP5624839B2 (en) Base material for oxide superconducting conductor and method for producing the same, oxide superconducting conductor and method for producing the same
JP2011258696A (en) Superconducting coil and method for manufacturing the same
JP5732323B2 (en) Manufacturing method of oxide superconducting wire
JP2010238634A (en) Oxide superconducting wire, method of manufacturing the same, and manufacturing device of substrate used for the same
JP5405069B2 (en) Tape-shaped oxide superconductor and substrate used therefor
JP5415824B2 (en) Method for manufacturing a substrate with altered shape for coated conductor and coated conductor using said substrate
JP2012022882A (en) Base material for oxide superconducting conductor and method of manufacturing the same, and oxide superconducting conductor and method of manufacturing the same
JP5597511B2 (en) Oxide superconducting wire and method for producing the same
JP5597516B2 (en) Superconducting wire manufacturing method
US9064620B2 (en) Superconducting thin film and method of manufacturing superconducting thin film
JP2011249162A (en) Method for manufacturing superconducting wire rod
JP2012252825A (en) Substrate for oxide superconductive wire material and oxide superconductive wire material
JP2013030317A (en) Oxide superconducting laminated body, oxide superconducting wire material, and manufacturing method of oxide superconducting wire material
JP5764421B2 (en) Oxide superconducting conductor
JP2012212571A (en) Oxide superconductor
JP2013037838A (en) Oxide superconductive wire material and manufacturing method therefor
JP6404556B2 (en) Oxide superconducting conductor and manufacturing method thereof
JP5986871B2 (en) Oxide superconducting conductor and manufacturing method thereof
JP2012018829A (en) Superconductive wire material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R151 Written notification of patent or utility model registration

Ref document number: 5732323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees