JP2013002856A - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
JP2013002856A
JP2013002856A JP2011131869A JP2011131869A JP2013002856A JP 2013002856 A JP2013002856 A JP 2013002856A JP 2011131869 A JP2011131869 A JP 2011131869A JP 2011131869 A JP2011131869 A JP 2011131869A JP 2013002856 A JP2013002856 A JP 2013002856A
Authority
JP
Japan
Prior art keywords
connecting body
layer
element connecting
bias
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011131869A
Other languages
Japanese (ja)
Inventor
Hideto Ando
秀人 安藤
Masayuki Obana
雅之 尾花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2011131869A priority Critical patent/JP2013002856A/en
Publication of JP2013002856A publication Critical patent/JP2013002856A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic sensor with improved resistance to a strong magnetic field.SOLUTION: A magnetic sensor includes connected element assemblies 17, 18, 52, and 53. In each of the connected element assemblies, the respective bias layers are arranged such that the directions of bias magnetic fields B1 and B2 supplied to element parts are opposite between neighboring element parts, and the element part having the bias layers with a large area overlapped with the soft magnetic material in a plane view at both sides and the element part having the bias layers with no overlapped area at both sides are arranged. P1 and P2 represent sensitivity axis directions. The magnetic sensor includes a magnetoresistance element composed of the first connected element assembly 17 and the second connected element assembly 18 which are serially connected and a second magnetoresistance element composed of the third connected element assembly 52 and the fourth connected element assembly 53 which are serially connected.

Description

本発明は、強磁場耐性に優れた磁気センサに関する。   The present invention relates to a magnetic sensor excellent in strong magnetic field resistance.

磁気抵抗効果素子を用いた磁気センサは例えば、携帯電話等の携帯機器に組み込まれる地磁気を検知する地磁気センサとして使用できる。   A magnetic sensor using a magnetoresistive effect element can be used as a geomagnetic sensor that detects geomagnetism incorporated in a portable device such as a mobile phone.

しかしながら素子部にバイアス磁界を供給するためのバイアス層を備える磁気センサでは、外部から非常に強い磁界が作用すると、印加磁界除去後に、出力(中点電位差)が変動する不具合が生じた。強磁場の作用により、バイアス層の着磁が破壊されたり揺らぎやすくなるためである。   However, in a magnetic sensor having a bias layer for supplying a bias magnetic field to the element portion, when a very strong magnetic field is applied from the outside, there is a problem that the output (midpoint potential difference) fluctuates after removal of the applied magnetic field. This is because the magnetization of the bias layer is easily broken or fluctuated by the action of the strong magnetic field.

特開平7−325138号公報JP 7-325138 A 特開平9−105630号公報JP-A-9-105630 特開平7−324933号公報JP-A-7-324933 特開平7−324934号公報JP-A-7-324934

そこで本発明は、上記従来の課題を解決するためのものであり、強磁場耐性を向上させた磁気センサを提供することを目的とする。   Therefore, the present invention is to solve the above-described conventional problems, and an object thereof is to provide a magnetic sensor with improved strong magnetic field resistance.

本発明における磁気センサは、
磁性層と非磁性層とが積層されて成る磁気抵抗効果を発揮する複数の素子部と、
各素子部のX1−X2方向の両側に配置されたバイアス層と、
各素子部の前記X1−X2方向と直交するY1−Y2方向の両側に配置され、各素子部及び各バイアス層と非接触の軟磁性体と、を有し、
各素子部の感度軸方向は前記Y1−Y2方向であり、
各バイアス層の着磁方向は前記Y1−Y2方向であり、各バイアス層から各素子部にX1−X2方向へのバイアス磁界が供給されるように、各バイアス層が構成されており、
各素子部の前記Y1−Y2方向の両側に配置された各軟磁性体は、前記X1−X2方向からの外部磁界が作用したときに、前記外部磁界を略Y1−Y2方向に変換して前記素子部に供給できるように構成されており、
複数の前記素子部は、前記X1−X2方向に間隔を空けて配置され、前記X1−X2方向にて隣り合う各素子部に接続された前記バイアス層間が導電層にて接続されて素子連設体を構成しており、
第1の素子連設体、第2の素子連設体、第3の素子連設体、及び第4の素子連設体を備え、
前記第1の素子連設体と前記第4の素子連設体は、前記素子部、前記バイアス層、前記軟磁性体及び前記導電層の並びが同じであり、
前記第2の素子連設体と前記第3の素子連設体は、前記第1の素子連設体及び前記第4の素子連設体と、前記素子部、前記バイアス層及び前記導電層の並びが同じであるが前記軟磁性体は、前記第1の素子連設体及び前記第4の素子連設体を構成する前記軟磁性体に対し前記X1−X2方向を回転軸として180度反転させた並びであり、
各素子連設体では、前記素子部へ供給されるバイアス磁界の方向が、隣り合う前記素子部で逆向きとなるように各バイアス層が配置されるとともに、平面視にて前記軟磁性体と重なり面積の大きい前記バイアス層を両側に配置した前記素子部と、前記重なり面積の小さい、あるいは前記重なり面積がゼロの前記バイアス層を両側に配置した前記素子部とが交互に並んでおり、
前記第1の素子連設体及び前記第4の素子連設体における前記外部磁界の変換方向は夫々同じであり、且つ、前記第2の素子連設体及び前記第3の素子連設体における前記外部磁界の変換方向に対して逆方向であり、
前記第1の素子連設体及び前記第3の素子連設体における前記感度軸方向は夫々同じであり、且つ、前記第2の素子連設体及び前記第4の素子連設体の前記感度軸方向に対して逆方向とされており、
前記第1の素子連設体と前記第2の素子連設体とが直列に接続された第1の磁気抵抗効果素子と、前記第3の素子連設体と前記第4の素子連設体とが直列に接続された第2の磁気抵抗効果素子とが出力部を介して直列接続されていることを特徴とするものである。これにより、強磁場耐性を向上させることができる。
The magnetic sensor in the present invention is
A plurality of element portions exhibiting a magnetoresistive effect formed by laminating a magnetic layer and a nonmagnetic layer;
Bias layers disposed on both sides of each element portion in the X1-X2 direction;
Each element portion is disposed on both sides of the Y1-Y2 direction orthogonal to the X1-X2 direction, and each element portion and each bias layer has a non-contact soft magnetic material,
The sensitivity axis direction of each element unit is the Y1-Y2 direction,
The magnetization direction of each bias layer is the Y1-Y2 direction, and each bias layer is configured so that a bias magnetic field in the X1-X2 direction is supplied from each bias layer to each element unit.
Each soft magnetic material disposed on both sides of each element portion in the Y1-Y2 direction converts the external magnetic field into a substantially Y1-Y2 direction when an external magnetic field from the X1-X2 direction is applied. It is configured so that it can be supplied to the element part,
The plurality of element portions are arranged at an interval in the X1-X2 direction, and the bias layers connected to the adjacent element portions in the X1-X2 direction are connected by a conductive layer so that the elements are connected in series. Make up the body,
A first element connecting body, a second element connecting body, a third element connecting body, and a fourth element connecting body;
The first element connecting body and the fourth element connecting body have the same arrangement of the element portion, the bias layer, the soft magnetic body, and the conductive layer,
The second element connecting body and the third element connecting body include the first element connecting body and the fourth element connecting body, the element portion, the bias layer, and the conductive layer. Although the arrangement is the same, the soft magnetic body is inverted by 180 degrees with respect to the soft magnetic bodies constituting the first element connecting body and the fourth element connecting body with the X1-X2 direction as the rotation axis. The line
In each element connection body, each bias layer is disposed so that the direction of the bias magnetic field supplied to the element part is opposite to that of the adjacent element part, and The element portion in which the bias layer having a large overlap area is arranged on both sides and the element portion in which the bias layer having a small overlap area or the overlap area is arranged on both sides are alternately arranged,
The conversion directions of the external magnetic field in the first element connecting body and the fourth element connecting body are the same, and in the second element connecting body and the third element connecting body. A direction opposite to the conversion direction of the external magnetic field,
The sensitivity axis directions of the first element connecting body and the third element connecting body are the same, and the sensitivity of the second element connecting body and the fourth element connecting body is the same. It is the opposite direction to the axial direction,
A first magnetoresistive element in which the first element connecting body and the second element connecting body are connected in series; the third element connecting body; and the fourth element connecting body. And the second magnetoresistive effect element connected in series with each other are connected in series via the output section. Thereby, strong magnetic field tolerance can be improved.

本発明では、前記第1の磁気抵抗効果素子は入力部、前記第2の磁気抵抗効果素子はグランドに夫々接続され、前記第1の磁気抵抗効果素子と前記第2の磁気抵抗効果素子との間が第1の出力部を介して直列接続されており、
前記第1の素子連設体と前記第2の素子連設体とが直列に接続された第4の磁気抵抗効果素子と、前記第3の素子連設体と前記第4の素子連設体とが直列に接続された第3の磁気抵抗効果素子との間が第2の出力部を介して直列接続され、前記第3の磁気抵抗効果素子が前記入力部に、前記第4の磁気抵抗効果素子が前記グランドに接続されて、ブリッジ回路が構成されていることが好ましい。
In the present invention, the first magnetoresistive effect element is connected to an input section, and the second magnetoresistive effect element is connected to the ground, and the first magnetoresistive effect element and the second magnetoresistive effect element are connected to each other. Are connected in series via the first output unit,
A fourth magnetoresistive element in which the first element connection body and the second element connection body are connected in series; the third element connection body; and the fourth element connection body. Are connected in series via a second output unit, and the third magnetoresistive element is connected to the input unit and the fourth magnetoresistive element is connected to the third magnetoresistive element connected in series. It is preferable that an effect element is connected to the ground to constitute a bridge circuit.

また本発明では、各素子連設体は、反強磁性層と固定磁性層とが積層された部分を備え、前記第1の素子連設体及び前記第4の素子連設体を構成する各素子部の前記固定磁性層と、前記第2の素子連設体及び前記第3の素子連設体を構成する各素子部の前記固定磁性層とは積層構造が異なり、前記第1の素子連設体及び前記第4の素子連設体の前記固定磁性層の固定磁化方向と、前記第2の素子連設体及び前記第3の素子連設体の前記固定磁性層の固定磁化方向とは逆向きにされていることが好ましい。   In the present invention, each element continuous body includes a portion in which an antiferromagnetic layer and a pinned magnetic layer are laminated, and each of the first element continuous body and the fourth element continuous body is configured. The pinned magnetic layer of the element portion and the pinned magnetic layer of each element portion constituting the second element connecting body and the third element connecting body have different laminated structures, and the first element connecting body is different. The fixed magnetization direction of the fixed magnetic layer of the structure and the fourth element connection body and the fixed magnetization direction of the fixed magnetic layer of the second element connection body and the third element connection body It is preferable that the direction is reversed.

あるいは本発明では、前記第1の素子連設体及び前記第4の素子連設体を構成する各素子部の固定磁性層及と、前記第2の素子連設体及び前記第3の素子連設体を構成する各素子部の固定磁性層とは同じ積層構造のセルフピン止め型であり、前記第1の素子連設体及び前記第4の素子連設体の前記固定磁性層の固定磁化方向と、前記第2の素子連設体及び前記第3の素子連設体の前記固定磁性層の固定磁化方向とは逆向きにされていることが好ましい。   Alternatively, in the present invention, the pinned magnetic layer of each element part constituting the first element connecting body and the fourth element connecting body, and the second element connecting body and the third element connecting body. The pinned magnetic layer of each element part constituting the structure is a self-pinned type having the same laminated structure, and the fixed magnetization direction of the pinned magnetic layer of the first element linked body and the fourth element linked body It is preferable that the fixed magnetization direction of the fixed magnetic layer of the second element connection body and the third element connection body is opposite to that of the second element connection body.

本発明の磁気センサによれば、強磁場耐性を向上させることができる。   According to the magnetic sensor of the present invention, strong magnetic field resistance can be improved.

本実施形態における磁気センサの概略図(平面図)、Schematic (plan view) of the magnetic sensor in the present embodiment, (a)〜(d)は、本実施形態における第1の素子連設体〜第4の素子連設体の各構造を示す平面図、(A)-(d) is a top view which shows each structure of the 1st element connection body in this embodiment-the 4th element connection body, (a)は、第1の素子連設体、及び第4の素子連設体の一部を拡大して示した部分拡大平面図、(b)は、第2の素子連設体、及び第3の素子連設体の一部を拡大して示した部分拡大平面図、(A) is the partial enlarged plan view which expanded and showed a part of 1st element continuous connection body and the 4th element continuous connection body, (b) is the 2nd element continuous connection body, and the 1st 3 is a partially enlarged plan view showing a part of the element continuous body 3 in an enlarged manner, 図1のIVの箇所を拡大して示す磁気センサの部分拡大平面図、FIG. 1 is a partially enlarged plan view of a magnetic sensor showing an enlarged portion IV in FIG. 1; (a)は、第1の素子部を高さ方向に切断した部分拡大縦断面図、(b)は、第2の素子部を高さ方向に切断した部分拡大縦断面図、(A) is a partially enlarged longitudinal sectional view of the first element portion cut in the height direction, (b) is a partially enlarged longitudinal sectional view of the second element portion cut in the height direction, 図5と異なる素子部の構造であり、(a)は、第1の素子部を高さ方向に切断した部分拡大縦断面図、(b)は、第2の素子部を高さ方向に切断した部分拡大縦断面図、5 is a structure of an element part different from FIG. 5, (a) is a partially enlarged longitudinal sectional view in which the first element part is cut in the height direction, and (b) is a cut in the second element part in the height direction. Partial enlarged longitudinal sectional view, 図2(a)のA−A線に沿って切断し矢印方向から見た磁気センサの部分拡大縦断面図、FIG. 2A is a partially enlarged longitudinal sectional view of the magnetic sensor cut along the line AA in FIG. 比較例における磁気センサの概略図(平面図)、Schematic diagram (plan view) of a magnetic sensor in a comparative example, (a)(b)は、比較例の磁気センサを構成する素子連設体の構造を示す平面図。(A) and (b) are top views which show the structure of the element continuous body which comprises the magnetic sensor of a comparative example.

図1は、本実施形態における磁気センサの概略図(平面図)、図2(a)〜(d)は、本実施形態における第1の素子連設体〜第4の素子連設体の各構造を示す平面図、図3(a)は、第1の素子連設体、及び第4の素子連設体の一部を拡大して示した部分拡大平面図、図3(b)は、第2の素子連設体、及び第3の素子連設体の一部を拡大して示した部分拡大平面図、図4は、図1のIVの箇所を拡大して示す磁気センサの部分拡大平面図、図5(a)は、第1の素子部を高さ方向に切断した部分拡大縦断面図、図5(b)は、第2の素子部を高さ方向に切断した部分拡大縦断面図、図6は、図5と異なる素子部の構造であり、図6(a)は、第1の素子部を高さ方向に切断した部分拡大縦断面図、図6(b)は、第2の素子部を高さ方向に切断した部分拡大縦断面図、図7は、図2(a)のA−A線に沿って切断し矢印方向から見た磁気センサの部分拡大縦断面図、である。   FIG. 1 is a schematic diagram (plan view) of a magnetic sensor according to the present embodiment, and FIGS. 2A to 2D are diagrams illustrating first to fourth element connection bodies according to the present embodiment. FIG. 3A is a plan view showing the structure, FIG. 3A is a partially enlarged plan view showing a part of the first element connecting body and the fourth element connecting body, and FIG. FIG. 4 is a partially enlarged plan view showing a part of the second element connecting body and the third element connecting body in an enlarged manner, and FIG. 4 is a partially enlarged view of the magnetic sensor showing the part IV in FIG. FIG. 5A is a partially enlarged longitudinal sectional view in which the first element portion is cut in the height direction, and FIG. 5B is a partially enlarged longitudinal section in which the second element portion is cut in the height direction. 6 is a structure of the element part different from FIG. 5, FIG. 6A is a partially enlarged longitudinal sectional view of the first element part cut in the height direction, and FIG. Second element part in height direction Cut partially enlarged longitudinal sectional view, FIG. 7 is a partial enlarged vertical sectional view of a magnetic sensor as viewed from an arrow direction taken along the line A-A of FIG. 2 (a), a.

本実施形態における磁気抵抗効果素子を備えた磁気センサSは、例えば携帯電話等の携帯機器に搭載される地磁気センサとして構成される。   The magnetic sensor S provided with the magnetoresistive effect element in the present embodiment is configured as a geomagnetic sensor mounted on a mobile device such as a mobile phone.

各図に示すX1−X2方向、及びY1−Y2方向は水平面内にて直交する2方向を示し、Z方向は前記水平面に対して直交する方向を示している。   The X1-X2 direction and the Y1-Y2 direction shown in each figure indicate two directions orthogonal to each other in the horizontal plane, and the Z direction indicates a direction orthogonal to the horizontal plane.

図1に示すように磁気センサSは、磁気抵抗効果素子の形成領域13がその中心13aからX1−X2方向及びY1−Y2方向により4つの領域に分けられており、各領域内に第1の磁気抵抗効果素子1、第2の磁気抵抗効果素子2、第3の磁気抵抗効果素子3、第4の磁気抵抗効果素子4が形成されている。なお各磁気抵抗効果素子1〜4は、後述するように、素子部、バイアス層、導電層が連なってミアンダ形状で形成されるが、図1では、各磁気抵抗効果素子1〜4内の形状を省略して図示している。   As shown in FIG. 1, the magnetic sensor S has a magnetoresistive element forming region 13 divided into four regions from the center 13a by the X1-X2 direction and the Y1-Y2 direction. A magnetoresistive effect element 1, a second magnetoresistive effect element 2, a third magnetoresistive effect element 3, and a fourth magnetoresistive effect element 4 are formed. As will be described later, each of the magnetoresistive effect elements 1 to 4 is formed in a meander shape by connecting an element portion, a bias layer, and a conductive layer. In FIG. The figure is omitted.

図1示すように第1の磁気抵抗効果素子1及び第3の磁気抵抗効果素子3は入力端子(Vdd)5に接続されている。また、第2の磁気抵抗効果素子2及び第4の磁気抵抗効果素子4はグランド端子(GND)6に接続されている。また、第1の磁気抵抗効果素子1と第2の磁気抵抗効果素子2との間には第1の出力端子(V1)7が接続されている。また、第3の磁気抵抗効果素子3と第4の磁気抵抗効果素子4との間には第2の出力端子(V2)8が接続されている。このように第1の磁気抵抗効果素子1、第2の磁気抵抗効果素子2、第3の磁気抵抗効果素子3及び第4の磁気抵抗効果素子4によりブリッジ回路が構成されている。   As shown in FIG. 1, the first magnetoresistive element 1 and the third magnetoresistive element 3 are connected to an input terminal (Vdd) 5. The second magnetoresistive effect element 2 and the fourth magnetoresistive effect element 4 are connected to a ground terminal (GND) 6. A first output terminal (V 1) 7 is connected between the first magnetoresistive element 1 and the second magnetoresistive element 2. A second output terminal (V 2) 8 is connected between the third magnetoresistive element 3 and the fourth magnetoresistive element 4. As described above, the first magnetoresistive element 1, the second magnetoresistive element 2, the third magnetoresistive element 3, and the fourth magnetoresistive element 4 form a bridge circuit.

各磁気抵抗効果素子1〜4は、複数の素子部と、各素子部の両側に接続されたバイアス層(永久磁石層)と、各素子部及び各バイアス層と非接触の複数の軟磁性体と、前記バイアス層間を接続する導電層とを有する素子連設体を備えて構成される。   Each of the magnetoresistive effect elements 1 to 4 includes a plurality of element portions, a bias layer (permanent magnet layer) connected to both sides of each element portion, and a plurality of soft magnetic bodies that are not in contact with each element portion and each bias layer. And an element connecting body having a conductive layer connecting the bias layers.

本実施形態では、前記素子連設体は、第1の素子連設体、第2の素子連設体、第3の素子連設体及び第4の素子連設体を備える。   In the present embodiment, the element connection body includes a first element connection body, a second element connection body, a third element connection body, and a fourth element connection body.

以下、第1の素子連設体の構造を中心に説明し、第2の素子連設体、第3の素子連設体及び第4の素子連設体については、第1の素子連設体と異なる部分について説明する。   Hereinafter, the structure of the first element connecting body will be mainly described, and the second element connecting body, the third element connecting body, and the fourth element connecting body will be described. Different parts will be described.

(第1の素子連設体の構造について)
図2(a)に第1の素子連設体17の平面図を示す。なお、図2、図3、図4に示す各図は、いずれも図7に示す絶縁層22を透視した図としている。
(About the structure of the first element continuous body)
FIG. 2A shows a plan view of the first element connecting body 17. 2, 3, and 4 are all perspective views of the insulating layer 22 shown in FIG. 7.

図2(a)に示すように、第1の素子連設体17を構成する各第1の素子部9のX1−X2方向の両側に一対のバイアス層10,10が配置されている。各バイアス層(永久磁石層)10,10は、CoPt、CoPtCr等で形成される。   As shown in FIG. 2A, a pair of bias layers 10 are arranged on both sides in the X1-X2 direction of each first element portion 9 constituting the first element connection body 17. Each bias layer (permanent magnet layer) 10 is formed of CoPt, CoPtCr, or the like.

図7に示すように各素子部9は基板15表面の絶縁下地層19上に形成される。また図7に示すように、素子部9及びバイアス層10上には絶縁層22が形成されており、平坦化された絶縁層22上に各軟磁性体12が形成されている。バイアス層10は、素子部9と同様に絶縁下地層19上に形成されてもよいが限定されるものでない。   As shown in FIG. 7, each element unit 9 is formed on an insulating base layer 19 on the surface of the substrate 15. As shown in FIG. 7, an insulating layer 22 is formed on the element portion 9 and the bias layer 10, and each soft magnetic body 12 is formed on the planarized insulating layer 22. The bias layer 10 may be formed on the insulating base layer 19 similarly to the element portion 9, but is not limited thereto.

図2(a)に示すように、第1の素子部9は、さらにバイアス磁界B1,B2の方向が逆方向となる第1の素子部9Aと第1の素子部9Bとに区分けされる。   As shown in FIG. 2A, the first element portion 9 is further divided into a first element portion 9A and a first element portion 9B in which the directions of the bias magnetic fields B1 and B2 are opposite directions.

図2(a)に示すように第1の素子部9AのX1側には第1のバイアス層10Aが接続され、X2側には第2のバイアス層10Bが接続されている。各バイアス層10A,10Bはともに、略三角形状で形成され、第1のバイアス層10Aと第2のバイアス層10Bとでは、互いに180°反転させた形態となっている。   As shown in FIG. 2A, the first bias layer 10A is connected to the X1 side of the first element portion 9A, and the second bias layer 10B is connected to the X2 side. Each of the bias layers 10A and 10B is formed in a substantially triangular shape, and the first bias layer 10A and the second bias layer 10B are inverted from each other by 180 °.

図2(a)に示すように第1の素子部9BのX1側には第2のバイアス層10Bが接続され、X2側には第1のバイアス層10Aが接続されている。このように、第1の素子部9Bに接続されるバイアス層10A,10Bの配置は、第1の素子部9Aに対するバイアス層10A,10Bの配置に対して反対になっている。   As shown in FIG. 2A, the second bias layer 10B is connected to the X1 side of the first element portion 9B, and the first bias layer 10A is connected to the X2 side. As described above, the arrangement of the bias layers 10A and 10B connected to the first element unit 9B is opposite to the arrangement of the bias layers 10A and 10B with respect to the first element unit 9A.

よって、各バイアス層10が、例えばY2方向に着磁されているとき、各バイアス層10の間に略X1−X2方向のバイアス磁界が生じ、第1の素子部9AにはX1方向に向く第1のバイアス磁界B1が作用し、第1の素子部9BにはX2方向に向く第2のバイアス磁界B2が作用する。なお、図2(a)〜図2(d)に示す全てのバイアス層10の着磁方向は全て同一方向である。   Therefore, when each bias layer 10 is magnetized, for example, in the Y2 direction, a bias magnetic field of approximately X1-X2 direction is generated between the bias layers 10, and the first element portion 9A has a first magnetic field facing in the X1 direction. One bias magnetic field B1 acts, and a second bias magnetic field B2 directed in the X2 direction acts on the first element portion 9B. Note that the magnetization directions of all the bias layers 10 shown in FIGS. 2A to 2D are all the same direction.

図2(a)に示すように、第1のバイアス層10A及び第2のバイアス層10Bには夫々、各素子部9と接する側面にX1−X2方向及びY1−Y2方向の両方向に対して傾斜する傾斜面20が形成されている。また傾斜面20の反対側の側面も傾斜面21となっている。各バイアス層10の素子部9と接する側の側面を傾斜面20とすることで、各素子部9に各バイアス層10の着磁方向(Y1−Y2)に対して直交する方向からバイアス磁界B1,B2を適切に供給することが可能になる。反対側の傾斜面21は必ずしも必要ではない。すなわち傾斜面21でなく例えばY1−Y2方向に直線状に延びる側面であってもよい。ただし反対側も傾斜面21とすれば、第1のバイアス層10Aについては、第1の素子部9A及び第1の素子部9Bのどちらに対しても同形状にできるし、また第2のバイアス層10Bに対しては、第1のバイアス層10Aを180°回転させた形状とすればよく、このため、バイアス層10の形状を二パターンにできる。したがってバイアス層10を形成する製造過程で使用されるマスクパターンも簡単に済み好適である。また反対側も傾斜面21とすれば、各バイアス層10の形状をより小さくすることができる。   As shown in FIG. 2A, the first bias layer 10A and the second bias layer 10B are inclined with respect to both the X1-X2 direction and the Y1-Y2 direction on the side surfaces in contact with the element portions 9, respectively. An inclined surface 20 is formed. The side surface opposite to the inclined surface 20 is also an inclined surface 21. By making the side surface of each bias layer 10 in contact with the element portion 9 the inclined surface 20, the bias magnetic field B1 from the direction perpendicular to the magnetization direction (Y1-Y2) of each bias layer 10 is made to each element portion 9. , B2 can be appropriately supplied. The inclined surface 21 on the opposite side is not always necessary. That is, instead of the inclined surface 21, it may be a side surface extending linearly in the Y1-Y2 direction, for example. However, if the opposite side is also the inclined surface 21, the first bias layer 10A can have the same shape with respect to both the first element portion 9A and the first element portion 9B, and the second bias layer 10A can have the same shape. The layer 10B may have a shape obtained by rotating the first bias layer 10A by 180 °. For this reason, the shape of the bias layer 10 can be made into two patterns. Therefore, the mask pattern used in the manufacturing process for forming the bias layer 10 is simple and suitable. If the opposite side is also the inclined surface 21, the shape of each bias layer 10 can be made smaller.

図2(a)に示すように、隣り合う素子部9に接続されるバイアス層10間が導電層16を介して電気的に接続されており、これによりX1−X2方向に延びる第1の素子連設体17が構成される。導電層16は非磁性の導電材料で構成され、Al、Cu、Ti等の非磁性導電材料で形成される。   As shown in FIG. 2A, the bias layers 10 connected to the adjacent element portions 9 are electrically connected via the conductive layer 16, and thereby the first element extending in the X1-X2 direction. A continuous body 17 is formed. The conductive layer 16 is made of a nonmagnetic conductive material, and is formed of a nonmagnetic conductive material such as Al, Cu, or Ti.

図2(a)に示すように、第1の素子連設体17に設けられた各軟磁性体12は、X1−X2方向にて隣り合う一方の素子部9に対して平面視にてY1側に対向するY1側端部12aと、他方の素子部9に対して平面視にてY2側に対向するY2側端部12bと、Y1側端部12aとY2側端部12b間を繋ぐ接続部12cとを有して構成される。Y1側端部12a、Y2側端部12b及び接続部12cは一体に形成される。図7に示すように、軟磁性体12の各Y1側端部12a及びY2側端部12bは第1の素子部9と非接触であり、軟磁性体12と第1の素子部9との間で外部磁界H2が作用する。   As shown in FIG. 2A, each soft magnetic body 12 provided in the first element connecting body 17 is Y1 in a plan view with respect to one element portion 9 adjacent in the X1-X2 direction. Y1 side end portion 12a facing the other side, Y2 side end portion 12b facing the Y2 side in plan view with respect to the other element portion 9, and a connection connecting the Y1 side end portion 12a and the Y2 side end portion 12b And a portion 12c. The Y1 side end portion 12a, the Y2 side end portion 12b, and the connection portion 12c are integrally formed. As shown in FIG. 7, each Y1 side end portion 12a and Y2 side end portion 12b of the soft magnetic body 12 is not in contact with the first element portion 9, and the soft magnetic body 12 and the first element portion 9 are not in contact with each other. An external magnetic field H2 acts between them.

図2(a)に示すようにY1側端部12a及びY2側端部12bはX1−X2方向に平行に延びて形成されているが、接続部12cはX1−X2方向及びY1−Y2方向の両方向に対して斜め方向に形成されている。   As shown in FIG. 2A, the Y1 side end portion 12a and the Y2 side end portion 12b are formed extending in parallel to the X1-X2 direction, but the connecting portion 12c is formed in the X1-X2 direction and the Y1-Y2 direction. It is formed in an oblique direction with respect to both directions.

図2に示すように、第1の素子連設体17に形成される各軟磁性体12は全て同じ形状で形成される。   As shown in FIG. 2, all the soft magnetic bodies 12 formed in the first element continuous body 17 are formed in the same shape.

図2(a)に示す第1の素子連設体17を構成する第1の素子部9の感度軸方向(P1)は、Y2方向である。   The sensitivity axis direction (P1) of the first element portion 9 constituting the first element connecting body 17 shown in FIG. 2A is the Y2 direction.

図3(a)は、図2(a)の第1の素子連設体17の一部を拡大した部分拡大平面図である。図3(a)に示すように、外部磁界H1がX2方向に向けて作用したとき、外部磁界H1は、軟磁性体12内、及び軟磁性体12,12間を通り、図3(a)に示す矢印の磁路M1を形成する。このとき、図3(a)に示すように、各素子部9に対してY2側に位置する軟磁性体12のY2側端部12bと、各素子部9に対してY1側に位置する軟磁性体12のY1側端部12a間で、略Y1方向への外部磁界H2が漏れ、この外部磁界H2が素子部9に作用する(図7も参照)。   FIG. 3A is a partially enlarged plan view in which a part of the first element connecting body 17 in FIG. As shown in FIG. 3 (a), when the external magnetic field H1 acts in the X2 direction, the external magnetic field H1 passes through the soft magnetic body 12 and between the soft magnetic bodies 12 and 12, and FIG. The magnetic path M1 of the arrow shown in FIG. At this time, as shown in FIG. 3 (a), the Y2 side end portion 12b of the soft magnetic body 12 located on the Y2 side with respect to each element portion 9 and the soft portion located on the Y1 side with respect to each element portion 9. An external magnetic field H2 in a substantially Y1 direction leaks between the Y1 side end portions 12a of the magnetic body 12, and this external magnetic field H2 acts on the element portion 9 (see also FIG. 7).

このようにX2方向の外部磁界H1は、軟磁性体12によりY1方向に変換されて素子部9に作用する。   Thus, the external magnetic field H1 in the X2 direction is converted into the Y1 direction by the soft magnetic body 12 and acts on the element portion 9.

上記したように、各第1の素子部9の感度軸方向(P1)は、Y2方向であるから、各第1の素子部9にY1方向の外部磁界H2が作用することで電気抵抗値は増大する。   As described above, since the sensitivity axis direction (P1) of each first element unit 9 is the Y2 direction, the electric resistance value is obtained when the external magnetic field H2 in the Y1 direction acts on each first element unit 9. Increase.

(第2の素子連設体の構造について)
図2(b)は第2の素子連設体18の平面図である。図2(b)の第2の素子連設体18は、第1の素子連設体17と異なって、感度軸方向(P2)がY1方向に向く第2の素子部50を備える。なお第2の素子部50及びバイアス層10、並びに導電層16の配置は、第1の素子連設体17と同じであるが、第2の素子連設体18を構成する軟磁性体51は、図2(a)に示す第1の素子連設体17を構成する軟磁性体12を、X1−X2方向を回転軸として180度反転させた形状である。したがって図3(b)に示すように、X2方向に外部磁界H1が作用すると、軟磁性体51内には、図3(b)に示す矢印の磁路M2が形成され、このとき、各第2の素子部50に対してY2側に位置する軟磁性体51のY1側端部51aと、各第2の素子部50に対してY2側に位置する軟磁性体51のY2側端部51b間で、略Y2方向への外部磁界H3が漏れ、この外部磁界H3が第2の素子部50に作用する。
(About the structure of the second element connection body)
FIG. 2B is a plan view of the second element connecting body 18. Unlike the first element connecting body 17, the second element connecting body 18 in FIG. 2B includes a second element portion 50 whose sensitivity axis direction (P2) is in the Y1 direction. The arrangement of the second element portion 50, the bias layer 10, and the conductive layer 16 is the same as that of the first element connecting body 17, but the soft magnetic body 51 constituting the second element connecting body 18 is FIG. 2A shows a shape in which the soft magnetic body 12 constituting the first element connecting body 17 shown in FIG. 2A is inverted 180 degrees about the X1-X2 direction as a rotation axis. Therefore, as shown in FIG. 3B, when the external magnetic field H1 acts in the X2 direction, a magnetic path M2 indicated by an arrow shown in FIG. 3B is formed in the soft magnetic body 51. Y1 side end portion 51a of the soft magnetic body 51 located on the Y2 side with respect to the second element portion 50, and Y2 side end portion 51b of the soft magnetic body 51 located on the Y2 side with respect to each second element portion 50. In the meantime, the external magnetic field H3 in the substantially Y2 direction leaks, and this external magnetic field H3 acts on the second element unit 50.

このようにX2方向の外部磁界H1は、軟磁性体51によりY2方向に変換されて第2の素子部50に作用する。   Thus, the external magnetic field H1 in the X2 direction is converted into the Y2 direction by the soft magnetic body 51 and acts on the second element unit 50.

上記したように、各第2の素子部50の感度軸方向(P2)は、Y1方向であるから、各第2の素子部50にY2方向の外部磁界H3が作用することで電気抵抗値は増大する。   As described above, since the sensitivity axis direction (P2) of each second element unit 50 is the Y1 direction, the electric resistance value is obtained when the external magnetic field H3 in the Y2 direction acts on each second element unit 50. Increase.

(第3の素子連設体の構造について)
図2(c)は第3の素子連設体52の平面図である。図2(c)の第3の素子連設体52は、第1の素子連設体17と同様に、感度軸方向(P1)がY2方向に向く第1の素子部9を備える。さらに、第1の素子部9及びバイアス層10、並びに導電層16の配置は、第1の素子連設体17と同じである。
(About the structure of the third element connection body)
FIG. 2C is a plan view of the third element connecting body 52. Similar to the first element connecting body 17, the third element connecting body 52 in FIG. 2C includes the first element portion 9 in which the sensitivity axis direction (P1) is directed in the Y2 direction. Furthermore, the arrangement of the first element portion 9, the bias layer 10, and the conductive layer 16 is the same as that of the first element connection body 17.

また第3の素子連設体52を構成する軟磁性体51は、図2(b)に示す第2の素子連設体18と同様である。すなわち、第1の素子連設体17を構成する軟磁性体12を、X1−X2方向を回転軸として180度反転させた形状である。したがって第3の素子連設体52においても、図3(b)と同様に、X2方向に外部磁界H1が作用すると、各第1の素子部9には、Y2方向の外部磁界H3が作用する。   The soft magnetic body 51 constituting the third element connection body 52 is the same as the second element connection body 18 shown in FIG. That is, it is a shape obtained by inverting the soft magnetic body 12 constituting the first element connecting body 17 180 degrees about the X1-X2 direction as the rotation axis. Accordingly, also in the third element connecting body 52, when the external magnetic field H1 acts in the X2 direction, the external magnetic field H3 in the Y2 direction acts on each first element portion 9 as in FIG. 3B. .

ここで第3の素子連設体52を構成する第1の素子部9の感度軸方向(PIN)は、Y2方向であるから、各第1の素子部9にY2方向の外部磁界H3が作用することで電気抵抗値は減少する。   Here, since the sensitivity axis direction (PIN) of the first element portion 9 constituting the third element connecting body 52 is the Y2 direction, an external magnetic field H3 in the Y2 direction acts on each first element portion 9. As a result, the electric resistance value decreases.

(第4の素子連設体の構造について)
図2(d)は第4の素子連設体53の平面図である。図2(d)の第4の素子連設体53は、第2の素子連設体18と同様に、感度軸方向(P2)がY1方向に向く第2の素子部50を備える。さらに、第2の素子部50及びバイアス層10、並びに導電層16の配置は、第1の素子連設体17と同じである。
(About the structure of the fourth element continuous body)
FIG. 2D is a plan view of the fourth element connecting body 53. The fourth element connecting body 53 in FIG. 2D includes the second element portion 50 in which the sensitivity axis direction (P2) is in the Y1 direction, like the second element connecting body 18. Further, the arrangement of the second element unit 50, the bias layer 10, and the conductive layer 16 is the same as that of the first element connection body 17.

また第4の素子連設体53を構成する軟磁性体12は、図2(a)に示す第1の素子連設体17と同様である。したがって第4の素子連設体53では、図3(a)と同様に、X2方向に外部磁界H1が作用すると、各第2の素子部50には、Y1方向の外部磁界H2が作用する。   The soft magnetic body 12 constituting the fourth element continuous body 53 is the same as the first element continuous body 17 shown in FIG. Therefore, in the fourth element connecting body 53, as in FIG. 3A, when the external magnetic field H1 acts in the X2 direction, the external magnetic field H2 in the Y1 direction acts on each second element portion 50.

ここで第4の素子連設体53を構成する第2の素子部50の感度軸方向(P2)は、Y1方向であるから、各第2の素子部50にY1方向の外部磁界H2が作用することで電気抵抗値は減少する。   Here, since the sensitivity axis direction (P2) of the second element unit 50 constituting the fourth element connection body 53 is the Y1 direction, an external magnetic field H2 in the Y1 direction acts on each second element unit 50. As a result, the electric resistance value decreases.

以上のように、外部磁界H1がX2方向に作用すれば、第1の素子連設体17及び第2の素子連設体18では、電気抵抗値が増大し、第3の素子連設体52及び第4の素子連設体53では、電気抵抗値が減少する。一方、外部磁界がX1方向に作用すれば、第1の素子連設体17及び第2の素子連設体18では、電気抵抗値が減少し、第3の素子連設体52及び第4の素子連設体53では、電気抵抗値が増大する。   As described above, if the external magnetic field H1 acts in the X2 direction, the first element connecting body 17 and the second element connecting body 18 increase the electrical resistance value, and the third element connecting body 52. In the fourth element connecting body 53, the electrical resistance value decreases. On the other hand, if the external magnetic field acts in the X1 direction, the first element connecting body 17 and the second element connecting body 18 reduce the electrical resistance value, and the third element connecting body 52 and the fourth element connecting body 52 In the element continuous body 53, the electrical resistance value increases.

図4は、図1に示すIVの部分を拡大した磁気センサの部分拡大平面図である。図4に示すように、第1の素子連設体17は、複数本、Y1−Y2方向に間隔を空けて並設されており、各第1の素子連設体17のX1側端部同士、あるいはX2側端部同士が接続導電層23を介して電気的に接続されてミアンダ形状を成している。   FIG. 4 is a partially enlarged plan view of the magnetic sensor in which the portion IV shown in FIG. 1 is enlarged. As shown in FIG. 4, a plurality of first element connection bodies 17 are arranged side by side in the Y1-Y2 direction, and the X1 side ends of the first element connection bodies 17 are arranged between each other. Alternatively, the end portions on the X2 side are electrically connected via the connection conductive layer 23 to form a meander shape.

同様に、第2の素子連設体18、第3の素子連設体52及び第4の素子連設体53もミアンダ形状で形成されている。   Similarly, the second element connecting body 18, the third element connecting body 52, and the fourth element connecting body 53 are also formed in a meander shape.

なお図4に示すように、第1の素子連設体17を構成する軟磁性体12及び、第3の素子連設体52を構成する軟磁性体51のうち、近接する軟磁性体12と軟磁性体51は一体的に形成されている。   As shown in FIG. 4, among the soft magnetic bodies 12 constituting the first element connecting body 17 and the soft magnetic bodies 51 constituting the third element connecting body 52, the adjacent soft magnetic bodies 12 and The soft magnetic body 51 is integrally formed.

(各磁気抵抗効果素子1〜4と各素子連設体17,18,52,53との関係について)
次に、各磁気抵抗効果素子1〜4と各素子連設体17,18,52,53との関係について説明する。
(Relationship between each magnetoresistive effect element 1 to 4 and each element connection body 17, 18, 52, 53)
Next, the relationship between each magnetoresistive effect element 1-4 and each element connection body 17, 18, 52, 53 is demonstrated.

図1に示すように各磁気抵抗効果素子1〜4の領域は、夫々、二つに分けられており、第1の磁気抵抗効果素子1を構成する第1の領域1aには、図2(a)、図4に示すミアンダ形状の第1の素子連設体17が配置されており、第2の領域1bには、図2(b)、図4に示すミアンダ形状の第2の素子連設体18が配置されている。   As shown in FIG. 1, each of the magnetoresistive effect elements 1 to 4 is divided into two regions, and the first region 1 a constituting the first magnetoresistive effect element 1 includes the region shown in FIG. a) a meander-shaped first element connecting body 17 shown in FIG. 4 is arranged, and the second region 1b has a meander-shaped second element connecting body 17 shown in FIG. 2 (b) and FIG. A structure 18 is arranged.

そして、第1の素子連設体17と第2の素子連設体18とが直列に接続されて第1の磁気抵抗効果素子1が構成されている。   And the 1st element connection body 17 and the 2nd element connection body 18 are connected in series, and the 1st magnetoresistive effect element 1 is comprised.

また、第2の磁気抵抗効果素子2を構成する第1の領域2aには、図2(c)、図4に示すミアンダ形状の第3の素子連設体52が配置されており、第2の領域2bには、図2(d)、図4に示すミアンダ形状の第4の素子連設体53が配置されている。   In addition, in the first region 2a constituting the second magnetoresistive element 2, the meander-shaped third element connecting body 52 shown in FIGS. 2C and 4 is disposed, In the region 2b, a meander-shaped fourth element connecting body 53 shown in FIGS. 2D and 4 is arranged.

そして、第3の素子連設体52と第4の素子連設体53とが直列に接続されて第2の磁気抵抗効果素子2が構成されている。   And the 3rd element connection body 52 and the 4th element connection body 53 are connected in series, and the 2nd magnetoresistive effect element 2 is comprised.

また、第3の磁気抵抗効果素子3を構成する第1の領域3aには、図2(c)、図4に示すミアンダ形状の第3の素子連設体52が配置されており、第2の領域3bには、図2(d)、図4に示すミアンダ形状の第4の素子連設体53が配置されている。   Further, in the first region 3a constituting the third magnetoresistive effect element 3, the meander-shaped third element connecting body 52 shown in FIG. 2C and FIG. 4 is arranged. In the region 3b, a meander-shaped fourth element connecting body 53 shown in FIGS. 2D and 4 is arranged.

そして、第3の素子連設体52と第4の素子連設体53とが直列に接続されて第3の磁気抵抗効果素子3が構成されている。   And the 3rd element connection body 52 and the 4th element connection body 53 are connected in series, and the 3rd magnetoresistive effect element 3 is comprised.

また、第4の磁気抵抗効果素子3を構成する第1の領域4aには、図2(a)、図4に示すミアンダ形状の第1の素子連設体17が配置されており、第2の領域4bには、図2(b)、図4に示すミアンダ形状の第2の素子連設体18が配置されている。   Further, in the first region 4a constituting the fourth magnetoresistive effect element 3, the meander-shaped first element connecting body 17 shown in FIG. 2A and FIG. In the region 4b, a meander-shaped second element connecting body 18 shown in FIGS. 2B and 4 is arranged.

そして、第1の素子連設体17と第2の素子連設体18とが直列に接続されて第4の磁気抵抗効果素子4が構成されている。   The first element connection body 17 and the second element connection body 18 are connected in series to form the fourth magnetoresistive element 4.

(第1の素子部9及び第2の素子部50の構成について)
図5(a)は第1の素子部9の積層構造、図5(b)は、第2の素子部50の積層構造を示す。
(About the structure of the 1st element part 9 and the 2nd element part 50)
FIG. 5A shows a laminated structure of the first element portion 9, and FIG. 5B shows a laminated structure of the second element portion 50.

図5(a)に示すように、第1の素子部9は、例えば下から非磁性下地層60、固定磁性層61、非磁性層62、フリー磁性層63及び保護層64の順に積層されて成膜される。第1の素子部9を構成する各層は、例えばスパッタにて成膜される。   As shown in FIG. 5A, the first element portion 9 is formed by, for example, laminating a nonmagnetic underlayer 60, a pinned magnetic layer 61, a nonmagnetic layer 62, a free magnetic layer 63, and a protective layer 64 in this order from the bottom. A film is formed. Each layer constituting the first element unit 9 is formed by sputtering, for example.

図5(a)に示す実施形態では、固定磁性層61は第1磁性層61aと第2磁性層61bと、第1磁性層61a及び第2磁性層61b間に介在する非磁性中間層61cとの積層フェリ構造である。各磁性層61a,61bはCoFe合金(コバルト−鉄合金)などの軟磁性材料で形成されている。非磁性中間層61cはRu等である。非磁性層62はCu(銅)などの非磁性材料で形成される。フリー磁性層63は、NiFe合金(ニッケル−鉄合金)などの軟磁性材料で形成されている。保護層64はTa(タンタル)などである。   In the embodiment shown in FIG. 5A, the pinned magnetic layer 61 includes a first magnetic layer 61a and a second magnetic layer 61b, and a nonmagnetic intermediate layer 61c interposed between the first magnetic layer 61a and the second magnetic layer 61b. The laminated ferri structure. Each of the magnetic layers 61a and 61b is formed of a soft magnetic material such as a CoFe alloy (cobalt-iron alloy). The nonmagnetic intermediate layer 61c is made of Ru or the like. The nonmagnetic layer 62 is formed of a nonmagnetic material such as Cu (copper). The free magnetic layer 63 is made of a soft magnetic material such as a NiFe alloy (nickel-iron alloy). The protective layer 64 is Ta (tantalum) or the like.

本実施形態では固定磁性層61を積層フェリ構造として、第1磁性層61aと第2磁性層61bとが反平行に磁化固定されたセルフピン止め型である。図5(a)に示すセルフピン止め型では、反強磁性層を用いず、よって磁場中熱処理を施すことなく固定磁性層61を構成する各磁性層61a,61cを磁化固定している。なお、各磁性層61a,61bの磁化固定力は、外部磁界が作用したときでも磁化揺らぎが生じない程度の大きさであれば足りる。   In the present embodiment, the pinned magnetic layer 61 has a laminated ferrimagnetic structure, and is a self-pinning type in which the first magnetic layer 61a and the second magnetic layer 61b are magnetization-fixed antiparallel. In the self-pinning type shown in FIG. 5A, the magnetic layers 61a and 61c constituting the pinned magnetic layer 61 are fixed by magnetization without using an antiferromagnetic layer, and thus without performing heat treatment in a magnetic field. The magnetization fixing force of each of the magnetic layers 61a and 61b only needs to be large enough to prevent magnetization fluctuation even when an external magnetic field is applied.

図5(a)に示すように、第1の素子部9を構成する第2磁性層61bの固定磁化方向(P1;感度軸方向)がY2方向である。この固定磁化方向(P1)が固定磁性層61の固定磁化方向である。   As shown in FIG. 5A, the fixed magnetization direction (P1; sensitivity axis direction) of the second magnetic layer 61b constituting the first element unit 9 is the Y2 direction. This fixed magnetization direction (P 1) is the fixed magnetization direction of the fixed magnetic layer 61.

一方、図5(b)に示す第2の素子部50も下から非磁性下地層60、固定磁性層61、非磁性層62、フリー磁性層63及び保護層64の順に積層されて積層構造であり、第1の素子部9と変わらない。すなわち第2の素子部50の固定磁性層61もセルフピン止め型である。   On the other hand, the second element portion 50 shown in FIG. 5B has a laminated structure in which a nonmagnetic underlayer 60, a fixed magnetic layer 61, a nonmagnetic layer 62, a free magnetic layer 63, and a protective layer 64 are laminated in this order from the bottom. Yes, the same as the first element portion 9. That is, the pinned magnetic layer 61 of the second element unit 50 is also a self-pinned type.

ただし、第1の素子部9と異なって、第2磁性層61bの固定磁化方向(P2;感度軸方向)がY1方向である。   However, unlike the first element portion 9, the fixed magnetization direction (P2; sensitivity axis direction) of the second magnetic layer 61b is the Y1 direction.

固定磁性層61をセルフピン止め型とすることで、上記したように磁場中熱処理が必要なく、図5(a)(b)に示す第1の素子部9と第2の素子部50とを同じ積層構造としても、成膜時の磁場方向を変えることで、感度軸方向を反平行に出来る。   By making the pinned magnetic layer 61 self-pinned, the heat treatment in a magnetic field is not necessary as described above, and the first element portion 9 and the second element portion 50 shown in FIGS. 5A and 5B are the same. Even in a laminated structure, the sensitivity axis direction can be made antiparallel by changing the magnetic field direction during film formation.

あるいは、図6(a)(b)に示すように、第1の素子部9及び第2の素子部50を夫々、下から非磁性下地層60、反強磁性層65、固定磁性層66、非磁性層62、フリー磁性層63及び保護層64の順に積層する。図7では、磁場中熱処理により反強磁性層65と固定磁性層66との間に交換結合磁界(Hex)を生じさせて固定磁性層66を固定磁化する。   Alternatively, as shown in FIGS. 6A and 6B, the first element portion 9 and the second element portion 50 are respectively arranged from below with a nonmagnetic underlayer 60, an antiferromagnetic layer 65, a fixed magnetic layer 66, The nonmagnetic layer 62, the free magnetic layer 63, and the protective layer 64 are laminated in this order. In FIG. 7, an exchange coupling magnetic field (Hex) is generated between the antiferromagnetic layer 65 and the pinned magnetic layer 66 by heat treatment in a magnetic field, and the pinned magnetic layer 66 is pinned and magnetized.

図6(a)に示す第1の素子部9では、固定磁性層66が、磁性層66a,66b,66cと非磁性中間層66d,66eとが交互に積層された積層フェリ構造であり、磁性層66a,66b,66cは3層、設けられている。一方、図6(b)に示す第2の素子部50では、固定磁性層66が、磁性層66a,66bと非磁性中間層66dとが交互に積層された積層フェリ構造であり、磁性層66a,66bは2層、設けられている。   In the first element portion 9 shown in FIG. 6A, the pinned magnetic layer 66 has a laminated ferrimagnetic structure in which magnetic layers 66a, 66b, 66c and nonmagnetic intermediate layers 66d, 66e are alternately laminated, Three layers 66a, 66b, and 66c are provided. On the other hand, in the second element portion 50 shown in FIG. 6B, the pinned magnetic layer 66 has a laminated ferrimagnetic structure in which magnetic layers 66a and 66b and nonmagnetic intermediate layers 66d are alternately laminated, and the magnetic layer 66a. , 66b are provided in two layers.

図6(a)に示す第1の素子部9及び第2の素子部50に対する磁場中熱処理を同時に行なうことが可能である。第1の素子部9を構成する各磁性層66a,66b,66cは互いに反平行に固定磁化され、図6(a)に示すように、非磁性層62に接する磁性層66cはY2方向に磁化固定されており、Y2方向が感度軸方向である。また、図6(b)に示すように、第2の素子部50の非磁性層62に接する磁性層66bはY1方向に磁化固定されており、Y1方向が感度軸方向である。このように第1の素子部9と第2の素子部50とで積層フェリ構造の磁性層の数を変えることで、感度軸方向を反平行にすることができる。   It is possible to simultaneously perform heat treatment in a magnetic field on the first element portion 9 and the second element portion 50 shown in FIG. The magnetic layers 66a, 66b, 66c constituting the first element unit 9 are fixedly magnetized antiparallel to each other, and as shown in FIG. 6A, the magnetic layer 66c in contact with the nonmagnetic layer 62 is magnetized in the Y2 direction. The Y2 direction is the sensitivity axis direction. As shown in FIG. 6B, the magnetic layer 66b in contact with the nonmagnetic layer 62 of the second element unit 50 is fixed in magnetization in the Y1 direction, and the Y1 direction is the sensitivity axis direction. Thus, the sensitivity axis direction can be made antiparallel by changing the number of magnetic layers of the laminated ferrimagnetic structure between the first element portion 9 and the second element portion 50.

(比較例の磁気センサにおける強磁場耐性について)
まず図8に示す比較例の磁気センサの強磁場耐性について説明する。図8の磁気センサには、4つの磁気抵抗効果素子71〜74が設けられており、各磁気抵抗効果素子71〜74がブリッジ回路を構成している。なお図8において図1と同じ符号の部分は同じ層(部材)を示している。
(About strong magnetic field resistance in the magnetic sensor of the comparative example)
First, the strong magnetic field resistance of the magnetic sensor of the comparative example shown in FIG. 8 will be described. The magnetic sensor of FIG. 8 is provided with four magnetoresistive effect elements 71 to 74, and each magnetoresistive effect element 71 to 74 constitutes a bridge circuit. In FIG. 8, the same reference numerals as those in FIG. 1 denote the same layers (members).

図9(a)に示す素子連設体75は、例えば図2(a)に示す第1の素子連設体17と同じ構成である。また図9(b)に示す素子連設体76は、例えば図2(c)に示す第3の素子連設体52と同じ構成である。よって、図9(a)(b)に示す素子連設体75,76の感度軸方向はともに同じY2方向である。このとき、X2方向の外部磁界H1が作用したとすると、素子連設体75では、各素子部77に図3(a)で示したように、Y1方向への外部磁界H2が作用し、素子連設体76では、各素子部77に図3(b)で示したように、Y2方向への外部磁界H3が作用する。よって素子連設体75では電気抵抗値が増加し、素子連設体76では電気抵抗値が減少する。   The element connecting body 75 shown in FIG. 9A has the same configuration as, for example, the first element connecting body 17 shown in FIG. 9B has the same configuration as the third element connecting body 52 shown in FIG. 2C, for example. Therefore, the sensitivity axis directions of the element connecting bodies 75 and 76 shown in FIGS. 9A and 9B are the same Y2 direction. At this time, assuming that the external magnetic field H1 in the X2 direction acts, in the element connecting body 75, as shown in FIG. 3A, the external magnetic field H2 in the Y1 direction acts on each element portion 77, In the continuous body 76, as shown in FIG. 3B, the external magnetic field H3 in the Y2 direction acts on each element portion 77. Therefore, the electrical resistance value increases in the element continuous body 75, and the electrical resistance value decreases in the element continuous body 76.

図8に示す第1の磁気抵抗効果素子71及び第4の磁気抵抗効果素子74では、ともに素子連設体75がミアンダ形状で形成されており、第2の磁気抵抗効果素子72及び第3の磁気抵抗効果素子73では、ともに素子連設体76がミアンダ形状で形成されている。よって、第1の磁気抵抗効果素子71及び第4の磁気抵抗効果素子74の電気抵抗値が増大すれば、第2の磁気抵抗効果素子72及び第3の磁気抵抗効果素子73の電気抵抗値が減少する。   In the first magnetoresistive element 71 and the fourth magnetoresistive element 74 shown in FIG. 8, the element connecting body 75 is formed in a meander shape, and the second magnetoresistive element 72 and the third magnetoresistive element 72 In the magnetoresistive effect element 73, the element connecting body 76 is formed in a meander shape. Therefore, if the electrical resistance values of the first magnetoresistive effect element 71 and the fourth magnetoresistive effect element 74 are increased, the electrical resistance values of the second magnetoresistive effect element 72 and the third magnetoresistive effect element 73 are increased. Decrease.

図9(a)(b)に示すように、素子部77のX1−X2方向の両側に配置されるバイアス層10の配置は、隣り合う素子部77にて180度反転した配置にされており、この結果、隣り合う素子部77に作用するバイアス磁界B1,B2の方向は逆方向になっている。このバイアス層10の配置は、本実施形態の特徴的部分であり、これにより、外部磁界H1が作用して各素子部77の感度が変化したとき、X1−X2方向にて隣り合う素子部77の感度のシフト方向が互いに逆方向になり、感度変化をキャンセルしあって磁気抵抗効果素子全体としての感度のばらつきを小さくできる。   As shown in FIGS. 9A and 9B, the arrangement of the bias layers 10 arranged on both sides in the X1-X2 direction of the element portion 77 is reversed 180 degrees between the adjacent element portions 77. As a result, the directions of the bias magnetic fields B1 and B2 acting on the adjacent element portions 77 are opposite to each other. The arrangement of the bias layer 10 is a characteristic part of the present embodiment, whereby when the external magnetic field H1 acts and the sensitivity of each element section 77 changes, the element sections 77 adjacent in the X1-X2 direction. The sensitivity shift directions are opposite to each other, so that the sensitivity variation as a whole can be reduced by canceling the sensitivity change.

しかしながら強磁場が作用した場合にあっては、図9の素子連設体75,76を備える磁気センサでは、強磁場耐性が低下する問題があった。   However, when a strong magnetic field is applied, the magnetic sensor provided with the element continuous bodies 75 and 76 of FIG.

図9(a)に示す素子連設体75を構成する素子部77aの両側に配置されたバイアス層10A,10Bは、軟磁性体12との重なり面積a1が大きく、一方、素子部77bの両側に配置されたバイアス層10A,10Bは、軟磁性体12との重なり面積a2がゼロである(あるいは重なっていてもその重なり面積a2はa1より小さくなる)。このように隣り合う素子部77a,77bに接続されるバイアス層10A,10B同士で軟磁性体12との重なり面積a1,a2が変わってしまう問題があった。   The bias layers 10A and 10B disposed on both sides of the element portion 77a constituting the element continuous body 75 shown in FIG. 9A have a large overlapping area a1 with the soft magnetic body 12, while both sides of the element portion 77b. In the bias layers 10A and 10B arranged in (1), the overlapping area a2 with the soft magnetic body 12 is zero (or the overlapping area a2 is smaller than a1 even if they overlap). As described above, there is a problem that the overlapping areas a1 and a2 with the soft magnetic body 12 are changed between the bias layers 10A and 10B connected to the adjacent element portions 77a and 77b.

X2方向から外部磁界H1が作用すると、Y2方向に着磁されたバイアス層10は影響を受ける。このとき、軟磁性体12との重なり面積a1が大きいバイアス層10A,10Bほど外部磁界H1の影響を受ける。そして、図9(a)に示すように、バイアス層10A,10Bから素子部77aに供給されるバイアス磁界B1はX1方向であり、外部磁界H1の方向に対して逆方向となっているため、強磁場の作用によって、着磁状態やバイアス磁界B1に乱れが生じて、バイアス磁界B1に影響をきたし、強磁場を取り除いたときの素子連設体75の電気抵抗値は初期状態に適切に戻らなくなってしまう。   When the external magnetic field H1 acts from the X2 direction, the bias layer 10 magnetized in the Y2 direction is affected. At this time, the bias layers 10A and 10B having a larger overlapping area a1 with the soft magnetic body 12 are affected by the external magnetic field H1. As shown in FIG. 9A, the bias magnetic field B1 supplied from the bias layers 10A and 10B to the element portion 77a is in the X1 direction and is opposite to the direction of the external magnetic field H1, Due to the action of the strong magnetic field, the magnetized state and the bias magnetic field B1 are disturbed to affect the bias magnetic field B1, and the electric resistance value of the element connecting body 75 when the strong magnetic field is removed is appropriately returned to the initial state. It will disappear.

これに対して、図9(b)の場合、図9(a)とは反対に、素子部77bの両側に配置されたバイアス層10A,10Bにおける軟磁性体51と重なり面積a2が大きくなり、一方、素子部77aの両側に配置されたバイアス層10A,10Bは軟磁性体51と重ならない(あるいは重なっていてもその重なり面積a1はa2より小さくなる)。   On the other hand, in the case of FIG. 9B, the overlap area a2 with the soft magnetic body 51 in the bias layers 10A and 10B arranged on both sides of the element portion 77b is increased, contrary to FIG. 9A. On the other hand, the bias layers 10A and 10B arranged on both sides of the element portion 77a do not overlap the soft magnetic body 51 (or even if they overlap, the overlapping area a1 is smaller than a2).

このとき、図9(b)では、軟磁性体51との重なり面積a2が大きいバイアス層10A,10Bから素子部77bへのバイアス磁界B2の方向は外部磁界H1の方向に一致し、外部磁界H1にバイアス磁界B2がアシストされるため、バイアス磁界B1が弱くなるようなことはなく、強磁場を取り除いたときの素子連設体76の電気抵抗値に影響を与えにくい。   At this time, in FIG. 9B, the direction of the bias magnetic field B2 from the bias layers 10A and 10B having a large overlapping area a2 with the soft magnetic body 51 to the element portion 77b coincides with the direction of the external magnetic field H1, and the external magnetic field H1. Since the bias magnetic field B2 is assisted at this time, the bias magnetic field B1 does not become weak and does not easily affect the electric resistance value of the element continuous body 76 when the strong magnetic field is removed.

したがって強磁場が作用し、その強磁場を取り除いた後、素子連設体75と素子連設体76との間で電気抵抗値が変化してしまい、したがって第1の磁気抵抗効果素子71及び第4の磁気抵抗効果素子74を夫々、一種類の素子連設体75で形成し、第2の磁気抵抗効果素子72及び第3の磁気抵抗効果素子73を夫々、一種類の素子連設体76で形成した比較例では、強磁場を取り除いたときの中点電位の変動量が大きくなる問題が発生したのである。   Therefore, after the strong magnetic field acts and the strong magnetic field is removed, the electric resistance value changes between the element connecting body 75 and the element connecting body 76, and accordingly, the first magnetoresistance effect element 71 and the The four magnetoresistive effect elements 74 are each formed by one kind of element connecting body 75, and the second magnetoresistive effect element 72 and the third magnetoresistive effect element 73 are each one kind of element connecting body 76. In the comparative example formed in (1), there was a problem that the amount of change in the midpoint potential when the strong magnetic field was removed increased.

(本実施形態の磁気センサにおける強磁場耐性について)
本実施形態における磁気センサの特徴的部分は以下の通りである。
(1) 第1の磁気抵抗効果素子1及び第4の磁気抵抗効果素子4では第1の素子連設体17と第2の素子連設体18とが直接接続されて構成され、第2の磁気抵抗効果素子2及び第3の磁気抵抗効果素子3では第3の素子連設体52と第4の素子連設体53とが直接接続されて構成される。
(About strong magnetic field tolerance in the magnetic sensor of this embodiment)
Characteristic portions of the magnetic sensor in the present embodiment are as follows.
(1) In the first magnetoresistive element 1 and the fourth magnetoresistive element 4, the first element connecting body 17 and the second element connecting body 18 are directly connected to each other. The magnetoresistive effect element 2 and the third magnetoresistive effect element 3 are configured by directly connecting a third element connecting body 52 and a fourth element connecting body 53.

(2) 図2(a)(d)に示すように、第1の磁気抵抗効果素子1及び第4の磁気抵抗効果素子4を構成する第1の素子連設体17と第2の素子連設体18とでは、素子部、バイアス層10、及び導電層16の並びが同じであるが、軟磁性体12,51の並びがX1−X2方向を回転軸として180度反転させた状態になっている。また、第1の素子連設体17を構成する第1の素子部9の感度軸方向(P1)と、第2の素子連設体18を構成する第2の素子部50の感度軸方向(P2)とは逆方向となっている。 (2) As shown in FIGS. 2A and 2D, the first element connecting body 17 and the second element connection constituting the first magnetoresistive effect element 1 and the fourth magnetoresistive effect element 4 are provided. The arrangement of the element part, the bias layer 10 and the conductive layer 16 is the same as that of the structure 18, but the arrangement of the soft magnetic bodies 12 and 51 is inverted 180 degrees about the X1-X2 direction as the rotation axis. ing. In addition, the sensitivity axis direction (P1) of the first element unit 9 constituting the first element connecting body 17 and the sensitivity axis direction of the second element unit 50 constituting the second element connecting body 18 ( The direction is opposite to P2).

よって、X2方向から外部磁界H1が作用すると、第1の素子連設体17では図3(a)の状態となって電気抵抗値が増大し、第2の素子連設体18では図3(a)の状態となって電気抵抗値が増大する。したがって、X2方向から外部磁界H1が作用すると第1の磁気抵抗効果素子1全体及び第4の磁気抵抗効果素子4全体の電気抵抗値は夫々、増大する。   Therefore, when the external magnetic field H1 acts from the X2 direction, the first element connecting body 17 is in the state of FIG. 3A, and the electrical resistance value is increased, and the second element connecting body 18 is in FIG. The electrical resistance value increases in the state of a). Therefore, when the external magnetic field H1 acts from the X2 direction, the electric resistance values of the entire first magnetoresistive element 1 and the entire fourth magnetoresistive element 4 increase.

(3) 図3(a)に示すように、第1の素子連設体17を構成する第1の素子部9Aの両側に配置されたバイアス層10A,10Bの軟磁性体12との重なり面積a1は大きくなり、一方、第1の素子部9Bの両側に配置されたバイアス層10Bの軟磁性体12との重なり面積a2はゼロである(あるいは重なっていてもその重なり面積a2はa1より小さくなる)。 (3) As shown in FIG. 3A, the overlapping area of the bias layers 10A and 10B arranged on both sides of the first element portion 9A constituting the first element connecting body 17 with the soft magnetic body 12 On the other hand, the overlapping area a2 of the bias layer 10B disposed on both sides of the first element portion 9B with the soft magnetic body 12 is zero (or even if overlapping, the overlapping area a2 is smaller than a1). Become).

一方、図3(b)に示すように、第2の素子連設体18を構成する第2の素子部50Bの両側に配置されたバイアス層10A,10Bの軟磁性体51との重なり面積a2は大きくなり、一方、第2の素子部50Aの両側に配置されたバイアス層10Aの軟磁性体12との重なり面積a1はゼロである(あるいは重なっていてもその重なり面積a1はa2より小さくなる)。   On the other hand, as shown in FIG. 3B, the overlapping area a2 of the bias layers 10A, 10B disposed on both sides of the second element portion 50B constituting the second element connecting body 18 with the soft magnetic body 51 On the other hand, the overlapping area a1 of the bias layer 10A disposed on both sides of the second element portion 50A with the soft magnetic body 12 is zero (or even if overlapping, the overlapping area a1 is smaller than a2). ).

このとき、図3(a)での第1の素子連設体17では、軟磁性体12との重なり面積a1が大きい第1の素子部9Aに作用するバイアス磁界B1はX1方向であるから、X2方向の外部磁界H1の影響を受け、強磁場が取り除かれても、第1の素子連設体17の電気抵抗値は初期状態に戻りにくく変動する。   At this time, in the first element connecting body 17 in FIG. 3A, the bias magnetic field B1 acting on the first element portion 9A having a large overlapping area a1 with the soft magnetic body 12 is in the X1 direction. Even if the strong magnetic field is removed due to the influence of the external magnetic field H1 in the X2 direction, the electric resistance value of the first element connecting body 17 varies with difficulty in returning to the initial state.

一方、図3(b)での第2の素子連設体18では、軟磁性体12との重なり面積a2が大きい第1の素子部50Bに作用するバイアス磁界B2は、外部磁界H1と同じX2方向であるから、外部磁界H1の影響を受けない(あるいは受けにくい)。   On the other hand, in the second element connecting body 18 in FIG. 3B, the bias magnetic field B2 acting on the first element portion 50B having a large overlapping area a2 with the soft magnetic body 12 is the same X2 as the external magnetic field H1. Since it is a direction, it is not influenced (or hardly affected) by the external magnetic field H1.

(4) 図2(c)(d)に示すように、第2の磁気抵抗効果素子2及び第3の磁気抵抗効果素子3を構成する第3の素子連設体52と第4の素子連設体53とでは、素子部、バイアス層10、及び導電層16の並びが同じであるが、軟磁性体12,51の並びがX1−X2方向を回転軸として180度反転させた状態になっている。また、第3の素子連設体52を構成する第1の素子部9の感度軸方向(P1)と、第4の素子連設体53を構成する第2の素子部50の感度軸方向(P2)とは逆方向となっている。 (4) As shown in FIGS. 2C and 2D, the third element connecting body 52 and the fourth element connection constituting the second magnetoresistive effect element 2 and the third magnetoresistive effect element 3 are provided. In the structure 53, the arrangement of the element portion, the bias layer 10, and the conductive layer 16 is the same, but the arrangement of the soft magnetic bodies 12, 51 is inverted 180 degrees about the X1-X2 direction as the rotation axis. ing. In addition, the sensitivity axis direction (P1) of the first element unit 9 constituting the third element connecting body 52 and the sensitivity axis direction of the second element part 50 constituting the fourth element connecting body 53 ( The direction is opposite to P2).

さらに、第3の素子連設体52は、第2の素子連設体18と、素子部、バイアス層10、導電層16及び軟磁性体51の並びが同じであり、第4の素子連設体53は、第1の素子連設体17と、素子部、バイアス層10、導電層16及び軟磁性体12の並びが同じである。   Further, the third element connecting body 52 is the same as the second element connecting body 18 in the arrangement of the element portion, the bias layer 10, the conductive layer 16, and the soft magnetic body 51, and the fourth element connecting body 52 is provided. In the body 53, the arrangement of the element portion, the bias layer 10, the conductive layer 16, and the soft magnetic body 12 is the same as that of the first element continuous body 17.

ここでX2方向から外部磁界H1が作用すると、第3の素子連設体52では図3(b)の状態となって電気抵抗値が減少し、第4の素子連設体53では図3(a)の状態となって電気抵抗値が減少する。よって、X2方向から外部磁界H1が作用すると第2の磁気抵抗効果素子2全体及び第3の磁気抵抗効果素子3全体の電気抵抗値は夫々、減少する。   Here, when the external magnetic field H1 acts from the X2 direction, the third element connecting body 52 is in the state shown in FIG. 3B, and the electric resistance value is reduced, while the fourth element connecting body 53 is shown in FIG. In the state a), the electric resistance value decreases. Therefore, when the external magnetic field H1 acts from the X2 direction, the electric resistance values of the entire second magnetoresistive element 2 and the entire third magnetoresistive element 3 are decreased.

(5) バイアス層10A,10Bにおける軟磁性体12,51との重なり面積a1,a2は、上記で説明した通りであり、よって、図3(a)での第4の素子連設体53では、軟磁性体12との重なり面積a1が大きい第2の素子部50Aに作用するバイアス磁界B1はX1方向であるから、X2方向に対する外部磁界H1の影響を受け、強磁場が取り除かれても、第1の素子連設体17の電気抵抗値は初期状態に戻りにくく変動する。 (5) The overlapping areas a1 and a2 of the bias layers 10A and 10B with the soft magnetic bodies 12 and 51 are as described above. Therefore, in the fourth element connection body 53 in FIG. The bias magnetic field B1 acting on the second element portion 50A having a large overlapping area a1 with the soft magnetic body 12 is in the X1 direction. The electric resistance value of the first element continuous body 17 varies with difficulty in returning to the initial state.

一方、図3(b)での第3の素子連設体52では、軟磁性体12との重なり面積a2が大きい第1の素子部9Bに作用するバイアス磁界B2は、外部磁界H1と同じX2方向であるから、外部磁界H1の影響を受けない(あるいは受けにくい)。   On the other hand, in the third element connecting body 52 in FIG. 3B, the bias magnetic field B2 acting on the first element portion 9B having a large overlapping area a2 with the soft magnetic body 12 is the same as the external magnetic field H1 X2. Since it is a direction, it is not influenced (or hardly affected) by the external magnetic field H1.

(6) このように本実施形態では、X2方向から外部磁界H1を受けたときに、直列接続される第1の磁気抵抗効果素子1(第4の磁気抵抗効果素子4)と、第2の磁気抵抗効果素子2(第3の磁気抵抗効果素子3)内に夫々、強磁場の作用により、電気抵抗値が初期状態から変動する第1の素子連設体17あるいは第4の素子連設体53を含む。 (6) Thus, in this embodiment, when receiving the external magnetic field H1 from the X2 direction, the first magnetoresistance effect element 1 (fourth magnetoresistance effect element 4) connected in series and the second In the magnetoresistive effect element 2 (third magnetoresistive effect element 3), the first element connecting body 17 or the fourth element connecting body in which the electric resistance value fluctuates from the initial state by the action of a strong magnetic field. 53.

なおX1方向へ強磁場が作用した場合、逆に、第2の素子連設体18及び第3の素子連設体52の電気抵抗値が初期状態から変動しやすくなるが、直列接続される第1の磁気抵抗効果素子1(第4の磁気抵抗効果素子4)と、第2の磁気抵抗効果素子2(第3の磁気抵抗効果素子3)内には夫々、第2の素子連設体18あるいは第3の素子連設体52が含まれている。   Note that when a strong magnetic field acts in the X1 direction, the electrical resistance values of the second element connecting body 18 and the third element connecting body 52 tend to fluctuate from the initial state, but the first connected in series. In the first magnetoresistive effect element 1 (fourth magnetoresistive effect element 4) and the second magnetoresistive effect element 2 (third magnetoresistive effect element 3), the second element connecting body 18 is provided. Alternatively, the third element connecting body 52 is included.

このように、各磁気抵抗効果素子1〜4内に、夫々、強磁場の影響を受けて電気抵抗値が変動しやすい素子連設体を設けたから、直列接続される第1の磁気抵抗効果素子1(第4の磁気抵抗効果素子4)と、第2の磁気抵抗効果素子2(第3の磁気抵抗効果素子3)との間で電気抵抗値の変動量(ΔR)をキャンセルでき、中点電位の変動を比較例の構成に比べて効果的に低減させることができる。したがって強磁場耐性に優れた磁気センサにすることが可能になる。   As described above, since each of the magnetoresistive effect elements 1 to 4 is provided with the element continuous body in which the electrical resistance value is likely to vary due to the influence of the strong magnetic field, the first magnetoresistive effect elements connected in series are provided. 1 (fourth magnetoresistive effect element 4) and second magnetoresistive effect element 2 (third magnetoresistive effect element 3) can cancel the fluctuation amount (ΔR) of the electric resistance value. The potential fluctuation can be effectively reduced as compared with the configuration of the comparative example. Therefore, a magnetic sensor excellent in strong magnetic field resistance can be obtained.

B1、B2 バイアス磁界
H1、H2、H3 外部磁界
M1、M2 磁路
P1、P2 感度軸方向
a1、a2 重なり面積
1〜4 磁気抵抗効果素子
9、9A、9B 第1の素子部
10、10A、10B バイアス層
12 軟磁性体
12a、12b 端部
16 導電層
17 第1の素子連設体
18 第2の素子連設体
50、50A、50B 第2の素子部
51 軟磁性体
52 第3の素子連設体
53 第4の素子連設体
61、66 固定磁性層
61a、61b、66a、66b、66c 磁性層
63 フリー磁性層
B1, B2 Bias magnetic field H1, H2, H3 External magnetic field M1, M2 Magnetic path P1, P2 Sensitivity axis direction a1, a2 Overlapping area 1-4 Magnetoresistive effect element 9, 9A, 9B First element part 10, 10A, 10B Bias layer 12 Soft magnetic bodies 12a, 12b End 16 Conductive layer 17 First element connecting body 18 Second element connecting bodies 50, 50A, 50B Second element section 51 Soft magnetic body 52 Third element connecting Structure 53 Fourth element connection structure 61, 66 Pinned magnetic layers 61a, 61b, 66a, 66b, 66c Magnetic layer 63 Free magnetic layer

Claims (4)

磁性層と非磁性層とが積層されて成る磁気抵抗効果を発揮する複数の素子部と、
各素子部のX1−X2方向の両側に配置されたバイアス層と、
各素子部の前記X1−X2方向と直交するY1−Y2方向の両側に配置され、各素子部及び各バイアス層と非接触の軟磁性体と、を有し、
各素子部の感度軸方向は前記Y1−Y2方向であり、
各バイアス層の着磁方向は前記Y1−Y2方向であり、各バイアス層から各素子部にX1−X2方向へのバイアス磁界が供給されるように、各バイアス層が構成されており、
各素子部の前記Y1−Y2方向の両側に配置された各軟磁性体は、前記X1−X2方向からの外部磁界が作用したときに、前記外部磁界を略Y1−Y2方向に変換して前記素子部に供給できるように構成されており、
複数の前記素子部は、前記X1−X2方向に間隔を空けて配置され、前記X1−X2方向にて隣り合う各素子部に接続された前記バイアス層間が導電層にて接続されて素子連設体を構成しており、
第1の素子連設体、第2の素子連設体、第3の素子連設体、及び第4の素子連設体を備え、
前記第1の素子連設体と前記第4の素子連設体は、前記素子部、前記バイアス層、前記軟磁性体及び前記導電層の並びが同じであり、
前記第2の素子連設体と前記第3の素子連設体は、前記第1の素子連設体及び前記第4の素子連設体と、前記素子部、前記バイアス層及び前記導電層の並びが同じであるが前記軟磁性体は、前記第1の素子連設体及び前記第4の素子連設体を構成する前記軟磁性体に対し前記X1−X2方向を回転軸として180度反転させた並びであり、
各素子連設体では、前記素子部へ供給されるバイアス磁界の方向が、隣り合う前記素子部で逆向きとなるように各バイアス層が配置されるとともに、平面視にて前記軟磁性体と重なり面積の大きい前記バイアス層を両側に配置した前記素子部と、前記重なり面積の小さい、あるいは前記重なり面積がゼロの前記バイアス層を両側に配置した前記素子部とが交互に並んでおり、
前記第1の素子連設体及び前記第4の素子連設体における前記外部磁界の変換方向は夫々同じであり、且つ、前記第2の素子連設体及び前記第3の素子連設体における前記外部磁界の変換方向に対して逆方向であり、
前記第1の素子連設体及び前記第3の素子連設体における前記感度軸方向は夫々同じであり、且つ、前記第2の素子連設体及び前記第4の素子連設体の前記感度軸方向に対して逆方向とされており、
前記第1の素子連設体と前記第2の素子連設体とが直列に接続された第1の磁気抵抗効果素子と、前記第3の素子連設体と前記第4の素子連設体とが直列に接続された第2の磁気抵抗効果素子とが出力部を介して直列接続されていることを特徴とする磁気センサ。
A plurality of element portions exhibiting a magnetoresistive effect formed by laminating a magnetic layer and a nonmagnetic layer;
Bias layers disposed on both sides of each element portion in the X1-X2 direction;
Each element portion is disposed on both sides of the Y1-Y2 direction orthogonal to the X1-X2 direction, and each element portion and each bias layer has a non-contact soft magnetic material,
The sensitivity axis direction of each element unit is the Y1-Y2 direction,
The magnetization direction of each bias layer is the Y1-Y2 direction, and each bias layer is configured so that a bias magnetic field in the X1-X2 direction is supplied from each bias layer to each element unit.
Each soft magnetic material disposed on both sides of each element portion in the Y1-Y2 direction converts the external magnetic field into a substantially Y1-Y2 direction when an external magnetic field from the X1-X2 direction is applied. It is configured so that it can be supplied to the element part,
The plurality of element portions are arranged at an interval in the X1-X2 direction, and the bias layers connected to the adjacent element portions in the X1-X2 direction are connected by a conductive layer so that the elements are connected in series. Make up the body,
A first element connecting body, a second element connecting body, a third element connecting body, and a fourth element connecting body;
The first element connecting body and the fourth element connecting body have the same arrangement of the element portion, the bias layer, the soft magnetic body, and the conductive layer,
The second element connecting body and the third element connecting body include the first element connecting body and the fourth element connecting body, the element portion, the bias layer, and the conductive layer. Although the arrangement is the same, the soft magnetic body is inverted by 180 degrees with respect to the soft magnetic bodies constituting the first element connecting body and the fourth element connecting body with the X1-X2 direction as the rotation axis. The line
In each element connection body, each bias layer is disposed so that the direction of the bias magnetic field supplied to the element part is opposite to that of the adjacent element part, and The element portion in which the bias layer having a large overlap area is arranged on both sides and the element portion in which the bias layer having a small overlap area or the overlap area is arranged on both sides are alternately arranged,
The conversion directions of the external magnetic field in the first element connecting body and the fourth element connecting body are the same, and in the second element connecting body and the third element connecting body. A direction opposite to the conversion direction of the external magnetic field,
The sensitivity axis directions of the first element connecting body and the third element connecting body are the same, and the sensitivity of the second element connecting body and the fourth element connecting body is the same. It is the opposite direction to the axial direction,
A first magnetoresistive element in which the first element connecting body and the second element connecting body are connected in series; the third element connecting body; and the fourth element connecting body. And a second magnetoresistive element connected in series with each other in series via an output unit.
前記第1の磁気抵抗効果素子は入力部、前記第2の磁気抵抗効果素子はグランドに夫々接続され、前記第1の磁気抵抗効果素子と前記第2の磁気抵抗効果素子との間が第1の出力部を介して直列接続されており、
前記第1の素子連設体と前記第2の素子連設体とが直列に接続された第4の磁気抵抗効果素子と、前記第3の素子連設体と前記第4の素子連設体とが直列に接続された第3の磁気抵抗効果素子との間が第2の出力部を介して直列接続され、前記第3の磁気抵抗効果素子が前記入力部に、前記第4の磁気抵抗効果素子が前記グランドに接続されて、ブリッジ回路が構成されている請求項1記載の磁気センサ。
The first magnetoresistive element is connected to an input unit, the second magnetoresistive element is connected to a ground, and the first magnetoresistive element and the second magnetoresistive element are connected between the first magnetoresistive element and the first magnetoresistive element. Are connected in series via the output of
A fourth magnetoresistive element in which the first element connection body and the second element connection body are connected in series; the third element connection body; and the fourth element connection body. Are connected in series via a second output unit, and the third magnetoresistive element is connected to the input unit and the fourth magnetoresistive element is connected to the third magnetoresistive element connected in series. The magnetic sensor according to claim 1, wherein an effect element is connected to the ground to constitute a bridge circuit.
各素子連設体は、反強磁性層と固定磁性層とが積層された部分を備え、前記第1の素子連設体及び前記第4の素子連設体を構成する各素子部の前記固定磁性層と、前記第2の素子連設体及び前記第3の素子連設体を構成する各素子部の前記固定磁性層とは積層構造が異なり、前記第1の素子連設体及び前記第4の素子連設体の前記固定磁性層の固定磁化方向と、前記第2の素子連設体及び前記第3の素子連設体の前記固定磁性層の固定磁化方向とは逆向きにされている請求項1又は2に記載の磁気センサ。   Each element connection body includes a portion in which an antiferromagnetic layer and a pinned magnetic layer are stacked, and the fixed portions of the element portions constituting the first element connection body and the fourth element connection body are provided. The magnetic layer and the pinned magnetic layer of each element portion constituting the second element connecting body and the third element connecting body are different in the laminated structure, and the first element connecting body and the first element connecting body The fixed magnetization direction of the fixed magnetic layer of the element connection body 4 is opposite to the fixed magnetization direction of the fixed magnetic layer of the second element connection body and the third element connection body. The magnetic sensor according to claim 1 or 2. 前記第1の素子連設体及び前記第4の素子連設体を構成する各素子部の固定磁性層及と、前記第2の素子連設体及び前記第3の素子連設体を構成する各素子部の固定磁性層とは同じ積層構造のセルフピン止め型であり、前記第1の素子連設体及び前記第4の素子連設体の前記固定磁性層の固定磁化方向と、前記第2の素子連設体及び前記第3の素子連設体の前記固定磁性層の固定磁化方向とは逆向きにされている請求項1又は2に記載の磁気センサ。   The pinned magnetic layer of each element part constituting the first element connecting body and the fourth element connecting body, and the second element connecting body and the third element connecting body are configured. The pinned magnetic layer of each element part is a self-pinning type having the same laminated structure, and the pinned magnetization direction of the pinned magnetic layer of the first element connecting body and the fourth element connecting body, and the second The magnetic sensor according to claim 1, wherein the fixed magnetization direction of the pinned magnetic layer of the element continuous body and the third element continuous body is opposite to the fixed magnetic layer.
JP2011131869A 2011-06-14 2011-06-14 Magnetic sensor Withdrawn JP2013002856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011131869A JP2013002856A (en) 2011-06-14 2011-06-14 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011131869A JP2013002856A (en) 2011-06-14 2011-06-14 Magnetic sensor

Publications (1)

Publication Number Publication Date
JP2013002856A true JP2013002856A (en) 2013-01-07

Family

ID=47671593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011131869A Withdrawn JP2013002856A (en) 2011-06-14 2011-06-14 Magnetic sensor

Country Status (1)

Country Link
JP (1) JP2013002856A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156108A1 (en) * 2013-03-26 2014-10-02 旭化成エレクトロニクス株式会社 Magnetic sensor and method for detecting magnetism thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156108A1 (en) * 2013-03-26 2014-10-02 旭化成エレクトロニクス株式会社 Magnetic sensor and method for detecting magnetism thereof
CN104303066A (en) * 2013-03-26 2015-01-21 旭化成微电子株式会社 Magnetic sensor and method for detecting magnetism thereof
JP5876583B2 (en) * 2013-03-26 2016-03-02 旭化成エレクトロニクス株式会社 Magnetic sensor and magnetic detection method thereof
US9453890B2 (en) 2013-03-26 2016-09-27 Asahi Kasei Microdevices Corporation Magnetic sensor and magnetic detecting method of the same

Similar Documents

Publication Publication Date Title
JP5518215B2 (en) Magnetic sensor
JP5297539B2 (en) Magnetic sensor
JP6305181B2 (en) Magnetic sensor
JP5297442B2 (en) Magnetic sensor
US20120200292A1 (en) Magnetic sensor
JP5174911B2 (en) Magnetic sensor and magnetic sensor module
CN104764470A (en) Magnetic sensor
JP5843079B2 (en) Magnetic sensor and magnetic sensor system
JP6233722B2 (en) Magnetic field generator, magnetic sensor system, and magnetic sensor
US11035913B2 (en) Magnetic field sensing device
JP5171933B2 (en) Magnetic sensor
JP2015118067A (en) Magnetic detection device
JP5802565B2 (en) Magnetic sensor
WO2011074488A1 (en) Magnetic sensor
JP5898986B2 (en) Magnetic sensor and manufacturing method thereof
JP5341865B2 (en) Magnetic sensor
JP2013002856A (en) Magnetic sensor
JP6725300B2 (en) Magnetic sensor and manufacturing method thereof
JP5453198B2 (en) Magnetic sensor
JPWO2009054391A1 (en) Magnetic encoder
JP5809478B2 (en) Magnetic sensor
JP5265689B2 (en) Magnetically coupled isolator
JP2010258981A (en) Magnetic coupling type isolator
JP6580357B2 (en) Magnetic sensor
JP2010258979A (en) Magnetic coupling type isolator

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902