JP2013002401A - Device for converting hydraulic power into electric power - Google Patents

Device for converting hydraulic power into electric power Download PDF

Info

Publication number
JP2013002401A
JP2013002401A JP2011135888A JP2011135888A JP2013002401A JP 2013002401 A JP2013002401 A JP 2013002401A JP 2011135888 A JP2011135888 A JP 2011135888A JP 2011135888 A JP2011135888 A JP 2011135888A JP 2013002401 A JP2013002401 A JP 2013002401A
Authority
JP
Japan
Prior art keywords
flow
blade
water
electric power
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011135888A
Other languages
Japanese (ja)
Inventor
Hisatoku Abiru
久徳 阿比留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuoka Institute of Technology
MHI Solution Technologies Co Ltd
Original Assignee
Fukuoka Institute of Technology
MHI Solution Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuoka Institute of Technology, MHI Solution Technologies Co Ltd filed Critical Fukuoka Institute of Technology
Priority to JP2011135888A priority Critical patent/JP2013002401A/en
Publication of JP2013002401A publication Critical patent/JP2013002401A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for converting water energy into electric power, by causing a flutter phenomenon normally considered to be caused in an object in a flow of air, in a flow of water.SOLUTION: In a device constitution for causing the flutter phenomenon in the blade soaked in the flow of water, extracting reciprocating translation of moving so as to cross a flow out of vibration of a blade for constituting the flutter phenomenon, and converting the reciprocating translation into the electric power, when generating the electric power by being arranged in a waterway, for effectively using a waterway width, a plurality of blades are arranged, but a shielding plate 10 is arranged between the mutual adjacent blades 1 and 2 of vibrating in the same phase, so that power generation performance is improved by a simple constitution.

Description

本発明は、通常、空気の流れの中の物体に生ずるものと考えられているフラッタ現象を、水の流れの中で生起させ、その水のエネルギを電力に変換する方法及び装置に関するものである。   The present invention relates to a method and apparatus for causing flutter phenomenon, which is normally considered to occur in an object in an air flow, to occur in the water flow and converting the energy of the water into electric power. .

省エネ・地球温暖化抑制を狙っての風車による発電は世界の各地で普及し、それが景観の一部となっている場所も多く、極めて一般的で、今後もさらに増えると推定される。しかしながら我が国では一般的な設計風速である風速10〜15m/sの風が吹く場所・頻度は共に少ないと言う問題点がある。更に,発電量は風速の3乗に比例するため、風速が低くなると発電量が急激に落ちるという問題点もある。   Power generation by windmills aimed at energy conservation and global warming suppression is widespread in various parts of the world, and there are many places where it is part of the landscape, so it is extremely common and is expected to increase in the future. However, in Japan, there is a problem that there are few places and frequencies where a wind of 10 to 15 m / s, which is a general design wind speed, blows. Furthermore, since the power generation amount is proportional to the third power of the wind speed, there is a problem in that the power generation amount drops sharply as the wind speed decreases.

また、低速でも発電可能に、風の流れを絞り、局所的に風速を上げようと、風の方向に沿って縮小又は拡大する中空の集風筒体を設ける試みもなされているが、その効果は期待した程大きくなく、小規模のものであればともかく、大規模のものとなると、その筒体の設置に難が生じる。なお、1基当たりの発電量を大きくしようとして翼を長くしているが、そうすればする程周速が増大し、騒音が増すと言う問題点もある。   In addition, attempts have been made to provide a hollow air collecting cylinder that contracts or expands along the direction of the wind in order to reduce the wind flow and increase the wind speed locally so that power can be generated even at low speeds. Is not as large as expected, and if it is a small scale, it will be difficult to install the cylinder. Although the blades are lengthened in order to increase the power generation amount per unit, there is also a problem that the peripheral speed increases and the noise increases as the power is increased.

それに対して、航空機の翼や吊り橋等で起こる破壊的な自励振動である、フラッタ現象を逆に有効利用して電力を得る試みが幾つかなされている。この方法の場合、風車の放射状の翼に比較して、長方形翼を列状に配列することによって、風のエネルギを有効に利用することが出来、発電効率が高くなると言う利点がある。   On the other hand, there have been some attempts to obtain electric power by effectively utilizing the flutter phenomenon, which is destructive self-excited vibration that occurs in aircraft wings, suspension bridges, and the like. In the case of this method, there is an advantage that the energy of wind can be effectively used and the power generation efficiency is increased by arranging the rectangular blades in a row as compared with the radial blades of the windmill.

このフラッタ現象による翼の動きは、(1)翼が流れに対する迎え角をプラスマイナス変化させるピッチング運動(往復回転運動)(2)翼が流れを横切るように動く往復並進運動の重ね合わせであって、(1),(2)の動きは,ほぼ90度位相がずれていて、その結果,翼は魚がくねって泳ぐように運動する。なお、発電は上記動きのうちの(2)の動きを利用して行なう。   The movement of the blade due to the flutter phenomenon is (1) pitching motion (reciprocating rotational motion) in which the angle of attack of the blade changes plus or minus (2) superposition of reciprocating translational motion in which the blade moves across the flow. The movements of (1) and (2) are almost 90 degrees out of phase, and as a result, the wings move like a fish that twists and swims. Power generation is performed using the movement (2) of the above movements.

この風力に対して水力、すなわち水の運動エネルギを利用する水車の歴史は古く、そのうちダムによって蓄えられた水の位置のエネルギを運動エネルギに変えて発電する水力発電は、世界各地で普及していることは周知の通りである。
特に我が国では流速が比較的速い中小の河川が多いことから、水の流れ(運動エネルギ)を直に利用する中小規模の水力利用、特に発電への根強い期待が存在する。
しかしながら、水の流れによるフラッタ現象が自然現象として生起することがなかったためか、また、フラッタ現象についての負のイメージが強かったためか、空気に比較して有利であるにも拘わらず、それを有効に利用しようとする発想は今日まで全く見られなかった。
Hydro turbines that use hydropower, that is, kinetic energy of water, have a long history, and hydropower, which generates electricity by converting the energy of the water stored by dams into kinetic energy, has become popular throughout the world. As is well known.
In particular, in Japan, there are many small and medium-sized rivers with relatively high flow speeds, so there are strong expectations for small- and medium-scale hydropower utilization that directly uses water flow (kinetic energy), especially power generation.
However, the flutter phenomenon caused by the flow of water did not occur as a natural phenomenon, or because the negative image about the flutter phenomenon was strong, it was effective even though it was advantageous compared to air. I haven't seen any idea to use it for today.

その水によるフラッタ現象を生起させるためには、翼の質量として、理論的に、それが晒される流体の仮想質量(翼弦を直径とする円柱の質量)の10倍程度以上が必要である。従ってそのままでは水の流れによる水力発電は実現不可能であることは明らかであり、何らかの手段によって質量を増加する機構が必要である。   In order to cause the flutter phenomenon caused by water, the mass of the blade is theoretically required to be about 10 times or more the virtual mass of the fluid to which the blade is exposed (the mass of a cylinder whose diameter is a chord). Therefore, it is clear that hydroelectric power generation using water flow cannot be realized as it is, and a mechanism for increasing the mass by some means is necessary.

そこで発明者は、翼に対するフラッタ現象を水の流れの中でも生起させるために必要な質量付加を、上記円盤を含む回転体の回転慣性モーメントによって行なうことを特徴とする、水のエネルギを電力に変換する方法及び装置を提供した。(例えば特許文献1)。
その方法は、水の流れに浸漬させた翼にフラッタ現象を生起させること、そのフラッタ現象を構成する翼の振動のうち、流れを横切るように動く往復並進運動を抽出し、電力に変換すること、且つ前記フラッタ現象を生起させるために必要な値の質量付加を、前記往復並進運動を回転体の往復回転運動に変換させ、その回転慣性モーメントによって行なうことを特徴とするものである。
Therefore, the inventor converts the energy of water into electric power, characterized in that the mass addition necessary for causing the flutter phenomenon on the wing to occur in the flow of water is performed by the rotational inertia moment of the rotating body including the disk. A method and apparatus are provided. (For example, patent document 1).
The method is to generate flutter phenomenon on a blade immersed in a flow of water, and to extract the reciprocating translational motion that moves across the flow from the vibration of the blade that constitutes the flutter phenomenon, and convert it into electric power. In addition, the mass addition of a value necessary for causing the flutter phenomenon is performed by converting the reciprocating translational motion into the reciprocating rotational motion of the rotating body and using the rotational moment of inertia.

特開2010−96077号公報JP 2010-96077 A

発明者が提案した方法において、単独翼での実験では有効な電力の発電ができる。しかしながら実際の水路に設置して発電する場合は、水路幅を有効に利用するため、複数個の翼を配置することになる。本発明ではこの翼列化する場合の最適な装置構成を提供する。   In the method proposed by the inventor, it is possible to generate an effective electric power in an experiment using a single blade. However, when power is generated by installing in an actual water channel, a plurality of wings are arranged in order to effectively use the water channel width. The present invention provides an optimum apparatus configuration for forming the cascade.

翼列化する場合、発電量を増やすため隣り合う翼の間隔を狭めて、翼枚数を増やすことが考えられる。この時、隣り合う翼同士が同位相で振動すると、翼間隔が狭い時、発電性能は単独翼より大きく低下する。
逆に、逆位相で振動すると翼間隔が狭い時、発電性能は大きく向上することを発明者は実験で検証した。
In order to increase the power generation amount, it is conceivable to reduce the interval between adjacent blades and increase the number of blades. At this time, if adjacent blades vibrate in the same phase, the power generation performance is significantly lower than that of a single blade when the blade interval is narrow.
On the contrary, the inventors verified through experiments that the power generation performance is greatly improved when the blade interval is narrow when oscillating in the opposite phase.

同位相で振動する翼列は機構が簡易であるが、逆位相の翼列は機構が二重になり複雑化する。本発明は、隣り合う翼同士の間に遮蔽板を設ける事で、機構が簡易な同位相の翼列の性能を、逆位相並みに向上させるものである。   The cascades that vibrate in the same phase are simple in mechanism, but the cascades in opposite phases are complicated by double mechanisms. In the present invention, by providing a shielding plate between adjacent blades, the performance of the blades in the same phase with a simple mechanism is improved to the same level as the opposite phase.

更に、翼に流れ込む水の流速を、水路の流速より早くして、発電量を向上させる手段として、つば付きの整流板を翼の両側に配置する構成も提供するものである。   Further, as a means for improving the amount of power generation by making the flow rate of water flowing into the blade faster than the flow rate of the water channel, a configuration is also provided in which rectifying plates with collars are arranged on both sides of the blade.

逆位相で振動する翼列は発電性能は良いが、装置構成が複雑となり、実用的でないが、翼間に遮蔽板を配置する本発明によれば、装置構成が容易な同位相でフラッタ振動する翼列でも、逆位相と同等の発電効率を得ることができる。
更に、つば付きの整流板を翼の両側に配置する構成とする事により、翼に流れ込む水の流速を、水路の流速より早くできるため、発電性能を飛躍的に向上でき、流速の遅い水路への適用が可能となる。
The blade rows that vibrate in the opposite phase have good power generation performance, but the device configuration becomes complicated and impractical, but according to the present invention in which a shielding plate is arranged between the blades, flutter vibration occurs in the same phase with which the device configuration is easy Even in the cascade, power generation efficiency equivalent to that of the antiphase can be obtained.
In addition, the flow rate of water flowing into the wing can be made faster than the flow rate of the water channel by arranging the flow straightening plates with ribs on both sides of the wing, so that the power generation performance can be dramatically improved and the flow rate can be lowered. Can be applied.

本発明の第一の実施例である、翼と遮蔽板の取り合いを示す斜視図である。It is a perspective view which shows the connection of a wing | blade and a shielding board which is the 1st Example of this invention. 本発明の第二の実施例である、つば付整流板の取り付け構成を示す斜視図である。It is a perspective view which shows the attachment structure of the baffle with a rib which is the 2nd Example of this invention. 本発明である翼間に遮蔽板を設置した場合の翼の作動工程を示す模式図である。It is a schematic diagram which shows the operation | movement process of a wing | blade at the time of installing a shielding board between the wing | blades which is this invention. 本発明を実証するための発電効率を表す実験結果である。It is an experimental result showing the power generation efficiency for demonstrating this invention. 逆位相で往復回転動する翼の作動工程を示す模式図である。It is a schematic diagram which shows the operation | movement process of the wing | blade which reciprocates by an antiphase. 同位相で往復回転動する翼の作動工程を示す模式図である。It is a schematic diagram which shows the operation | movement process of the wing | blade which reciprocates by the same phase.

以下本発明の実施の形態を図に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図5、図6に本発明の対象とする、フラッタ現象を構成する複数個の翼の、往復回転運動(振動)と往復並進運動が重ね合わさった状態例を示す。
図6は2枚配列された翼1,2が同位相で運動(振動)している例である。
図(a)は中立位置、図(b)は矢印Aの方向へ回転しつつ矢印aの方向へ並進、図(c)は矢印Bの方向へ回転しつつ矢印bの方向へ並進している状況を示す。図中記載の記号+,−はこのときの翼表面の圧力の大きさを示す。このように翼1,2が同位相で振動した場合は、隣接翼同士の向い合う面の圧力が+と−で打消し合う方向へ働くため揚力が減少し発電性能が低下する。
FIG. 5 and FIG. 6 show an example of a state in which the reciprocating rotational motion (vibration) and the reciprocating translational motion of a plurality of blades constituting the flutter phenomenon are overlapped.
FIG. 6 shows an example in which two wings 1 and 2 arranged are moving (vibrating) in the same phase.
Figure (a) is a neutral position, Figure (b) is translated in the direction of arrow a while rotating in the direction of arrow A, and Figure (c) is translated in the direction of arrow b while rotating in the direction of arrow B. Indicates the situation. The symbols + and − shown in the figure indicate the magnitude of the pressure on the blade surface at this time. In this way, when the blades 1 and 2 vibrate in the same phase, the pressures on the faces of the adjacent blades facing each other work in directions that cancel each other out with + and-, so the lift is reduced and the power generation performance is reduced.

これに対し、図5は2枚配列された翼1,2が逆位相で運動している例である。図(a)は中立位置、図(b)は翼1は矢印Aの方向へ回転し矢印aの方向へ並進,翼2は矢印Bの方向へ回転し矢印bの方向へ並進,図(c)は翼1は矢印Bの方向へ回転し矢印bの方向へ並進、翼2は矢印Aの方向へ回転し矢印aの方向へ並進、お互い逆位相で振動している状況を示す。図6同様+,−はこのときの翼表面の圧力の大きさを示す。
このように翼1,2が逆位相で振動した場合は、隣接翼同士の向い合う面の圧力が+と+,あるいは−と−で強調し合う方向へ働くため揚力が増加し発電性能は向上する。
On the other hand, FIG. 5 shows an example in which the two blades 1 and 2 arranged are moving in opposite phases. Fig. (A) shows the neutral position, Fig. (B) shows that the blade 1 rotates in the direction of arrow A and translates in the direction of arrow a, and the blade 2 rotates in the direction of arrow B and translates in the direction of arrow b. ) Shows a situation where the blade 1 rotates in the direction of arrow B and translates in the direction of arrow b, and the blade 2 rotates in the direction of arrow A and translates in the direction of arrow a, and vibrates in mutually opposite phases. As in FIG. 6, + and-indicate the pressure on the blade surface at this time.
When the blades 1 and 2 vibrate in opposite phases in this way, the pressure on the facing surfaces of adjacent blades works in the direction of emphasizing with + and + or-and-, so the lift increases and the power generation performance improves. To do.

図4は、翼運動と翼間との発電性能を検証した結果である。横軸WGは翼間隔を翼弦長で割った比率を示し、縦軸EPは発電性能比を示す。
ここで黒丸印A0は図6で説明したように、翼1,2が同位相で運動(振動)した時の発電性能比であり、白丸B0は図5で説明したように翼1,2が逆位相で運動(振動)した時の発電性能比である。
この結果から、翼間隔を狭くして、翼を逆位相で振動させると発電性能が大きく向上することがわかる。
FIG. 4 shows the result of verifying the power generation performance between the blade motion and the blade space. The horizontal axis WG indicates the ratio obtained by dividing the blade interval by the chord length, and the vertical axis EP indicates the power generation performance ratio.
Here, the black circle mark A0 is the power generation performance ratio when the blades 1 and 2 are moved (vibrated) in the same phase as described in FIG. 6, and the white circle B0 is the blades 1 and 2 as described in FIG. It is the power generation performance ratio when moving (vibrating) in the opposite phase.
From this result, it can be seen that the power generation performance is greatly improved by narrowing the blade interval and vibrating the blades in opposite phases.

図5に示す逆位相で運動する場合,同図に示す中心線は翼1,2に対する流れの対称面になり,その面を横切る流れは理論上生じない。このことは,この対称面に表面が滑らかな遮蔽板を置いても流れに影響を与えないことを意味しており,逆位相で運動する場合,隣り合う翼同士の間に遮蔽板を設置したときの性能は遮蔽板がないときの性能と同等と言える。   When moving in the opposite phase shown in FIG. 5, the center line shown in FIG. 5 is a plane of symmetry of the flow with respect to the blades 1 and 2, and the flow across the plane does not theoretically occur. This means that even if a shielding plate with a smooth surface is placed on this plane of symmetry, the flow will not be affected. When moving in antiphase, a shielding plate was installed between adjacent blades. The performance at the time can be said to be equivalent to the performance without the shielding plate.

図3は図6で示した同位相で運動する翼1,2の間に、本発明の遮蔽板10を設置した構成である。図(a)は中立位置、図(b)は矢印Aの方向へ回転しつつ矢印aの方向へ並進、図(c)は矢印Bの方向へ回転しつつ矢印bの方向へ並進している状況を示す。
隣り合う翼同士の間に遮蔽板10を設けることで、隣の翼の影響を無くすことができる。すなわち,隣の翼により翼表面の圧力が打消され揚力が減少して発電性能が低下する影響は遮蔽板で遮られる。同時に,前記段落番号[0020]で述べたように遮蔽板がある場合の性能は逆位相で運動する場合の遮蔽板がないときの性能と同等である。
以上説明したように、本発明によると、機構が簡易な同位相の翼列の性能を、逆位相並みに向上させることができる。
FIG. 3 shows a configuration in which the shielding plate 10 of the present invention is installed between the blades 1 and 2 moving in the same phase shown in FIG. Figure (a) is a neutral position, Figure (b) is translated in the direction of arrow a while rotating in the direction of arrow A, and Figure (c) is translated in the direction of arrow b while rotating in the direction of arrow B. Indicates the situation.
By providing the shielding plate 10 between adjacent wings, the influence of the adjacent wings can be eliminated. In other words, the effect of the adjacent blades canceling the pressure on the blade surface, reducing the lift and reducing the power generation performance is blocked by the shielding plate. At the same time, as described in paragraph [0020], the performance with the shielding plate is equivalent to the performance without the shielding plate when moving in the opposite phase.
As described above, according to the present invention, it is possible to improve the performance of a cascade having the same phase with a simple mechanism at the same level as the opposite phase.

図1に本発明の第一の実施例を示す。50は本発明の発電装置であり、同位相で往復回転および往復並進運動(振動)する翼1,2の間に、流れに対して固定される固定フレーム8に遮蔽板10が取付けられて設置してある。30は翼1,2を往復回転させるためのピッチング用モータ、12はモータ架台である。この架台12は揺動フレーム6に固定されており、揺動フレーム6は流れに対して固定される固定フレーム8から吊りロッド5によって吊り下げられており,近似的に水平方向の並進運動ができるように構成されている。吊りロッド5の中間部はコイルばね15により固定フレーム8から弾性的に支持されている。吊りロッド5にコイルばね15を取付ける位置はスライド機構19により上下にスライドすることができ,並進運動の固有振動数を調整できる。本発電装置50の翼1,2を流れのある水中に置き,ピッチング用モータ30により翼1,2に所定の振幅と振動数のピッチング動を与えると,翼1,2およびそれを支持している揺動フレーム6は流れにより並進振動(フラッタ振動)を起こす。   FIG. 1 shows a first embodiment of the present invention. 50 is a power generator of the present invention, and is installed with a shielding plate 10 attached to a fixed frame 8 fixed against a flow between blades 1 and 2 that reciprocate and reciprocate translationally (oscillate) in the same phase. It is. 30 is a pitching motor for reciprocally rotating the blades 1 and 2, and 12 is a motor mount. The gantry 12 is fixed to a swing frame 6, and the swing frame 6 is suspended by a suspension rod 5 from a fixed frame 8 that is fixed to the flow, and can be translated approximately in the horizontal direction. It is configured as follows. An intermediate portion of the suspension rod 5 is elastically supported from the fixed frame 8 by a coil spring 15. The position at which the coil spring 15 is attached to the suspension rod 5 can be slid up and down by the slide mechanism 19, and the natural frequency of translational motion can be adjusted. When the blades 1 and 2 of the power generator 50 are placed in flowing water, and the pitching motor 30 gives a pitching motion with a predetermined amplitude and frequency to the blades 1 and 2, the blades 1 and 2 and the blades 1 and 2 are supported. The swinging frame 6 that is in motion causes translational vibration (flutter vibration) due to the flow.

揺動フレーム6には上下方向にスライド可能にボールねじのナット部9が取付けられており,ボールねじナット部9と噛合うボールねじ11の軸受け部および発電機20は固定フレーム8に取付けられる。翼1,2および揺動フレーム6の並進振動はボールねじナット部9を介してボールねじ11の往復回転運動に円滑に変換され、更に発電機20にて電力変換される。   A ball screw nut portion 9 is attached to the swing frame 6 so as to be slidable in the vertical direction. A bearing portion of the ball screw 11 and the generator 20 which are engaged with the ball screw nut portion 9 are attached to the fixed frame 8. The translational vibrations of the blades 1 and 2 and the swing frame 6 are smoothly converted into the reciprocating rotational motion of the ball screw 11 via the ball screw nut portion 9 and further converted into electric power by the generator 20.

図2に本発明の第二の実施例を示す。この実施例は翼に流れ込む水の流速を、水路の流速より早くして、発電量を向上させる手段として、つば付きの整流板を翼の両側に配置した構成である。
発電装置50において、固定フレーム8で支持される装置は水中架台60内には図示しないが、図1で示した同位相で運動(振動)する翼1,2、遮蔽板10やピッチング用モータ30、発電機20等が配置されている。
FIG. 2 shows a second embodiment of the present invention. In this embodiment, the flow rate of water flowing into the wing is made faster than the flow rate of the water channel to improve the amount of power generation, and a flow regulating plate with a collar is arranged on both sides of the wing.
In the power generation device 50, the device supported by the fixed frame 8 is not shown in the underwater frame 60, but the blades 1 and 2, the shielding plate 10 and the pitching motor 30 that move (vibrate) in the same phase shown in FIG. A generator 20 and the like are arranged.

ここで水の流れ方向は図示矢印の方向である。本発明のつば付きの整流板40は、翼部に水を取り込むための5〜20度の傾斜角を設けた流入口41と、流入口の傾斜角とは逆方向に5〜20度の傾斜角を設けた整流板42と水流に直交したつば43から構成されている。またこの整流板40は水路の地盤に支柱45にて固定されている。ここで55は装置架台8を地盤の固定する支柱である。   Here, the direction of water flow is the direction of the arrow shown in the figure. The flow regulating plate 40 with a collar of the present invention has an inlet 41 provided with an inclination angle of 5 to 20 degrees for taking water into the wing part, and an inclination of 5 to 20 degrees in the opposite direction to the inclination angle of the inlet. It is comprised from the baffle plate 42 which provided the angle | corner, and the collar 43 orthogonal to a water flow. The rectifying plate 40 is fixed to the ground of the water channel by a support 45. Here, 55 is a support for fixing the device mount 8 to the ground.

このように水路の地盤に固定されたつば付きの整流板40で、翼に流れ込む水の流速は、水路の流速より1.2〜1.4倍程度早くなり、発電量を2〜3倍に向上させることができる。   In this way, the flow rate of water flowing into the wings is about 1.2 to 1.4 times faster than the flow rate of the water channel, and the power generation amount can be improved to 2 to 3 times with the flow straightening plate 40 fixed to the ground of the water channel. it can.

1 翼1
2 翼2
5 吊りロッド
6 揺動フレーム
8 固定フレーム
9 ナット部
10 遮蔽板
11 ボールネジ
12 モータ架台
19 スライド機構
20 発電機
30 モータ
40 つば付き整流板
41 流入口
42 整流板
43 つば
44 つば付き整流板固定架台
45 整流板固定架台
50 発電装置
55 支柱
60 水中架台
1 wing 1
2 Wings 2
5 Suspension rod 6 Oscillating frame 8 Fixed frame 9 Nut portion 10 Shield plate 11 Ball screw 12 Motor mount 19 Slide mechanism 20 Generator 30 Motor 40 Rectifier plate 41 with collar Inlet port 42 Rectifier plate 43 collar 44 Rectifier plate fixed mount 45 with collar Rectifier plate fixed base 50 Power generation device 55 Prop 60 Underwater base

Claims (3)

水の流れに浸漬させた翼にフラッタ現象を生起させ、そのフラッタ現象を構成する翼の振動のうち、流れを横切るように動く往復並進運動を抽出し、電力に変換する装置構成において、複数個配列されたそれぞれの翼の間に遮蔽板を設けたことを特徴とする、水のエネルギを電力に変換する装置。   In the device configuration that causes flutter phenomenon to occur in the blade immersed in the flow of water, extracts the reciprocating translational motion that moves across the flow from the vibration of the blade that constitutes the flutter phenomenon, and converts it to electric power A device for converting water energy into electric power, characterized in that a shielding plate is provided between each of the arranged wings. 前記複数個配列された翼は、同位相で往復回転運動する構成であることを特徴とする、請求項1に記載の水のエネルギを電力に変換する装置。   The apparatus for converting energy of water into electric power according to claim 1, wherein the plurality of blades arranged to reciprocate in the same phase. 水の流れに浸漬させた翼にフラッタ現象を生起させ、そのフラッタ現象を構成する翼の振動のうち、流れを横切るように動く往復並進運動を抽出し、電力に変換する装置構成において、複数個配列された翼の間に、つば付き整流板を設けたことを特徴とする、水のエネルギを電力に変換する装置。   In the device configuration that causes flutter phenomenon to occur in the blade immersed in the flow of water, extracts the reciprocating translational motion that moves across the flow from the vibration of the blade that constitutes the flutter phenomenon, and converts it to electric power A device for converting the energy of water into electric power, characterized in that a rectifying plate with a collar is provided between arranged wings.
JP2011135888A 2011-06-20 2011-06-20 Device for converting hydraulic power into electric power Withdrawn JP2013002401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011135888A JP2013002401A (en) 2011-06-20 2011-06-20 Device for converting hydraulic power into electric power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011135888A JP2013002401A (en) 2011-06-20 2011-06-20 Device for converting hydraulic power into electric power

Publications (1)

Publication Number Publication Date
JP2013002401A true JP2013002401A (en) 2013-01-07

Family

ID=47671225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011135888A Withdrawn JP2013002401A (en) 2011-06-20 2011-06-20 Device for converting hydraulic power into electric power

Country Status (1)

Country Link
JP (1) JP2013002401A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016011637A (en) * 2014-06-30 2016-01-21 壽伸 常永 Oscillation type fluid power device
TWI728934B (en) * 2020-11-04 2021-05-21 崑山科技大學 Oscillating hydroelectric power generation device with lifting blades
TWI742929B (en) * 2020-11-17 2021-10-11 李世正 Fluid energy generating method and device for implementing the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016011637A (en) * 2014-06-30 2016-01-21 壽伸 常永 Oscillation type fluid power device
TWI728934B (en) * 2020-11-04 2021-05-21 崑山科技大學 Oscillating hydroelectric power generation device with lifting blades
TWI742929B (en) * 2020-11-17 2021-10-11 李世正 Fluid energy generating method and device for implementing the method

Similar Documents

Publication Publication Date Title
Young et al. A review of progress and challenges in flapping foil power generation
JP5303686B2 (en) Generator
JP6257617B2 (en) Vertical axis wind turbine and water turbine with flow control
JP5080497B2 (en) Ocean wave energy conversion
Abiru et al. Study on a flapping wing hydroelectric power generation system
CN103266982B (en) A kind of wave power conversion Pneumatic electric generating method and apparatus
US20090121490A1 (en) Oscillating-Wing Power Generator with Flow-Induced Pitch-Plunge Phasing
US10378507B2 (en) Fluid flow induced oscillating energy harvester with variable damping based upon oscillation amplitude
CN109185066A (en) A kind of floating wind energy, wave energy, tide energy combined generating system
CN104074683A (en) Suspended vertical-axis wind driven generator set
JP5703397B2 (en) Wind power generation equipment
CN105024586B (en) A kind of oscillating mode wind generator system
KR20130070731A (en) Vortex-induced vibration by lift-generating plant and parallelogram quadric crank mechanism
US11313348B2 (en) Hybrid vertical axis turbine apparatus
CN104675635A (en) Oscillating airfoil generation device provided with turning angle amplifiers
JP2013002401A (en) Device for converting hydraulic power into electric power
JP5278900B2 (en) Method and apparatus for converting water energy into electrical power
KR101300480B1 (en) Variable radius-of-spring-force type simple reciprocating pivot-rotational vortex induced vibration energy extraction device
US10294916B2 (en) Fluid flow induced oscillating energy harvester maximizing power output through off-center mounted toggling bluff body and/or suspension stiffening mechanism
JP6001732B1 (en) Bistable nonlinear pendulum generator using fluid
CN209741790U (en) Comb-type breakwater integrating wave energy and tidal current energy power generation device
CN204553095U (en) A kind of oscillating airfoil electricity generating device that corner amplifier is housed
JP2015124736A (en) Wind power generator
KR101492768B1 (en) Floating wave power generation device using the cross flow turbine
Xu et al. Fluid dynamics analysis of passive oscillating hydrofoils for tidal current energy extracting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902