JP2013000867A - Deflection accuracy measuring method and grinding machine - Google Patents

Deflection accuracy measuring method and grinding machine Download PDF

Info

Publication number
JP2013000867A
JP2013000867A JP2011137347A JP2011137347A JP2013000867A JP 2013000867 A JP2013000867 A JP 2013000867A JP 2011137347 A JP2011137347 A JP 2011137347A JP 2011137347 A JP2011137347 A JP 2011137347A JP 2013000867 A JP2013000867 A JP 2013000867A
Authority
JP
Japan
Prior art keywords
grinding
change
normal
diameter
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011137347A
Other languages
Japanese (ja)
Other versions
JP5724666B2 (en
Inventor
Hayaki Sakai
隼樹 酒井
Masashi Yoritsune
昌史 頼経
Makoto Nonoyama
眞 野々山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2011137347A priority Critical patent/JP5724666B2/en
Publication of JP2013000867A publication Critical patent/JP2013000867A/en
Application granted granted Critical
Publication of JP5724666B2 publication Critical patent/JP5724666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a deflection accuracy measuring method for measuring vibration precision while grinding and a grinder for performing contact removal grinding and cutting in accordance with a deflection amount measured.SOLUTION: A displacement change Δs=s-sat a prescribed angle Θof rotation and a warp change Δti=t-ti being an amount of change of warp are used to calculate a radius size change corresponding to the angle Θof rotation with a surface position sof a processing part at point A satisfying Θ=0 measured by a surface position measuring device 85 during one rotation of a workpiece W in the midst of grinding and warp tas reference. Deflection Fis calculated by adding to the radius size change correction of a decrease (D-D) in a diameter of the workpiece by grinding and cutting which is measured by a workpiece diameter measuring device 83, and a maximum difference in value of deflection Franging from Θ=0 to Θ=360 is defined as deflection accuracy Fm in the processing part. On the basis of the deflection accuracy Fm, a deflection removal grinding and cutting process is performed.

Description

本発明は、研削加工中に工作物の加工部位の回転中心に対する振れを測定する振れ精度測定方法および研削盤に関するものである。   The present invention relates to a runout accuracy measuring method and a grinder for measuring runout with respect to the center of rotation of a processed part of a workpiece during grinding.

研削盤においては、工作物を高精度かつ高能率に研削することを目的として、工作物の加工部位の振れ精度を振れ取研削開始前に機上で測定し、そのデータに基づき振れ取り研削をする従来技術1(例えば、特許文献1参照)がある。   In the grinding machine, in order to grind the workpiece with high accuracy and high efficiency, the runout accuracy of the processed part of the workpiece is measured on the machine before the start of runout grinding, and the runout grinding is performed based on the data. There is a related art 1 (see, for example, Patent Document 1).

特開2004−181537号公報JP 2004-181537 A

従来技術1では、振れ量に応じた振れ除去研削を実施できるが、振れ精度の測定中は研削を中断するため、研削終了までに時間を要する。   In Prior Art 1, run-out removal grinding according to run-out amount can be performed, but since grinding is interrupted during run-out accuracy measurement, it takes time to finish grinding.

本発明は上記事情に鑑みてなされたものであり、振れ精度を研削中に測定できる振れ精度測定方法と、測定された振れ量に応じて振れ除去研削を実施でき、無駄な研削時間を消費しない研削盤を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a runout accuracy measuring method capable of measuring runout accuracy during grinding, and runout removal grinding can be performed according to the measured runout amount, and wasteful grinding time is not consumed. An object is to provide a grinding machine.

上記の課題を解決するため、請求項1に係る発明の特徴は、円筒状の工作物を回転支持して加工部を研削する研削中に前記加工部の精度を測定する振れ精度測定方法において、
前記工作物の研削中の1回転の間に、前記砥石車の切込み方向における研削点と対向する前記加工部の表面の位置である表面位置と、この時作用している法線研削抵抗力を同時に測定し、
測定開始位置における前記表面位置と、前記測定開始位置から所定の角度Θ回転した位置における前記表面位置と、の差を表面変化Δs(Θ)とし、
前記測定開始位置における前記法線研削抵抗力と、前記測定開始位置から所定の角度Θ回転した位置における前記法線研削抵抗力と、の差を抵抗力変化ΔR(Θ)とし、
測定開始位置を含む前記加工部の直径である開始位置直径Dと、測定終了位置を含む前記加工部の直径である終了位置直径D360とを測定し、外径寸法変化ΔDをΔD=D−D360で演算し、
研削時の前記加工部の剛性kと前記抵抗力変化ΔR(Θ)を用いて前記加工部のたわみ変化Δt(Θ)を演算し、
前記表面変化Δs(Θ)に対して、前記たわみ変化Δt(Θ)と、前記外径寸法変化ΔDを回転角度Θに応じて按分した補正値と、を用いて補正して振れF(Θ)を演算し、
前記振れF(Θ)の最大値と最小値の差を振れ精度Fmとして演算することである。
In order to solve the above-mentioned problem, the feature of the invention according to claim 1 is the runout accuracy measuring method for measuring the accuracy of the processed portion during grinding of rotating and supporting a cylindrical workpiece to grind the processed portion.
During one rotation during grinding of the workpiece, the surface position, which is the surface position of the processing part facing the grinding point in the cutting direction of the grinding wheel, and the normal grinding resistance acting at this time Measure at the same time,
The difference between the surface position at the measurement start position and the surface position at a position rotated by a predetermined angle Θ from the measurement start position is defined as a surface change Δs (Θ),
The difference between the normal grinding resistance force at the measurement start position and the normal grinding resistance force at a position rotated by a predetermined angle Θ from the measurement start position is defined as a resistance change ΔR (Θ).
The start position diameter D 0 that is the diameter of the processed part including the measurement start position and the end position diameter D 360 that is the diameter of the processed part including the measurement end position are measured, and the outer diameter dimensional change ΔD is expressed as ΔD = D. Calculate with 0- D 360 ,
The bending change Δt (Θ) of the processed part is calculated using the rigidity k of the processed part during grinding and the resistance change ΔR (Θ),
With respect to the surface change Δs (Θ), the deflection Ft (Θ) is corrected by using the deflection change Δt (Θ) and the correction value obtained by apportioning the outer diameter dimensional change ΔD according to the rotation angle Θ. And
The difference between the maximum value and the minimum value of the shake F (Θ) is calculated as the shake accuracy Fm.

請求項2に係る発明の特徴は、円筒状の工作物を回転支持して砥石車により加工部を研削する研削盤において、
前記加工部の外径寸法を測定する工作物径測定部と、
前記砥石車の切込み方向における前記加工部の表面の位置を測定する位置測定部と、
研削中の法線抵抗力を測定する法線抵抗力測定部と、
前記工作物の研削中の1回転の間に、測定開始位置における前記位置測定部で測定された開始表面位置と、同時に前記法線抵抗力測定部により測定された開始法線研削抵抗力と、測定開始位置から所定の角度Θ回転した位置における前記位置測定部で測定されたΘ表面位置と、同時に前記法線抵抗力測定部により測定されたΘ法線研削抵抗力を用いて、
前記開始表面位置と前記Θ表面位置の差を表面変化Δs(Θ)とし、
前記開始法線研削抵抗力と前記Θ法線研削抵抗力の差を法線研削抵抗力変化ΔR(Θ)とし、
前記加工部の剛性kと前記法線抵抗力変化ΔR(Θ)を用いて前記加工部のたわみ変化Δt(Θ)を式Δt(Θ)=ΔR(Θ)/kを用いて演算する変化演算部と、
測定開始位置を含む前記加工部の直径である開始位置直径Dと、測定終了位置を含む前記加工部の直径である終了位置直径D360との差である外径寸法変化ΔDをΔD=D−D360で演算し、
前記回転角度Θに対応する振れF(Θ)を式F(Θ)=Δs(Θ)+Δt(Θ)+Θ・ΔD/720を用いて演算する振れ演算部と、
前記振れF(Θ)の最大値と最小値の差を振れ精度として演算する振れ精度演算部と、
前記振れ精度に基づき、研削工程を変更する制御装置を備えることである。
A feature of the invention according to claim 2 is a grinding machine for rotating and supporting a cylindrical workpiece and grinding a processing portion by a grinding wheel.
A workpiece diameter measuring part for measuring the outer diameter of the processed part;
A position measuring unit for measuring the position of the surface of the processing unit in the cutting direction of the grinding wheel;
A normal resistance measuring unit for measuring normal resistance during grinding;
During one rotation during grinding of the workpiece, a starting surface position measured by the position measuring unit at a measurement starting position, and a starting normal grinding resistance force simultaneously measured by the normal resistance measuring unit, Using the Θ surface position measured by the position measurement unit at a position rotated by a predetermined angle Θ from the measurement start position, and simultaneously using the Θ normal grinding resistance force measured by the normal resistance measurement unit,
The difference between the starting surface position and the Θ surface position is the surface change Δs (Θ),
The difference between the starting normal grinding resistance and the Θ normal grinding resistance is defined as a normal grinding resistance change ΔR (Θ),
Change calculation for calculating the deflection change Δt (Θ) of the processed portion using the equation Δt (Θ) = ΔR (Θ) / k using the rigidity k of the processed portion and the normal resistance change ΔR (Θ). And
An outer diameter dimensional change ΔD that is a difference between a start position diameter D 0 that is the diameter of the processed part including the measurement start position and an end position diameter D 360 that is the diameter of the processed part including the measurement end position is ΔD = D Calculate with 0- D 360 ,
A shake calculation unit that calculates a shake F (Θ) corresponding to the rotation angle Θ using the formula F (Θ) = Δs (Θ) + Δt (Θ) + Θ · ΔD / 720;
A shake accuracy calculation unit that calculates the difference between the maximum value and the minimum value of the shake F (Θ) as the shake accuracy;
A control device for changing the grinding process based on the runout accuracy is provided.

請求項1係る発明によれば、研削中に測定した砥石車の切込み方向における加工部の表面の変位変化Δs(Θ)と変位変化Δs(Θ)測定時の法線抵抗力変化ΔR(Θ)と加工部の外径寸法変化ΔD(Θ)と、加工部の剛性kを用いて加工部の半径振れF(Θ)を演算することで、研削中に加工部の振れ精度を測定できる。   According to the first aspect of the invention, the displacement change Δs (Θ) of the surface of the machined part in the cutting direction of the grinding wheel measured during grinding and the normal resistance change ΔR (Θ) when measuring the displacement change Δs (Θ) By calculating the radial deflection F (Θ) of the processed part using the outer diameter dimensional change ΔD (Θ) of the processed part and the rigidity k of the processed part, the runout accuracy of the processed part can be measured during grinding.

請求項2に係る発明によれば、研削中に測定した砥石車の切込み方向における加工部の表面の変位変化Δs(Θ)と変位変化Δs(Θ)測定時の法線抵抗力変化ΔR(Θ)と加工部の外径寸法変化ΔD(Θ)と、加工部の剛性kを用いて加工部の半径振れF(Θ)を演算することで、研削中に加工部の振れ精度を測定できる。この測定値を用いて研削条件の変更を行い、短時間で所望の精度の研削が可能な研削盤を実現できる。   According to the second aspect of the invention, the displacement change Δs (Θ) of the surface of the machined part in the cutting direction of the grinding wheel measured during grinding and the normal resistance change ΔR (Θ) when measuring the displacement change Δs (Θ) ) And the outer diameter dimensional change ΔD (Θ) of the processed part and the processed part stiffness k are used to calculate the radial deflection F (Θ) of the processed part, whereby the deflection accuracy of the processed part can be measured during grinding. A grinding machine capable of grinding with a desired accuracy in a short time can be realized by changing the grinding conditions using the measured values.

本実施形態の研削盤の全体構成を示す概略図である。It is the schematic which shows the whole structure of the grinding machine of this embodiment. 図1のB矢視図である。It is a B arrow line view of FIG. 本実施形態の測定方法を示す概念図である。It is a conceptual diagram which shows the measuring method of this embodiment. 本実施形態の外径寸法変化の補正の概念を示すグラフである。It is a graph which shows the concept of the correction | amendment of the outer diameter dimension change of this embodiment. 本実施形態の研削工程を示すフローチャートである。It is a flowchart which shows the grinding process of this embodiment. 本実施形態の振れ測定工程を示すフローチャートである。It is a flowchart which shows the shake measurement process of this embodiment.

以下、本発明の実施の形態を円筒研削盤の実施例に基づき、図1〜図6を参照しつつ説明する。
図1に示すように、円筒研削盤1は、ベッド2を備え、ベッド2上にX軸方向に往復可能に支持され送りモータ9により駆動される砥石台3と、X軸に直交するZ軸方向に往復可能なテーブル4を備えている。砥石台3は砥石7を回転自在に支持し、砥石車7は砥石軸回転モータ(図示省略する)により回転駆動される。テーブル4上には、工作物Wの一端を把持して回転自在に支持し主軸モータ(図示省略する)により回転駆動される主軸5と、工作物Wの他端を回転自在に支持する心押し台6を備えており、工作物Wは主軸5と心押し台6により支持されて、研削加工時に回転駆動される。工作物Wの加工部を測定する測定装置8がテーブル上に設置されている。
図2に示すように、測定装置8は、テーブルに固定されたベース81に保持された工作物径測定装置本体831と工作物径測定装置本体831に係合する180度対向して配置された接触子832a、832bで構成される工作物径測定装置83と、ベース81に保持されたブラケット82に固定され、非接触で工作物Wの表面位置を測定する静電容量型の表面位置測定装置85を備えている。接触子832a、832bと表面位置測定装置85は工作物Wの軸方向で同一位置に配置され、加工部の同一部位を測定することができる。
Hereinafter, an embodiment of the present invention will be described based on examples of a cylindrical grinding machine with reference to FIGS.
As shown in FIG. 1, the cylindrical grinding machine 1 includes a bed 2, supported on the bed 2 so as to be reciprocable in the X-axis direction and driven by a feed motor 9, and a Z-axis orthogonal to the X-axis. A table 4 capable of reciprocating in the direction is provided. The grinding wheel base 3 rotatably supports the grinding wheel 7, and the grinding wheel 7 is rotationally driven by a grinding wheel shaft rotating motor (not shown). On the table 4, a spindle 5 that grips and rotatably supports one end of the workpiece W and is rotationally driven by a spindle motor (not shown), and a center pusher that rotatably supports the other end of the workpiece W A work table W is provided, and the workpiece W is supported by the main shaft 5 and the tailstock 6 and is driven to rotate during grinding. A measuring device 8 for measuring the processed part of the workpiece W is installed on the table.
As shown in FIG. 2, the measuring device 8 is disposed so as to face the workpiece diameter measuring device main body 831 held by the base 81 fixed to the table and the workpiece diameter measuring device main body 831 at 180 degrees. A workpiece diameter measuring device 83 composed of contacts 832a and 832b, and a capacitance type surface position measuring device fixed to a bracket 82 held by the base 81 and measuring the surface position of the workpiece W in a non-contact manner. 85. The contacts 832a and 832b and the surface position measuring device 85 are arranged at the same position in the axial direction of the workpiece W, and can measure the same part of the processed part.

この研削盤1は、所定のプログラムを実行することで自動化された研削加工や計測を実行する制御装置30を備えている。制御装置30の機能的構成として、砥石台3の送りを制御するX軸制御部31、テーブル4の送りを制御するZ軸制御部32、主軸5の回転を制御する主軸制御部33、測定装置8を制御する測定装置制御部34、各種の演算をする演算部35などを具備している。X軸制御部31の機能として研削時に砥石車7に作用する法線研削抵抗力を送りモータ9の電流値から測定する法線研削抵抗測定部311を備えている。また、演算部35の機能として変化演算部351、振れ演算部352、振れ精度演算部353を備えている。   The grinding machine 1 includes a control device 30 that executes automated grinding and measurement by executing a predetermined program. As a functional configuration of the control device 30, an X-axis control unit 31 that controls the feed of the grindstone table 3, a Z-axis control unit 32 that controls the feed of the table 4, a spindle control unit 33 that controls the rotation of the spindle 5, and a measuring device 8 includes a measuring device control unit 34 for controlling 8, a calculation unit 35 for performing various calculations, and the like. As a function of the X-axis control unit 31, a normal grinding resistance measurement unit 311 that measures a normal grinding resistance force acting on the grinding wheel 7 during grinding from a current value of the feed motor 9 is provided. Further, as a function of the calculation unit 35, a change calculation unit 351, a shake calculation unit 352, and a shake accuracy calculation unit 353 are provided.

はじめに、本発明の振れ精度測定方法の概要を説明する。
通常、振れ精度の測定は、センタ穴などの回転基準を基準として測定物を回転させ、測定部表面の回転基準中心からの半径変動量である振れを1回転分測定し、振れの最大値と最小値の差を振れ精度とする。
研削中に加工部の振れ精度を測定するためには、法線研削抵抗力による加工部の回転基準からのたわみ変動の補正が必要である。さらに、研削中の加工部は渦巻状に取代が除去されるため、渦巻状の半径変動を備えており、この半径変動の補正も必要である。加工中の加工部の表面位置を1回転分測定し上記の2つの変動の補正をすることで振れ精度を測定する。
First, an outline of the shake accuracy measuring method of the present invention will be described.
Normally, the runout accuracy is measured by rotating the measured object with reference to a rotation reference such as a center hole, and measuring the runout, which is the amount of variation in radius from the rotation reference center of the surface of the measurement unit, for one rotation. The difference between the minimum values is the runout accuracy.
In order to measure the runout accuracy of the machined part during grinding, it is necessary to correct the deflection variation from the rotation reference of the machined part due to the normal grinding resistance. Further, since the machining allowance is removed in a spiral shape in the processing portion being ground, it has a spiral radius variation, and correction of this radius variation is also necessary. The surface position of the processed part being processed is measured for one rotation, and the above two fluctuations are corrected to measure the runout accuracy.

図3に基づき研削中の振れ精度測定について詳細を説明する。
図3(a)に示す測定開始位置おける、工作物Wの回転基準である主軸5の回転中心と心押台6のセンタ中心を結ぶ線の加工部における位置を点Pとする。工作物Wに法線研削抵抗力が作用していると、加工部の回転中心は点Pからたわみ量tだけ移動した点Oとなる。点Pと表面位置測定装置85の距離をuとし、点Pと点Oの距離をtとし、加工部の表面と表面位置測定装置85の距離をsすると、点Oからの加工部の表面半径rはr=u−s−tと表される。uは測定装置8、主軸5、心押し台6の配置により決定される一定の値である。tは法線研削抵抗力により生じる砥石車7の切込み方向における工作物Wの加工部のたわみ量であり、加工部の剛性をkとし、法線研削抵抗力をRとするとt=R/kで算出できる。剛性kはあらかじめ測定または解析により求めることができる。法線研削抵抗力Rは砥石台3を送る送りモータ9の電流値を法線抵抗測定部311において検出し法線研削抵抗力Rに換算することで測定する。
The details of the runout accuracy measurement during grinding will be described with reference to FIG.
A position in the machining portion of a line connecting the rotation center of the spindle 5 and the center center of the tailstock 6 as the rotation reference of the workpiece W at the measurement start position shown in FIG. When the normal grinding resistance acts on the workpiece W, the rotation center of the processed portion is a point O moved from the point P by the deflection amount t 0 . When the distance between the point P and the surface position measuring device 85 is u, the distance between the point P and the point O is t 0, and the distance between the surface of the processing portion and the surface position measuring device 85 is s 0 , the processing portion from the point O The surface radius r 0 is expressed as r 0 = u−s 0 −t 0 . u is a constant value determined by the arrangement of the measuring device 8, the main shaft 5, and the tailstock 6. t 0 is the amount of deflection of the processed portion of the workpiece W in the cutting direction of the grinding wheel 7 caused by the normal grinding resistance force. When the rigidity of the processed portion is k and the normal grinding resistance force is R 0 , t 0 = It can be calculated by R 0 / k. The stiffness k can be obtained in advance by measurement or analysis. The normal grinding resistance R is measured by detecting the current value of the feed motor 9 that sends the grindstone table 3 in the normal resistance measurement unit 311 and converting it into the normal grinding resistance R.

ここで、加工部の直径は工作物径測定装置83により測定されるが、測定開始点Aを含む加工部の直径Dは図3(b)に示すように点Aが接触子84aの位置まで回転した時に測定される。表面位置測定装置85と接触子84aの位相差がΦあるので、点Aのs、R測定時から工作物Wが角度Φだけ回転した時の工作物径測定装置83の測定値が点Aを含む加工部の直径となる。測定終了点Aは点Aと同一位相で半径が1回転の研削除去量だけ減少した点となり、Aを含む加工部の直径は測定開始から工作物が(360+Φ)度回転した時に測定される。 Here, the diameter of the processed part is measured by the workpiece diameter measuring device 83, the diameter D 0 of the processing unit including a measurement start point A located at the point A contact 84a as shown in FIG. 3 (b) Measured when rotating up to. Since the phase difference between the surface position measuring device 85 and the contact 84a is Φ, the measured value of the workpiece diameter measuring device 83 when the workpiece W is rotated by an angle Φ from the time of measuring s 0 and R 0 of the point A is a point. This is the diameter of the processed part including A. Measurement end point A 1 becomes a point at which the radius at point A and the same phase decreased by grinding removal amount of one rotation, the diameter of the working portion including A 1 is measured when the workpiece from the start of the measurement is rotated (360 + Φ) of The

測定開始点Aにおける表面半径をrとし、所定の回転角度ΔΘ毎にrからrまで表面半径を1回転分求め、点Aを含む加工部の直径をDとし、1回転後の測定終了点Aを含む加工部の直径をD360とすると、図4(a)に示すような表面半径変動のグラフが得られる。このグラフに点Aにおけるrの値と点Aにおけるrの差である(D−D360)/2を1回転中の研削除去による半径減少量と見なして回転位置に応じた補正をすると図4(b)に示すグラフが得られる。具体的には、点Aからi番目の回転位置Θ(度)における補正量はΘ・(D−D360)/720となり、このときの補正表面半径rはr=u−s−t+Θ・(D−D360)/720として算出できる。
ここで、点Aの値を基準にしてi番目の補正表面半径の差すなわち点Aに対するi番目の表面の振れFを計算するとF=s−s+t−t−Θ・(D−D360)/720となり、uに無関係に振れを算出できる。工作物Wの1回転中のFの最大値と最小値の差が振れ精度Fmとなる。
The surface radius at the measurement start point A and r 0, the r 0 for each predetermined rotation angle ΔΘ calculated one rotation surface radius to r n, the diameter of the processed portion including the point A and D 0, after one rotation When the diameter of the working portion including a measurement end point a 1 and D 360, a graph of surface radius variation as shown in FIG. 4 (a) is obtained. This graph is the difference in r n in the value and the point A 1 of r 0 at point A in (D 0 -D 360) / 2 correction according to the rotational position is regarded as the radius reduction by grinding removal during one rotation Then, the graph shown in FIG. 4B is obtained. Specifically, the correction amount at the i-th rotational position Θ i (degrees) from the point A is Θ i · (D 0 −D 360 ) / 720, and the correction surface radius r i at this time is r i = u−. It can be calculated as s i −t i + Θ i · (D 0 −D 360 ) / 720.
Here, when calculating the deflection F i of i-th surface to the difference or the point A of the i-th corrected surface radius based on the value of point A F i = s i -s 1 + t i -t 1 -Θ i (D 0 −D 360 ) / 720, and the shake can be calculated regardless of u. Difference between the maximum and minimum values of F i in one revolution of the workpiece W becomes the deflection accuracy Fm.

本研削盤1において、本振れ測定工程を用いたバックオフ研削により加工部の振れを修正する研削工程について、図5のフローチャートに基づき説明する。ここで、バックオフ研削とは研削中に砥石車7を後退させて工作物Wと砥石車7が離れた位置から再度前進して研削を行うことである。こうすることで、振れのある加工部の振れの大きい部分のみを選択的に研削除去し、工作物径の減少を最小として振れの補正ができる研削方法である。
はじめに、砥石車7と工作物Wを所定の回転速度で回転させた状態で、砥石車7を研削開始位置X=Xまで早送りする(S1)。所定の粗研削仕上径となるX=X−fまで砥石車7を送り粗研削を行う(S2)。中仕上げ研削の研削条件で工作物1回転分研削を行う。砥石車7を工作物1回転あたりの送り量であるΔf送る(S3)。図6のフローチャートに示す振れ測定工程を開始する(S4)。振れ測定工程で測定した振れ精度Fmが許容値Cより大きいかを判定する。Fm>Cならばバックオフ研削を開始するためS6へ移動し、Fm≦CならばS7へ移動する(S5)。砥石台3を後退させバックオフ研削開始位置のX=X−f−3・Δf+Fmへ位置決め後、S3へ移動する(S6)。工作物Wの加工部の径が仕上げ研削開始に達するまで中仕上げ研削を行う(S7)。仕上げ研削を行う(S8)。砥石台を加工開始位置のX=X+Xへ後退させる(S9)。
A grinding process for correcting the runout of the processed part by back-off grinding using this runout measurement process in the grinding machine 1 will be described based on the flowchart of FIG. Here, the back-off grinding means that the grinding wheel 7 is moved backward during grinding, and the workpiece W and the grinding wheel 7 are moved forward again from a position away from the grinding wheel to perform grinding. In this way, only the large runout portion of the machined portion with runout is selectively ground and removed, and the runout can be corrected by minimizing the decrease in the workpiece diameter.
First, in a state where the workpiece W and the grinding wheel 7 is rotated at a predetermined rotational speed, fast forward the grinding wheel 7 until the grinding start position X = X 0 (S1). The grinding wheel 7 is fed to perform rough grinding (S2) until X = X 0 −f 1 which is a predetermined rough grinding finish diameter. Grind for one rotation of the workpiece under the grinding conditions for medium finish grinding. The grinding wheel 7 is fed by Δf 2 which is the feed amount per rotation of the workpiece (S3). The shake measurement process shown in the flowchart of FIG. 6 is started (S4). It is determined whether or not the runout accuracy Fm measured in the runout measurement process is greater than the allowable value C. If Fm> C, the process moves to S6 to start backoff grinding, and if Fm ≦ C, the process moves to S7 (S5). After moving the grindstone table 3 back to the back-off grinding start position X = X 0 −f 1 −3 · Δf 2 + Fm, the process moves to S 3 (S 6). Medium finish grinding is performed until the diameter of the processed portion of the workpiece W reaches the start of finish grinding (S7). Finish grinding is performed (S8). The wheel head is moved backward to the machining start position X = X 0 + X f (S9).

次に、本研削盤1における振れ測定工程を、工作物回転の1度(ΔΘ)毎に1回転分のi=0〜360までの361個の表面半径を測定する例で、図6のフローチャートに基づき図3を参照して具体的に説明する。
はじめに、工作物Wの加工部の剛性kと、図3(b)に示す、表面位置測定装置85と接触子84aの位相差Φを演算部35に読込む(S11)。演算部35において工作物回転角度Θの値を0、データカウントiの値を1にリセットする(S12)。図3(a)に示すように、測定開始位置である点Aの表面位置sを表面位置測定装置85で測定し、同時に法線研削抵抗力Rを法線抵抗測定部311で測定し、演算部35に記録する(S13)。工作物を1度回転させる(S14)。表面位置sを表面位置測定装置85で測定し、同時に法線研削抵抗力Rを法線抵抗測定部311で測定し、演算部35に記録する(Θ=1〜Φ)(S15)。データカウントiの値に1を加算する。i=i+1(S16)。i≧Φ+1(測定開始点Aが接触子85aの位置に到達した)か判定する。i<Φ+1ならS14へ移動、i≧Φ+1ならS18へ移動する(S17)。図3(b)に示すように、測定開始位置点Aの工作物直径Dを工作物径測定装置83で測定し、演算部35に記録する(S18)。
Next, the run-out measuring step in the grinding machine 1 is an example in which 361 surface radii from i = 0 to 360 for one rotation are measured for each degree of rotation (ΔΘ) of the workpiece, and the flowchart of FIG. Based on FIG. 3, it demonstrates concretely with reference to FIG.
First, the rigidity k of the processing part of the workpiece W and the phase difference Φ between the surface position measuring device 85 and the contact 84a shown in FIG. 3B are read into the calculation part 35 (S11). The value of the workpiece rotation angle Θ is reset to 0 and the value of the data count i is reset to 1 in the calculator 35 (S12). As shown in FIG. 3A, the surface position s 0 of the point A, which is the measurement start position, is measured by the surface position measuring device 85, and at the same time, the normal grinding resistance R 0 is measured by the normal resistance measuring unit 311. Then, it is recorded in the calculation unit 35 (S13). The workpiece is rotated once (S14). The surface position s i is measured by the surface position measuring device 85, and at the same time, the normal grinding resistance force R i is measured by the normal resistance measuring unit 311 and recorded in the calculation unit 35 (Θ = 1 to Φ) (S15). 1 is added to the value of the data count i. i = i + 1 (S16). It is determined whether i ≧ Φ + 1 (the measurement start point A has reached the position of the contact 85a). If i <Φ + 1, the process moves to S14, and if i ≧ Φ + 1, the process moves to S18 (S17). As shown in FIG. 3B, the workpiece diameter D 0 at the measurement start position point A is measured by the workpiece diameter measuring device 83 and recorded in the computing unit 35 (S18).

工作物を1度回転させる(S19)。表面位置sを表面位置測定装置85で測定し、同時に法線研削抵抗力Rを法線抵抗測定部311で測定し、演算部35に記録する(Θ=Φ+1〜360)(S20)。データカウントiの値に1を加算する。i=i+1(S21)。i≧361(測定開始点Aが1回転した)か判定する。i<361ならS19へ移動し、i≧361ならS23へ移動する(S22)。抵抗力変化ΔR=R−R、たわみ変化Δt=ΔR/k、表面変化Δsi=s−sを変化演算部351で演算し演算部35に記録する(S23)。S23開始と同時に工作物をΦ度回転させる。ここで、S26における演算時間はS24における工作物回転時間より短い(S24)。図3(d)に示すように、測定終了位置点Aの工作物直径D360を工作物径測定装置83で測定し、演算部35に記録する(S25)。振れFを式F=Δsi+Δt+i・(D−D360)/720(i=1〜360について)を用いて振れ演算部352で演算する(S26)。振れ精度FmをF〜F360の最大値と最小値の差として振れ精度演算部353で演算する(S27)。S26開始と同時に工作物を(360−Φ)度回転させる。ここで、S26とS27における演算時間はS28における工作物回転時間より短い(S28)。 The workpiece is rotated once (S19). The surface position s i is measured by the surface position measuring device 85, and at the same time, the normal grinding resistance R i is measured by the normal resistance measuring unit 311 and recorded in the calculation unit 35 (Θ = Φ + 1 to 360) (S20). 1 is added to the value of the data count i. i = i + 1 (S21). It is determined whether i ≧ 361 (measurement start point A has made one revolution). If i <361, the process moves to S19, and if i ≧ 361, the process moves to S23 (S22). Resistance change ΔR i = R 0 -R i, deflection change Δt i = ΔR i / k, calculates the surface changes Δsi = s 0 -s i by the change calculation unit 351 records the calculation unit 35 (S23). Simultaneously with the start of S23, the workpiece is rotated by Φ degrees. Here, the calculation time in S26 is shorter than the workpiece rotation time in S24 (S24). As shown in FIG. 3D , the workpiece diameter D 360 at the measurement end position point A 1 is measured by the workpiece diameter measuring device 83 and recorded in the calculation unit 35 (S25). The shake F i is calculated by the shake calculation unit 352 using the formula F i = Δsi + Δt i + i · (D 0 −D 360 ) / 720 (for i = 1 to 360 ) (S26). The shake accuracy Fm is calculated by the shake accuracy calculation unit 353 as the difference between the maximum value and the minimum value of F 1 to F 360 (S27). Simultaneously with the start of S26, the workpiece is rotated (360-Φ) degrees. Here, the calculation time in S26 and S27 is shorter than the workpiece rotation time in S28 (S28).

以上のように、本発明の振れ精度測定方法を用いると、研削中に法線研削抵抗力の影響を受けることなく加工部の振れ精度が測定でき、その結果に応じて最適な振れ取り研削工程を実施できる。このため、振れ取り研削の取り代を必要最小限にでき、研削時間を短縮でき、砥石車7の消耗も削減できる。   As described above, by using the runout accuracy measuring method of the present invention, the runout accuracy of the machined part can be measured without being affected by the normal grinding resistance force during grinding, and an optimum runout grinding process is performed according to the result. Can be implemented. For this reason, the machining allowance for run-off grinding can be minimized, grinding time can be shortened, and wear of the grinding wheel 7 can be reduced.

上記事例では砥石台送りモータ9の電流値を検出して法線研削抵抗力の測定を行ったが、主軸台5と心押し台6に荷重測定センサを設置して測定してもよい。
表面位置測定装置85を非接触型のものを用いたが、差動トランス方式などの接触式の測定機を用いてもよい。
In the above example, the current value of the grindstone feed motor 9 is detected and the normal grinding resistance is measured. However, a load measuring sensor may be installed on the spindle stock 5 and the tailstock 6 for measurement.
Although the non-contact type surface position measuring device 85 is used, a contact type measuring machine such as a differential transformer type may be used.

W:工作物 3:砥石台 4:テーブル 5:主軸 6:心押し台 7:砥石車 8:測定装置 9:砥石台送りモータ 30:制御装置 35:演算部 W: Workpiece 3: Whetstone stand 4: Table 5: Spindle 6: Tailstock 7: Whetstone wheel 8: Measuring device 9: Whetstone feed motor 30: Control device 35: Calculation unit

Claims (2)

円筒状の工作物を回転支持して加工部を研削する研削中に前記加工部の精度を測定する振れ精度測定方法において、
前記工作物の研削中の1回転の間に、前記砥石車の切込み方向における研削点と対向する前記加工部の表面の位置である表面位置と、この時作用している法線研削抵抗力を同時に測定し、
測定開始位置における前記表面位置と、前記測定開始位置から所定の角度Θ回転した位置における前記表面位置と、の差を表面変化Δs(Θ)とし、
前記測定開始位置における前記法線研削抵抗力と、前記測定開始位置から所定の角度Θ回転した位置における前記法線研削抵抗力と、の差を抵抗力変化ΔR(Θ)とし、
測定開始位置を含む前記加工部の直径である開始位置直径Dと、測定終了位置を含む前記加工部の直径である終了位置直径D360とを測定し、外径寸法変化ΔDをΔD=D−D360で演算し、
研削時の前記加工部の剛性kと前記抵抗力変化ΔR(Θ)を用いて前記加工部のたわみ変化Δt(Θ)を演算し、
前記表面変化Δs(Θ)に対して、前記たわみ変化Δt(Θ)と、前記外径寸法変化ΔDを回転角度Θに応じて按分した補正値と、を用いて補正して振れF(Θ)を演算し、
前記振れF(Θ)の最大値と最小値の差を振れ精度Fmとして演算する振れ精度測定方法。
In the runout accuracy measuring method for measuring the accuracy of the processed part during grinding for rotating and supporting the cylindrical workpiece and grinding the processed part,
During one rotation during grinding of the workpiece, the surface position, which is the surface position of the processing part facing the grinding point in the cutting direction of the grinding wheel, and the normal grinding resistance acting at this time Measure at the same time,
The difference between the surface position at the measurement start position and the surface position at a position rotated by a predetermined angle Θ from the measurement start position is defined as a surface change Δs (Θ),
The difference between the normal grinding resistance force at the measurement start position and the normal grinding resistance force at a position rotated by a predetermined angle Θ from the measurement start position is defined as a resistance change ΔR (Θ).
The start position diameter D 0 that is the diameter of the processed part including the measurement start position and the end position diameter D 360 that is the diameter of the processed part including the measurement end position are measured, and the outer diameter dimensional change ΔD is expressed as ΔD = D. Calculate with 0- D 360 ,
The bending change Δt (Θ) of the processed part is calculated using the rigidity k of the processed part during grinding and the resistance change ΔR (Θ),
With respect to the surface change Δs (Θ), the deflection Ft (Θ) is corrected by using the deflection change Δt (Θ) and the correction value obtained by apportioning the outer diameter dimensional change ΔD according to the rotation angle Θ. And
A shake accuracy measuring method for calculating a difference between a maximum value and a minimum value of the shake F (Θ) as a shake accuracy Fm.
円筒状の工作物を回転支持して砥石車により加工部を研削する研削盤において、
前記加工部の外径寸法を測定する工作物径測定部と、
前記砥石車の切込み方向における前記加工部の表面の位置を測定する位置測定部と、
研削中の法線抵抗力を測定する法線抵抗力測定部と、
前記工作物の研削中の1回転の間に、測定開始位置における前記位置測定部で測定された開始表面位置と、同時に前記法線抵抗力測定部により測定された開始法線研削抵抗力と、測定開始位置から所定の角度Θ回転した位置における前記位置測定部で測定されたΘ表面位置と、同時に前記法線抵抗力測定部により測定されたΘ法線研削抵抗力を用いて、
前記開始表面位置と前記Θ表面位置の差を表面変化Δs(Θ)とし、
前記開始法線研削抵抗力と前記Θ法線研削抵抗力の差を法線研削抵抗力変化ΔR(Θ)とし、
前記加工部の剛性kと前記法線抵抗力変化ΔR(Θ)を用いて前記加工部のたわみ変化Δt(Θ)を式Δt(Θ)=ΔR(Θ)/kを用いて演算する変化演算部と、
測定開始位置を含む前記加工部の直径である開始位置直径Dと、測定終了位置を含む前記加工部の直径である終了位置直径D360との差である外径寸法変化ΔDをΔD=D−D360で演算し、
前記回転角度Θに対応する振れF(Θ)を式F(Θ)=Δs(Θ)+Δt(Θ)+Θ・ΔD/720を用いて演算する振れ演算部と、
前記振れF(Θ)の最大値と最小値の差を振れ精度として演算する振れ精度演算部と、
前記振れ精度に基づき、研削工程を変更する制御装置を備える研削盤。
In a grinding machine that rotationally supports a cylindrical workpiece and grinds a processing part with a grinding wheel,
A workpiece diameter measuring part for measuring the outer diameter of the processed part;
A position measuring unit for measuring the position of the surface of the processing unit in the cutting direction of the grinding wheel;
A normal resistance measuring unit for measuring normal resistance during grinding;
During one rotation during grinding of the workpiece, a starting surface position measured by the position measuring unit at a measurement starting position, and a starting normal grinding resistance force simultaneously measured by the normal resistance measuring unit, Using the Θ surface position measured by the position measurement unit at a position rotated by a predetermined angle Θ from the measurement start position, and simultaneously using the Θ normal grinding resistance force measured by the normal resistance measurement unit,
The difference between the starting surface position and the Θ surface position is the surface change Δs (Θ),
The difference between the starting normal grinding resistance and the Θ normal grinding resistance is defined as a normal grinding resistance change ΔR (Θ),
Change calculation for calculating the deflection change Δt (Θ) of the processed portion using the equation Δt (Θ) = ΔR (Θ) / k using the rigidity k of the processed portion and the normal resistance change ΔR (Θ). And
An outer diameter dimensional change ΔD that is a difference between a start position diameter D 0 that is the diameter of the processed part including the measurement start position and an end position diameter D 360 that is the diameter of the processed part including the measurement end position is ΔD = D Calculate with 0- D 360 ,
A shake calculation unit that calculates a shake F (Θ) corresponding to the rotation angle Θ using the formula F (Θ) = Δs (Θ) + Δt (Θ) + Θ · ΔD / 720;
A shake accuracy calculation unit that calculates the difference between the maximum value and the minimum value of the shake F (Θ) as the shake accuracy;
A grinding machine comprising a control device for changing a grinding process based on the runout accuracy.
JP2011137347A 2011-06-21 2011-06-21 Runout accuracy measuring method and grinding machine Active JP5724666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011137347A JP5724666B2 (en) 2011-06-21 2011-06-21 Runout accuracy measuring method and grinding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011137347A JP5724666B2 (en) 2011-06-21 2011-06-21 Runout accuracy measuring method and grinding machine

Publications (2)

Publication Number Publication Date
JP2013000867A true JP2013000867A (en) 2013-01-07
JP5724666B2 JP5724666B2 (en) 2015-05-27

Family

ID=47669979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011137347A Active JP5724666B2 (en) 2011-06-21 2011-06-21 Runout accuracy measuring method and grinding machine

Country Status (1)

Country Link
JP (1) JP5724666B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335859A (en) * 1993-03-29 1994-12-06 Toyoda Mach Works Ltd Grinding device
JPH08318464A (en) * 1995-05-23 1996-12-03 Toyoda Mach Works Ltd Method and equipment for detecting residual amount to be ground
JP2005169518A (en) * 2003-12-08 2005-06-30 Nissan Motor Co Ltd Cylindrical grinding method and cylindrical grinding machine
JP2011088257A (en) * 2009-10-26 2011-05-06 Jtekt Corp Grinding machine and grinding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335859A (en) * 1993-03-29 1994-12-06 Toyoda Mach Works Ltd Grinding device
JPH08318464A (en) * 1995-05-23 1996-12-03 Toyoda Mach Works Ltd Method and equipment for detecting residual amount to be ground
JP2005169518A (en) * 2003-12-08 2005-06-30 Nissan Motor Co Ltd Cylindrical grinding method and cylindrical grinding machine
JP2011088257A (en) * 2009-10-26 2011-05-06 Jtekt Corp Grinding machine and grinding method

Also Published As

Publication number Publication date
JP5724666B2 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5857660B2 (en) Grinding machine truing device
JP5851436B2 (en) Processing apparatus and processing method
JP2011056629A (en) Machine tool and machining method
JP5862233B2 (en) Actual cutting amount measuring method, machining method and machine tool
JP6089774B2 (en) Grinding machine and grinding method
JP2009214217A (en) Grinding wheel distal end position correction method and device
JP5395570B2 (en) Cylindrical grinding method and apparatus
JP7326843B2 (en) Grinding method and grinder
JP4998078B2 (en) Grinding machine and grinding method for non-circular or eccentric workpiece
JP5724666B2 (en) Runout accuracy measuring method and grinding machine
JP5970964B2 (en) Grinding resistance measuring method and grinding machine
JP2011143503A (en) Cylindrical grinder
JP2013071204A (en) Rigidity measuring method and grinder
JP7172636B2 (en) Machine tool maintenance support device and machine tool system
JP2013123758A (en) Mechanical rigidity measuring method and machine tool
JP5974511B2 (en) Grinding machine truing device
JP6163916B2 (en) Wheel wear measurement method
JP6102502B2 (en) Grinding machine and grinding method
JP5857692B2 (en) Grinding method and grinding machine
JP2013193154A (en) Grinding machine
JP2024055116A (en) Machining condition setting device and machine tool
JP6089752B2 (en) Grinding machine and grinding method
JP2020114614A (en) Surface roughness estimation device and machine tool system
JP2021171888A (en) Truing device
JP6186739B2 (en) Grinding machine and grinding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150316

R150 Certificate of patent or registration of utility model

Ref document number: 5724666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150