JP2013000724A - Method for producing photocatalyst solution - Google Patents

Method for producing photocatalyst solution Download PDF

Info

Publication number
JP2013000724A
JP2013000724A JP2011137501A JP2011137501A JP2013000724A JP 2013000724 A JP2013000724 A JP 2013000724A JP 2011137501 A JP2011137501 A JP 2011137501A JP 2011137501 A JP2011137501 A JP 2011137501A JP 2013000724 A JP2013000724 A JP 2013000724A
Authority
JP
Japan
Prior art keywords
titania
solution
silver
antibacterial
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011137501A
Other languages
Japanese (ja)
Inventor
Akira Umeda
彰 梅田
Mayuko Hashimoto
真由子 橋本
Mizuyo Usuki
瑞代 薄木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2011137501A priority Critical patent/JP2013000724A/en
Publication of JP2013000724A publication Critical patent/JP2013000724A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a photocatalyst solution which has antibacterial properties even at a dim or lightless dark place and which can keep high antibacterial properties even when exposed to strong light.SOLUTION: The method for producing the photocatalyst solution comprises the steps of: hydrolyzing titanium alkoxide to obtain an amorphous titania fine particle; adding oxygenated water to the obtained amorphous titania fine particle to produce a peroxo titania gel; adding oxygenated water to the peroxo titania gel to form a titania gel 10; adding a silver-containing substance 11, which is obtained by depositing silver on titania, to the titania gel 10; and heating the substance 11 added titania gel for predetermined time at the temperature, for example at 120°C, to produce the photocatalyst solution 12 containing anatase titania.

Description

本発明は、アナタース型のチタニア微粒子及び抗菌性を有する金属を含む光触媒溶液の製造方法に関する。   The present invention relates to a method for producing a photocatalyst solution containing anatase-type titania fine particles and an antibacterial metal.

光触媒として代表的なチタニア[酸化チタン(TiO)]は、光照射により活性酸素が生成するため抗菌性があるが、室内で使用する場合には光が弱く、活性酸素の生成量が少ないことから抗菌性が小さい。このため、チタニアに銀(Ag)等の抗菌性を有する金属を混在させる方法が試みられている。 Titania [titanium oxide (TiO 2 )], which is a typical photocatalyst, has antibacterial properties because it generates active oxygen when irradiated with light, but when used indoors, light is weak and the amount of active oxygen generated is small. Antibacterial properties are small. For this reason, a method of mixing titania with an antibacterial metal such as silver (Ag) has been attempted.

例えば、特許文献1には、チタンテトライソプロポキシドを加水分解してチタニアの微粒子を得た後、過酸化水素水を加えてペルオキソ型のチタニアとし、さらに加熱することによってペルオキソ型のチタニアの一部をアナタース化させることができることが開示されており、また、こうして得られたアナタース型のチタニアに、酢酸銀,炭酸銀,蟻酸銀,プロピオン酸銀,酪酸銀,クエン酸銀,又は乳酸銀の溶解物である銀成分、あるいは炭酸銅の溶解物である銅成分を加えることにより、光なしでも抗菌作用を示す光触媒溶液を製造できることが記載されている。しかし、この方法により製造された光触媒には、後述の実施例にて述べるように、暗所に比べて明所において抗菌性が低下するという現象が見受けられる。   For example, in Patent Document 1, titanium tetraisopropoxide is hydrolyzed to obtain titania fine particles, hydrogen peroxide water is added to form peroxo titania, and further heated to form one peroxo titania. The anatase-type titania obtained in this manner is disclosed as silver acetate, silver carbonate, silver formate, silver propionate, silver butyrate, silver citrate, or silver lactate. It is described that a photocatalytic solution exhibiting an antibacterial action can be produced without light by adding a silver component which is a dissolved substance or a copper component which is a dissolved substance of copper carbonate. However, the photocatalyst produced by this method has a phenomenon that the antibacterial property is lowered in a bright place as compared to a dark place, as described in Examples below.

特開2009−154061号公報JP 2009-154061 A

本発明は、このような事情の下になされたものであり、その目的は、光が弱いあるいは光のない暗所においても抗菌性を有し、強い光にさらされても高い抗菌性が維持できる光触媒溶液の製造方法を提供することにある。   The present invention has been made under such circumstances, and its purpose is to have antibacterial properties even in a dark place where light is weak or no light, and maintains high antibacterial properties even when exposed to strong light. Another object is to provide a method for producing a photocatalyst solution that can be used.

本発明における光触媒溶液の製造方法は、
ペルオキソ型のチタニアを含む微粒子が分散媒に分散したゾルを生成する工程と、
前記ゾルに抗菌性を有する金属を含む金属含有物質を添加する工程と、
次いで、アナタース型のチタニアを得るために前記ゾルを加熱して、光触媒であるアナタース型のチタニア微粒子を含む溶液を得る工程と、を含むことを特徴とする。
The method for producing a photocatalyst solution in the present invention includes:
Producing a sol in which fine particles containing peroxo-type titania are dispersed in a dispersion medium;
Adding a metal-containing substance containing an antibacterial metal to the sol;
Then, in order to obtain anatase type titania, the sol is heated to obtain a solution containing anatase type titania fine particles as a photocatalyst.

なお、本発明における光触媒溶液の製造方法は、以下に示す通りであってもよい。
1) 前記抗菌性を有する金属は、銀または銅である。
2) 前記ゾルを生成する工程は、チタンアルコキシドを加水分解してアモルファスのチタニア微粒子を得る工程と、このアモルファスのチタニア微粒子に過酸化水素水を加えてペルオキソ型のチタニアのゲルを生成する工程と、ゲルに分散媒を加える工程と、を含む。
3) 前記ゾルは、ペルオキソ型のチタニアとシリカとの複合体の微粒子が分散媒に分散して形成されている。
In addition, the manufacturing method of the photocatalyst solution in this invention may be as showing below.
1) The antibacterial metal is silver or copper.
2) The step of producing the sol includes a step of hydrolyzing titanium alkoxide to obtain amorphous titania fine particles, a step of adding hydrogen peroxide to the amorphous titania fine particles to produce a peroxo-type titania gel, Adding a dispersion medium to the gel.
3) The sol is formed by dispersing fine particles of a complex of peroxo-type titania and silica in a dispersion medium.

本発明によれば、ペルオキソ型のチタニアを含む微粒子が分散媒に分散したゾルに対して、アナタース化のための加熱処理を行う工程の前に抗菌性のある金属を添加し、その後アナタース化のための加熱処理を行っているため、後述の実験例からも分かるように強い光が照射され続けても、光が弱いあるいは光のない暗所においても高い抗菌性を有する光触媒溶液が得られる。   According to the present invention, an antibacterial metal is added to the sol in which fine particles containing peroxo-type titania are dispersed in a dispersion medium before the heat treatment for anatase, and then the anatase Therefore, a photocatalyst solution having a high antibacterial property can be obtained even in a dark place where light is weak or no light, as will be understood from experimental examples described later.

本実施形態におけるアモルファスチタニア微粒子及びチタニア−シリカのゾルの製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the sol of the amorphous titania microparticles and titania-silica in this embodiment. 本実施形態における銀成分及びアナタース型チタン結晶を含有するチタニア−シリカ溶液の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the titania-silica solution containing the silver component and anatase type titanium crystal in this embodiment. 本実施例における光触媒溶液の抗菌性試験の結果を示す図である。It is a figure which shows the result of the antibacterial property test of the photocatalyst solution in a present Example. 本実施例における光触媒溶液の抗菌性試験の結果を示す図である。It is a figure which shows the result of the antibacterial property test of the photocatalyst solution in a present Example.

本発明の実施形態について、光触媒溶液として銀を担持したチタニア−シリカ溶液12の製造方法を例に挙げて説明する。本実施形態における光触媒溶液であるチタニア−シリカ溶液12は、例えばアモルファスチタニア微粒子4を原料として製造される。このアモルファスチタニア微粒子4は、例えば図1のフローに示す方法により製造される。先ず、チタンアルコキシド例えばチタンテトライソプロポキシド(Ti(OC:TIP)1と、このアルコキシドに対応するアルコール例えばイソプロパノール(iso−COH:IPA)2とを所定のモル比例えばTIP/IPA/HO=1/10/4で混合し、さらに対応するアルコール例えばイソプロパノール、水及びアンモニアの混合液3を加えて反応させる。図1に示す反応R1は、次の通りである。
(反応R1)
Ti(OC+4HO→Ti(OH)+4COH
Ti(OH)→TiO(OH)+H
そして、この反応により得られた白色懸濁液を例えば濾過することにより固液分離し、固形分に対して乾燥、粉砕、乾燥の工程を経ることによりアモルファスチタニア微粒子4が得られる。
The embodiment of the present invention will be described by taking as an example a method for producing a titania-silica solution 12 carrying silver as a photocatalyst solution. The titania-silica solution 12 which is a photocatalyst solution in the present embodiment is manufactured using, for example, amorphous titania fine particles 4 as a raw material. The amorphous titania fine particles 4 are produced, for example, by the method shown in the flow of FIG. First, a titanium alkoxide such as titanium tetraisopropoxide (Ti (OC 3 H 7 ) 4 : TIP) 1 and an alcohol corresponding to the alkoxide, such as isopropanol (iso-C 3 H 7 OH: IPA) 2, are added to a predetermined mole. The mixture is mixed at a ratio such as TIP / IPA / H 2 O = 1/10/4, and a corresponding alcohol 3 such as a mixture 3 of isopropanol, water and ammonia is added and reacted. Reaction R1 shown in FIG. 1 is as follows.
(Reaction R1)
Ti (OC 3 H 7 ) 4 + 4H 2 O → Ti (OH) 4 + 4C 3 H 7 OH
Ti (OH) 4 → TiO (OH) 2 + H 2 O
Then, the white suspension obtained by this reaction is separated into solid and liquid by, for example, filtration, and amorphous titania fine particles 4 are obtained through steps of drying, pulverizing, and drying the solid content.

次いで、アモルファスチタニア微粒子4と酸化剤例えば過酸化水素水5とを、アモルファスチタニア微粒子1gに対して例えば31%過酸化水素水20mlの割合で混合し、さらにシリカの前駆体である例えばテトラエチルオルトシリケート((CO)Si:TEOS)6をTi/Siのモル比が1/9以上となるように混合する。そして、この混合溶液を例えば温度293Kの下で2時間攪拌すると、ペルオキソ体のチタニアとシリカとの複合体であるチタニア−シリカ溶液(赤橙色透明溶液7)が得られる。更に、この溶液7を例えばTi/Siのモル比が1/1の場合には、室温例えば温度300Kの下で例えば3日間〜10日間放置してゲル化させると、ペルオキソ体のチタニア−シリカを含む黄色のゲル8が生成する。図1に示す反応R2は、次の通りである。
(反応R2)
TiO(OH)+2H→TiO(OOH)+2H
Si(OC+2HO→SiO+4COH
2H→2HO+O
このゲル8に分散媒として例えば31%過酸化水素水9を所定量添加して混合し、例えば温度293Kの下で3日間静置すると、過酸化水素が分解しペルオキソ体の黄色透明のチタニア−シリカのゾル10が得られる。
Next, amorphous titania fine particles 4 and an oxidizing agent such as hydrogen peroxide solution 5 are mixed with 1 g of amorphous titania fine particles in a ratio of, for example, 20 ml of 31% hydrogen peroxide solution, and further a silica precursor such as tetraethyl orthosilicate. ((C 2 H 5 O) 4 Si: TEOS) 6 is mixed so that the Ti / Si molar ratio is 1/9 or more. When this mixed solution is stirred for 2 hours at a temperature of 293 K, for example, a titania-silica solution (red-orange transparent solution 7), which is a complex of peroxo titania and silica, is obtained. Further, when the molar ratio of Ti / Si is 1/1, for example, when this solution 7 is allowed to gel at room temperature, for example, at a temperature of 300 K, for example for 3 days to 10 days, the peroxo titania-silica is obtained. A yellow gel 8 containing is produced. Reaction R2 shown in FIG. 1 is as follows.
(Reaction R2)
TiO (OH) 2 + 2H 2 O 2 → TiO (OOH) 2 + 2H 2 O
Si (OC 2 H 5 ) 4 + 2H 2 O → SiO 2 + 4C 2 H 5 OH
2H 2 O 2 → 2H 2 O + O 2
For example, a predetermined amount of 31% hydrogen peroxide water 9 is added to the gel 8 as a dispersion medium and mixed. For example, when the gel 8 is allowed to stand at a temperature of 293 K for 3 days, the hydrogen peroxide is decomposed and a peroxo yellow translucent titania- A silica sol 10 is obtained.

ここで酸化剤としては、上述の過酸化水素水以外にオゾン、次亜塩素酸ナトリウム、次亜塩素酸、塩素酸ナトリウム及び二酸化塩素等を用いた溶液であってよいが、処理後に酸成分が残留したり不純物が混入したりすると純度に問題を生じるため、過酸化水素水等を用いることが好ましい。また、シリカの前駆体はシリコン成分供給源であり、金属を含まないシリカの前駆体であればTEOS以外のもの、例えばSi24やSi16も用いることができる。 Here, the oxidizing agent may be a solution using ozone, sodium hypochlorite, hypochlorous acid, sodium chlorate, chlorine dioxide, etc. in addition to the hydrogen peroxide solution described above. It is preferable to use a hydrogen peroxide solution or the like because it causes a problem in purity if it remains or impurities are mixed. Moreover, the silica precursor is a silicon component supply source, and if it is a silica precursor containing no metal, other than TEOS, for example, Si 4 C 8 H 24 O 4 or Si 4 C 4 H 16 O 4 is also used. be able to.

そして、既述のようにして得られた黄色透明のチタニア−シリカのゾル10に対してAgを担持する方法について、図2を用いて説明する。ペルオキソ型のチタニアを含む微粒子が分散媒に分散したゾルである、前記黄色透明のチタニア−シリカのゾル10に、抗菌性を有する金属を含む金属含有物質例えば銀担持チタニアのコロイド溶液11を例えば銀濃度で25重量ppmとなるように添加し混合して、例えば20℃で1日間静置する。そして、この混合溶液を加熱処理する。加熱条件などは特に限定されないが、100℃以上の条件で加熱することが好ましく、例えば150Pa、120℃で2時間、あるいは常圧、100℃で7時間〜8時間加熱する。これにより、ペルオキソ体が分解され、Agを担持しかつアナタース型の結晶を含むチタニア−シリカ溶液12が生成される。図2に示す反応R3は、次の通りである。
(反応R3)
TiO(OOH)→2TiO+4HO+O
A method of supporting Ag on the yellow transparent titania-silica sol 10 obtained as described above will be described with reference to FIG. In the yellow transparent titania-silica sol 10, which is a sol in which fine particles containing peroxo-type titania are dispersed in a dispersion medium, a metal-containing substance containing an antibacterial metal such as a colloidal solution 11 of silver-carrying titania is used as silver. It is added and mixed so as to have a concentration of 25 ppm by weight, and left at, for example, 20 ° C. for 1 day. And this mixed solution is heat-processed. The heating conditions are not particularly limited, but it is preferable to heat at 100 ° C. or higher, for example, 150 Pa, 120 ° C. for 2 hours, or normal pressure, 100 ° C. for 7 hours to 8 hours. As a result, the peroxo compound is decomposed, and a titania-silica solution 12 supporting Ag and containing anatase type crystals is produced. Reaction R3 shown in FIG. 2 is as follows.
(Reaction R3)
TiO (OOH) 2 → 2TiO 2 + 4H 2 O + O 2

上述の実施形態によれば、後述の実施例にて示すように、ペルオキソ体のチタニア−シリカのゾル10に対して、アナタース化の加熱処理を行う前に銀成分を有する銀担持チタニアのコロイド溶液11を添加し、その後加熱処理(アナタース化)をすることにより、暗所や例えば室内などのあまり明るくない場所において抗菌性を有し、かつ明所においても抗菌力が維持できる光触媒溶液を得ることができる。   According to the above-described embodiment, as shown in the examples described later, the colloidal solution of silver-supporting titania having a silver component before the heat treatment for anatase formation is performed on the peroxo titania-silica sol 10. 11 is added, followed by heat treatment (anatase formation) to obtain a photocatalyst solution that has antibacterial properties in a dark place and, for example, a room that is not so bright, such as indoors, and that can maintain antibacterial activity in a light place. Can do.

なお、上述の実施形態では、銀が添加されるゾルとしてチタニアとシリカとの複合体の微粒子が分散媒に分散されているものを用いているが、チタニアと複合体をなす物質はシリカに限らず、例えばアルミナであってもよい。また、ゾルは、チタニア単体の微粒子を分散媒に分散させたものであってもよい。   In the above-described embodiment, the sol to which silver is added is a sol in which fine particles of a composite of titania and silica are dispersed in a dispersion medium, but the substance forming the composite with titania is not limited to silica. For example, alumina may be used. The sol may be one in which fine particles of titania simple substance are dispersed in a dispersion medium.

また、上述の実施形態では、添加するAg成分として銀担持チタニアのコロイド溶液11を用いているが、本発明はこれに限定されるものではなく、Ag塩例えば酢酸銀、炭酸銀、蟻酸銀、プロピオン酸銀、酪酸銀、クエン酸銀または乳酸銀でもよい。また、抗菌性を有する金属としては、Agに限らず、銅(Cu)であってもよく、この場合、例えばCu担持チタニアやCu塩例えば炭酸銅などが前記ゾルに添加される。   In the above embodiment, the colloidal solution 11 of silver-supporting titania is used as the Ag component to be added, but the present invention is not limited to this, and an Ag salt such as silver acetate, silver carbonate, silver formate, Silver propionate, silver butyrate, silver citrate or silver lactate may be used. The antibacterial metal is not limited to Ag but may be copper (Cu). In this case, for example, Cu-supporting titania or Cu salt such as copper carbonate is added to the sol.

続いて、本発明の効果を確認するために行った実施例について説明する。
〔サンプルの製法〕
(実施例1)
実施例1は、上述の実施形態におけるペルオキソ体の黄色透明のチタニア−シリカ溶液に対して、銀担持チタニアを銀濃度で50重量ppmの割合で添加し、その後上述の実施形態と同様に加熱処理を行ったアナタース型結晶を含むチタニア−シリカ溶液を得た。この溶液を実施例1とする。
Next, examples performed for confirming the effects of the present invention will be described.
[Sample manufacturing method]
Example 1
In Example 1, silver-supporting titania was added at a silver concentration of 50 ppm by weight to the peroxo yellow transparent titania-silica solution in the above-described embodiment, and then heat-treated in the same manner as in the above-described embodiment. A titania-silica solution containing the anatase-type crystal was obtained. This solution is referred to as Example 1.

(比較例1)
上述の実施例1と同じペルオキソ体の黄色透明のチタニア−シリカ溶液を実施例1と同じ条件で加熱処理した後、このアナタース型結晶を含むチタニア−シリカ溶液に対して銀担持チタニアを実施例1と同じ割合で添加しAg成分を担持させたチタニア−シリカ溶液を得た。この溶液を比較例1とする。即ち、実施例1と比較例1は、Agを添加するタイミングが異なる。
(比較例2)
Ag成分の添加を行わないこと以外は実施例1と同様にしてチタニア−シリカ溶液を得た。この溶液を比較例2とする。
(Comparative Example 1)
The yellow and transparent titania-silica solution in the same peroxo form as in Example 1 described above was heat-treated under the same conditions as in Example 1, and then silver-supported titania was used in Example 1 for the titania-silica solution containing the anatase-type crystals. To obtain a titania-silica solution carrying the Ag component. This solution is referred to as Comparative Example 1. That is, Example 1 and Comparative Example 1 differ in the timing of adding Ag.
(Comparative Example 2)
A titania-silica solution was obtained in the same manner as in Example 1 except that the Ag component was not added. This solution is referred to as Comparative Example 2.

〔抗菌性試験〕
本実施例では、JIS R 1702(ファインセラミックス−光照射下での光触媒抗菌加工製品の抗菌性試験方法・抗菌効果)に従い、実施例1、比較例1及び比較例2について抗菌性試験を行った。この抗菌性試験の概要は、検体である光触媒溶液を塗布した試験片に所定の菌体を所定量接種した後、決められた条件下にて培養し、その培養前後の生菌数を測定して抗菌性を評価するというものである。本実施例では、黄色ぶどう球菌(Staphylococcus aureus)及び大腸菌(Escherichia coli)を用い、フィルム密着法により試験を行った。光照射条件は、昼間の室内を想定して、紫外線を0.01mW/cmで8時間照射することとした。また、本実施例における各検体(光触媒溶液)の抗菌性については、JIS R 1702に記載されている抗菌活性値及び光照射の効果を試験結果から算出し、これらを指標として比較し評価を行った。
[Antimicrobial test]
In this example, according to JIS R 1702 (Fine ceramics-Antibacterial test method / antibacterial effect of photocatalyst antibacterial processed product under light irradiation), antibacterial test was conducted on Example 1, Comparative Example 1 and Comparative Example 2. . The outline of this antibacterial test is that after inoculating a predetermined amount of bacterial cells on a test piece coated with a photocatalyst solution as a specimen, the cells are cultured under the determined conditions, and the number of viable bacteria before and after the culture is measured. To evaluate antibacterial properties. In this example, Staphylococcus aureus and Escherichia coli were used and the test was conducted by the film adhesion method. As for the light irradiation conditions, ultraviolet rays were irradiated at 0.01 mW / cm 2 for 8 hours, assuming a room in the daytime. In addition, the antibacterial activity of each specimen (photocatalyst solution) in this example is evaluated by calculating the antibacterial activity value described in JIS R 1702 and the effect of light irradiation from the test results, and comparing these as indicators. It was.

ここで、抗菌活性値及び光照射の効果についてもう少し詳細に説明する。まず、抗菌活性値は、式1に示すように、光照射条件下における、光触媒抗菌加工していない試験片(光触媒溶液を塗布していない試験片)に接種した菌体の生存率の対数値から、光触媒抗菌加工した試験片(光触媒溶液を塗布した試験片)に接種した菌体の生存率の対数値を引いた値である。従って、この抗菌活性値は、光触媒作用による抗菌効果だけでなく例えば光触媒溶液に含まれる銀などの抗菌作用についても反映される。また、光触媒溶液の抗菌性が高いほど、この抗菌活性値も高くなる。なお、JIS R 1702においては、抗菌活性値が2.0以上の場合に、その光触媒抗菌加工製品は抗菌性があると判定される。即ち、抗菌性の全くない検体、例えばAg未添加でかつ光触媒も含まない検体の抗菌活性値は、零になる。   Here, the antibacterial activity value and the effect of light irradiation will be described in a little more detail. First, as shown in Formula 1, the antibacterial activity value is a logarithmic value of the survival rate of bacterial cells inoculated on a test piece not subjected to photocatalytic antibacterial processing (test piece not coated with a photocatalyst solution) under light irradiation conditions. Is a value obtained by subtracting the logarithmic value of the survival rate of the bacterial cells inoculated on the photocatalyst antibacterial processed test piece (test piece coated with the photocatalyst solution). Therefore, this antibacterial activity value reflects not only the antibacterial effect due to the photocatalytic action but also the antibacterial action such as silver contained in the photocatalyst solution. Further, the higher the antibacterial property of the photocatalyst solution, the higher the antibacterial activity value. In JIS R 1702, when the antibacterial activity value is 2.0 or more, the photocatalytic antibacterial processed product is determined to have antibacterial properties. That is, the antibacterial activity value of a specimen having no antibacterial property, for example, a specimen not containing Ag and containing no photocatalyst becomes zero.

もう一方の評価指標である光照射の効果について説明する。まず暗所において試験片に接種した菌体を培養し、この試験片について、前述の抗菌活性値同様、光触媒溶液の塗布の有無による菌体生存率の対数値の差を求める。光照射の効果は、式2に示すように、抗菌活性値からこの暗所における差分値を引いた値である。この光照射の効果の値は、抗菌活性値から例えば銀による抗菌作用などの光触媒作用以外の抗菌効果分を引いた値であり、光触媒作用による抗菌効果のみを反映した指標と考えることができる。   The effect of light irradiation, which is another evaluation index, will be described. First, the cells inoculated on the test piece are cultured in the dark, and the difference in logarithmic value of the cell viability according to the presence or absence of application of the photocatalyst solution is determined for the test piece as in the case of the antibacterial activity. The effect of light irradiation is a value obtained by subtracting the difference value in this dark place from the antibacterial activity value, as shown in Equation 2. The value of the effect of light irradiation is a value obtained by subtracting the antibacterial effect other than the photocatalytic action such as the antibacterial action by silver from the antibacterial activity value, and can be considered as an index reflecting only the antibacterial effect by the photocatalytic action.

本実施例における試験結果を図3及び図4に示す。
(式1)

Figure 2013000724
(式2)
Figure 2013000724
The test result in a present Example is shown in FIG.3 and FIG.4.
(Formula 1)
Figure 2013000724
(Formula 2)
Figure 2013000724

〔考察〕
図3及び図4は夫々、大腸菌及び黄色ぶどう球菌を接種した抗菌性試験結果である。まず、抗菌活性値について比較する。銀成分を担持したチタニア−シリカ溶液である実施例1及び比較例1は、銀成分を含まない比較例2に比べて、共に高い抗菌活性値を示している。このことから、室内を想定した照度条件では、抗菌性における銀成分の貢献度が大きいことが推測できる。また、実施例1と比較例1とを比較すると、実施例1の方が若干高い抗菌活性値を示している。
[Discussion]
3 and 4 are the antibacterial test results inoculated with Escherichia coli and Staphylococcus aureus, respectively. First, the antibacterial activity value is compared. Example 1 and Comparative Example 1, which are titania-silica solutions carrying a silver component, both have higher antibacterial activity values than Comparative Example 2 that does not contain a silver component. From this, it can be estimated that the contribution of the silver component in antibacterial properties is large under the illuminance conditions assuming the room. Further, when Example 1 and Comparative Example 1 are compared, Example 1 shows a slightly higher antibacterial activity value.

次に、光照射による効果についてみていくと、比較例1ではマイナスの値を示している。これは、明所よりも暗所での抗菌活性値の方が高いことを意味し、光照射により抗菌性が抑制されたと言い換えることもできる。この結果について、本発明者らは、以下のように推測している。比較例1では、Ag成分を含む光触媒に光が当たることにより発生した活性酸素が、光触媒に含まれるAg成分と反応することにより、Agに比べて抗菌力の弱い酸化銀(AgO)が生成され、このため明所においてAg成分を含む光触媒の抗菌力が低下すると考えられる。これに対して実施例1では、チタニア微粒子のゾルの段階でAgを添加して、その後加熱工程を経るため、加熱工程の段階でAgがチタニア結晶に引き寄せられて、Agが酸化されにくい結合体が形成されているのではないかと推測している。以上のように、実施例1は、強い光に当たっても高い抗菌性が維持されていることが裏付けられている。 Next, looking at the effect of light irradiation, Comparative Example 1 shows a negative value. This means that the antibacterial activity value in the dark place is higher than that in the light place, and it can be said that the antibacterial property is suppressed by light irradiation. About this result, the present inventors are estimating as follows. In Comparative Example 1, active oxygen generated when light hits a photocatalyst containing an Ag component reacts with the Ag component contained in the photocatalyst, so that silver oxide (Ag 2 O) having a weak antibacterial power compared to Ag is produced. Therefore, it is considered that the antibacterial activity of the photocatalyst containing the Ag component is lowered in the light. On the other hand, in Example 1, Ag is added at the sol stage of the titania fine particles, and then undergoes a heating process. Therefore, Ag is attracted to the titania crystal at the stage of the heating process, so that Ag is not easily oxidized. I guess that is formed. As described above, Example 1 confirms that high antibacterial properties are maintained even when exposed to strong light.

4 アモルファスチタニア微粒子
10 チタニア−シリカのゾル(ペルオキソ体)
11 銀担持チタニア溶液
12 銀担持チタニア−シリカ溶液(アナタース型)
4 Amorphous titania fine particles 10 Titania-silica sol (peroxo)
11 Silver-supported titania solution 12 Silver-supported titania-silica solution (anaters type)

Claims (4)

ペルオキソ型のチタニアを含む微粒子が分散媒に分散したゾルを生成する工程と、
前記ゾルに抗菌性を有する金属を含む金属含有物質を添加する工程と、
次いで、アナタース型のチタニアを得るために前記ゾルを加熱して、光触媒であるアナタース型のチタニア微粒子を含む溶液を得る工程と、を含むことを特徴とする光触媒溶液の製造方法。
Producing a sol in which fine particles containing peroxo-type titania are dispersed in a dispersion medium;
Adding a metal-containing substance containing an antibacterial metal to the sol;
Then, in order to obtain anatase-type titania, the sol is heated to obtain a solution containing anatase-type titania fine particles as a photocatalyst, and a method for producing a photocatalyst solution.
前記抗菌性を有する金属は、銀または銅であることを特徴とする請求項1記載の光触媒溶液の製造方法。   2. The method for producing a photocatalyst solution according to claim 1, wherein the antibacterial metal is silver or copper. 前記ゾルを生成する工程は、
チタンアルコキシドを加水分解してアモルファスのチタニア微粒子を得る工程と、
このアモルファスのチタニア微粒子に過酸化水素水を加えてペルオキソ型のチタニアのゲルを生成する工程と、
前記ゲルに分散媒を加える工程と、を含むことを特徴とする請求項1または2記載の光触媒溶液の製造方法。
The step of generating the sol includes:
Hydrolyzing titanium alkoxide to obtain amorphous titania fine particles;
Adding a hydrogen peroxide solution to the amorphous titania fine particles to produce a peroxo-type titania gel;
The method for producing a photocatalyst solution according to claim 1, further comprising a step of adding a dispersion medium to the gel.
前記ゾルは、ペルオキソ型のチタニアとシリカとの複合体の微粒子が分散媒に分散して形成されていることを特徴とする請求項1ないし3のいずれか一つに記載の光触媒溶液の製造方法。   The method for producing a photocatalyst solution according to any one of claims 1 to 3, wherein the sol is formed by dispersing fine particles of a composite of peroxo-type titania and silica in a dispersion medium. .
JP2011137501A 2011-06-21 2011-06-21 Method for producing photocatalyst solution Withdrawn JP2013000724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011137501A JP2013000724A (en) 2011-06-21 2011-06-21 Method for producing photocatalyst solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011137501A JP2013000724A (en) 2011-06-21 2011-06-21 Method for producing photocatalyst solution

Publications (1)

Publication Number Publication Date
JP2013000724A true JP2013000724A (en) 2013-01-07

Family

ID=47669867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011137501A Withdrawn JP2013000724A (en) 2011-06-21 2011-06-21 Method for producing photocatalyst solution

Country Status (1)

Country Link
JP (1) JP2013000724A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106964329A (en) * 2017-04-05 2017-07-21 许允方 A kind of photochemical catalytic oxidation titania solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106964329A (en) * 2017-04-05 2017-07-21 许允方 A kind of photochemical catalytic oxidation titania solution

Similar Documents

Publication Publication Date Title
TWI732752B (en) Visible light response type photocatalyst titanium oxide microparticle dispersion liquid, its production method, and member having a photocatalyst film on the surface
JP4646210B2 (en) Phage virus inactivator
JP6605473B2 (en) Surface coating
KR101414899B1 (en) Photocatalyst titanium oxide sol, and coating composition and member utilizing the same
Amininezhad et al. The antibacterial activity of SnO2 nanoparticles against Escherichia coli and Staphylococcus aureus
Wong et al. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light
JP6040021B2 (en) Antibacterial antiviral composition and method for producing the same
JP6953965B2 (en) A member having a photocatalyst / alloy fine particle dispersion having antibacterial / antifungal properties, a method for producing the same, and a photocatalyst / alloy thin film on the surface.
JP5655827B2 (en) Visible light responsive titanium oxide fine particle dispersion, method for producing the same, and member having a photocatalytic thin film formed on the surface using the dispersion
TWI746633B (en) Visible light responsive photocatalyst titanium oxide microparticle mixture, its dispersion, method for producing the dispersion, photocatalyst film, and member with photocatalyst film on the surface
JP4169163B1 (en) Photocatalytic titanium oxide sol and coating composition using the same
CN102219179A (en) Silver doped titanium dioxide thin film and preparation method thereof
JP5210468B2 (en) Method for producing photocatalyst solution with improved antibacterial properties
Padmanabhan et al. Antibacterial self-cleaning binary and ternary hybrid photocatalysts of titanium dioxide with silver and graphene
JP2013000724A (en) Method for producing photocatalyst solution
JP2011240246A (en) Visible light-responsive titanium oxide particle dispersion liquid and method for manufacturing the same
JP7088082B2 (en) A method for producing a titanium oxide fine particle mixture, a dispersion thereof, a photocatalyst thin film, a member having a photocatalyst thin film on the surface, and a titanium oxide fine particle dispersion.
Mala et al. Enhanced antibacterial and photocatalytic activity of (Mg+ Co) doped tin oxide nanopowders synthesised using wet chemical route
JP2004195439A (en) Photocatalyst and its production method
JP2010148999A (en) Photocatalytic titanium oxide sol and method of manufacturing the same
WO2012046493A1 (en) Rutile-titanium-dioxide microparticle dispersion liquid, manufacturing method therefor, and member having rutile-titanium-dioxide thin film on surface thereof
TWI261575B (en) Process for synthesizing nano-powdered sols of visible light responsive TiO2
JP2006124243A (en) Method for manufacturing brookite titanium oxide and photocatalytic coating agent
JP2005126314A (en) Method of manufacturing titanium oxide solution, titanium oxide solution and photocatalytic coating material
CN115805094A (en) Antibacterial agent with photocatalytic degradation and antibacterial properties and preparation method thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902