JP2013002292A - ターボチャージャ - Google Patents

ターボチャージャ Download PDF

Info

Publication number
JP2013002292A
JP2013002292A JP2011131121A JP2011131121A JP2013002292A JP 2013002292 A JP2013002292 A JP 2013002292A JP 2011131121 A JP2011131121 A JP 2011131121A JP 2011131121 A JP2011131121 A JP 2011131121A JP 2013002292 A JP2013002292 A JP 2013002292A
Authority
JP
Japan
Prior art keywords
nozzle vane
exhaust gas
shroud
turbocharger
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011131121A
Other languages
English (en)
Inventor
Keitaro Miyazawa
啓太郎 宮澤
Kenichi Nagao
健一 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011131121A priority Critical patent/JP2013002292A/ja
Publication of JP2013002292A publication Critical patent/JP2013002292A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)

Abstract

【課題】ターボチャージャにおいて、組立て工程を簡素化すると共に、さらなるタービン効率の向上を図る。
【解決手段】隙間空間10とタービンインペラ21の下流側領域とを隔離するシール部25と、シュラウド23と一体形成されると共に、ノズルベーン部27の上流側領域から隙間空間10に流れ込む排気ガスXの流れを遮ることにより隙間空間10における貫通孔23bの露出領域を翼体27aの配置領域よりも低圧とする防風壁24とを備える。
【選択図】図1

Description

本発明は、ターボチャージャに関するものである。
従来から、ターボチャージャは、タービンインペラを囲むと共に当該タービンインペラに排気ガスを供給するためのノズルを備えている。
そして、可変容量型のターボチャージャは、翼体と当該翼体と一体とされた軸部とを備えるノズルベーン部を上述のノズルに対して複数備えている。このような可変容量型のターボチャージャでは、ノズルベーン部が備える翼体の回動角度を調節することによってタービンの容量を可変としている。
ところで、ターボチャージャは、タービンインペラが備える翼部のチップに対向配置されてタービンインペラと流路壁面との隙間を調節するためのシュラウドを備えている。そして、上述のノズルを形成する流路壁の片側は、当該シュラウドによって形成されている。
そして、特許文献1に示されるように、ノズルベーン部の翼体とシュラウドとの隙間を小さく保つことによって、タービン効率を向上させることができる。
特許文献1に開示されたターボチャージャにおいては、シュラウドに対してノズルベーン部の翼体と反対側に配置されるタービンハウジングの壁部と、シュラウドとの間に設けられた隙間空間をカバーによってノズルの上流側空間(スクロール流路)から封止する方法が提案されている。
このような特許文献1に開示されたターボチャージャによれば、隙間空間の圧力をノズルよりも低下させ、シュラウドに設けられたノズルベーン部の軸部が挿入される貫通孔を介してノズルベーン部の翼体をシュラウド側に押し付ける排気ガス流れを形成することができる。
この結果、特許文献1に開示されたターボチャージャでは、シュラウドとノズルベーン部の翼体との隙間が小さくなり、タービン効率が向上する。
特開2009−144545号公報
しかしながら、特許文献1に開示されたターボチャージャを組み立てる際には、タービンハウジングとシュラウドとの間に上述のカバーを圧入する工程を設ける必要がある。
このため、ターボチャージャの組立て作業が煩雑化すると共にターボチャージャの製造コストの増大につながる。
また、特許文献1に開示されたターボチャージャでは、シュラウドに設けられた貫通孔を介してタービンインペラを通過しない排気ガス流れ(漏れ流れ)が発生するため、この漏れ流れがタービン効率のさらなる向上への妨げとなる。
本発明は、上述する問題点に鑑みてなされたもので、組立て工程が簡素化されると共に、さらなるタービン効率の向上が可能なターボチャージャを提供することを目的とする。
本発明は、上記課題を解決するための手段として、以下の構成を採用する。
第1の発明は、翼体と当該翼体に連結される軸部とを有し、タービンインペラのチップ側を囲うシュラウドに対して設けられた貫通孔に対して上記軸部が挿入されて軸支されるノズルベーン部を備えるターボチャージャであって、上記タービンインペラ及び上記シュラウドを囲うと共に上記ノズルベーン部の翼体と反対側にて上記シュラウドとの間に上記隙間空間を形成するタービンハウジングと、上記隙間空間と上記タービンインペラの下流側領域とを隔離するシール部と、上記シュラウドあるいは上記タービンハウジングと一体形成されると共に、上記ノズルベーン部の上流側領域から上記隙間空間に流れ込む排気ガス流れを遮ることにより上記隙間空間における上記貫通孔の露出領域を上記翼体の配置領域よりも低圧とする防風壁とを備えるという構成を採用する。
第2の発明は、上記第1の発明において、上記ノズルベーン部が上記タービンインペラ周りに環状に複数配列され、上記防風壁が上記ノズルベーン部の配列方向に沿って環状に突出して設けられているという構成を採用する。
第3の発明は、上記第1の発明において、上記ノズルベーン部が上記タービンインペラ周りに環状に複数配列され、上記防風壁が上記ノズルベーンごとに複数設けられているという構成を採用する。
第4の発明は、上記第3の発明において、上記防風壁の上記排気ガスとの衝突面が、上記貫通孔の露出領域に向けて拡がる三角形状を有しているという構成を採用する。
第5の発明は、上記第3または第4の発明において、上記防風壁の上記排気ガスとの衝突面が、上記貫通孔の露出領域から離れた側の端部が上記排気ガスの流れ方向の上流側に迫り出した傾斜面とされているという構成を採用する。
第6の発明は、上記第3〜第5いずれかの発明において、上記防風壁が、上記翼体への排気ガスの流入方向において上記貫通孔の露出領域の上流側に配置されているという構成を採用する。
第7の発明は、上記第3〜第6いずれかの発明において、環状に配列された上記ノズルベーン部の外側にて上記ノズルベーン部の配列方向に沿って上記排気ガスを案内するスクロール流路を備え、上記スクロール流路の上流側に位置する上記防風壁が上記スクロール流路の下流側に位置する防風壁よりも大きく形状設定されているという構成を採用する。
本発明によれば、タービンハウジングとシュラウドとの間の隙間空間がシール部によってタービンインペラの下流側領域と隔離され、この上で、隙間空間においてシュラウドに設けられた貫通孔が露出する領域へ向かう排気ガス流れが防風壁によって遮られる。
このように防風壁によって貫通孔が露出する領域へ向かう排気ガス流れを遮ることにより、乱流が形成されて貫通孔の露出領域が上記翼体の配置領域よりも低圧となる。この結果、貫通孔に軸部を挿通するノズルベーン部がシュラウド側に引き寄せられ、タービン効率が向上する。
さらに、本発明においては、シール部によって隙間空間がタービンインペラの下流側領域と隔離されているため、貫通孔を通過する排気ガスは、再びノズルの上流側に還流する。このため、タービンインペラを通過しないでタービンインペラの下流側に漏れる漏れ流れが発生することがなく、さらにタービン効率を向上させることができる。
そして、本発明によれば、上述の防風壁がシュラウドあるいはタービンハウジングと一体形成されている。
このため、ターボチャージャを組み立てる際に、シュラウドとタービンハウジングとの間にカバーを圧入する必要がなく、組立て作業を簡素化することができる。
このように、本発明によれば、ターボチャージャにおいて、組立て工程が簡素化されると共に、さらなるタービン効率の向上が可能となる。
本発明の第1実施形態におけるターボチャージャの概略構成を模式的に示す断面図である。 本発明の第1実施形態におけるターボチャージャが備えるシュラウドの正面図である。 本発明の第2実施形態におけるターボチャージャが備えるタービンハウジングとシュラウドとを含む模式図である。 本発明の第2実施形態におけるターボチャージャが備える防風壁の変形例を示す斜視図である。
以下、図面を参照して、本発明に係るターボチャージャの一実施形態について説明する。なお、以下の図面において、各部材を認識可能な大きさとするために、各部材の縮尺を適宜変更する。
(第1実施形態)
図1は、本実施形態のターボチャージャ1の概略構成を示す断面図である。
この図に示すように、本実施形態のターボチャージャ1は、タービン2と、コンプレッサ3と、軸部4とを備えている。
タービン2は、外部のエンジンから供給される排気ガスに含まれるエネルギを回転動力として回収するものであり、タービンインペラ21と、タービンハウジング22と、シュラウド23と、防風壁24と、シールリング25(シール部)と、ノズルプレート26と、ノズルベーン部27と、駆動部28とを備えている。
タービンインペラ21は、供給される排気ガスによって回転駆動され、これによって回転動力を生成するものである。
そして、このタービンインペラ21は、排気ガスを受ける翼部21aと、当該翼部21aが設けられる基部21bとを備えるラジアルインペラとされている。
タービンハウジング22は、タービン2の外形形状を形作ると共に、内部にタービンインペラ21、シュラウド23、防風壁24、シールリング25、ノズルプレート26及びノズルベーン部27等を収容している。
また、タービンハウジング22の内部には、タービンインペラ21に排気ガスを供給するノズルN周りに形成されてエンジンから供給された排気ガスを当該ノズルNに供給するためのスクロール流路22aと、タービンインペラ21を通過して排気ガスをタービン2の外部に排出する排気流路22bが設けられている。
シュラウド23は、タービンインペラ21の翼部21aと流路壁との間の隙間を調節するものであり、当該翼部21aのチップ側を囲って配置されている。
また、図1の拡大図に示すように、シュラウド23には、タービンインペラ21の半径方向(回転軸と直交する方向)に延在する延在部23aが設けられている。
この延在部23aは、ノズルプレート26と対向配置されている。そして、シュラウド23の延在部23aとノズルプレート26とによって挟まれた領域が、上述のノズルNとして機能するように構成されている。
なお、ノズルNには、後述するノズルベーン部27の翼体27aが配置されている。そして、タービンハウジング22は、ノズルベーン部27の翼体27aと反対側にてシュラウド23との間に隙間空間10を形成している。
そして、シュラウド23には、ノズルNから上記隙間空間10に貫通する貫通孔23bが設けられている。なお、当該貫通孔23bは、後述するノズルベーン部27の軸部27bが挿入されるものであり、ノズルベーン部27の数に合わせて、タービンインペラ21の回転軸を中心として環状に複数設けられている。
防風壁24は、シュラウド23と一体的に形成されており、シュラウド23の表面からタービンハウジング22に向けて突出して設けられている。
図2は、シュラウド23の正面図である。この図に示すように、防風壁24は、タービンインペラ21周りに環状に配列される複数のノズルベーン部27の配列方向(すなわち貫通孔23bの配列方向)に沿って環状に突出して設けられている。
この防風壁24は、図1の拡大図に示すように、ノズルベーン部27の上流側領域であるスクロール流路22aから隙間空間10に流れ込む排気ガスXの流れを遮ることにより自らの下流側に乱流を形成し、これによって隙間空間10における貫通孔23bの露出領域Rを翼体27aの配置領域(すなわちノズルN)よりも低圧とする。
シールリング25は、隙間空間10とタービンインペラ21の下流側領域である排気流路22bとを隔離するものである。
このシールリング25は、図1の拡大図に示すように、シュラウド23に設けられた貫通孔23bよりも排気流路22b寄りの領域においてシュラウド23とタービンハウジング22とに当接されて配置されている。
ノズルプレート26は、上述のように、シュラウド23の延在部23aに対向配置されることによってノズルNを形成すると共に、シュラウド23と共にノズルベーン部27を軸支するものである。
このノズルプレート26は、ノズルNの形成方向(すなわちノズルベーン部27の配列方向)に沿って環状に形状設定されている。
ノズルベーン部27は、ノズルNにおける流路断面を調節することによってタービン2の容量を可変とするものであり、タービンインペラ21を囲って複数配置されている。
より詳細には、ノズルベーン部27は、ノズルNに配置される翼体27aと、当該翼体27aに一体的に設けられる軸部27bとを備えている。そして、軸部27bがシュラウド23の貫通孔23bと不図示のノズルプレート26の貫通孔とに挿入されることによってノズルベーン部27が軸支されている。
駆動部28は、ノズルプレート26の貫通孔を貫通した軸部27bの先端に接続され、当該軸部27bを回転駆動することによって翼体27aを回動するものである。
次に、コンプレッサ3は、上述のタービン2によって生成された回転動力によって駆動され、外部のエンジンに対して供給する圧縮空気を生成するものである。
軸部4は、タービン2とコンプレッサ3とを接続するものであり、シャフトを介してタービン2によって生成された回転動力をコンプレッサ3に伝達する。
このような構成を有する本実施形態のターボチャージャ1においては、タービン2のスクロール流路22aに対して排気ガスが供給されると、当該排気ガスがノズルNを介してタービンインペラ21に供給され、これによってタービンインペラ21が回転駆動されて回転動力が生成される。
そして、当該回転動力が軸部4を介してコンプレッサ3に伝達され、コンプレッサ3において圧縮空気が生成される。
ここで、本実施形態のターボチャージャ1によれば、タービンハウジング22とシュラウド23との間の隙間空間10がシールリング25によってタービンインペラ21の下流側領域(排気流路22b)と隔離され、この上で、隙間空間10においてシュラウド23に設けられた貫通孔23bが露出する領域へ向かう排気ガスXの流れが防風壁24によって遮られる。
このように防風壁24によって貫通孔23bが露出する領域へ向かう排気ガスXの流れを遮ることにより、防風壁24の下流側に乱流が形成されて貫通孔23bの露出領域が翼体27aの配置領域(ノズルN)よりも低圧となる。この結果、貫通孔23bに軸部27bを挿通するノズルベーン部27がシュラウド側に引き寄せられて翼体27aの下流側での渦流れの発生を抑制し、タービン効率が向上する。
さらに、本実施形態のターボチャージャ1においては、シールリング25によって隙間空間10がタービンインペラ21の下流側領域(排気流路22b)と隔離されているため、貫通孔23bを通過する排気ガスは、再びノズルNの上流側に還流する。このため、タービンインペラ21を通過しないでタービンインペラ21の下流側に漏れる漏れ流れが発生することがなく、さらにタービン効率を向上させることができる。
また、本実施形態のターボチャージャ1によれば、防風壁24がシュラウド23と一体形成されている。
このため、ターボチャージャ1を組み立てる際に、シュラウド23とタービンハウジング22との間にカバーを圧入する必要がなく、組立て作業を簡素化することができる。
したがって、本実施形態のターボチャージャ1によれば、組立て工程が簡素化されると共に、さらなるタービン効率の向上が可能となる。
また、本実施形態のターボチャージャ1によれば、防風壁24がノズルベーン部27の配列方向に沿って環状に細長く設けられた構成を採用している。
このため、タービンインペラ21の回転軸を中心とする全周において確実に低圧の領域を形成することができる。
(第2実施形態)
次に、本発明の第2実施形態について説明する。なお、本実施形態の説明において、上記第1実施形態と同様の部分については、その説明を省略あるいは簡略化する。
図3は、本実施形態のターボチャージャが備えるタービンハウジング22及びシュラウド23等を抜き出してタービンインペラ21の回転軸方向から見た模式図である。
この図に示すように、本実施形態のターボチャージャは、上記第1実施形態のターボチャージャ1が備える防風壁24に換えて、ノズルベーン部27(各貫通孔23b)ごとに設置される防風壁24Aを備えている。
これらの防風壁24Aは、貫通孔23bに対してタービンインペラ21の半径方向に変位した位置に配置されるのではなく、翼体27aへの排気ガスの流入方向において貫通孔23bの上流側に配置されるように、貫通孔23bに対して上記半径方向から斜めにずれた位置に配置されている。
なお、図3に示すように、スクロール流路22aは、タービンハウジング22の内部に設けられた舌部22cに向けて徐々に流路面積が減少する。つまり、スクロール流路22aの上流側は流路面積が広くて排気ガスの流量が多く、スクロール流路22aの下流側は流路面積が狭くて排気ガスの流量が少ない。
そして、本実施形態のターボチャージャにおいては、図3に示すように、スクロール流路22aの上流側に位置する防風壁24Aがスクロール流路22aの下流側に位置する防風壁24Aよりも大きく形状設定されている。
排気ガスの流量が多い場合には、防風壁24Aによって形成される乱流も大きくなるために乱流形成領域での圧力低下が大きい。一方、排気ガスの流量が少ない場合には、防風壁24Aによって形成される乱流も小さくなるために乱流形成領域での圧力低下が小さい。
このため、排気ガスの流量が多い領域の防風壁24Aを大きくすることによって乱流の形成位置が貫通孔23bの露出領域から遠のき、これによって貫通孔23bでの圧力低下を緩和することができる。
また、排気ガスの流量が少ない領域の防風壁24Aを小さくすることによって乱流の形成位置を貫通孔23bの露出領域に近づき、これによって貫通孔23bでの圧力低下効果を高めることができる。
この結果、全ての貫通孔23bの露出領域での圧力低下のばらつきを小さくすることができ、全てのノズルベーン部27を同様の力でシュラウド23側に付勢することが可能となる。
このように、本実施形態のターボチャージャのように貫通孔23bの各々に対して防風壁24Aを配置することによって、貫通孔23bの配置位置に応じた乱流を形成することができ、ノズルベーン部27のシュラウド23側への付勢力を調節することが可能となる。
なお、図4(a)に示すように、排気ガスXとの衝突面Mが、その上側端部(貫通孔23bの露出領域から離れた側の端部)が排気ガスXの流れ方向の上流側に迫り出した傾斜面とされた防風壁24Bを防風壁24Aに換えて設置しても良い。
このように衝突面Mが傾斜されることによって、乱流が下方に向かって流れ、より効率的に貫通孔23bの露出領域での圧力低下を図ることが可能となる。
また、排気ガスXの流れ方向から見た衝突面Mの形状が貫通孔23bの露出領域(すなわち貫通孔23bの開口が設けられるシュラウド23の外側表面)に向けて拡がる三角形となるように、図4(b)に示すような三角錐形状の防風壁24Cや図4(c)に示すような円錐形状の防風壁24Dを設置しても良い。
このように排気ガスXの流れ方向から見た衝突面Mの形状が貫通孔23bの露出領域に向けて拡がる三角形となることによって、乱流を下方に集めより効率的に貫通孔23bの露出領域での圧力低下を図ることが可能となる。
さらに、図4(d)に示すように衝突面Mを図4(a)と同様に傾斜させた三角錐形状の防風壁24Eを設置しても良い。
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は、上記実施形態に限定されないことは言うまでもない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
例えば、上記実施形態においては、防風壁をシュラウド23に対して一体形成する構成について説明した。
しかしながら、本発明はこれに限定されるものではなく、防風壁をタービンハウジング22に一体形成する構成を採用することもできる。
また、上記第2実施形態においては、全ての貫通孔23bに対応して防風壁を設置する構成について説明した。
しかしながら、本発明はこれに限定されるものではなく、いずれかの貫通孔23bに対応して防風壁を設置しない構成を採用することも可能である。
例えば、防風壁の幅が貫通孔23bの幅の2倍より小さくなると、防風壁の効果が大きく低減する可能性がある。このため、幅が貫通孔23bの2倍よりも小さな防風壁を設置しない構成を採用することもできる。
1……ターボチャージャ、2……タービン、10……隙間空間、21……タービンインペラ、22……タービンハウジング、22a……スクロール流路、23……シュラウド、23b……貫通孔、24,24A〜24E……防風壁、25……シールリング(シール部)、27……ノズルベーン部、27a……翼体、27b……軸部、R……露出領域、N……ノズル、M……衝突面、X……排気ガス

Claims (7)

  1. 翼体と当該翼体に連結される軸部とを有し、タービンインペラのチップ側を囲うシュラウドに対して設けられた貫通孔に対して前記軸部が挿入されて軸支されるノズルベーン部を備えるターボチャージャであって、
    前記タービンインペラ及び前記シュラウドを囲うと共に前記ノズルベーン部の翼体と反対側にて前記シュラウドとの間に前記隙間空間を形成するタービンハウジングと、
    前記隙間空間と前記タービンインペラの下流側領域とを隔離するシール部と、
    前記シュラウドあるいは前記タービンハウジングと一体形成されると共に、前記ノズルベーン部の上流側領域から前記隙間空間に流れ込む排気ガス流れを遮ることにより前記隙間空間における前記貫通孔の露出領域を前記翼体の配置領域よりも低圧とする防風壁と
    を備えることを特徴とするターボチャージャ。
  2. 前記ノズルベーン部が前記タービンインペラ周りに環状に複数配列され、
    前記防風壁が前記ノズルベーン部の配列方向に沿って環状に突出して設けられている
    ことを特徴とする請求項1記載のターボチャージャ。
  3. 前記ノズルベーン部が前記タービンインペラ周りに環状に複数配列され、
    前記防風壁が前記ノズルベーンごとに複数設けられている
    ことを特徴とする請求項1記載のターボチャージャ。
  4. 前記防風壁の前記排気ガスとの衝突面は、前記貫通孔の露出領域に向けて拡がる三角形状を有していることを特徴とする請求項3記載のターボチャージャ。
  5. 前記防風壁の前記排気ガスとの衝突面は、前記貫通孔の露出領域から離れた側の端部が前記排気ガスの流れ方向の上流側に迫り出した傾斜面とされていることを特徴とする請求項3または4記載のターボチャージャ。
  6. 前記防風壁は、前記翼体への排気ガスの流入方向において前記貫通孔の露出領域の上流側に配置されていることを特徴とする請求項3〜5いずれかに記載のターボチャージャ。
  7. 環状に配列された前記ノズルベーン部の外側にて前記ノズルベーン部の配列方向に沿って前記排気ガスを案内するスクロール流路を備え、
    前記スクロール流路の上流側に位置する前記防風壁が前記スクロール流路の下流側に位置する防風壁よりも大きく形状設定されている
    ことを特徴とする請求項3〜6いずれかに記載のターボチャージャ。
JP2011131121A 2011-06-13 2011-06-13 ターボチャージャ Withdrawn JP2013002292A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011131121A JP2013002292A (ja) 2011-06-13 2011-06-13 ターボチャージャ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011131121A JP2013002292A (ja) 2011-06-13 2011-06-13 ターボチャージャ

Publications (1)

Publication Number Publication Date
JP2013002292A true JP2013002292A (ja) 2013-01-07

Family

ID=47671136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011131121A Withdrawn JP2013002292A (ja) 2011-06-13 2011-06-13 ターボチャージャ

Country Status (1)

Country Link
JP (1) JP2013002292A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019123566A1 (ja) * 2017-12-20 2020-11-19 三菱重工エンジン&ターボチャージャ株式会社 タービン及びターボチャージャ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019123566A1 (ja) * 2017-12-20 2020-11-19 三菱重工エンジン&ターボチャージャ株式会社 タービン及びターボチャージャ

Similar Documents

Publication Publication Date Title
KR101200627B1 (ko) 래디얼 터빈의 스크롤 구조
US8438854B2 (en) Pre-diffuser for centrifugal compressor
KR101305575B1 (ko) 터빈 동익 및 터보 기계
EP2878771B1 (en) Axial flow fluid machine
JP5461905B2 (ja) スロット付き圧縮機ディフューザ及び関連する方法
JP2008057416A (ja) 軸流タービン
JP2009508031A (ja) グロメットを有するベーンアッセンブリ
JP2009085185A (ja) 軸流タービンおよび軸流タービン段落構造
JP2015524896A (ja) タービンエンジン用シールに関するシステムおよび装置
JP5586407B2 (ja) ターボ機械用の成形ハニカムシール
JP5850805B2 (ja) 蒸気タービンの排気室およびその製造方法
JP5567036B2 (ja) 低ギャップ損失および低拡散器損失を備えたガスタービンのための軸流ターボコンプレッサ
US20160201571A1 (en) Turbomachine having a gas flow aeromechanic system and method
JP6844619B2 (ja) 過給機
WO2015137393A1 (ja) シュラウド、動翼体、及び回転機械
JP2013002292A (ja) ターボチャージャ
JP4220947B2 (ja) 燃焼器尾筒とタービン入口との連通構造
JP2012067604A (ja) 蒸気タービンの排気室、およびその改造方法
JP2013148084A (ja) ブレード調整システムを含むターボ機械
JP5781461B2 (ja) 圧縮機
CN110475948B (zh) 燃气轮机
JP2018105221A (ja) ディフューザ、タービン及びガスタービン
JP2018025125A (ja) 過給機
WO2021199718A1 (ja) 二次流れ抑制構造
US9593691B2 (en) Systems and methods for directing a flow within a shroud cavity of a compressor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902