JP5703397B2 - Wind power generation equipment - Google Patents

Wind power generation equipment Download PDF

Info

Publication number
JP5703397B2
JP5703397B2 JP2013555023A JP2013555023A JP5703397B2 JP 5703397 B2 JP5703397 B2 JP 5703397B2 JP 2013555023 A JP2013555023 A JP 2013555023A JP 2013555023 A JP2013555023 A JP 2013555023A JP 5703397 B2 JP5703397 B2 JP 5703397B2
Authority
JP
Japan
Prior art keywords
nacelle
power generation
wind power
heat exchanger
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013555023A
Other languages
Japanese (ja)
Other versions
JPWO2013111259A1 (en
Inventor
坂本 潔
坂本  潔
隆 松信
隆 松信
卓司 柳橋
卓司 柳橋
茂久 舩橋
茂久 舩橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of JP5703397B2 publication Critical patent/JP5703397B2/en
Publication of JPWO2013111259A1 publication Critical patent/JPWO2013111259A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Description

本発明は風力発電設備に係り、特に、ハブとブレードから成るロータがナセルを支持するタワーより風下側に位置するダウンウインド方式に好適な風力発電設備に関する。   The present invention relates to a wind power generation facility, and more particularly to a wind power generation facility suitable for a downwind system in which a rotor composed of a hub and blades is located on the leeward side of a tower that supports a nacelle.

自然エネルギーの効果的利用が図られている昨今、風力発電設備は、特に採算性のある試みであるとして、世界各国で開発が進められている。現在、建設されている風力発電設備は、主に湾岸部の陸上に設置されているものが多い。   In recent years when natural energy has been used effectively, wind power generation facilities are being developed around the world as a particularly profitable attempt. Currently, many of the wind power generation facilities that are being constructed are installed mainly on the shores of the Gulf.

ところが、風力発電の原動力たる風は、障害物のある陸上に比べて洋上のほうが一般に風速が大きく、風向も安定しているため、大電力を得ることができる。また、洋上のほうが住宅からの距離がとれるため騒音公害の原因にもならない。以上の理由から、陸上ではなく洋上に風力発電設備を設置する動きが加速している。   However, the wind, which is the driving force of wind power generation, generally has a higher wind speed and a stable wind direction on the ocean than on land with obstacles, so that a large amount of power can be obtained. In addition, since the distance from the house is more offshore, it does not cause noise pollution. For these reasons, the movement to install wind power generation facilities on the ocean rather than onshore is accelerating.

通常、風力発電設備は、ブレードにより回転するロータを支持するナセルを備え、このナセルには、ブレードの回転により駆動される発電機が内蔵されている。ナセル内の発電機からは、損失として熱エネルギーが発せられるため、この熱エネルギーを低減する方策が種々提案されている。例えば、特許文献1では、損失として生じた熱エネルギーの冷却法として、発電機が閉じた第1の冷却系を備え、ナセルに設置した第2の冷却系が、前記第1の冷却系を冷却する技術が開示されている。   Usually, a wind power generation facility includes a nacelle that supports a rotor that is rotated by a blade, and a generator that is driven by the rotation of the blade is incorporated in the nacelle. Since the generator in the nacelle generates thermal energy as a loss, various measures for reducing this thermal energy have been proposed. For example, in Patent Document 1, as a method of cooling thermal energy generated as a loss, a first cooling system in which a generator is closed is provided, and a second cooling system installed in a nacelle cools the first cooling system. Techniques to do this are disclosed.

この特許文献1によれば、損失として生じた熱エネルギーを低減することは勿論、洋上での塩気を含む空気が直接、発電機に触れないために、塩害による損傷を防ぐことができ、風力発電機の信頼性が向上する。   According to this Patent Document 1, not only the heat energy generated as a loss is reduced, but also the air containing salty water on the ocean does not directly touch the generator, so that damage due to salt damage can be prevented. The reliability of the machine is improved.

米国特許第7057305号明細書US Pat. No. 7,057,305

ところで、特許文献1の風力発電設備は、ハブとブレードから成るロータがナセルを支持するタワーより風上側に位置するアップウインド方式であり、ブレードによって回転するロータの風下側に第2の冷却系が位置することになる。このため、風はロータやタワーに当たってから第2の冷却系に導かれることになり、第2の冷却系が吸気する空気の流れは、風がロータやタワーに当たることで乱れており、冷却系の冷却効率は、空気の流れに乱れのない場合に比べて低下してしまう。   By the way, the wind power generation facility of Patent Document 1 is an upwind system in which a rotor composed of a hub and blades is located on the windward side of the tower that supports the nacelle, and a second cooling system is provided on the leeward side of the rotor rotated by the blades. Will be located. For this reason, after the wind hits the rotor or tower, it is guided to the second cooling system, and the air flow sucked by the second cooling system is disturbed by the wind hitting the rotor or tower, and the cooling system The cooling efficiency is reduced as compared with the case where the air flow is not disturbed.

よって、冷却系の冷却効率を低下させないためには、第2の冷却系は、より寸法の大きい形状の部品(熱交換器等)を採用して、空気が触れる表面積を増やす必要がある。   Therefore, in order not to reduce the cooling efficiency of the cooling system, the second cooling system needs to employ parts with larger dimensions (such as a heat exchanger) to increase the surface area that the air touches.

一般に、洋上の風力発電設備は、陸上に比べて基礎の建設コストが高いため、風力発電機の単機出力容量を増加させる傾向にある。従って、洋上風力発電設備では、発電機で生じる損失も増加するため、冷却効率を低下させないためには、上述した特許文献1の第2の冷却系の形状が大型化し、ナセル全体の重量が増える問題がある。   In general, offshore wind power generation facilities tend to increase the single-machine output capacity of a wind power generator because the foundation construction cost is higher than onshore. Therefore, in the offshore wind power generation facility, the loss generated in the generator also increases. Therefore, in order not to reduce the cooling efficiency, the shape of the second cooling system of Patent Document 1 described above increases, and the weight of the entire nacelle increases. There's a problem.

本発明は上述の点に鑑みなされたもので、その目的とするところは、冷却系の要素部品を大型化することなく、冷却系の冷却効率の低下を防ぐことのできる風力発電設備を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a wind power generation facility capable of preventing a decrease in cooling efficiency of the cooling system without increasing the size of the component parts of the cooling system. There is.

本発明の風力発電設備は、上記目的を達成するために、ハブとブレードから成るロータと、該ロータに前記ハプに接続された主軸を介して接続される発電機と、該発電機を少なくとも収納し、前記主軸を介して前記ロータを軸支するナセルと、該ナセルを頂部に支持するタワーとを備え、前記ロータが前記タワーより風下側に位置するダウンウインド方式の風力発電設備において、前記ロータよりも風上側に位置する前記ナセルは、垂直方向断面における水平方向直線部と、該水平方向直線部から前記ナセルの垂直方向中心に向かう傾斜部とから成り、該ナセルの水平方向直線部と傾斜部の境界部分の外部に熱交換器を設け、該熱交換器によって前記発電機からの冷却媒体が外気と熱交換して冷却されるか、
或いは、前記ロータよりも風上側に位置する前記ナセル内に、前記発電機からの冷却媒体を外気と熱交換して冷却する熱交換器を設け、該熱交換器は、熱交換器本体と、該熱交換器本体と接続する吸気側ダクト及び排気側ダクトから成ると共に、前記吸気側ダクトの吸気口が風上側に、前記排気ダクトの排気口が風下側に位置し、前記排気側ダクトは、風下側に向かって下側を向くように配置され、かつ、前記排気側ダクトの排気口が下側を向いていることを特徴とする。
In order to achieve the above object, a wind turbine generator according to the present invention includes at least a rotor including a hub and blades, a generator connected to the rotor via a main shaft connected to the hap, and at least the generator. In the downwind type wind power generation facility, comprising: a nacelle that pivotally supports the rotor via the main shaft; and a tower that supports the nacelle at the top, wherein the rotor is located on the leeward side of the tower. The nacelle located on the windward side is composed of a horizontal straight line portion in a vertical cross section and an inclined portion that extends from the horizontal straight line portion toward the vertical center of the nacelle, and is inclined with respect to the horizontal straight line portion of the nacelle. A heat exchanger is provided outside the boundary portion of the section, and the cooling medium from the generator is cooled by exchanging heat with the outside air by the heat exchanger,
Alternatively, in the nacelle located on the windward side of the rotor, a heat exchanger that cools the cooling medium from the generator by exchanging heat with outside air is provided, and the heat exchanger includes a heat exchanger body, together consisting intake duct and exhaust duct connected to the heat exchanger body, the intake port windward side of the intake side duct, the exhaust port of the exhaust duct is positioned on the leeward side, the exhaust-side duct The exhaust duct is disposed so as to face downward toward the leeward side, and the exhaust port of the exhaust duct faces downward .

本発明によれば、冷却系の要素部品を大型化することなく、冷却系の冷却効率の低下を防ぐことができ、発電効率低下の恐れがない風力発電設備を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the fall of the cooling efficiency of a cooling system can be prevented, without enlarging a component component of a cooling system, and the wind power generation installation which does not have a fear of a power generation efficiency fall can be obtained.

本発明の風力発電設備の実施例1であり、タワー頂部に設置されているナセル部分の概略構成を示す側面図である。It is Example 1 of the wind power generation equipment of this invention, and is a side view which shows schematic structure of the nacelle part installed in the tower top part. 図1を上方より見た平面図である。It is the top view which looked at FIG. 1 from upper direction. 本発明の風力発電設備の実施例1の構成から熱交換器を取り除いた場合の空気の流れを示すナセル部分の平面図である。It is a top view of the nacelle part which shows the flow of the air at the time of removing a heat exchanger from the structure of Example 1 of the wind power generation equipment of this invention. 本発明の風力発電設備の実施例2であり、タワー頂部に設置されているナセル部分の概略構成を示す側面図である。It is Example 2 of the wind power generation equipment of this invention, and is a side view which shows schematic structure of the nacelle part installed in the tower top part.

以下、図示した実施例に基づき本発明の風力発電設備について説明する。尚、各実施例で、同一構成部品には同符号を使用する。   Hereinafter, the wind power generation facility of the present invention will be described based on the illustrated embodiments. In each embodiment, the same reference numerals are used for the same components.

図1及び図2に、本発明の風力発電設備の実施例1を示す。   1 and 2 show a first embodiment of the wind power generation facility of the present invention.

該図に示す本実施例の風力発電設備は、ハブ4とブレード5から成るロータと、このロータにハブ4に接続された主軸13を介して接続される発電機1と、この発電機1を少なくとも収納し、主軸13を介してロータを軸支し、かつ、垂直方向断面における水平方向が直線部2Aと、その水平方向直線部2Aから垂直方向中心14に向かう傾斜部である曲線部2Bとから成るナセル2と、このナセル2を頂部に支持するタワー3とを備えていると共に、ハブ4とブレード5から成るロータが、タワー3より風下側に位置するダウンウインド方式の風力発電設備であり、洋上に設置されている場合を想定している。   The wind power generation facility of this embodiment shown in the figure includes a rotor composed of a hub 4 and blades 5, a generator 1 connected to the rotor via a main shaft 13 connected to the hub 4, and the generator 1. At least housed, and supported by the rotor via the main shaft 13, and the horizontal direction in the vertical cross section is a straight portion 2A, and a curved portion 2B that is an inclined portion from the horizontal straight portion 2A toward the vertical center 14. And a tower 3 that supports the nacelle 2 at the top, and a rotor composed of a hub 4 and blades 5 is a downwind type wind power generation facility located on the leeward side of the tower 3. It is assumed that it is installed offshore.

そして、本実施例では、このダウンウインド方式の風力発電設備において、ナセル2の水平方向直線部2Aと曲線部2Bの境界部分の外側で、かつ、ナセル2の上面部と両側面部に、周方向に所定間隔をもって複数個(本実施例では3箇所)の熱交換器7a、7bを設置している。また、熱交換器7aには吸気口11aと排気口12aを、熱交換器7bには吸気口11bと排気口12bをそれぞれ備え、吸気口11a及び11bが風上側に位置するように構成されている。   In this embodiment, in this downwind wind power generation facility, in the circumferential direction outside the boundary portion between the horizontal linear portion 2A and the curved portion 2B of the nacelle 2 and on the upper surface portion and both side surface portions of the nacelle 2 A plurality of (three in this embodiment) heat exchangers 7a and 7b are installed at predetermined intervals. The heat exchanger 7a is provided with an intake port 11a and an exhaust port 12a, and the heat exchanger 7b is provided with an intake port 11b and an exhaust port 12b. The intake ports 11a and 11b are located on the windward side. Yes.

本実施例での熱交換器7a、7bは、例えば多管式熱交換器が採用され、円筒胴内に伝熱管(図示せず)を多数配列し、この伝熱管に吸気口11a及び11bを介して矢印6からの外部空気9a、9bが流入し、ここで伝熱管内の外部空気9a、9bと発電機1からの温まった冷却媒体8が熱交換して、冷却された冷却媒体8は発電機1内に導かれて発電機を冷却し、温まった外部空気9a、9bは、排気口12a、12bから排気されるものである。   As the heat exchangers 7a and 7b in the present embodiment, for example, a multi-tube heat exchanger is adopted, and a large number of heat transfer tubes (not shown) are arranged in a cylindrical body, and intake ports 11a and 11b are provided in the heat transfer tubes. The external air 9a, 9b from the arrow 6 flows in via the external air 9a, 9b in the heat transfer tube and the warmed cooling medium 8 from the generator 1 exchanges heat, and the cooled cooling medium 8 is The warm external air 9a, 9b, which is guided into the generator 1 and cools the generator, is exhausted from the exhaust ports 12a, 12b.

次に、本実施例における発電機1の冷却方法について説明する。   Next, the cooling method of the generator 1 in a present Example is demonstrated.

本実施例では、上述した如く、風力発電設備に対して矢印6で示す風向で風があたるように、風力発電設備を運用、即ち、風力発電設備としてダウンウインド方式として運用し、ハブ4とブレード5からなるロータがタワー3より風下側に位置している。これにより、熱交換器7a、7bが、ロータから見て風上側に位置することになる。   In the present embodiment, as described above, the wind power generation facility is operated so that the wind is directed at the wind direction indicated by the arrow 6, that is, the wind power generation facility is operated as a downwind system, and the hub 4 and the blade A rotor consisting of 5 is located on the leeward side of the tower 3. Thereby, the heat exchangers 7a and 7b are located on the windward side when viewed from the rotor.

その結果、吸気口11a、11bには、矢印6で示す方向で流れる風が直接入るため、特許文献1で述べたアップウインド方式のように、風がロータやタワー3に当たってから吸気口11a、11bに導かれることがなくなり、吸気口11a、11bが吸気する空気の流れは乱れておらず、効率的に風が導かれる。従って、熱交換器7a、7bでの上述した熱交換は効果的に行われ、その冷却効率は低下することがない。   As a result, since the wind flowing in the direction indicated by the arrow 6 directly enters the intake ports 11a and 11b, the intake ports 11a and 11b after the wind hits the rotor and the tower 3 as in the upwind method described in Patent Document 1. The air flow sucked by the air inlets 11a and 11b is not disturbed, and the wind is efficiently guided. Therefore, the heat exchange described above in the heat exchangers 7a and 7b is effectively performed, and the cooling efficiency is not lowered.

次に、本実施例における熱交換器7a、7bの取り付け位置について説明する。   Next, the mounting position of the heat exchangers 7a and 7b in the present embodiment will be described.

本実施例のようなダウンウインド方式の風車の場合、図1及び図2に示すように、空気抵抗を減らすためにナセル2の形状を、矢印6で示す風の方向から見て流線形(曲線部2B)にする場合がある。しかし、その場合、ナセル2の外面の曲率が変化する部分(水平方向直線部2Aと曲線部2Bの境界部分)で、空気の流れがナセル2の外面より剥離して乱れを生じる。この空気の流れの乱れを、模式的に描いたのが図3である(図3は、図2の風力発電設備から熱交換器7a、7bを取り除いている)。   In the case of a wind turbine of the downwind type as in this embodiment, as shown in FIGS. 1 and 2, the shape of the nacelle 2 is streamlined (curved) as seen from the wind direction indicated by the arrow 6 in order to reduce air resistance. Part 2B). However, in that case, the flow of air is separated from the outer surface of the nacelle 2 at the portion where the curvature of the outer surface of the nacelle 2 changes (the boundary portion between the horizontal linear portion 2A and the curved portion 2B), resulting in disturbance. FIG. 3 schematically shows the turbulence of the air flow (FIG. 3 is obtained by removing the heat exchangers 7a and 7b from the wind power generation facility of FIG. 2).

図3に示す如く、矢印6で示す風上からの空気の流れは、矢印10で示すように、ナセル2の前面でナセル2の流線形の形状に沿って両側に分流し、ナセル2の外面曲線部分(傾斜部である曲線部2B)と平行に流れる。しかし、図3のA部(水平方向直線部2Aと曲線部2Bの境界部分)においては、ナセル2の外面形状が曲がると、矢印10で示す空気の流れは、ナセル2の外面から大きく剥離して渦を生じている。この空気の乱れ(渦)は、結果的に後流側にあるブレード5へ機械的なストレスを与えるため、問題となる。   As shown in FIG. 3, the flow of air from the windward indicated by the arrow 6 is divided into both sides along the streamline shape of the nacelle 2 on the front surface of the nacelle 2 as indicated by the arrow 10, and the outer surface of the nacelle 2. It flows parallel to the curved portion (curved portion 2B, which is an inclined portion). However, in the portion A of FIG. 3 (the boundary portion between the horizontal linear portion 2A and the curved portion 2B), when the outer surface shape of the nacelle 2 is bent, the air flow indicated by the arrow 10 is largely separated from the outer surface of the nacelle 2. Eddy. This air turbulence (vortex) results in mechanical stress on the blade 5 on the wake side, which is a problem.

そこで、本実施例では、矢印10で示す前述の空気の流れが、ナセル2の外面より剥離する部分、即ちナセル2外面の曲率が大きくなる部分(図3のA部)に、熱交換器7a、7bを設置するものである。   Therefore, in the present embodiment, the heat exchanger 7a is applied to a portion where the air flow indicated by the arrow 10 is separated from the outer surface of the nacelle 2, that is, a portion where the curvature of the outer surface of the nacelle 2 is large (A portion in FIG. 3). , 7b.

飛行機やグライダーの翼で採用されている公知のボルテックスジェネレータと同様の原理により、熱交換器7a、7bを通過することによって乱流化した空気の流れは、ナセル2の外面から剥離せず、図1及び図2に示す外部空気9a、9bのように空気が流れる。これにより、後流側のブレード5に与える機械的なストレスが軽減される効果がある。   The air flow turbulent by passing through the heat exchangers 7a and 7b is not separated from the outer surface of the nacelle 2 according to the same principle as that of a known vortex generator used in airplanes and glider wings. Air flows like external air 9a and 9b shown in FIG. Thereby, there is an effect that mechanical stress applied to the blade 5 on the downstream side is reduced.

尚、本実施例では、ナセル2の上面側に熱交換器7aを1つ、ナセル2の両側面側に熱交換器7bを2つ取り付ける例を示したが、熱交換器の個数が増減しても効果は同じであることは言うまでもない。また、熱交換器をナセル2の下側につけても、効果は同様である。また、ナセル2の垂直方向断面における傾斜部が曲線部2Bの例について説明したが、傾斜部は直線であっても構わない。   In this embodiment, an example is shown in which one heat exchanger 7a is attached to the upper surface side of the nacelle 2 and two heat exchangers 7b are attached to both side surfaces of the nacelle 2. However, the number of heat exchangers increases or decreases. Needless to say, the effect is the same. Moreover, even if it attaches a heat exchanger to the lower side of the nacelle 2, the effect is the same. Further, the example in which the inclined portion in the vertical section of the nacelle 2 is the curved portion 2B has been described, but the inclined portion may be a straight line.

このような本実施例によれば、洋上に設置された場合には塩害の影響を受けないことは勿論、設備を大型化することなく発電機1の冷却が良好に行える風力発電設備を得ることができる。また、冷却系を設置しても、冷却系の後流の挙動を安定化し、風車ブレードへかかる乱れを抑制し、発電効率の低下の恐れがない風力発電設備を得ることができる。   According to the present embodiment, it is possible to obtain a wind power generation facility that can cool the generator 1 satisfactorily without increasing the size of the facility as well as being not affected by salt damage when installed on the ocean. Can do. Moreover, even if a cooling system is installed, it is possible to stabilize the behavior of the wake of the cooling system, suppress turbulence to the windmill blade, and obtain a wind power generation facility that does not cause a decrease in power generation efficiency.

図4に、本発明の風力発電設備の実施例2を示す。尚、実施例1と同一構成のものにつては同符号を使用し、その説明は省略する。   FIG. 4 shows a second embodiment of the wind power generation facility of the present invention. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

図4に示す実施例2の風力発電設備は、熱交換器7cが、ナセル2の外部ではなく、ナセル2の内部に設置されている点で実施例1と異なる。   The wind power generation facility according to the second embodiment shown in FIG. 4 is different from the first embodiment in that the heat exchanger 7c is installed not inside the nacelle 2 but inside the nacelle 2.

本実施例の熱交換器7cは、熱交換器本体7c1と、この熱交換器本体7c1と接続する吸気側ダクト7c2及び排気側ダクト7c3から成り、かつ、吸気側ダクト7c2の吸気口11cが風上側に、排気ダクト7c3の排気口12cが風下側に位置している。尚、熱交換器本体7c1の構成は、実施例1の熱交換器7a、7bと同一である。 The heat exchanger 7c of this embodiment includes a heat exchanger main body 7c1, an intake side duct 7c2 and an exhaust side duct 7c3 connected to the heat exchanger main body 7c1, and the intake port 11c of the intake side duct 7c2 is wind-driven. On the upper side, the exhaust port 12c of the exhaust side duct 7c3 is located on the leeward side. The configuration of the heat exchanger body 7c1 is the same as that of the heat exchangers 7a and 7b of the first embodiment.

次に、本実施例における発電機1の冷却方法について説明する。   Next, the cooling method of the generator 1 in a present Example is demonstrated.

本実施例の構成では、熱交換器本体7c1の吸気側ダクト7c2の風上側に設置された吸気口11cに、矢印6で示す方向で流れる外部空気9cが入り、一方、発電機1で発生した熱は、冷却媒体8によって熱交換器本体7c1に運ばれ、この熱交換器本体7c1で、発電機1で発生した熱である冷却媒体8と吸気口11cから流入した外部空気9cとで熱交換が行われ、冷却媒体8が外部空気9cによって冷却されることになる。冷却された冷却媒体8は発電機1内に導かれて発電機1を冷却し、温まった外部空気9cは、排気口12cから排気される。   In the configuration of the present embodiment, the external air 9c flowing in the direction indicated by the arrow 6 enters the intake port 11c installed on the windward side of the intake side duct 7c2 of the heat exchanger body 7c1, while the external air 9c is generated in the generator 1. Heat is transferred to the heat exchanger main body 7c1 by the cooling medium 8, and the heat exchanger main body 7c1 exchanges heat between the cooling medium 8 which is heat generated in the generator 1 and the external air 9c flowing from the intake port 11c. The cooling medium 8 is cooled by the external air 9c. The cooled cooling medium 8 is guided into the generator 1 to cool the generator 1, and the warmed external air 9c is exhausted from the exhaust port 12c.

このような本実施例の構成とすることでも、実施例1と同様な効果を得ることができる。   By adopting such a configuration of the present embodiment, the same effects as those of the first embodiment can be obtained.

尚、洋上に設置される風力発電設備の場合、動力伝達系として、故障確率の高い増速機(ギヤ)を用いないダイレクトドライブの構成が使われる例がある。   In the case of wind power generation facilities installed on the ocean, there is an example in which a direct drive configuration that does not use a gearbox (gear) with a high probability of failure is used as a power transmission system.

この場合、発電機1には、直径の大きな多極機を使うことになるため、図4に示すように、ナセル2は、実施例1に比べて水平方向に短く(矢印6の方向の奥行きが短い)、垂直方向に伸びた(矢印6と垂直な方向が太くなる)形状となり、ダウンウインド方式では、ブレード5の風上側に、形状の大きなナセル2が位置することになる。   In this case, since the generator 1 uses a multi-pole machine having a large diameter, as shown in FIG. 4, the nacelle 2 is shorter in the horizontal direction than the first embodiment (the depth in the direction of the arrow 6). The shape of the nacelle 2 having a large shape is located on the windward side of the blade 5 in the downwind method.

しかし、本実施例によれば、ナセル2の前面で受ける空気の流れの一部を、ナセル2の内部を通して流すことができるため、ナセル2の外面に沿って流れる空気の乱れを軽減でき、結果的に、後流側のブレード5に与える機械的なストレスを軽減することができると言う効果がある。   However, according to the present embodiment, since a part of the air flow received at the front surface of the nacelle 2 can flow through the inside of the nacelle 2, the disturbance of the air flowing along the outer surface of the nacelle 2 can be reduced. Therefore, there is an effect that mechanical stress applied to the blade 5 on the wake side can be reduced.

尚、上述した各実施例では、熱交換器として多管式熱交換器の例につて説明したが、熱交換器は、多管式熱交換器に限定されるものではなく、他の熱交換器を採用しても同様な効果が得られることは言うまでもない。また、主軸13の先に増速ギヤが付いていて、高速軸で発電機1を回す風車もあるが、この場合も本発明に含まれ、上述した効果と同様な効果が得られる。   In each of the above-described embodiments, the example of the multi-tube heat exchanger has been described as the heat exchanger. However, the heat exchanger is not limited to the multi-tube heat exchanger, and other heat exchanges are also possible. It goes without saying that the same effect can be obtained even if a vessel is used. There is also a windmill with a speed increasing gear attached to the tip of the main shaft 13 and rotating the generator 1 with a high speed shaft. This case is also included in the present invention, and the same effect as described above can be obtained.

1…発電機、2…ナセル、2A…ナセルの水平方向直線部、2B…ナセルの曲線部、3…タワー、4…ハブ、5…ブレード、7a、7b、7c…熱交換器、7c1…熱交換器本体、7c2…吸気側ダクト、7c3…排気側ダクト、8…冷却媒体、9a、9b、9c…外部空気、11a、11b、11c…吸気口、12a、12b、12c…排気口、13…主軸、14…ナセルの垂直方向中心   DESCRIPTION OF SYMBOLS 1 ... Generator, 2 ... Nacelle, 2A ... Horizontal linear part of nacelle, 2B ... Curved part of nacelle, 3 ... Tower, 4 ... Hub, 5 ... Blade, 7a, 7b, 7c ... Heat exchanger, 7c1 ... Heat Exchanger body, 7c2 ... intake side duct, 7c3 ... exhaust side duct, 8 ... cooling medium, 9a, 9b, 9c ... external air, 11a, 11b, 11c ... intake port, 12a, 12b, 12c ... exhaust port, 13 ... Main axis, 14 ... Center of nacelle in the vertical direction

Claims (6)

ハブとブレードから成るロータと、該ロータに前記ハブに接続された主軸を介して接続される発電機と、該発電機を少なくとも収納し、前記主軸を介して前記ロータを軸支するナセルと、該ナセルを頂部に支持するタワーとを備え、前記ロータが前記タワーより風下側に位置するダウンウインド方式の風力発電設備において、
前記ロータよりも風上側に位置する前記ナセルは、垂直方向断面における水平方向直線部と、該水平方向直線部から前記ナセルの垂直方向中心に向かう傾斜部とから成り、該ナセルの水平方向直線部と傾斜部の境界部分の外部に熱交換器を設け、該熱交換器によって前記発電機からの冷却媒体が外気と熱交換して冷却されることを特徴とする風力発電設備。
A rotor composed of a hub and blades; a generator connected to the rotor via a main shaft connected to the hub; and a nacelle that houses at least the generator and supports the rotor via the main shaft; A down-wind type wind power generation facility comprising a tower that supports the nacelle at the top, and wherein the rotor is located on the leeward side of the tower,
The nacelle located on the windward side of the rotor is composed of a horizontal straight line portion in a vertical cross section, and an inclined portion directed from the horizontal straight line portion to the vertical center of the nacelle, and the horizontal straight line portion of the nacelle. A wind power generation facility, characterized in that a heat exchanger is provided outside the boundary portion of the inclined portion, and the cooling medium from the generator is cooled by exchanging heat with the outside air by the heat exchanger.
請求項1に記載の風力発電設備において、
前記ナセルの傾斜部は、曲線部又は直線部であることを特徴とする風力発電設備。
The wind power generation facility according to claim 1,
The wind power generation facility, wherein the inclined portion of the nacelle is a curved portion or a straight portion.
請求項1又は2に記載の風力発電設備において、
前記熱交換器は、前記ナセルの周方向に所定間隔をもって複数個設置されていることを特徴とする風力発電設備。
In the wind power generation facility according to claim 1 or 2,
A plurality of the heat exchangers are installed at a predetermined interval in the circumferential direction of the nacelle.
請求項3に記載の風力発電設備において、
前記熱交換器は、前記ナセルの上面部及び側面部に配置されていることを特徴とする風力発電設備。
The wind power generation facility according to claim 3,
The said heat exchanger is arrange | positioned at the upper surface part and side part of the said nacelle, The wind power generation equipment characterized by the above-mentioned.
請求項1乃至4のいずれか1項に記載の風力発電設備において、
前記熱交換器は、外気の吸気口が風上側に位置していることを特徴とする風力発電設備。
The wind power generation facility according to any one of claims 1 to 4,
The wind turbine generator according to claim 1, wherein the heat exchanger has an air intake port located on the windward side.
ハブとブレードから成るロータと、該ロータに前記ハプに接続された主軸を介して接続される発電機と、該発電機を少なくとも収納し、前記主軸を介して前記ロータを軸支するナセルと、該ナセルを頂部に支持するタワーとを備え、前記ロータが前記タワーより風下側に位置するダウンウインド方式の風力発電設備において、
前記ロータよりも風上側に位置する前記ナセル内に、前記発電機からの冷却媒体を外気と熱交換して冷却する熱交換器を設け、該熱交換器は、熱交換器本体と、該熱交換器本体と接続する吸気側ダクト及び排気側ダクトから成ると共に、前記吸気側ダクトの吸気口が風上側に、前記排気ダクトの排気口が風下側に位置し、前記排気側ダクトは、風下側に向かって下側を向くように配置され、かつ、前記排気側ダクトの排気口が下側を向いていることを特徴とする風力発電設備。
A rotor composed of a hub and blades, a generator connected to the rotor via a main shaft connected to the hap, a nacelle that houses at least the generator and supports the rotor via the main shaft; A down-wind type wind power generation facility comprising a tower that supports the nacelle at the top, and wherein the rotor is located on the leeward side of the tower,
A heat exchanger that cools the cooling medium from the generator by exchanging heat with outside air is provided in the nacelle located on the windward side of the rotor, and the heat exchanger includes a heat exchanger body, the heat exchanger, and the heat exchanger. together consisting intake duct and exhaust duct connected to the exchanger body, the intake port windward side of the intake side duct, the exhaust port of the exhaust duct is positioned on the leeward side, the exhaust-side duct leeward A wind power generation facility, wherein the wind turbine generator is disposed so as to face downward toward the side, and an exhaust port of the exhaust side duct faces downward .
JP2013555023A 2012-01-23 2012-01-23 Wind power generation equipment Expired - Fee Related JP5703397B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/051312 WO2013111259A1 (en) 2012-01-23 2012-01-23 Wind power generating equipment

Publications (2)

Publication Number Publication Date
JP5703397B2 true JP5703397B2 (en) 2015-04-15
JPWO2013111259A1 JPWO2013111259A1 (en) 2015-05-11

Family

ID=48873031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013555023A Expired - Fee Related JP5703397B2 (en) 2012-01-23 2012-01-23 Wind power generation equipment

Country Status (3)

Country Link
JP (1) JP5703397B2 (en)
TW (1) TWI541435B (en)
WO (1) WO2013111259A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2843810B1 (en) * 2013-09-03 2019-06-19 Siemens Gamesa Renewable Energy A/S Generator for a wind turbine
JP6357307B2 (en) * 2013-09-30 2018-07-11 株式会社日立製作所 Wind power generation equipment
JP6200748B2 (en) * 2013-09-30 2017-09-20 株式会社日立製作所 Wind power generation equipment
CN107420273B (en) * 2017-08-14 2020-09-25 山东中车风电有限公司 Environment control mechanism, system and application of offshore wind generating set
CN108443090A (en) * 2018-01-30 2018-08-24 内蒙古久和能源装备有限公司 A kind of wind generator unit wheel hub component ventilation heat abstractor
JP6648174B2 (en) * 2018-03-08 2020-02-14 株式会社日立製作所 Wind power generation equipment
CN108612632A (en) * 2018-07-05 2018-10-02 国电联合动力技术有限公司 Wind turbine gearbox heat exchange mechanisms and wind power generating set containing the mechanism
EP3908748A1 (en) 2019-01-10 2021-11-17 Vestas Wind Systems A/S Improvements relating to cooling of electrical generators in wind turbines

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510492A (en) * 1999-09-24 2003-03-18 ラヘルウェイ・ウィントトゥルビネ・ベスローテン・フェンノートシャップ Wind generator
DE10351844A1 (en) * 2003-11-06 2005-06-09 Alstom Wind power plant for producing electricity has electrical components connected to radiator projecting through cutout in shell of gondola
JP2008255922A (en) * 2007-04-06 2008-10-23 Fuji Heavy Ind Ltd Horizontal axis wind turbine
DE102007042338A1 (en) * 2007-09-06 2009-03-12 Siemens Ag Wind turbine with heat exchanger system
DE102008050848A1 (en) * 2008-10-08 2010-04-15 Wobben, Aloys ring generator
WO2010048560A2 (en) * 2008-10-24 2010-04-29 Lew Holdings, Llc Offshore wind turbines and deployment methods therefor
JP2011196183A (en) * 2010-03-17 2011-10-06 Mitsubishi Heavy Ind Ltd Wind turbine generator
JP2012501401A (en) * 2008-09-01 2012-01-19 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Wind turbine nacelle cooling system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510492A (en) * 1999-09-24 2003-03-18 ラヘルウェイ・ウィントトゥルビネ・ベスローテン・フェンノートシャップ Wind generator
DE10351844A1 (en) * 2003-11-06 2005-06-09 Alstom Wind power plant for producing electricity has electrical components connected to radiator projecting through cutout in shell of gondola
JP2008255922A (en) * 2007-04-06 2008-10-23 Fuji Heavy Ind Ltd Horizontal axis wind turbine
DE102007042338A1 (en) * 2007-09-06 2009-03-12 Siemens Ag Wind turbine with heat exchanger system
JP2012501401A (en) * 2008-09-01 2012-01-19 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Wind turbine nacelle cooling system
DE102008050848A1 (en) * 2008-10-08 2010-04-15 Wobben, Aloys ring generator
WO2010048560A2 (en) * 2008-10-24 2010-04-29 Lew Holdings, Llc Offshore wind turbines and deployment methods therefor
JP2011196183A (en) * 2010-03-17 2011-10-06 Mitsubishi Heavy Ind Ltd Wind turbine generator

Also Published As

Publication number Publication date
TWI541435B (en) 2016-07-11
WO2013111259A1 (en) 2013-08-01
JPWO2013111259A1 (en) 2015-05-11
TW201348581A (en) 2013-12-01

Similar Documents

Publication Publication Date Title
JP5703397B2 (en) Wind power generation equipment
US9022721B2 (en) Vertical axis wind turbine
EP2275672B1 (en) Boundary layer fins for wind turbine blade
JP5002309B2 (en) Horizontal axis windmill
JP6128575B2 (en) Fluid power generation method and fluid power generation apparatus
US20060113804A1 (en) Passively cooled direct drive wind turbine
US20130170986A1 (en) Windtracker twin-turbine system
JP2004528509A (en) Collecting wind power generation method and its equipment
EP2762719B1 (en) Omnidirectional turbine
JP2006300030A (en) Windmill device and wind power generation device using the same
Zhu et al. Investigation on aerodynamic characteristics of building augmented vertical axis wind turbine
WO2013073930A1 (en) Wind and exhaust air energy recovery system
CN103629050B (en) Pass through eddy flow aerogenerator
CN110242496B (en) Swing vane type diversion vertical axis wind turbine
RU2642706C2 (en) The wind-generating tower
JP2011012588A (en) Straight blade multiple orbit arrangement vertical shaft type turbine and power generating apparatus
TW202233958A (en) Wind power generator installable on moving body
RU158481U1 (en) WIND ENGINE
JP6074033B2 (en) Wind power generation equipment
CN101504257A (en) Air cooling island and wind power generation integrated apparatus of direct air-cooling power station
Kulkarni et al. Comprehensive Evaluation of Some Innovative Wind Turbines
Gwani Design and testing of a novel building integrated cross axis wind turbine/Gwani Mohammed
JP2020186697A (en) Wind mill blade and wind power generation device
Mohammed Design and Testing of a Novel Building Integrated Cross Axis Wind Turbine
Jericha et al. Novel Vertical-Axis Wind Turbine With Articulated Blading

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150223

R150 Certificate of patent or registration of utility model

Ref document number: 5703397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees