JP2013000785A - Method for manufacturing hollow steel slab for pipe - Google Patents

Method for manufacturing hollow steel slab for pipe Download PDF

Info

Publication number
JP2013000785A
JP2013000785A JP2011136933A JP2011136933A JP2013000785A JP 2013000785 A JP2013000785 A JP 2013000785A JP 2011136933 A JP2011136933 A JP 2011136933A JP 2011136933 A JP2011136933 A JP 2011136933A JP 2013000785 A JP2013000785 A JP 2013000785A
Authority
JP
Japan
Prior art keywords
slab
hollow
steel
solidified shell
steel piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011136933A
Other languages
Japanese (ja)
Inventor
Eiko Yamada
山田榮子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011136933A priority Critical patent/JP2013000785A/en
Publication of JP2013000785A publication Critical patent/JP2013000785A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve solidified shell inner surface properties, such as flatness, clearance and internal cracks, when manufacturing a hollow steel slab for a seamless steel pipe by continuous casting.SOLUTION: A hollow cast slab having a vacuum hollow is formed by separating a molten core in a step of pulling up the cast slab to a 3/4 circumferential point in a curving type continuous casting method. The cast slab is extended, and next, when cutting the cast slab, a pair of wedge shaped teeth (the upperstream side is slant, and the downstream side is perpendicular) is pressed in the cast slab, and is cut off in such a manner as being bitten off. An upperstream side end is reduced, pressure-contacted, and closed, and the downstream side is opened, and the hollow steel slab with one end opened is obtained. Electromagnetical stirring is performed in a portion in which the molten core is separated in order to prevent clearance on the solidified shell inner surface. In order to press-bond the internal cracks to be harmless, the cast slab after extension is reduced by a rolling mill, and the steel slab after cutting is compressed in an axial direction. By using the steel slab for manufacturing the pipe, hole forming and rolling can be eliminated.

Description

本発明は継目無し鋼管の製造に供される中空鋼片の製造方法に関している。   The present invention relates to a method for producing a hollow steel piece used for producing a seamless steel pipe.

継目無し鋼管の製造工程は、素材として丸又は角の鋼片を製造する製鋼、該鋼片を中心軸にそって孔を貫通させて粗管とする旋孔圧延、次いで旋孔された粗管を延伸する延伸圧延、次いで延伸された管の外径・肉厚を整える定径圧延から成る。各圧延には本体成形機の他に適時補助圧延機が付設され、また上記工程間には必要に応じて再加熱工程が挿入される。   The seamless steel pipe manufacturing process consists of steel making to produce round or square steel slabs as raw materials, roll rolling with the steel slabs penetrating holes along the central axis, and then turning the rough pipes. Stretching, followed by constant diameter rolling to adjust the outer diameter and wall thickness of the stretched pipe. Each rolling is provided with an auxiliary rolling mill in addition to the main body forming machine, and a reheating process is inserted between the above processes as necessary.

旋孔工程では、旋孔機としてマンネスマン・ピアサーやプレス・ピアシング・ミルが使用されるが、設備が大仕掛けになり相応のコストも要する。また旋孔工程では素材の中心部に厳しい加工がなされるので良質の素材も要求される。   In the turning process, Mannesmann Piercer and press piercing mill are used as a turning machine, but the equipment becomes a big deal and requires a corresponding cost. In the turning process, strict processing is performed on the center of the material, so a high-quality material is also required.

連続鋳造による中空の鋼片や粗管の製造が可能になれば旋孔工程が省略され、大きな経済効果が得られるが未だに成功していない。
先行例1: 非特許文献1には、実験用の特殊な連続鋳造機により中空円断面鋼片を試作した結果が詳述されている。
If hollow steel slabs and rough pipes can be produced by continuous casting, the turning process is omitted, and a great economic effect can be obtained, but it has not been successful.
Prior Example 1: Non-Patent Document 1 details the result of trial production of a hollow circular section steel slab using a special continuous casting machine for experiments.

試行された連続鋳造方法(図5参照)は以下である。湾曲式連続鋳造において鋳型断面形状を円とし、鋳片の引抜軌跡を1/4周の最下点を越えて1/2周以上に周回させる。鋳造条件を適切に設定して1/2周部位において所望寸法の溶融芯を残存させる。次いで鋳片をガストーチで溶断して一部が開口すると空気が侵入する。溶融芯のレベルが鋳込み面と同一となるまで下がり安定する。該レベル以後は中空鋳片として引き抜かれる。適切な長さで切断して円断面中空鋼片とする。   The attempted continuous casting method (see FIG. 5) is as follows. In the curved continuous casting, the cross-sectional shape of the mold is a circle, and the drawing trajectory of the slab is made to circulate more than 1/2 turn beyond the lowest point of 1/4 turn. The casting condition is appropriately set to leave a molten core having a desired dimension at a half circumference portion. Next, when the slab is melted with a gas torch and a part of the slab opens, air enters. Stable until the melt core level is the same as the casting surface. After this level, it is pulled out as a hollow slab. Cut to an appropriate length to obtain a hollow steel piece with a circular cross section.

上記中空鋼片を管用の素材に供するには、凝固殻の内面性状が重要な条件、即ち延伸加工に耐え得るかどうかが問題となる。ステンレス鋼(JIS:SUS304相当)では内面性状は平坦であったが、高炭素鋼では凹凸が大きいと言う問題が判明した。対策として鋳込面から約150°部位に電磁撹拌装置を付設し、溶融芯を撹拌した結果、高炭素鋼においても凝固殻内面が平坦化された。鋼管の試作においてステンレス鋼と低炭素鋼では良品が得られたと明記されている。高炭素鋼については記載が無い。問題有りと推測される。   In order to use the above-mentioned hollow steel piece as a pipe material, it becomes a problem whether the inner surface properties of the solidified shell can withstand the stretching process. In stainless steel (JIS: SUS304 equivalent), the inner surface properties were flat, but in high carbon steel, the problem of large irregularities was found. As a countermeasure, an electromagnetic stirrer was attached at about 150 ° from the casting surface, and the molten core was stirred. As a result, the inner surface of the solidified shell was flattened even in high carbon steel. It is clearly stated that good quality was obtained for stainless steel and low carbon steel in the trial production of steel pipes. There is no description about high carbon steel. It is estimated that there is a problem.

上記の実験データである鋳片断面のマクロ組織を詳細に見ると、ステンレス鋼では見当たらないが、低炭素鋼、高炭素鋼には凝固殻の内面直下に小さな割れ目状の空隙が所々認められる。これについては何も説明されていないが無視できない現象である。該空隙は、中心まで凝固させる通常の連続鋳造方法では収縮孔ないし多孔質に成長するものと見なされる。該空隙の大きさは1mmないし数mm以下であるが、鋳造中及び鋳造後の冷却中に空気により酸化する。鋼片として再加熱する場合には時間が長いので酸化が一層進行し、圧延に際して開口して拡大し、鋼管内面キズとなることは明白である。従って平坦化だけではなく、空隙消滅が重要な条件となることが解る。   Looking at the macro structure of the cross section of the slab, which is the above experimental data in detail, although it is not found in stainless steel, small crack-like voids are observed in the low carbon steel and high carbon steel just below the inner surface of the solidified shell. There is no explanation about this, but it is a phenomenon that cannot be ignored. The voids are considered to grow into shrinkage pores or porous in the normal continuous casting method in which the voids are solidified. The size of the void is 1 mm to several mm or less, but is oxidized by air during casting and cooling after casting. When reheating as a steel slab, it takes a long time, so it is obvious that oxidation proceeds further, and opens and expands during rolling, resulting in a flaw inside the steel pipe. Therefore, it is understood that not only flattening but also void disappearance is an important condition.

先行例2: 特許文献1には前記連続鋳造方法を改良・発展させた新規の方法が開示されている。引抜中の鋳片を開口せず真空中空として引き上げ、該中空鋳片を圧下して中実材とする方法である。該方法では凝固殻内面直下に空隙欠陥やワレが発生しても圧下により圧接・消滅し、何ら問題とならない。しかし中実化に伴い中空と言う特徴が失われる。   Prior Example 2: Patent Document 1 discloses a novel method obtained by improving and developing the continuous casting method. In this method, the drawn slab is pulled up as a vacuum without opening, and the hollow slab is pressed down to form a solid material. In this method, even if a void defect or crack occurs immediately below the inner surface of the solidified shell, it is pressed and disappeared by reduction, and there is no problem. However, the hollow feature is lost with the realization.

先行例3: 特許文献2には上記連続鋳造方法の応用として、真空空洞を内封した鋼片の製造方法が開示されている。当方法の場合も先行例1と同様に空隙欠陥が発生する。該鋼片の両端を常温で切断除去すると内面が酸化していない中空粗管とすることができる。しかし再加熱時に該空隙は酸化侵攻され既述のごとく管用の素材として適格性を欠く。   Prior Example 3: Patent Document 2 discloses a method for producing a steel piece in which a vacuum cavity is enclosed, as an application of the continuous casting method. In the case of this method, void defects are generated as in the first example. When both ends of the steel piece are cut and removed at room temperature, a hollow rough tube whose inner surface is not oxidized can be obtained. However, at the time of reheating, the voids are invaded by oxidation, and as described above, the gap is not suitable as a pipe material.

ところで連続鋳造では凝固殻内の熱応力や曲げ応力に起因する内部割れがしばしば発生する。多くの場合次工程の熱間圧延において圧着して問題とならないが、中空鋳片の場合、殻内面にワレがあると鋼片の再加熱時に酸化反応が侵攻し、旋孔圧延、延伸圧延に際してワレが拡大するので当欠陥も管用の素材としては許容されない。   By the way, in continuous casting, internal cracks due to thermal stress and bending stress in the solidified shell often occur. In many cases, there is no problem with pressure bonding in the next hot rolling process. However, in the case of hollow cast slabs, cracks on the inner surface of the shell will invade the oxidation reaction during reheating of the steel slab, and during rolling and drawing rolling. Since cracks expand, this defect is not allowed as a pipe material.

以上から連続鋳造鋳片を素材とする製管において旋孔圧延を省略又は軽減するには、1)鋼片は中空状であり少なくとも片端は開口していること、2)該鋼片は旋孔圧延・延伸圧延に耐えられるよう凝固殻内面には加工性を阻害する材料欠陥が無いことの二つが条件となることが解る。外径・内径が調節できるならばさらに好都合である。   From the above, in order to omit or reduce the roll rolling in the pipe making of continuously cast slab, 1) the steel slab is hollow and at least one end is open, and 2) the steel slab is turned. It can be seen that there are two conditions that the inner surface of the solidified shell has no material defects that hinder workability so that it can withstand rolling and stretching. It is more convenient if the outer diameter and inner diameter can be adjusted.

R. Tarmann, W. Poppmeier; Journal of Metals, April 1966, 453R. Tarmann, W. Poppmeier; Journal of Metals, April 1966, 453

特許第2989737Patent No. 2998737 特許第3684731Japanese Patent No. 3684731

本願発明は継目無し鋼管に供することができる中空鋼片を連続鋳造によって製造することを目的とし、そのため凝固殻の内面性状を旋孔・延伸加工に耐えられる水準まで向上させることを解決すべき課題とする。
より具体的には、中空鋳片を形成する過程において凝固殻と溶融芯を分離させる際に殻内面に発生する小さな割れ目状の空隙を防止すること、且つ凝固殻内に連なる種々の内部割れの悪影響を消去することである。
The object of the present invention is to produce a hollow steel piece that can be used for a seamless steel pipe by continuous casting. Therefore, the problem to be solved is to improve the inner surface properties of the solidified shell to a level that can withstand turning and stretching. And
More specifically, in the process of forming the hollow cast slab, it prevents a small crack-like void generated on the inner surface of the shell when separating the solidified shell and the molten core, and various internal cracks connected to the solidified shell. It is to eliminate the adverse effects.

上記課題を解決するため以下の方法を採用する。
第1の発明は、下記連続鋳造方法によって形成された中空鋳片を切断して鋼片とする方法において、切断に当たり鋳片を挟んで配置された一対の楔形歯を対称的に該鋳片に圧入して噛み切るように切断するとともに、該楔形歯の楔の形状を引抜方向の上流側は鋳片面に対して傾斜、下流側は垂直状とすることにより該鋳片の先端形状を先細り型に変形させて空洞を圧接封鎖し、切断対面は垂直状に切り裂いて開口させ、よって片側開口の中空鋼片とすることを特徴とする中空鋼片の製造方法である。

一種の湾曲式連続鋳造であって、鋳片引抜軌跡は3/4周の湾曲部と該湾曲部に後続する水平の直進部から構成され、鋳型断面寸法と湾曲半径と引抜速度の3要因を適切に組み合わせることにより鋳片内部に溶融芯を残したまま該鋳片を1/2周を越え、さらに鋳込み面から大気圧相当溶鋼高さ(約1.4m)を越えて引抜き、該高さにおいて該溶融芯を凝固殻から分離させて真空の空洞を持つ中空鋳片を形成し、最上点の3/4周点において該鋳片を水平に伸直し、次いで該鋳片の空洞を部分的に閉鎖して切断することにより空洞を封入した鋼片とする連続鋳造方法。
In order to solve the above problems, the following method is adopted.
The first invention is a method of cutting a hollow slab formed by the following continuous casting method into a steel slab, wherein a pair of wedge-shaped teeth arranged with the slab sandwiched between them are cut symmetrically on the slab. The tip of the slab is tapered by making the wedge shape of the wedge-shaped teeth cut by press-fitting and the wedge shape of the wedge is inclined with respect to the slab surface on the upstream side in the drawing direction and perpendicular on the downstream side. This is a method for producing a hollow steel piece, characterized in that the cavity is pressed and sealed, and the face to be cut is cut open in a vertical shape, thereby forming a hollow steel piece with one side opening.
It is a kind of curved continuous casting, and the slab drawing locus is composed of a 3/4 round curved part and a horizontal straight part following the curved part, and the three factors of mold cross-sectional dimension, curved radius and drawing speed By appropriately combining the slabs, the slabs are drawn over 1/2 lap while leaving the molten core inside the slabs, and further drawn over the molten steel height (about 1.4 m) equivalent to atmospheric pressure from the casting surface. Then, the molten core is separated from the solidified shell to form a hollow slab having a vacuum cavity, the slab is stretched horizontally at the uppermost 3/4 round point, and then the cavity of the slab is A continuous casting method in which a steel piece enclosing a cavity is obtained by partially closing and cutting.

上記の『記』で記述した内容は先行例2の方法そのものである。   The contents described in the above “mark” are the method itself of the preceding example 2.

第2の発明は、真空空洞が形成される部位の直下に設けられた電磁撹拌装置によりメニスカスを含めて溶融芯を撹拌し、凝固殻内面を平坦化させ且つ固液境界面の高濃度液相を掻き出してCO反応を抑制して空隙形成を防止することを特徴とする第1発明に記載の中空鋼片の製造方法である。   In the second invention, the molten core including the meniscus is stirred by an electromagnetic stirring device provided immediately below the site where the vacuum cavity is formed, the inner surface of the solidified shell is flattened, and the high-concentration liquid phase at the solid-liquid boundary surface The hollow steel piece manufacturing method according to the first aspect of the present invention is characterized in that the formation of voids is prevented by scraping out the CO reaction to suppress the formation of voids.

第3の発明は、鋳型断面形状を断面アスペクト比が1以上3以下の円又は長円又は方形又は多角形とし、鋳片を伸直した後、該鋳片に少なくとも1対のロールによって空洞を残存させるよう長軸方向に圧下を加え、凝固殻内部のワレを圧着させることを特徴とする第1発明又は第2発明に記載した中空鋼片の製造方法である。   According to a third aspect of the present invention, the cross-sectional shape of the mold is a circle, an oval, a square or a polygon having a cross-sectional aspect ratio of 1 or more and 3 or less, and after the slab is stretched, a cavity is formed in the slab by at least one pair of rolls. The hollow steel slab manufacturing method according to the first or second aspect of the invention is characterized in that a reduction in the major axis direction is applied so as to remain, and a crack inside the solidified shell is pressure-bonded.

第4発明は、鋳片を切断して得られた鋼片を直ちにプレスにより鋼片軸方向に圧縮して凝固殻内部のワレを圧着させることを特徴とする第1発明又は第2発明又は第3発明に記載した中空鋼片の製造方法である。   The fourth invention is characterized in that the steel slab obtained by cutting the slab is immediately compressed in the axial direction of the steel slab by pressing to press the crack inside the solidified shell. 3 It is a manufacturing method of the hollow steel piece described in invention.

本発明の方法によると、第1に鋳片を切断して中空鋼片とする際、新規の圧入分断方式を採用しているので、切断部の上流側は凝固殻を圧接切断して空洞の封鎖状態を維持し、下流側は開口させるので容易に片端開口の中空鋼片が得られ、管用鋼片の第1条件が解決される。   According to the method of the present invention, when a slab is first cut into a hollow steel slab, a new press-fitting and dividing method is adopted. Since the sealed state is maintained and the downstream side is opened, a hollow steel piece having one end opening can be easily obtained, and the first condition of the steel piece for pipe is solved.

第2に中空を形成する過程で凝固殻内面に発生し易い小さな割れ目状の空隙欠陥は、以下の対策でその形成が防止される。即ち空洞側の液面を含めて液面直下の電磁撹拌により、1)凝固殻の内面が平坦化されること、2)固液境界面の高濃度液相を洗い出してCO反応に起因する気泡発生を抑制することの二つの効果に支えられている。   Secondly, the formation of small crack-like void defects that are likely to occur on the inner surface of the solidified shell in the process of forming a hollow is prevented by the following measures. That is, 1) the inner surface of the solidified shell is flattened by electromagnetic stirring directly below the liquid surface including the liquid surface on the cavity side, and 2) bubbles caused by the CO reaction by washing out the high-concentration liquid phase at the solid-liquid interface. It is supported by two effects of suppressing the occurrence.

第3に、連続鋳造鋳片ではしばしば内部ワレが発生するが、該欠陥が凝固殻内面に近い場合は旋孔圧延や延伸圧延において内面キズに拡大する。本発明の方法によると真空中空鋳片は伸直後の鋳片の側面圧下により鋳片軸と平行状の内部割れは圧着して無害化される。さらに中空鋳片は切断後直ちに熱間で軸方向圧縮加工を受けるので軸と直交状のワレ面が圧着して消滅する。合わせて管用鋼片として第2の条件が解決される。
以上の効果により製管に際して中空連続鋳造鋼片を使用することが可能となって旋孔圧延工程が省略され、設備費、操業費が削減される。
Thirdly, internal cracks often occur in continuous cast slabs, but when the defects are close to the inner surface of the solidified shell, they expand into inner surface flaws in turning and rolling. According to the method of the present invention, the vacuum hollow cast slab is harmless by pressure-bonding the internal crack parallel to the slab axis by the side surface reduction of the cast slab immediately after stretching. Further, since the hollow slab is subjected to the axial compression process immediately after being cut, the crack surface perpendicular to the shaft is crimped and disappears. In addition, the second condition is solved as a pipe steel piece.
Due to the above effects, it is possible to use a hollow continuous cast steel slab for pipe making, omitting the rolling and rolling step, and reducing equipment costs and operating costs.

本発明を実施する連続鋳造装置の概略側面図である。It is a schematic side view of the continuous casting apparatus which implements this invention. 本発明における真空中空鋳片を切断する方法を説明する図である。It is a figure explaining the method to cut | disconnect the vacuum hollow slab in this invention. 鋳片の圧下による内部割れの変化を説明する図で鋳片の横断面を示す。The figure explaining the change of the internal crack by the pressing of a slab shows the cross section of a slab. 鋼片の圧縮加工による内部割れの変化を説明する図で鋼片の縦断面を示す。The figure explaining the change of an internal crack by compression processing of a steel piece shows a longitudinal section of the steel piece. 先行例1における連続鋳造方法の引用図であり、電磁撹拌の位置を示す。It is a reference figure of the continuous casting method in the prior example 1, and shows the position of electromagnetic stirring. 溶融芯を分離した中空鋳片の横断面の写真で空隙の例を示す。An example of voids is shown in a cross-sectional photograph of a hollow slab from which the molten core has been separated.

図1に従って本発明の管用中空鋼片の製造方法を説明する。図1において全体構造は一種の湾曲式連続鋳造であり、鋳片の引抜軌跡は3/4周の湾曲部と後続する水平伸直部から成る。タンデイシュ1から鋳型2に供給された溶鋼3は該鋳型2内で冷却され、凝固殻を形成しながらピンチロール5により適切な速度で連続的に引抜かれて鋳片4を形成する。該鋳片4は2次冷却帯6を経て1/2周点を越え、さらにに鋳込面から大気圧相当の溶鋼高さ(約1.4m)Q点に達して溶融芯を分離し、空洞7’が形成され、真空の中空鋳片7となる。該鋳片7は最上点の3/4周点で伸直ロール8により水平に伸直される。   The manufacturing method of the hollow steel piece for pipes of this invention is demonstrated according to FIG. In FIG. 1, the entire structure is a kind of curved continuous casting, and the drawing locus of the slab is composed of a curved portion of 3/4 round and a subsequent horizontal straightened portion. The molten steel 3 supplied from the tundish 1 to the mold 2 is cooled in the mold 2 and continuously drawn at an appropriate speed by a pinch roll 5 while forming a solidified shell to form a slab 4. The slab 4 passes through the secondary cooling zone 6 and exceeds the ½ round point, and further reaches the molten steel height (about 1.4 m) Q point corresponding to atmospheric pressure from the casting surface to separate the molten core, A cavity 7 ′ is formed to form a vacuum hollow slab 7. The slab 7 is horizontally stretched by the straightening roll 8 at the uppermost 3/4 circumference.

次いで該鋳片7は切断機9により所定長さに切断される。切断に際して、図2に示すように1対の楔形切断歯21を鋳片7を挟んで対称的に圧入して噛み切る方法でなされる。
楔形歯の上流側の面22は鋳片軸に対して傾斜、下流側の面23はほぼ垂直になっていて、圧入の進行につれ上流側では凝固殻は傾斜状に圧下され、殻内面が互いに圧接して真空の空洞7’が封入される。その後分断に到る。下流側ではほぼ垂直に切り裂かれ端部の圧下は起こらない。対面圧接には到らず歯先が空洞に届くと通気する。その後開口24ができ分断される。切断面の開口周辺はダレる。しかし片端開口の中空鋼片10が得られる。封入と切断と鋼片側開口の3工程が1台の機械で同時に且つ容易になされる。
上記片端開口の中空鋼片10は通常の次工程である旋孔工程を省略してプラグミルによる延伸圧延に供される。
Next, the slab 7 is cut into a predetermined length by a cutting machine 9. At the time of cutting, as shown in FIG. 2, a pair of wedge-shaped cutting teeth 21 are symmetrically press-fitted with the slab 7 sandwiched therebetween to bite them.
The surface 22 on the upstream side of the wedge-shaped tooth is inclined with respect to the slab axis, and the surface 23 on the downstream side is substantially perpendicular. As the press-fitting progresses, the solidified shell is inclined down on the upstream side, and the inner surfaces of the shells The vacuum cavity 7 'is sealed by pressure contact. After that, it is divided. On the downstream side, it is cut almost vertically and the end part does not roll down. Ventilation occurs when the tooth tip reaches the cavity without reaching the pressure contact. Thereafter, an opening 24 is formed and divided. The area around the opening of the cut surface is sagging. However, a hollow steel piece 10 with one end opening is obtained. Three processes of encapsulation, cutting and opening on the steel piece side can be simultaneously and easily performed by one machine.
The hollow steel piece 10 with the one end opening is subjected to drawing and rolling with a plug mill without the usual next step of turning.

次ぎに材質問題の解決方法を説明する。
第1に、本発明者は高炭素鋼の中空鋳片の試作において凝固殻内面には小さな空隙が発生することを把握している。既述のように内面性状は管用鋼片には重要な問題で空隙は不可避の問題である。先行例1では、低炭素の場合は問題なく高炭素では内面の凹凸がひどく、対策として図5に示すように空洞が形成されるかなり手前(150°部位)で電磁撹拌を施し平坦化に成功している。しかし空隙問題は意識されていない。
Next, a solution for the material problem will be described.
First, the present inventor has grasped that a small void is generated on the inner surface of the solidified shell in the trial production of a hollow cast slab of high carbon steel. As described above, the inner surface property is an important problem for the steel piece for pipes, and the void is an inevitable problem. In the first example, there was no problem in the case of low carbon, and in the case of high carbon, the irregularities on the inner surface were severe, and as a countermeasure, as shown in FIG. is doing. However, the void problem is not conscious.

図6は同様の条件で試作された高炭素鋼鋼片の内面性状を示す写真である。電磁撹拌により同様に平坦化されているが、撹拌後の保持があるため空隙が発生していることが解る。   FIG. 6 is a photograph showing the inner surface properties of a high carbon steel strip produced under the same conditions. Although it is flattened similarly by electromagnetic stirring, it can be seen that voids are generated due to the retention after stirring.

本願発明では図1に示されるように、回転磁界の電磁撹拌装置13は190°部位の下流、即ち空洞側液面を含んでなされる。その結果高炭素鋼においても凝固殻内面は平坦化されるだけでなく、固液境界の高濃度液相を掻き出して空隙を誘発するCO反応を防止する。空隙防止には撹拌部位が重要な要件となる。   In the present invention, as shown in FIG. 1, the electromagnetic stirrer 13 for rotating magnetic field is made downstream of the 190 ° portion, that is, including the liquid surface on the cavity side. As a result, not only the inner surface of the solidified shell is flattened in the high carbon steel, but also the CO reaction that induces voids by scraping out the high concentration liquid phase at the solid-liquid boundary. An agitation site is an important requirement for preventing voids.

第2に、得られる鋼片10の断面形状は円が望ましいが、鋳型断面形状は円だけではなく長円、正方形、長方形、多角形が用いられる。長8角形が望ましい。その理由を以下に述べる。
図1において、伸直された中空鋳片7を圧着圧延機11により空洞が消滅しない条件で断面長軸方向に圧下し、ワレを圧着・消滅させる。通常の圧延においては軽度のワレは圧着して無害化されるが、旋孔圧延や粗管の延伸圧延では内面近傍のワレは内面キズに拡大し易いので上記圧着処理が必要になる。
Second, the cross-sectional shape of the resulting steel piece 10 is preferably a circle, but the cross-sectional shape of the mold is not only a circle but also an ellipse, square, rectangle, or polygon. A long octagon is desirable. The reason is described below.
In FIG. 1, the straightened hollow slab 7 is crushed by the crimping rolling mill 11 in the major axis direction of the cross section under the condition that the cavities do not disappear, and the crack is crimped and extinguished. In normal rolling, mild cracks are crimped and rendered harmless, but cracks in the vicinity of the inner surface tend to expand to scratches on the inner surface in lathe rolling or rough rolling, and the above crimping process is necessary.

1回の圧下で円とするには鋳型断面のアスペクト比は1よりも大きい方が良い。即ち長円、長方形、長多角形がよい。長軸側を圧下して円に誘導する。円では水平垂直の2回の圧下が必要になる。圧着には圧下率が関係する。圧着を確実にするには圧下率は大きい方、例えば20%以上が良い。軽圧下は逆にワレを助長する。この理由からアスペクト比は1.2以上が良い。該比に1.0を含めた理由は、円では水平・垂直の2回の圧延により同じ効果が得られるからである。   In order to make a circle under a single pressure, the aspect ratio of the mold cross section should be larger than 1. That is, an ellipse, a rectangle, and a long polygon are preferable. The long axis is crushed and guided to a circle. A circle requires two horizontal and vertical reductions. The reduction ratio is related to the crimping. In order to ensure the pressure bonding, the rolling reduction is preferably larger, for example, 20% or more. Conversely, light pressure promotes cracking. For this reason, the aspect ratio is preferably 1.2 or more. The reason for including 1.0 in the ratio is that the same effect can be obtained by performing two horizontal and vertical rollings in a circle.

図3は圧下により鋳片軸と平行状のワレが圧着する状態(点線は圧着後を示す)を説明する。鋳片断面形状は長8角形、孔型形状は円である。適切な形状関係を設定すると圧下により圧下方向・幅方向とも圧縮応力下で変形させることができる。即ち断面全体で圧着・消滅に都合良い。説明図では圧下方向は垂直だが図1に示すように実機では水平である。   FIG. 3 illustrates a state in which a crack parallel to the slab shaft is crimped by pressing (dotted line indicates after crimping). The slab cross-sectional shape is a long octagon, and the hole shape is a circle. When an appropriate shape relationship is set, the rolling can be deformed under compressive stress in both the rolling direction and the width direction. That is, it is convenient for crimping / disappearance in the entire cross section. In the explanatory diagram, the reduction direction is vertical, but as shown in FIG.

アスペクト比をさらに大きくすると鋳造能率は比例的に増加するが圧着圧延機の他に円形に誘導する成形圧延機が必要になる。適切に選定すればよい。アスペクト比の上限を3とした理由は、圧延機台数よりも鋳造能率の強化を優先する場合の無難な条件である。さらに大きくすると成形圧延の負担が過大となる。 If the aspect ratio is further increased, the casting efficiency is proportionally increased. However, in addition to the press rolling mill, a forming rolling mill that induces a circle is required. Appropriate selection should be made. The reason why the upper limit of the aspect ratio is 3 is a safe condition when priority is given to enhancing the casting efficiency over the number of rolling mills. If it is further increased, the burden of forming and rolling becomes excessive.

第3に、図4に示すように、切断されて得られた鋼片10は直ちにプレス12により軸方向に圧縮加工する。その理由はワレ面が軸と平行状の場合には、圧延により圧着され易いが垂直状の場合には不完全になることがある。軸方向の圧縮加工はこの問題の解決策になる。必要な圧下力は切断装置と同等であり、必要な圧下率は原理的には約1%だが諸要因のバラツキから数%例えば3%が望ましい。
なお圧縮に際して、プレスヘッド41の中心部には円錐状の旋孔突起42が付けてあり、開口側切断面の乱れた開口形状を修正する。これは延伸圧延の開始を円滑にする。
以上の圧下と圧縮により鋳片内部のワレは圧着して、旋孔圧延、延伸圧延には無害となる。
Thirdly, as shown in FIG. 4, the steel piece 10 obtained by cutting is immediately compressed in the axial direction by a press 12. The reason is that when the crack surface is parallel to the shaft, it is easily crimped by rolling, but may be incomplete when it is vertical. Axial compression is a solution to this problem. The necessary rolling force is equivalent to that of the cutting device, and the necessary rolling reduction is about 1% in principle, but several percent, for example, 3% is desirable due to variations in various factors.
During compression, a conical turning projection 42 is attached to the center of the press head 41 to correct the disordered opening shape of the opening-side cut surface. This facilitates the start of stretch rolling.
The cracks inside the slab are pressed by the above-described reduction and compression, so that they are harmless for slewing and stretching.

楔形歯を圧入する際の鋳片切断部の形状の変化をプラスティシン・モデルで検証した。
試験片形状は外径50mm、内径25mm、長さ100mmであり、歯の開き角を片側45°他を0°とし、バイスによって圧入した。片側15mmの圧入で傾斜側の内面は圧接したが垂直側は未開口であった。さらに圧入を進めると歯先が空洞内に侵入し、開口して切断された。開口の形状はかなりダレていて(内面のヘリが中心に向かって引き込まれた状態)旋孔プラグの押し込みには不都合な形状となった。入口形状の矯正加工が必要と判明した。圧縮加工において円錐突起を挿入する理由となっている。
The change in the shape of the slab cut when pressing wedge-shaped teeth was verified using the plasticine model.
The shape of the test piece was an outer diameter of 50 mm, an inner diameter of 25 mm, and a length of 100 mm. The tooth opening angle was 45 ° on one side and 0 ° on the other side, and press-fitted with a vice. The inner surface on the inclined side was pressed by 15 mm press-fitting on one side, but the vertical side was not opened. When the press-fitting was further advanced, the tooth tip entered the cavity and opened and cut. The shape of the opening was considerably sag (in a state where the inner helicopter was pulled toward the center), and the shape became inconvenient for pushing the swirl plug. It became clear that correction of the inlet shape was necessary. This is the reason for inserting the conical protrusion in the compression process.

以下本発明の方法によって中径管用の中空鋼片を製造する場合の具体的条件の一例を説明する。
鋳型断面寸法: 8角形 164mm×256mm、C=57mm
鋳片断面寸法: 8角形 160mm×250mm、C=56mm
湾曲半径R: 3.9m
実効機長L: π×R+1.4=13.5
凝固定数k: 23mm/√min
凝固殻厚d: 40mm
凝固殻厚比α: 40/160/2=0.5
単重w: 200kg/m
凝固時間t: 3min
引抜速度V: 4.5m/min
鋳造能率p: 54t/h
電磁撹拌部位: 190°〜200°
圧着圧下率h: 0.30
楔形歯開き角: 上流側45°、 下流側0〜20(曲面)
圧縮圧下率l: 0.03
鋼片断面寸法: 円、外径175mmφ、内径80mmφ
Hereinafter, an example of specific conditions in the case of producing a hollow steel piece for a medium diameter pipe by the method of the present invention will be described.
Mold section dimension: Octagon 164mm x 256mm, C = 57mm
Slab cross-sectional dimension: Octagon 160mm × 250mm, C = 56mm
Curvature radius R: 3.9m
Effective machine length L: π × R + 1.4 = 13.5
Coagulation constant k: 23 mm / √min
Solidified shell thickness d: 40 mm
Solidified shell thickness ratio α: 40/160/2 = 0.5
Single weight w: 200kg / m
Solidification time t: 3 min
Drawing speed V: 4.5 m / min
Casting efficiency p: 54t / h
Electromagnetic stirring part: 190 ° ~ 200 °
Pressure reduction ratio h: 0.30
Wedge tooth opening angle: 45 ° upstream, 0-20 downstream (curved surface)
Compression reduction ratio l: 0.03
Steel piece cross-sectional dimensions: Circle, outer diameter 175 mmφ, inner diameter 80 mmφ

図6は高炭素鋼の160mm角鋳片の連続鋳造において溶融芯を分離した鋳片の横断面の性状を示す写真である。電磁撹拌を終えた0.5分後の状態であり、凝固殻内面には空隙の発生が見られる。撹拌しつつ分離することの効果を読みとることができる。   FIG. 6 is a photograph showing the properties of the cross section of the slab from which the molten core was separated in continuous casting of a 160 mm square slab of high carbon steel. The state is 0.5 minutes after the completion of electromagnetic stirring, and voids are observed on the inner surface of the solidified shell. The effect of separating while stirring can be read.

本願発明の連続鋳造による中空鋼片の製造方法は、既存の同タイプの連続鋳造機を部分改造して実施することができ、既存工場の製造可能な品種を拡張することができる。   The method for producing a hollow steel piece by continuous casting according to the present invention can be implemented by partially modifying an existing continuous casting machine of the same type, and can expand the types of products that can be produced at an existing factory.

1:タンディシュ 2:鋳型 3:溶鋼 4:鋳片 5:ピンチロール 6:2次冷却帯 7:中空鋳片 7’:真空空洞 Q:空洞側液面 8:伸直ロール 9:切断機 10:片端開口中空鋼片 11:圧着圧延機 12:プレス 13:電磁撹拌装置 21: 楔形歯 22:傾斜面 23:垂直面 24:開口 41:プレスヘッド 42:円錐突起 1: Tundish 2: Mold 3: Molten steel 4: Cast slab 5: Pinch roll 6: Secondary cooling zone 7: Hollow cast slab 7 ': Vacuum cavity Q: Cavity side liquid level 8: Straight roll 9: Cutting machine 10: One end open hollow steel piece 11: crimping mill 12: press 13: electromagnetic stirring device 21: wedge-shaped tooth 22: inclined surface 23: vertical surface 24: opening 41: press head 42: conical protrusion

Claims (4)

下記連続鋳造方法によって形成された中空鋳片を切断して鋼片とする方法において、切断に当たり鋳片を挟んで配置された一対の楔形歯を対称的に該鋳片に圧入して噛み切るように切断するとともに、該楔形歯の楔の形状を引抜方向の上流側は鋳片面に対して傾斜、下流側は垂直とすることにより該鋳片の先端形状を先細り型に変形させて空洞を圧接封鎖し、切断対面は垂直状に切り裂いて開口させ、よって片側開口の中空鋼片とすることを特徴とする中空鋼片の製造方法。

一種の湾曲式連続鋳造であって、鋳片引抜軌跡は3/4周の湾曲部と該湾曲部に後続する水平の直進部から構成され、鋳型断面寸法と湾曲半径と引抜速度の3要因を適切に組み合わせることにより鋳片内部に溶融芯を残したまま該鋳片を1/2周を越え、さらに鋳込み面から大気圧相当溶鋼高さ(約1.4m)を越えて引抜き、該高さにおいて該溶融芯を凝固殻から分離させて真空の空洞を持つ中空鋳片を形成し、最上点の3/4周点において該鋳片を水平に伸直し、次いで該鋳片の空洞を部分的に閉鎖して切断することにより空洞を封入した鋼片とする連続鋳造方法。
In the method of cutting a hollow slab formed by the following continuous casting method into a steel slab, a pair of wedge-shaped teeth arranged with the slab sandwiched between them are cut into the slab symmetrically and bitten. In addition, the wedge shape of the wedge-shaped teeth is inclined with respect to the slab surface on the upstream side in the drawing direction and perpendicular to the slab surface, so that the tip shape of the slab is deformed into a tapered shape and the cavity is pressure-welded. A method for producing a hollow steel piece, characterized in that it is sealed and the cut face is cut open in a vertical shape, thereby forming a hollow steel piece with one side opening.
It is a kind of curved continuous casting, and the slab drawing locus is composed of a 3/4 round curved part and a horizontal straight part following the curved part, and the three factors of mold cross-sectional dimension, curved radius and drawing speed By appropriately combining the slabs, the slabs are drawn over 1/2 lap while leaving the molten core inside the slabs, and further drawn over the molten steel height (about 1.4 m) equivalent to atmospheric pressure from the casting surface. Then, the molten core is separated from the solidified shell to form a hollow slab having a vacuum cavity, the slab is stretched horizontally at the uppermost 3/4 round point, and then the cavity of the slab is A continuous casting method in which a steel piece enclosing a cavity is obtained by partially closing and cutting.
真空空洞が形成される部位の直下に設けられた電磁撹拌装置によりメニスカスを含めて溶融芯を撹拌し、凝固殻前面を平坦化させ且つ固液境界面の高濃度液相を掻き出してCO反応を抑制して空隙形成を防止することを特徴とする請求項1に記載の中空鋼片の製造方法。   The melt core including the meniscus is stirred by an electromagnetic stirrer provided immediately below the site where the vacuum cavity is formed, the solidified shell front surface is flattened, and the high-concentration liquid phase at the solid-liquid interface is scraped to perform the CO reaction. The method for producing a hollow steel piece according to claim 1, wherein the formation of voids is suppressed. 鋳型断面形状を断面アスペクト比が1以上3以下の円又は長円又は方形又は多角形とし、鋳片を伸直した後、該鋳片に少なくとも1対のロールによって空洞を残存させるよう長軸方向に圧下を加えて凝固殻内部のワレを圧着させることを特徴とする請求項1又は請求項2に記載した中空鋼片の製造方法。   The mold cross-sectional shape is a circle, oval, square, or polygon having a cross-sectional aspect ratio of 1 or more and 3 or less, and the slab is stretched, and then the long axis direction is left in the slab by at least one pair of rolls. The method for producing a hollow steel piece according to claim 1 or 2, wherein the crack in the solidified shell is pressure-bonded by pressure reduction. 鋳片を切断して得られた鋼片を直ちにプレスにより鋼片軸方向に圧縮して凝固殻内部のワレを圧着させることを特徴とする請求項1又は請求項2又は請求項3に記載した中空鋼片の製造方法。   The steel slab obtained by cutting the slab is immediately compressed in the axial direction of the steel slab by pressing to press the crack inside the solidified shell. A method for producing a hollow steel piece.
JP2011136933A 2011-06-21 2011-06-21 Method for manufacturing hollow steel slab for pipe Withdrawn JP2013000785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011136933A JP2013000785A (en) 2011-06-21 2011-06-21 Method for manufacturing hollow steel slab for pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011136933A JP2013000785A (en) 2011-06-21 2011-06-21 Method for manufacturing hollow steel slab for pipe

Publications (1)

Publication Number Publication Date
JP2013000785A true JP2013000785A (en) 2013-01-07

Family

ID=47669914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011136933A Withdrawn JP2013000785A (en) 2011-06-21 2011-06-21 Method for manufacturing hollow steel slab for pipe

Country Status (1)

Country Link
JP (1) JP2013000785A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013215742A (en) * 2012-04-05 2013-10-24 Eiko Yamada Method of manufacturing slab for solvent cored welding wire
CN111331088A (en) * 2020-04-20 2020-06-26 中冶京诚工程技术有限公司 Crystallizer for arc-shaped hollow round billet continuous casting machine and arc-shaped hollow round billet continuous casting machine
IT201900010347A1 (en) * 2019-06-28 2020-12-28 Danieli Off Mecc CRYSTALLIZER FOR CONTINUOUS CASTING OF A METALLIC PRODUCT AND RELATIVE CASTING PROCEDURE
RU2800555C1 (en) * 2019-06-28 2023-07-24 Даниели Энд К. Оффичине Мекканике С.П.А. Mould for continuous casting of a metal product and corresponding casting method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013215742A (en) * 2012-04-05 2013-10-24 Eiko Yamada Method of manufacturing slab for solvent cored welding wire
IT201900010347A1 (en) * 2019-06-28 2020-12-28 Danieli Off Mecc CRYSTALLIZER FOR CONTINUOUS CASTING OF A METALLIC PRODUCT AND RELATIVE CASTING PROCEDURE
WO2020261311A1 (en) * 2019-06-28 2020-12-30 Danieli & C. Officine Meccaniche S.P.A. Crystallizer for the continuous casting of a metal product, and corresponding casting method
CN114364471A (en) * 2019-06-28 2022-04-15 达涅利机械设备股份公司 Mould for continuous casting of metal products and corresponding casting method
EP4166256A1 (en) * 2019-06-28 2023-04-19 Danieli & C. Officine Meccaniche S.p.A. Apparatus for the continuous casting of a metal product, and corresponding casting method
RU2800555C1 (en) * 2019-06-28 2023-07-24 Даниели Энд К. Оффичине Мекканике С.П.А. Mould for continuous casting of a metal product and corresponding casting method
CN114364471B (en) * 2019-06-28 2023-10-31 达涅利机械设备股份公司 Crystallizer for continuous casting of metal products and corresponding casting method
CN111331088A (en) * 2020-04-20 2020-06-26 中冶京诚工程技术有限公司 Crystallizer for arc-shaped hollow round billet continuous casting machine and arc-shaped hollow round billet continuous casting machine

Similar Documents

Publication Publication Date Title
JP5545419B1 (en) Method for continuous casting of steel and method for manufacturing strip steel
JPH07144262A (en) Continuous casting of steel and continuous casting/ rolling method
JP2013000785A (en) Method for manufacturing hollow steel slab for pipe
JP5741162B2 (en) Manufacturing method of round steel slab for high Cr steel seamless steel pipe making
JP3237518B2 (en) Manufacturing method of chrome alloy steel round billet slab
JP5157664B2 (en) Continuous casting method of round slabs for seamless steel pipes
JPH09295113A (en) Production of round cast billet by continuous casting
JP3214377B2 (en) Manufacturing method of continuous cast slab for seamless steel pipe
JP5343746B2 (en) Continuous casting method of round slabs for seamless steel pipes
JP4544544B1 (en) Forming method from continuous cast slab to steel slab
CN105792964B (en) The manufacture method of round steel piece
JP2947098B2 (en) Manufacturing method of continuous cast slab for seamless steel pipe material
JP3646417B2 (en) Manufacturing method of continuous cast slab for seamless steel pipe manufacturing
JP3214379B2 (en) Manufacturing method of continuous cast slab for seamless steel pipe
JP5869408B2 (en) Steel slab manufacturing method for solvent-filled welding wire
JPH09201601A (en) Production of continuously cast round billet for producing seamless steel pipe having good workability
JP4285288B2 (en) Steel continuous casting method
JP3228212B2 (en) Method and apparatus for producing round billet slabs by continuous casting
JP5387205B2 (en) Continuous casting method and continuous casting equipment for round slab
JP2005211920A (en) Method for continuously casting pipe material suitable for production of seamless steel pipe with skew rolling method
JPH10156495A (en) Method for continuously casting round cross sectional cast billet
JP4645296B2 (en) Continuous casting method
JP2006095578A (en) Ring mold for belt-wheel type continuous caster, belt-wheel type continuous caster, and apparatus and method for producing rough-drawing wire
JP2000334505A (en) Manufacture of seamless steel tube
JP2013180307A (en) Method for producing continuous casting round slab for seamless steel pipe production, and method for producing seamless steel pipe

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902