JP2013000156A - Fiber composite for application of liquid - Google Patents

Fiber composite for application of liquid Download PDF

Info

Publication number
JP2013000156A
JP2013000156A JP2011130967A JP2011130967A JP2013000156A JP 2013000156 A JP2013000156 A JP 2013000156A JP 2011130967 A JP2011130967 A JP 2011130967A JP 2011130967 A JP2011130967 A JP 2011130967A JP 2013000156 A JP2013000156 A JP 2013000156A
Authority
JP
Japan
Prior art keywords
porous carbon
carbon material
liquid
fiber composite
liquid application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011130967A
Other languages
Japanese (ja)
Other versions
JP5810652B2 (en
Inventor
Yukiko Tashiro
由季子 田代
Seiichiro Tabata
誠一郎 田畑
Shinichiro Yamada
心一郎 山田
Shun Yamanoi
俊 山ノ井
Machiko Minatoya
街子 湊屋
Hironori Iida
広範 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2011130967A priority Critical patent/JP5810652B2/en
Priority to CN2012101854217A priority patent/CN102824017A/en
Priority to US13/489,864 priority patent/US20120315477A1/en
Publication of JP2013000156A publication Critical patent/JP2013000156A/en
Priority to US14/707,494 priority patent/US20150237988A1/en
Application granted granted Critical
Publication of JP5810652B2 publication Critical patent/JP5810652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D34/00Containers or accessories specially adapted for handling liquid toiletry or cosmetic substances, e.g. perfumes
    • A45D34/04Appliances specially adapted for applying liquid, e.g. using roller or ball
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D2200/00Details not otherwise provided for in A45D
    • A45D2200/10Details of applicators
    • A45D2200/1009Applicators comprising a pad, tissue, sponge, or the like
    • A45D2200/1018Applicators comprising a pad, tissue, sponge, or the like comprising a pad, i.e. a cushion-like mass of soft material, with or without gripping means
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]

Abstract

PROBLEM TO BE SOLVED: To provide a convenient means that provides an antioxidative property for a liquid (e.g., skin toner) when a user uses it.SOLUTION: Fiber composite for the application of a liquid includes a fibrous member containing a porous carbon material having a specific surface area value by the nitrogen BET method of ≥10 m/g, and a pore volume by the BJH method and MP method of ≥0.2 cm/g preferably ≥0.4 cm/g.

Description

本開示は、液体塗布用繊維複合体に関する。   The present disclosure relates to a fiber composite for liquid application.

近年、アルカリイオン水や電解還元水、水素水等、還元的な性質を示す水が、人々の健康維持の観点から注目を集めている(例えば、特開2003−301288、特開2002−348208、特開2001−314877参照)。また、スーパーオキシドラジカル、ヒドロキシルラジカル、過酸化水素、一重項酸素、一酸化窒素、過酸化脂質等の広義の活性酸素種である酸素系ラジカル種といった酸化ストレス物質が、様々な疾患や老化の原因になることが、近年、医学会でも証明されてきている。そして、抗酸化性の化粧料を肌に作用させることにより、このような酸化ストレス物質を除去することは、種々の疾患や老化を防ぐ上で非常に有用であると云われている。   In recent years, water showing reductive properties such as alkaline ionized water, electrolytically reduced water, and hydrogen water has attracted attention from the viewpoint of maintaining human health (for example, JP2003-301288, JP2002-348208, JP, 2001-314877, A). In addition, oxidative stress substances such as oxygen radical species, which are active oxygen species in a broad sense, such as superoxide radicals, hydroxyl radicals, hydrogen peroxide, singlet oxygen, nitric oxide, and lipid peroxide, cause various diseases and aging. In recent years, it has been proven by the medical society. And it is said that removing such an oxidative stress substance by causing an antioxidative cosmetic material to act on the skin is very useful in preventing various diseases and aging.

特開2003−301288JP2003-301288 特開2002−348208JP2002-348208 特開2001−314877JP 2001-314877 A

ところで、本発明者らが調べた限りでは、抗酸化性といった特質を化粧料等の液体に付与するための簡便な方法、手段は知られていない。   By the way, as far as the present inventors have investigated, there is no known simple method or means for imparting antioxidative properties to liquids such as cosmetics.

従って、本開示の目的は、使用者が使用するとき、液体(例えば、化粧水等)に抗酸化性を付与する簡便な手段を提供することにある。   Therefore, an object of the present disclosure is to provide a simple means for imparting antioxidant properties to a liquid (for example, lotion) when used by a user.

上記の目的を達成するための本開示の第1の態様に係る液体塗布用繊維複合体は、窒素BET法による比表面積の値が10m2/グラム以上、BJH法による細孔の容積が0.2cm3/グラム以上、好ましくは0.4cm3/グラム以上である多孔質炭素材料を含んだ繊維質部材から成る。 The fiber composite for coating liquid according to the first aspect of the present disclosure for achieving the above object has a specific surface area value of 10 m 2 / gram or more according to the nitrogen BET method and a pore volume of 0. It consists of a fibrous member containing a porous carbon material of 2 cm 3 / gram or more, preferably 0.4 cm 3 / gram or more.

上記の目的を達成するための本開示の第2の態様に係る液体塗布用繊維複合体は、窒素BET法による比表面積の値が10m2/グラム以上、非局在化密度汎関数法によって求められた直径1×10-9m乃至5×10-7mの細孔の容積の合計が0.5cm3/グラム以上、好ましくは1.0cm3/グラム以上である多孔質炭素材料を含んだ繊維質部材から成る。 The fiber composite for liquid application according to the second aspect of the present disclosure for achieving the above object has a specific surface area value of 10 m 2 / gram or more determined by a nitrogen BET method by a delocalized density functional method. A porous carbon material having a total volume of pores having a diameter of 1 × 10 −9 m to 5 × 10 −7 m is 0.5 cm 3 / gram or more, preferably 1.0 cm 3 / gram or more. It consists of a fibrous member.

上記の目的を達成するための本開示の第3の態様に係る液体塗布用繊維複合体は、窒素BET法による比表面積の値が10m2/グラム以上、非局在化密度汎関数法によって求められた細孔径分布において、3nm乃至20nmの範囲内に少なくとも1つのピークを有し、3nm乃至20nmの範囲内に細孔径を有する細孔の容積の合計の占める割合が全細孔の容積総計の0.2以上である多孔質炭素材料を含んだ繊維質部材から成る。 The fiber composite for liquid application according to the third aspect of the present disclosure for achieving the above object has a specific surface area value of 10 m 2 / gram or more determined by a nitrogen BET method, and is determined by a delocalized density functional method. In the obtained pore size distribution, the proportion of the total volume of pores having at least one peak in the range of 3 nm to 20 nm and having a pore size in the range of 3 nm to 20 nm is the total volume of all pores. It consists of the fibrous member containing the porous carbon material which is 0.2 or more.

本開示の第1の態様〜第3の態様に係る液体塗布用繊維複合体にあっては、多孔質炭素材料の窒素BET法による比表面積、細孔の容積、細孔の分布が規定されているが故に、液体に含まれる酸化ストレス物質を確実に除去するといった、また、液体の酸化還元電位を確実に低下させるといった抗酸化性を、液体(例えば、化粧水等)に容易に付与することができる。しかも、液体(例えば、化粧水等)を繊維質部材に滲み込ませて使用すればよいので、非常に簡便な手段、方法によって、抗酸化性といった特質を液体に付与することができる。尚、一般に、酸化ストレス物質は、電子を受け取り易い(即ち、標準酸化還元電位が正方向に高い)ため、酸化ストレス物質が除去されると、より電子の受け取り易さが低下する(電子の与え易さが増加する)。即ち、酸化還元電位が負の方向に大きくなる。   In the fiber composite for liquid application according to the first to third aspects of the present disclosure, the specific surface area, pore volume, and pore distribution of the porous carbon material according to the nitrogen BET method are defined. Therefore, it is possible to easily impart anti-oxidant properties to liquids (for example, lotions) that reliably remove oxidative stress substances contained in liquids and that reliably reduce the redox potential of liquids. Can do. In addition, since liquid (for example, skin lotion, etc.) may be used by soaking into the fibrous member, characteristics such as antioxidant properties can be imparted to the liquid by very simple means and methods. In general, an oxidative stress substance is easy to receive electrons (that is, the standard oxidation-reduction potential is high in the positive direction). Therefore, when the oxidative stress substance is removed, the ease of receiving electrons decreases (giving electrons). Ease increases). That is, the redox potential increases in the negative direction.

図1は、実施例1の多孔質炭素材料及び比較例1の活性炭の添加量とpHの関係を調べたグラフである。FIG. 1 is a graph in which the relationship between the addition amount of the porous carbon material of Example 1 and the activated carbon of Comparative Example 1 and pH is examined. 図2は、実施例1の多孔質炭素材料及び比較例1の活性炭の添加量と酸化還元電位の関係を調べたグラフである。FIG. 2 is a graph in which the relationship between the addition amount of the porous carbon material of Example 1 and the activated carbon of Comparative Example 1 and the oxidation-reduction potential is examined.

以下、図面を参照して、実施例に基づき本開示を説明するが、本開示は実施例に限定されるものではなく、実施例における種々の数値や材料は例示である。尚、説明は、以下の順序で行う。
1.本開示の第1の態様〜第3の態様に係る液体塗布用繊維複合体、全般に関する説明
2.実施例1(本開示の第1の態様〜第3の態様に係る液体塗布用繊維複合体)、その他
Hereinafter, although this indication is explained based on an example with reference to drawings, this indication is not limited to an example and various numerical values and materials in an example are illustrations. The description will be given in the following order.
1. 1. General description of the fiber composite for liquid application according to the first to third aspects of the present disclosure. Example 1 (Liquid composite for liquid application according to first to third aspects of the present disclosure), others

[本開示の第1の態様〜第3の態様に係る液体塗布用繊維複合体、全般に関する説明]
本開示の第1の態様〜第3の態様に係る液体塗布用繊維複合体において、多孔質炭素材料には機能性材料が付着している形態とすることができる。尚、このような形態を、便宜上、『多孔質炭素材料複合体』と呼ぶ場合がある。
[Description of General for Fiber Composite for Liquid Application According to First to Third Aspects of Present Disclosure]
In the fiber composite for liquid application according to the first to third aspects of the present disclosure, the porous carbon material may have a functional material attached thereto. Such a form may be referred to as a “porous carbon material composite” for convenience.

上記の好ましい形態を含む本開示の第1の態様〜第3の態様に係る液体塗布用繊維複合体にあっては、液体を繊維質部材に含ませて、液体を塗布する形態(使用形態)とすることができる。そして、このような使用形態にあっては、液体を多孔質炭素材料と接触させることで液体に含まれる酸化ストレス物質を除去することができ、あるいは又、液体を多孔質炭素材料と接触させることで液体の酸化還元電位を低下させることができる。即ち、抗酸化性といった特質を液体に付与することができる。   In the fiber composite for applying a liquid according to the first to third aspects of the present disclosure including the above preferred forms, the liquid is contained in the fibrous member and the liquid is applied (usage form). It can be. And in such a usage form, the oxidative stress substance contained in the liquid can be removed by bringing the liquid into contact with the porous carbon material, or the liquid is brought into contact with the porous carbon material. Can reduce the oxidation-reduction potential of the liquid. That is, characteristics such as antioxidant properties can be imparted to the liquid.

ここで、液体として水を挙げることができるが、これに限定するものではなく、例えば、化粧水、乳液、汗や油脂、口紅等の汚れ成分を除去するクレンジング剤を挙げることもできる。   Here, water can be exemplified as the liquid, but is not limited thereto, and examples thereof include cleansing agents that remove dirt components such as lotion, milky lotion, sweat, fats and oils, and lipstick.

また、酸化ストレス物質として、ヒドロキシルラジカル、一重項酸素、スーパーオキシドラジカル、過酸化水素、一酸化窒素、過酸化脂質等を挙げることができる。液体に含まれる酸化ストレス物質が除去されるとは、酸化ストレス物質(活性酸素種であるヒドロキシルラジカル、一重項酸素、スーパーオキシドラジカル、過酸化水素、一酸化窒素、過酸化脂質等)が存在している状態から、多孔質炭素材料によって酸化ストレス物質が還元され、酸化ストレス物質が水分子若しくは酸素分子に変化した状態となることを意味する。   Examples of the oxidative stress substance include hydroxyl radical, singlet oxygen, superoxide radical, hydrogen peroxide, nitric oxide, and lipid peroxide. Oxidative stress substances (hydroxyl radicals, singlet oxygen, superoxide radicals, hydrogen peroxide, nitric oxide, lipid peroxide, etc., which are reactive oxygen species) exist when oxidative stress substances contained in a liquid are removed. This means that the oxidative stress substance is reduced by the porous carbon material and the oxidative stress substance is changed to water molecules or oxygen molecules.

あるいは又、液体の酸化還元電位を低下させるが、ここで、塩素や、トリハロメタン、酸化ストレス物質(活性酸素種であるヒドロキシルラジカル、一重項酸素、スーパーオキシドラジカル、過酸化水素、一酸化窒素、過酸化脂質等)が含まれることによる酸化状態から、これらの物質が除去され、ミネラル成分(多孔質炭素材料の表面及び内部に含まれる焼成・賦活過程で生成した残留灰分と考えられる)が溶出する状態となったとき、液体の酸化還元電位が低下したとする。即ち、塩素やトリハロメタン、酸化ストレス物質は酸化還元電位が正に高いため(即ち、酸性度が大)のため、多孔質炭素材料による吸着又は還元反応による除去と、多孔質炭素材料からの強アルカリ弱酸塩の溶出(炭酸カリウム等)とが、酸化還元電位の低下に寄与すると考えられる。液体の酸化還元電位は、Ag/AgCl電極を参照極とした3極式の電位計を用いることで測定することができる。尚、低下した後の液体の酸化還元電位は、150ミリボルト以下であることが望ましい。   Alternatively, it reduces the oxidation-reduction potential of the liquid. Here, chlorine, trihalomethane, oxidative stress substances (reactive oxygen species such as hydroxyl radical, singlet oxygen, superoxide radical, hydrogen peroxide, nitric oxide, hydrogen peroxide, These substances are removed from the oxidized state due to the inclusion of lipid oxides, etc.), and mineral components (considered as residual ash generated in the firing and activation processes contained on the surface and inside of the porous carbon material) are eluted. Assume that when the state is reached, the redox potential of the liquid is lowered. That is, since chlorine, trihalomethane, and oxidative stress substances have a high redox potential (ie, high acidity), they are removed by adsorption or reduction reaction with porous carbon materials and strong alkalis from porous carbon materials. It is considered that the elution of weak acid salt (potassium carbonate or the like) contributes to the reduction of the redox potential. The oxidation-reduction potential of the liquid can be measured by using a tripolar electrometer using an Ag / AgCl electrode as a reference electrode. In addition, it is desirable that the redox potential of the liquid after being lowered is 150 millivolts or less.

以上に説明した好ましい形態を含む本開示の第1の態様〜第3の態様に係る液体塗布用繊維複合体において、多孔質炭素材料の原料は、ケイ素(Si)を含有する植物由来の材料であることが好ましく、この場合、具体的には、限定するものではないが、多孔質炭素材料は、ケイ素(Si)の含有率が5質量%以上である植物由来の材料を原料とし、多孔質炭素材料のケイ素(Si)の含有率は、5質量%以下、好ましくは3質量%以下、より好ましくは1質量%以下であることが望ましい。   In the fiber composite for liquid application according to the first to third aspects of the present disclosure including the preferred embodiments described above, the raw material of the porous carbon material is a plant-derived material containing silicon (Si). In this case, although not specifically limited, the porous carbon material is made from a plant-derived material having a silicon (Si) content of 5% by mass or more as a raw material. The content of silicon (Si) in the carbon material is desirably 5% by mass or less, preferably 3% by mass or less, and more preferably 1% by mass or less.

場合によっては、以上に説明した好ましい形態を含む本開示の第1の態様〜第3の態様に係る液体塗布用繊維複合体(以下、これらを総称して、単に、『本開示の液体塗布用繊維複合体等』と呼ぶ場合がある)を構成する多孔質炭素材料(以下、これらを総称して、単に、『本開示の多孔質炭素材料等』と呼ぶ場合がある)あるいは多孔質炭素材料複合体の表面に、親水処理又は疎水処理を施してもよい。   In some cases, the fiber composites for liquid application according to the first to third aspects of the present disclosure including the preferred embodiments described above (hereinafter collectively referred to simply as “for liquid application of the present disclosure”). Porous carbon material (hereinafter may be referred to simply as “porous carbon material etc. of the present disclosure”) or a porous carbon material constituting “fiber composite etc.”) The surface of the composite may be subjected to hydrophilic treatment or hydrophobic treatment.

本開示の液体塗布用繊維複合体等においては、本開示の多孔質炭素材料等からの、例えば、炭化及び賦活過程で生成した炭酸塩の少量の溶出に起因して、また、本開示の多孔質炭素材料等における賦活度合いを大きくすることによる灰分の増加によって、液体をアルカリ性とすることもできるし、pHの値を増加させることもできる。また、本開示の多孔質炭素材料等の表面にカルボキシ基(硝酸処理により達成可能)やスルホン基(濃硫酸により達成可能)を生成させることで、酸性とすることもできるし、pHの値を減少させることもできる。あるいは又、液体に水素等の還元剤を含ませることもできる。また、本開示の多孔質炭素材料等の微細構造を通過させることにより、液体の構造(クラスター)を変化させることができる。   In the fiber composite for coating liquid and the like of the present disclosure, the porous carbon material of the present disclosure, for example, due to a small amount of elution of carbonate generated in the carbonization and activation process, By increasing the ash content by increasing the degree of activation in the carbonaceous material or the like, the liquid can be made alkaline or the pH value can be increased. Moreover, it can be made acidic by generating a carboxy group (achievable by nitric acid treatment) or a sulfone group (achievable by concentrated sulfuric acid) on the surface of the porous carbon material or the like of the present disclosure. It can also be reduced. Alternatively, a reducing agent such as hydrogen can be included in the liquid. In addition, the liquid structure (cluster) can be changed by passing through a fine structure such as the porous carbon material of the present disclosure.

本開示の液体塗布用繊維複合体等にあっては、繊維質部材に多孔質炭素材料が含まれるが、本開示の液体塗布用繊維複合体等の具体的な構成として、本開示の多孔質炭素材料等を繊維質部材を構成する繊維に予め練り込み、紡糸し、必要に応じて、機械捲縮やコイル捲縮といった捲縮処理を施し、織布あるいは不織布とする構成を挙げることができるし、これらの織布あるいは不織布に基づく物品とする構成を挙げることができるし、本開示の多孔質炭素材料等をバインダー等を用いて繊維質部材に付着させる構成を挙げることができるし、本開示の多孔質炭素材料等を、例えば、バインダー(結着剤)等を用いて所望の形状に賦形して、層状の繊維質部材で挟み込んだ構成を挙げることができるし、これらの構成を適宜組み合わせた状態とすることもできる。本開示の液体塗布用繊維複合体の具体的な商品形態として、例えば、化粧用コットン、化粧用パッティング材、化粧用パフ、化粧用カット綿、消毒用パフを挙げることができる。   In the fiber composite for liquid application and the like of the present disclosure, the fibrous member includes a porous carbon material. As a specific configuration of the fiber composite for liquid application and the like of the present disclosure, the porous material of the present disclosure A structure in which a carbon material or the like is previously kneaded into a fiber constituting the fibrous member, spun, and subjected to a crimping process such as mechanical crimping or coil crimping as necessary to form a woven or non-woven fabric can be exemplified. In addition, the structure based on these woven fabrics or non-woven fabrics can be mentioned, the porous carbon material of the present disclosure can be attached to the fibrous member using a binder, etc. For example, the disclosed porous carbon material can be formed into a desired shape using a binder (binder) or the like, and sandwiched between layered fibrous members. Combined as appropriate Rukoto can also. Specific product forms of the fiber composite for liquid application of the present disclosure may include, for example, a cosmetic cotton, a cosmetic putting material, a cosmetic puff, a cosmetic cut cotton, and a disinfecting puff.

繊維質部材を構成する材料として、綿、麻、竹、羊毛、パルプ等の天然繊維;セルローズ系の再生繊維;ポリプロピレン、ポリエステル、ナイロン、ビニロン、ポリエチレン、ポリアミド、芳香族ポリアミド、ポリオレフィン、ポリスチレン、アクリル、レーヨン、ポリビニルアルコール、ポリテトラフルオロエチレン、エチレン−ビニルアルコール系共重合体、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート等の合成繊維の少なくとも1種類から成る織布や不織布、これらの材料を混紡して成る織布や不織布といった周知の布材あるいは布状の材料、ガーゼ状の材料等を挙げることができるし、バインダーとしてカルボキシニトロセルロースを挙げることができる。尚、合成繊維の形態として、芯鞘型、偏心芯鞘型、多層貼合型、サイドバイサイド型等を挙げることができるし、断面形状として、円形だけでなく異型断面形状とすることができる。   Natural materials such as cotton, hemp, bamboo, wool, and pulp; cellulose-based recycled fibers; polypropylene, polyester, nylon, vinylon, polyethylene, polyamide, aromatic polyamide, polyolefin, polystyrene, acrylic Woven fabrics and non-woven fabrics made of at least one synthetic fiber such as rayon, polyvinyl alcohol, polytetrafluoroethylene, ethylene-vinyl alcohol copolymer, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, etc. Well-known cloth materials such as woven fabrics and nonwoven fabrics, cloth-like materials, gauze-like materials, and the like can be mentioned, and carboxynitrocellulose can be mentioned as a binder. In addition, examples of the form of the synthetic fiber include a core-sheath type, an eccentric core-sheath type, a multi-layer bonding type, a side-by-side type, and the like, and the cross-sectional shape can be not only a circular shape but also an irregular cross-sectional shape.

本開示の多孔質炭素材料等は、例えば、植物由来の材料を400゜C乃至1400゜Cにて炭素化した後、酸又はアルカリで処理することによって得ることができる。このような本開示における多孔質炭素材料等の製造方法(以下、単に、『多孔質炭素材料の製造方法』と呼ぶ場合がある)において、植物由来の材料を400゜C乃至1400゜Cにて炭素化することにより得られた材料であって、酸又はアルカリでの処理を行う前の材料を、『多孔質炭素材料前駆体』あるいは『炭素質物質』と呼ぶ。   The porous carbon material of the present disclosure can be obtained, for example, by carbonizing a plant-derived material at 400 ° C. to 1400 ° C. and then treating with an acid or an alkali. In such a method for producing a porous carbon material or the like in the present disclosure (hereinafter sometimes simply referred to as “a method for producing a porous carbon material”), the plant-derived material is heated at 400 ° C. to 1400 ° C. A material obtained by carbonization before being treated with an acid or alkali is called a “porous carbon material precursor” or a “carbonaceous substance”.

多孔質炭素材料の製造方法において、酸又はアルカリでの処理の後、賦活処理を施す工程を含めることができるし、賦活処理を施した後、酸又はアルカリでの処理を行ってもよい。また、このような好ましい形態を含む多孔質炭素材料の製造方法にあっては、使用する植物由来の材料にも依るが、植物由来の材料を炭素化する前に、炭素化のための温度よりも低い温度(例えば、400゜C〜700゜C)にて、酸素を遮断した状態で植物由来の材料に加熱処理(予備炭素化処理)を施してもよい。これによって、炭素化の過程において生成するであろうタール成分を抽出することが出来る結果、炭素化の過程において生成するであろうタール成分を減少あるいは除去することができる。尚、酸素を遮断した状態は、例えば、窒素ガスやアルゴンガスといった不活性ガス雰囲気とすることで、あるいは又、真空雰囲気とすることで、あるいは又、植物由来の材料を一種の蒸し焼き状態とすることで達成することができる。また、多孔質炭素材料の製造方法にあっては、使用する植物由来の材料にも依るが、植物由来の材料中に含まれるミネラル成分や水分を減少させるために、また、炭素化の過程での異臭の発生を防止するために、植物由来の材料をアルコール(例えば、メチルアルコールやエチルアルコール、イソプロピルアルコール)に浸漬してもよい。尚、多孔質炭素材料の製造方法にあっては、その後、予備炭素化処理を実行してもよい。不活性ガス中で加熱処理を施すことが好ましい材料として、例えば、木酢液(タールや軽質油分)を多く発生する植物を挙げることができる。また、アルコールによる前処理を施すことが好ましい材料として、例えば、ヨウ素や各種ミネラルを多く含む海藻類を挙げることができる。   In the manufacturing method of a porous carbon material, the process of performing an activation process can be included after the process with an acid or an alkali, and after performing an activation process, you may perform the process with an acid or an alkali. Further, in the method for producing a porous carbon material including such a preferable form, depending on the plant-derived material to be used, before carbonizing the plant-derived material, the temperature for carbonization is determined. Alternatively, the plant-derived material may be subjected to a heat treatment (preliminary carbonization treatment) at a low temperature (for example, 400 ° C. to 700 ° C.) in a state where oxygen is blocked. As a result, the tar component that will be generated in the carbonization process can be extracted. As a result, the tar component that will be generated in the carbonization process can be reduced or eliminated. The state in which oxygen is shut off is, for example, an inert gas atmosphere such as nitrogen gas or argon gas, or a vacuum atmosphere, or a plant-derived material is in a kind of steamed state. Can be achieved. Moreover, in the method for producing a porous carbon material, depending on the plant-derived material to be used, in order to reduce mineral components and moisture contained in the plant-derived material, and in the process of carbonization. In order to prevent the generation of the off-flavor, the plant-derived material may be immersed in alcohol (for example, methyl alcohol, ethyl alcohol, isopropyl alcohol). In addition, in the manufacturing method of a porous carbon material, you may perform a preliminary carbonization process after that. As a material that is preferably heat-treated in an inert gas, for example, a plant that generates a large amount of wood vinegar liquid (tar or light oil) can be mentioned. In addition, examples of materials that are preferably pretreated with alcohol include seaweeds that contain a large amount of iodine and various minerals.

多孔質炭素材料の製造方法にあっては、植物由来の材料を400゜C乃至1400゜Cにて炭素化するが、ここで、炭素化とは、一般に、有機物質(本開示の多孔質炭素材料等にあっては、植物由来の材料)を熱処理して炭素質物質に変換することを意味する(例えば、JIS M0104−1984参照)。尚、炭素化のための雰囲気として、酸素を遮断した雰囲気を挙げることができ、具体的には、真空雰囲気、窒素ガスやアルゴンガスといった不活性ガス雰囲気、植物由来の材料を一種の蒸し焼き状態とする雰囲気を挙げることができる。炭素化温度に至るまでの昇温速度として、限定するものではないが、係る雰囲気下、1゜C/分以上、好ましくは3゜C/分以上、より好ましくは5゜C/分以上を挙げることができる。また、炭素化時間の上限として、10時間、好ましくは7時間、より好ましくは5時間を挙げることができるが、これに限定するものではない。炭素化時間の下限は、植物由来の材料が確実に炭素化される時間とすればよい。また、植物由来の材料を、所望に応じて粉砕して所望の粒度としてもよいし、分級してもよい。植物由来の材料を予め洗浄してもよい。あるいは又、得られた多孔質炭素材料前駆体や多孔質炭素材料を、所望に応じて粉砕して所望の粒度としてもよいし、分級してもよい。あるいは又、賦活処理後の多孔質炭素材料を、所望に応じて粉砕して所望の粒度としてもよいし、分級してもよい。更には、最終的に得られた多孔質炭素材料に殺菌処理を施してもよい。炭素化のために使用する炉の形式、構成、構造に制限はなく、連続炉とすることもできるし、回分炉(バッチ炉)とすることもできる。   In the method for producing a porous carbon material, a plant-derived material is carbonized at 400 ° C. to 1400 ° C. Here, carbonization is generally an organic substance (the porous carbon of the present disclosure). In the case of materials and the like, it means that a plant-derived material is heat-treated to convert it into a carbonaceous substance (for example, see JIS M0104-1984). The atmosphere for carbonization can include an atmosphere in which oxygen is shut off. Specifically, a vacuum atmosphere, an inert gas atmosphere such as nitrogen gas or argon gas, and a plant-derived material as a kind of steamed state. The atmosphere to do can be mentioned. The rate of temperature rise until reaching the carbonization temperature is not limited, but in such an atmosphere, 1 ° C / min or more, preferably 3 ° C / min or more, more preferably 5 ° C / min or more. be able to. The upper limit of the carbonization time can be 10 hours, preferably 7 hours, more preferably 5 hours, but is not limited thereto. The lower limit of the carbonization time may be a time during which the plant-derived material is reliably carbonized. Moreover, the plant-derived material may be pulverized as desired to obtain a desired particle size, or may be classified. Plant-derived materials may be washed in advance. Alternatively, the obtained porous carbon material precursor or porous carbon material may be pulverized as desired to obtain a desired particle size or classified. Alternatively, the porous carbon material after the activation treatment may be pulverized as desired to obtain a desired particle size or may be classified. Further, the porous carbon material finally obtained may be sterilized. There is no restriction | limiting in the form, structure, and structure of the furnace used for carbonization, It can also be set as a continuous furnace and can also be set as a batch furnace (batch furnace).

多孔質炭素材料複合体の製造にあっては、酸又はアルカリで処理することによって、多孔質炭素材料を得た後、この多孔質炭素材料に機能性材料を付着させればよい。また、酸又はアルカリでの処理の後、多孔質炭素材料に機能性材料を付着させる前に、賦活処理を施す工程を含めることができる。ここで、機能性材料として、例えば、白金(Pt)、あるいは、白金(Pt)及びパラジウム(Pd)を挙げることができ、機能性材料の多孔質炭素材料への付着の形態として、微粒子の状態での付着、薄膜の状態での付着を例示することができ、具体的には、多孔質炭素材料の表面(細孔内を含む)に、微粒子として付着している状態、薄膜状に付着している状態、海・島状(多孔質炭素材料の表面を「海」とみなした場合、機能性材料が「島」に相当する)に付着している状態を挙げることができる。尚、付着とは、異種の材料間の接着現象を指す。多孔質炭素材料に機能性材料を付着させる方法として、機能性材料を含む溶液に多孔質炭素材料を浸漬して多孔質炭素材料の表面に機能性材料を析出させる方法、多孔質炭素材料の表面に無電解メッキ法(化学メッキ法)又は化学還元反応にて機能性材料を析出させる方法、機能性材料の前駆体を含む溶液に多孔質炭素材料を浸漬して、熱処理を行うことによって多孔質炭素材料の表面に機能性材料を析出させる方法、機能性材料の前駆体を含む溶液に多孔質炭素材料を浸漬して、超音波照射処理を行うことによって多孔質炭素材料の表面に機能性材料を析出させる方法、機能性材料の前駆体を含む溶液に多孔質炭素材料を浸漬して、ゾル・ゲル反応を行うことによって多孔質炭素材料の表面に機能性材料を析出させる方法を挙げることができる。   In the production of the porous carbon material composite, after obtaining the porous carbon material by treating with an acid or alkali, a functional material may be attached to the porous carbon material. Moreover, the process of performing an activation process can be included after making the functional material adhere to a porous carbon material after the process with an acid or an alkali. Here, as the functional material, for example, platinum (Pt), or platinum (Pt) and palladium (Pd) can be cited. As the form of adhesion of the functional material to the porous carbon material, the state of fine particles Adhesion in a thin film or in a thin film state can be exemplified. Specifically, it adheres as a fine particle or in a thin film state on the surface of a porous carbon material (including the inside of pores). And a state of adhering to the sea / island state (when the surface of the porous carbon material is regarded as “the sea”, the functional material corresponds to “the island”). Adhesion refers to an adhesion phenomenon between different kinds of materials. As a method of attaching the functional material to the porous carbon material, the method of depositing the functional material on the surface of the porous carbon material by immersing the porous carbon material in a solution containing the functional material, the surface of the porous carbon material Porous material by electroless plating method (chemical plating method) or method of depositing functional material by chemical reduction reaction, by immersing porous carbon material in solution containing functional material precursor and performing heat treatment A method of depositing a functional material on the surface of the carbon material, a functional material on the surface of the porous carbon material by immersing the porous carbon material in a solution containing a precursor of the functional material and performing ultrasonic irradiation treatment And a method of precipitating the functional material on the surface of the porous carbon material by immersing the porous carbon material in a solution containing the functional material precursor and performing a sol-gel reaction. so That.

多孔質炭素材料の製造方法において、上述したとおり、賦活処理を施せば、孔径が2nmよりも小さいマイクロ細孔(後述する)を増加させることができる。賦活処理の方法として、ガス賦活法、薬品賦活法を挙げることができる。ここで、ガス賦活法とは、賦活剤として酸素や水蒸気、炭酸ガス、空気等を用い、係るガス雰囲気下、700゜C乃至1400゜Cにて、好ましくは700゜C乃至1000゜Cにて、より好ましくは800゜C乃至1000゜Cにて、数十分から数時間、多孔質炭素材料を加熱することにより、多孔質炭素材料中の揮発成分や炭素分子により微細構造を発達させる方法である。尚、より具体的には、加熱温度は、植物由来の材料の種類、ガスの種類や濃度等に基づき、適宜、選択すればよい。薬品賦活法とは、ガス賦活法で用いられる酸素や水蒸気の替わりに、塩化亜鉛、塩化鉄、リン酸カルシウム、水酸化カルシウム、炭酸マグネシウム、炭酸カリウム、硫酸等を用いて賦活させ、塩酸で洗浄、アルカリ性水溶液でpHを調整し、乾燥させる方法である。   In the method for producing a porous carbon material, as described above, when the activation treatment is performed, micropores (described later) having a pore diameter smaller than 2 nm can be increased. Examples of the activation treatment method include a gas activation method and a chemical activation method. Here, the gas activation method uses oxygen, water vapor, carbon dioxide gas, air or the like as an activator, and in such a gas atmosphere, at 700 ° C. to 1400 ° C., preferably at 700 ° C. to 1000 ° C. More preferably, by heating the porous carbon material at 800 ° C. to 1000 ° C. for several tens of minutes to several hours, the microstructure is developed by the volatile components and carbon molecules in the porous carbon material. is there. More specifically, the heating temperature may be appropriately selected based on the type of plant-derived material, the type and concentration of gas, and the like. The chemical activation method is activated with zinc chloride, iron chloride, calcium phosphate, calcium hydroxide, magnesium carbonate, potassium carbonate, sulfuric acid, etc. instead of oxygen and water vapor used in the gas activation method, washed with hydrochloric acid, alkaline In this method, the pH is adjusted with an aqueous solution and dried.

本開示の多孔質炭素材料等の表面に対して、化学処理又は分子修飾を行ってもよい。化学処理として、例えば、硝酸処理により表面にカルボキシ基を生成させる処理を挙げることができる。また、水蒸気、酸素、アルカリ等による賦活処理と同様の処理を行うことにより、多孔質炭素材料の表面に水酸基、カルボキシ基、ケトン基、エステル基等、種々の官能基を生成させることもできる。更には、多孔質炭素材料と反応可能な水酸基、カルボキシ基、アミノ基等を有する化学種又は蛋白質とを化学反応させることでも、分子修飾が可能である。   Chemical treatment or molecular modification may be performed on the surface of the porous carbon material or the like of the present disclosure. Examples of the chemical treatment include a treatment for generating a carboxy group on the surface by nitric acid treatment. Moreover, various functional groups, such as a hydroxyl group, a carboxy group, a ketone group, an ester group, can also be produced | generated on the surface of a porous carbon material by performing the process similar to the activation process by water vapor | steam, oxygen, an alkali. Furthermore, molecular modification can also be achieved by chemically reacting a chemical species or protein having a hydroxyl group, a carboxy group, an amino group or the like that can react with the porous carbon material.

多孔質炭素材料の製造方法にあっては、酸又はアルカリでの処理によって、炭素化後の植物由来の材料中のケイ素成分を除去する。ここで、ケイ素成分として、二酸化ケイ素や酸化ケイ素、酸化ケイ素塩といったケイ素酸化物を挙げることができる。このように、炭素化後の植物由来の材料中のケイ素成分を除去することで、高い比表面積を有する多孔質炭素材料を得ることができる。場合によっては、ドライエッチング法に基づき、炭素化後の植物由来の材料中のケイ素成分を除去してもよい。即ち、本開示の多孔質炭素材料等の好ましい形態にあっては、原料として、ケイ素(Si)を含有する植物由来の材料を用いるが、多孔質炭素材料前駆体あるいは炭素質物質に変換する際、植物由来の材料を高温(例えば、400゜C乃至1400゜C)にて炭素化することによって、植物由来の材料中に含まれるケイ素が、炭化ケイ素(SiC)とはならずに、二酸化ケイ素(SiOx)や酸化ケイ素、酸化ケイ素塩といったケイ素成分(ケイ素酸化物)となる。尚、炭素化する前の植物由来の材料に含まれているケイ素成分(ケイ素酸化物)は、高温(例えば、400゜C乃至1400゜C)にて炭素化しても、実質的な変化は生じない。それ故、次の工程において酸又はアルカリ(塩基)で処理することにより、二酸化ケイ素や酸化ケイ素、酸化ケイ素塩といったケイ素成分(ケイ素酸化物)が除去される結果、窒素BET法による大きな比表面積の値を得ることができる。しかも、本開示の多孔質炭素材料等の好ましい形態にあっては、天然物由来の環境融和材料であり、その微細構造は、植物由来の材料である原料中に予め含まれるケイ素成分(ケイ素酸化物)を酸又はアルカリで処理し、除去することによって得られる。従って、細孔の配列は植物の有する生体規則性を維持している。 In the method for producing a porous carbon material, the silicon component in the plant-derived material after carbonization is removed by treatment with acid or alkali. Here, examples of the silicon component include silicon oxides such as silicon dioxide, silicon oxide, and silicon oxide salts. Thus, the porous carbon material which has a high specific surface area can be obtained by removing the silicon component in the plant-derived material after carbonization. In some cases, the silicon component in the plant-derived material after carbonization may be removed based on a dry etching method. That is, in a preferred form of the porous carbon material and the like of the present disclosure, a plant-derived material containing silicon (Si) is used as a raw material, but when converted into a porous carbon material precursor or a carbonaceous material. By carbonizing a plant-derived material at a high temperature (for example, 400 ° C. to 1400 ° C.), silicon contained in the plant-derived material does not become silicon carbide (SiC), but silicon dioxide. It becomes a silicon component (silicon oxide) such as (SiO x ), silicon oxide, or silicon oxide salt. In addition, even if the silicon component (silicon oxide) contained in the plant-derived material before carbonization is carbonized at a high temperature (for example, 400 ° C to 1400 ° C), a substantial change occurs. Absent. Therefore, by treating with an acid or alkali (base) in the next step, silicon components (silicon oxide) such as silicon dioxide, silicon oxide, and silicon oxide salt are removed, resulting in a large specific surface area by nitrogen BET method. A value can be obtained. In addition, in a preferred form of the porous carbon material and the like of the present disclosure, it is an environmentally compatible material derived from a natural product, and its microstructure is a silicon component (silicon oxide) previously contained in a raw material that is a plant-derived material. Is obtained by treating with acid or alkali and removing the product. Therefore, the pore arrangement maintains the bioregularity of the plant.

上述したとおり、多孔質炭素材料は、植物由来の材料を原料とすることができる。ここで、植物由来の材料として、米(稲)、大麦、小麦、ライ麦、稗(ヒエ)、粟(アワ)等の籾殻や藁、珈琲豆、茶葉(例えば、緑茶や紅茶等の葉)、サトウキビ類(より具体的には、サトウキビ類の絞り滓)、トウモロコシ類(より具体的には、トウモロコシ類の芯)、果実の皮(例えば、オレンジの皮、グレープフルーツの皮、ミカンの皮といった柑橘類の皮やバナナの皮等)、あるいは又、葦、茎ワカメを挙げることができるが、これらに限定するものではなく、その他、例えば、陸上に植生する維管束植物、シダ植物、コケ植物、藻類、海草を挙げることができる。尚、これらの材料を、原料として、単独で用いてもよいし、複数種を混合して用いてもよい。また、植物由来の材料の形状や形態も特に限定はなく、例えば、籾殻や藁そのものでもよいし、あるいは乾燥処理品でもよい。更には、ビールや洋酒等の飲食品加工において、発酵処理、焙煎処理、抽出処理等の種々の処理を施されたものを使用することもできる。特に、産業廃棄物の資源化を図るという観点から、脱穀等の加工後の藁や籾殻を使用することが好ましい。これらの加工後の藁や籾殻は、例えば、農業協同組合や酒類製造会社、食品会社、食品加工会社から、大量、且つ、容易に入手することができる。   As described above, the porous carbon material can be made from a plant-derived material. Here, as plant-derived materials, rice husks and straws such as rice (rice), barley, wheat, rye, rice husk and millet, rice beans, tea leaves (for example, leaves such as green tea and tea), Citrus such as sugar cane (more specifically, sugar cane squeezed straw), corn (more specifically, corn core), fruit peel (eg orange peel, grapefruit peel, mandarin peel) But also, but not limited to, vascular plants, fern plants, moss plants, algae Can mention seaweed. In addition, these materials may be used independently as a raw material, and multiple types may be mixed and used. Further, the shape and form of the plant-derived material are not particularly limited, and may be, for example, rice husk or straw itself, or may be a dried product. Furthermore, what processed various processes, such as a fermentation process, a roasting process, an extraction process, can also be used in food-drinks processing, such as beer and western liquor. In particular, it is preferable to use straws and rice husks after processing such as threshing from the viewpoint of recycling industrial waste. These processed straws and rice husks can be easily obtained in large quantities from, for example, agricultural cooperatives, liquor manufacturers, food companies, and food processing companies.

本開示の多孔質炭素材料等には、マグネシウム(Mg)、カリウム(K)、カルシウム(Ca)や、リン(P)、硫黄(S)等の非金属元素や、遷移元素等の金属元素が含まれていてもよい。マグネシウム(Mg)の含有率として0.01質量%以上3質量%以下、カリウム(K)の含有率として0.01質量%以上3質量%以下、カルシウム(Ca)の含有率として0.05質量%以上3質量%以下、リン(P)の含有率として0.01質量%以上3質量%以下、硫黄(S)の含有率として0.01質量%以上3質量%以下を挙げることができる。尚、これらの元素の含有率は、比表面積の値の増加といった観点からは、少ない方が好ましい。多孔質炭素材料には、上記した元素以外の元素を含んでいてもよく、上記した各種元素の含有率の範囲も、変更し得ることは云うまでもない。   The porous carbon material of the present disclosure includes non-metallic elements such as magnesium (Mg), potassium (K), calcium (Ca), phosphorus (P), and sulfur (S), and metal elements such as transition elements. It may be included. Magnesium (Mg) content of 0.01% by mass to 3% by mass, potassium (K) content of 0.01% by mass to 3% by mass, calcium (Ca) content of 0.05% by mass % To 3% by mass, phosphorus (P) content of 0.01% to 3% by mass, and sulfur (S) content of 0.01% to 3% by mass. The content of these elements is preferably smaller from the viewpoint of increasing the specific surface area. Needless to say, the porous carbon material may contain elements other than the above-described elements, and the range of the content of each of the above-mentioned various elements can be changed.

本開示において、各種元素の分析は、例えば、エネルギー分散型X線分析装置(例えば、日本電子株式会社製のJED−2200F)を用い、エネルギー分散法(EDS)により行うことができる。ここで、測定条件を、例えば、走査電圧15kV、照射電流10μAとすればよい。   In the present disclosure, analysis of various elements can be performed by an energy dispersion method (EDS) using, for example, an energy dispersive X-ray analyzer (for example, JED-2200F manufactured by JEOL Ltd.). Here, the measurement conditions may be, for example, a scanning voltage of 15 kV and an irradiation current of 10 μA.

本開示の多孔質炭素材料等は、細孔(ポア)を多く有している。細孔として、孔径が2nm乃至50nmの『メソ細孔』、及び、孔径が2nmよりも小さい『マイクロ細孔』、及び、孔径が50nmを超える『マクロ細孔』が含まれる。具体的には、メソ細孔として、例えば、20nm以下の孔径の細孔を多く含み、特に、10nm以下の孔径の細孔を多く含んでいる。また、マイクロ細孔として、例えば、孔径が1.9nm程度の細孔と、1.5nm程度の細孔と、0.8nm〜1nm程度の細孔とを多く含んでいる。本開示の多孔質炭素材料等において、BJH法による細孔の容積は0.2cm3/グラム以上であることが好ましく、0.4cm3/グラム以上であることが一層好ましく、0.6cm3/グラム以上であることがより一層好ましい。 The porous carbon material of the present disclosure has many pores. The pores include “mesopores” having a pore diameter of 2 nm to 50 nm, “micropores” having a pore diameter smaller than 2 nm, and “macropores” having a pore diameter exceeding 50 nm. Specifically, the mesopores include, for example, many pores having a pore diameter of 20 nm or less, and particularly many pores having a pore diameter of 10 nm or less. The micropores include, for example, many pores having a pore diameter of about 1.9 nm, pores of about 1.5 nm, and pores of about 0.8 nm to 1 nm. In the present disclosure of the porous carbon material or the like, it is preferable that the pore volume of at 0.2 cm 3 / g or more determined by the BJH method, more preferably at 0.4 cm 3 / g or more, 0.6 cm 3 / It is even more preferable that it is gram or more.

本開示の多孔質炭素材料等において、窒素BET法による比表面積の値(以下、単に、『比表面積の値』と呼ぶ場合がある)は、より一層優れた機能性を得るために、好ましくは50m2/グラム以上、より好ましくは100m2/グラム以上、更に一層好ましくは400m2/グラム以上であることが望ましい。 In the porous carbon material and the like of the present disclosure, the specific surface area value by the nitrogen BET method (hereinafter sometimes simply referred to as “specific surface area value”) is preferably in order to obtain even more excellent functionality. It is desirable that it is 50 m 2 / gram or more, more preferably 100 m 2 / gram or more, and still more preferably 400 m 2 / gram or more.

窒素BET法とは、吸着剤(ここでは、多孔質炭素材料)に吸着分子として窒素を吸脱着させることにより吸着等温線を測定し、測定したデータを式(1)で表されるBET式に基づき解析する方法であり、この方法に基づき比表面積や細孔容積等を算出することができる。具体的には、窒素BET法により比表面積の値を算出する場合、先ず、多孔質炭素材料に吸着分子として窒素を吸脱着させることにより、吸着等温線を求める。そして、得られた吸着等温線から、式(1)あるいは式(1)を変形した式(1’)に基づき[p/{Va(p0−p)}]を算出し、平衡相対圧(p/p0)に対してプロットする。そして、このプロットを直線と見なし、最小二乗法に基づき、傾きs(=[(C−1)/(C・Vm)])及び切片i(=[1/(C・Vm)])を算出する。そして、求められた傾きs及び切片iから式(2−1)、式(2−2)に基づき、Vm及びCを算出する。更には、Vmから、式(3)に基づき比表面積asBETを算出する(日本ベル株式会社製BELSORP−mini及びBELSORP解析ソフトウェアのマニュアル、第62頁〜第66頁参照)。尚、この窒素BET法は、JIS R 1626−1996「ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法」に準じた測定方法である。 The nitrogen BET method is an adsorption isotherm measured by adsorbing and desorbing nitrogen as an adsorbed molecule on an adsorbent (here, a porous carbon material), and the measured data is converted into a BET equation represented by equation (1). Based on this method, the specific surface area, pore volume, and the like can be calculated. Specifically, when calculating the value of the specific surface area by the nitrogen BET method, first, an adsorption isotherm is obtained by adsorbing and desorbing nitrogen as an adsorbed molecule on the porous carbon material. Then, [p / {V a (p 0 −p)}] is calculated from the obtained adsorption isotherm based on the formula (1) or the formula (1 ′) obtained by modifying the formula (1), and the equilibrium relative pressure is calculated. Plot against (p / p 0 ). Then, this plot is regarded as a straight line, and based on the least square method, the slope s (= [(C-1) / (C · V m )]) and the intercept i (= [1 / (C · V m )]) Is calculated. Then, V m and C are calculated from the obtained slope s and intercept i based on the equations (2-1) and (2-2). Furthermore, the specific surface area a sBET is calculated from V m based on the formula (3) (see BELSORP-mini and BELSORP analysis software manual, pages 62 to 66, manufactured by Bell Japan Co., Ltd.). The nitrogen BET method is a measurement method according to JIS R 1626-1996 “Measurement method of specific surface area of fine ceramic powder by gas adsorption BET method”.

a=(Vm・C・p)/[(p0−p){1+(C−1)(p/p0)}] (1)
[p/{Va(p0−p)}]
=[(C−1)/(C・Vm)](p/p0)+[1/(C・Vm)] (1’)
m=1/(s+i) (2−1)
C =(s/i)+1 (2−2)
sBET=(Vm・L・σ)/22414 (3)
V a = (V m · C · p) / [(p 0 -p) {1+ (C-1) (p / p 0)}] (1)
[P / {V a (p 0 −p)}]
= [(C-1) / (C · V m )] (p / p 0 ) + [1 / (C · V m )] (1 ′)
V m = 1 / (s + i) (2-1)
C = (s / i) +1 (2-2)
a sBET = (V m · L · σ) / 22414 (3)

但し、
a:吸着量
m:単分子層の吸着量
p :窒素の平衡時の圧力
0:窒素の飽和蒸気圧
L :アボガドロ数
σ :窒素の吸着断面積
である。
However,
V a : Adsorption amount V m : Adsorption amount of monolayer p: Nitrogen equilibrium pressure p 0 : Nitrogen saturated vapor pressure L: Avogadro number σ: Nitrogen adsorption cross section.

窒素BET法により細孔容積Vpを算出する場合、例えば、求められた吸着等温線の吸着データを直線補間し、細孔容積算出相対圧で設定した相対圧での吸着量Vを求める。この吸着量Vから式(4)に基づき細孔容積Vpを算出することができる(日本ベル株式会社製BELSORP−mini及びBELSORP解析ソフトウェアのマニュアル、第62頁〜第65頁参照)。尚、窒素BET法に基づく細孔容積を、以下、単に『細孔容積』と呼ぶ場合がある。 When the pore volume V p is calculated by the nitrogen BET method, for example, the adsorption data of the obtained adsorption isotherm is linearly interpolated to obtain the adsorption amount V at the relative pressure set by the pore volume calculation relative pressure. The pore volume V p can be calculated from this adsorption amount V based on the formula (4) (see BELSORP-mini and BELSORP analysis software manual, page 62 to page 65, manufactured by Bell Japan Co., Ltd.). Hereinafter, the pore volume based on the nitrogen BET method may be simply referred to as “pore volume”.

p=(V/22414)×(Mg/ρg) (4) V p = (V / 22414) × (M g / ρ g ) (4)

但し、
V :相対圧での吸着量
g:窒素の分子量
ρg:窒素の密度
である。
However,
V: Adsorption amount at relative pressure M g : Nitrogen molecular weight ρ g : Nitrogen density.

メソ細孔の孔径は、例えば、BJH法に基づき、その孔径に対する細孔容積変化率から細孔の分布として算出することができる。BJH法は、細孔分布解析法として広く用いられている方法である。BJH法に基づき細孔分布解析をする場合、先ず、多孔質炭素材料に吸着分子として窒素を吸脱着させることにより、脱着等温線を求める。そして、求められた脱着等温線に基づき、細孔が吸着分子(例えば窒素)によって満たされた状態から吸着分子が段階的に着脱する際の吸着層の厚さ、及び、その際に生じた孔の内径(コア半径の2倍)を求め、式(5)に基づき細孔半径rpを算出し、式(6)に基づき細孔容積を算出する。そして、細孔半径及び細孔容積から細孔径(2rp)に対する細孔容積変化率(dVp/drp)をプロットすることにより細孔分布曲線が得られる(日本ベル株式会社製BELSORP−mini及びBELSORP解析ソフトウェアのマニュアル、第85頁〜第88頁参照)。 The pore diameter of the mesopores can be calculated as a pore distribution from the pore volume change rate with respect to the pore diameter, for example, based on the BJH method. The BJH method is widely used as a pore distribution analysis method. When pore distribution analysis is performed based on the BJH method, first, desorption isotherms are obtained by adsorbing and desorbing nitrogen as adsorbed molecules on the porous carbon material. Then, based on the obtained desorption isotherm, the thickness of the adsorption layer when the adsorption molecules are attached and detached in stages from the state where the pores are filled with the adsorption molecules (for example, nitrogen), and the pores generated at that time obtains an inner diameter (twice the core radius) of calculating the pore radius r p based on equation (5) to calculate the pore volume based on the equation (6). Then, the pore radius and the pore volume variation rate relative to the pore diameter (2r p) from the pore volume (dV p / dr p) pore distribution curve is obtained by plotting the (BEL Japan Ltd. BELSORP-mini And BELSORP analysis software manual, pages 85-88).

p=t+rk (5)
pn=Rn・dVn−Rn・dtn・c・ΣApj (6)
但し、
n=rpn 2/(rkn−1+dtn2 (7)
r p = t + r k (5)
V pn = R n · dV n -R n · dt n · c · ΣA pj (6)
However,
R n = r pn 2 / (r kn −1 + dt n ) 2 (7)

ここで、
p:細孔半径
k:細孔半径rpの細孔の内壁にその圧力において厚さtの吸着層が吸着した場合のコア半径(内径/2)
pn:窒素の第n回目の着脱が生じたときの細孔容積
dVn:そのときの変化量
dtn:窒素の第n回目の着脱が生じたときの吸着層の厚さtnの変化量
kn:その時のコア半径
c:固定値
pn:窒素の第n回目の着脱が生じたときの細孔半径
である。また、ΣApjは、j=1からj=n−1までの細孔の壁面の面積の積算値を表す。
here,
r p : pore radius r k : core radius (inner diameter / 2) when the adsorption layer having a thickness t is adsorbed on the inner wall of the pore having the pore radius r p at that pressure
V pn : pore volume dV n when the nth attachment / detachment of nitrogen occurs: change amount dt n at that time: change in the thickness t n of the adsorption layer when the nth attachment / detachment of nitrogen occurs Amount r kn : Core radius c at that time c: Fixed value r pn : Pore radius when the nth attachment / detachment of nitrogen occurs. ΣA pj represents the integrated value of the area of the wall surfaces of the pores from j = 1 to j = n−1.

マイクロ細孔の孔径は、例えば、MP法に基づき、その孔径に対する細孔容積変化率から細孔の分布として算出することができる。MP法により細孔分布解析を行う場合、先ず、多孔質炭素材料に窒素を吸着させることにより、吸着等温線を求める。そして、この吸着等温線を吸着層の厚さtに対する細孔容積に変換する(tプロットする)。そして、このプロットの曲率(吸着層の厚さtの変化量に対する細孔容積の変化量)に基づき細孔分布曲線を得ることができる(日本ベル株式会社製BELSORP−mini及びBELSORP解析ソフトウェアのマニュアル、第72頁〜第73頁、第82頁参照)。   The pore diameter of the micropores can be calculated as a pore distribution from the pore volume change rate with respect to the pore diameter, for example, based on the MP method. When performing pore distribution analysis by the MP method, first, an adsorption isotherm is obtained by adsorbing nitrogen to a porous carbon material. Then, this adsorption isotherm is converted into a pore volume with respect to the thickness t of the adsorption layer (t plotted). A pore distribution curve can be obtained based on the curvature of this plot (the amount of change in pore volume with respect to the amount of change in the thickness t of the adsorption layer) (BELSORP-mini and BELSORP analysis software manuals manufactured by Bell Japan Co., Ltd.). 72 to 73 and 82).

JIS Z8831−2:2010 「粉体(固体)の細孔径分布及び細孔特性−第2部:ガス吸着によるメソ細孔及びマクロ細孔の測定方法」、及び、JIS Z8831−3:2010 「粉体(固体)の細孔径分布及び細孔特性−第3部:ガス吸着によるミクロ細孔の測定方法」に規定された非局在化密度汎関数法(NLDFT法,Non Localized Density Functional Theory 法)にあっては、解析ソフトウェアとして、日本ベル株式会社製自動比表面積/細孔分布測定装置「BELSORP−MAX」に付属するソフトウェアを用いる。前提条件としてモデルをシリンダ形状としてカーボンブラック(CB)を仮定し、細孔分布パラメータの分布関数を「no−assumption」とし、得られた分布データにはスムージングを10回施す。   JIS Z8831-2: 2010 “Pore size distribution and pore characteristics of powder (solid) —Part 2: Method for measuring mesopores and macropores by gas adsorption” and JIS Z8831-3: 2010 “Powder” Pore size distribution and pore properties of solid bodies (solid)-Part 3: Nonlocalized density functional theory method (NLDFT method, Non Localized Density Functional Theory method) In that case, software attached to an automatic specific surface area / pore distribution measuring device “BELSORP-MAX” manufactured by Bell Japan Co., Ltd. is used as analysis software. As a precondition, the model is assumed to be a cylinder shape and carbon black (CB) is assumed, the distribution function of the pore distribution parameter is “no-assumtion”, and the obtained distribution data is smoothed 10 times.

多孔質炭素材料前駆体を酸又はアルカリで処理するが、具体的な処理方法として、例えば、酸あるいはアルカリの水溶液に多孔質炭素材料前駆体を浸漬する方法や、多孔質炭素材料前駆体と酸又はアルカリとを気相で反応させる方法を挙げることができる。より具体的には、酸によって処理する場合、酸として、例えば、フッ化水素、フッ化水素酸、フッ化アンモニウム、フッ化カルシウム、フッ化ナトリウム等の酸性を示すフッ素化合物を挙げることができる。フッ素化合物を用いる場合、多孔質炭素材料前駆体に含まれるケイ素成分におけるケイ素元素に対してフッ素元素が4倍量となればよく、フッ素化合物水溶液の濃度は10質量%以上であることが好ましい。フッ化水素酸によって、多孔質炭素材料前駆体に含まれるケイ素成分(例えば、二酸化ケイ素)を除去する場合、二酸化ケイ素は、化学式(A)又は化学式(B)に示すようにフッ化水素酸と反応し、ヘキサフルオロケイ酸(H2SiF6)あるいは四フッ化ケイ素(SiF4)として除去され、多孔質炭素材料を得ることができる。そして、その後、洗浄、乾燥を行えばよい。 The porous carbon material precursor is treated with an acid or alkali. Specific treatment methods include, for example, a method of immersing the porous carbon material precursor in an acid or alkali aqueous solution, or a porous carbon material precursor and an acid. Or the method of making it react with an alkali by a gaseous phase can be mentioned. More specifically, when treating with an acid, examples of the acid include fluorine compounds exhibiting acidity such as hydrogen fluoride, hydrofluoric acid, ammonium fluoride, calcium fluoride, and sodium fluoride. When a fluorine compound is used, it is sufficient that the amount of fluorine element is 4 times the amount of silicon element in the silicon component contained in the porous carbon material precursor, and the concentration of the fluorine compound aqueous solution is preferably 10% by mass or more. When the silicon component (for example, silicon dioxide) contained in the porous carbon material precursor is removed by hydrofluoric acid, the silicon dioxide is mixed with hydrofluoric acid as shown in chemical formula (A) or chemical formula (B). It reacts and is removed as hexafluorosilicic acid (H 2 SiF 6 ) or silicon tetrafluoride (SiF 4 ) to obtain a porous carbon material. Thereafter, washing and drying may be performed.

SiO2+6HF → H2SiF6+2H2O (A)
SiO2+4HF → SiF4+2H2O (B)
SiO 2 + 6HF → H 2 SiF 6 + 2H 2 O (A)
SiO 2 + 4HF → SiF 4 + 2H 2 O (B)

また、アルカリ(塩基)によって処理する場合、アルカリとして、例えば、水酸化ナトリウムを挙げることができる。アルカリの水溶液を用いる場合、水溶液のpHは11以上であればよい。水酸化ナトリウム水溶液によって、多孔質炭素材料前駆体に含まれるケイ素成分(例えば、二酸化ケイ素)を除去する場合、水酸化ナトリウム水溶液を熱することにより、二酸化ケイ素は、化学式(C)に示すように反応し、ケイ酸ナトリウム(Na2SiO3)として除去され、多孔質炭素材料を得ることができる。また、水酸化ナトリウムを気相で反応させて処理する場合、水酸化ナトリウムの固体を熱することにより、化学式(C)に示すように反応し、ケイ酸ナトリウム(Na2SiO3)として除去され、多孔質炭素材料を得ることができる。そして、その後、洗浄、乾燥を行えばよい。 Moreover, when processing with an alkali (base), sodium hydroxide can be mentioned as an alkali, for example. When an alkaline aqueous solution is used, the pH of the aqueous solution may be 11 or more. When the silicon component (for example, silicon dioxide) contained in the porous carbon material precursor is removed with the aqueous sodium hydroxide solution, the silicon dioxide is heated as shown in the chemical formula (C) by heating the aqueous sodium hydroxide solution. It reacts and is removed as sodium silicate (Na 2 SiO 3 ) to obtain a porous carbon material. In addition, when processing by reacting sodium hydroxide in the gas phase, the sodium hydroxide solid is heated to react as shown in the chemical formula (C) and is removed as sodium silicate (Na 2 SiO 3 ). A porous carbon material can be obtained. Thereafter, washing and drying may be performed.

SiO2+2NaOH → Na2SiO3+H2O (C) SiO 2 + 2NaOH → Na 2 SiO 3 + H 2 O (C)

あるいは又、本開示における多孔質炭素材料等として、例えば、特開2010−106007に開示された空孔が3次元的規則性を有する多孔質炭素材料(所謂、逆オパール構造を有する多孔質炭素材料)、具体的には、1×10-9m乃至1×10-5mの平均直径を有する3次元的に配列された球状の空孔を備え、表面積が3×1022/グラム以上の多孔質炭素材料、好ましくは、巨視的に、結晶構造に相当する配置状態にて空孔が配列されており、あるいは又、巨視的に、面心立方構造における(111)面配向に相当する配置状態にて、その表面に空孔が配列されている多孔質炭素材料を用いることもできる。 Alternatively, as a porous carbon material or the like in the present disclosure, for example, a porous carbon material in which pores disclosed in JP 2010-106007 have a three-dimensional regularity (a so-called porous carbon material having an inverse opal structure) ), Specifically, three-dimensionally arranged spherical pores having an average diameter of 1 × 10 −9 m to 1 × 10 −5 m, and a surface area of 3 × 10 2 m 2 / gram or more Porous carbon material, preferably, macroscopically, pores are arranged in an arrangement state corresponding to a crystal structure, or macroscopically corresponds to (111) plane orientation in a face-centered cubic structure It is also possible to use a porous carbon material in which pores are arranged on the surface in the arrangement state.

実施例1は、本開示の第1の態様〜第3の態様に係る液体塗布用繊維複合体に関する。   Example 1 relates to a fiber composite for liquid application according to the first to third aspects of the present disclosure.

実施例1の液体塗布用繊維複合体は、本開示の第1の態様に係る液体塗布用繊維複合体に則って表現すると、窒素BET法による比表面積の値が10m2/グラム以上、BJH法による細孔の容積が0.2cm3/グラム以上、好ましくは0.4cm3/グラム以上、より好ましくは0.6cm3/グラム以上である多孔質炭素材料を含んだ繊維質部材から成る。また、本開示の第2の態様に係る液体塗布用繊維複合体に則って表現すると、窒素BET法による比表面積の値が10m2/グラム以上、非局在化密度汎関数法(NLDFT法)によって求められた直径1×10-9m乃至5×10-7mの細孔の容積の合計(便宜上、『容積A』と呼ぶ)が0.5cm3/グラム以上、好ましくは1.0cm3/グラム以上である多孔質炭素材料を含んだ繊維質部材から成る。更には、本開示の第3の態様に係る液体塗布用繊維複合体に則って表現すると、窒素BET法による比表面積の値が10m2/グラム以上、非局在化密度汎関数法によって求められた細孔径分布において、3nm乃至20nmの範囲内に少なくとも1つのピークを有し、3nm乃至20nmの範囲内に細孔径を有する細孔の容積の合計の占める割合が全細孔の容積総計(容積Aに相当する)の0.2以上、好ましくは0.4以上である多孔質炭素材料を含んだ繊維質部材から成る。 The liquid coating fiber composite of Example 1 is expressed in accordance with the liquid coating fiber composite according to the first aspect of the present disclosure. The specific surface area value by the nitrogen BET method is 10 m 2 / gram or more, and the BJH method. It comprises a fibrous member containing a porous carbon material having a pore volume of 0.2 cm 3 / gram or more, preferably 0.4 cm 3 / gram or more, more preferably 0.6 cm 3 / gram or more. Moreover, when expressed in accordance with the fiber composite for liquid application according to the second aspect of the present disclosure, the value of the specific surface area by the nitrogen BET method is 10 m 2 / gram or more, and the delocalized density functional method (NLDFT method) The total volume of pores having a diameter of 1 × 10 −9 m to 5 × 10 −7 m (referred to as “volume A” for convenience) determined by the above is 0.5 cm 3 / gram or more, preferably 1.0 cm 3 It consists of a fibrous member containing a porous carbon material that is at least / gram. Furthermore, when expressed in accordance with the fiber composite for liquid application according to the third aspect of the present disclosure, the value of the specific surface area by the nitrogen BET method is 10 m 2 / gram or more, which is obtained by the delocalized density functional method. In the pore size distribution, the ratio of the total volume of pores having at least one peak in the range of 3 nm to 20 nm and having a pore size in the range of 3 nm to 20 nm is the total volume of all pores (volume (Corresponding to A) of 0.2 or more, preferably 0.4 or more, a fibrous member containing a porous carbon material.

実施例1にあっては、液体塗布用繊維複合体は、化粧用コットンといった形態を有する。繊維質部材は、綿(コットン)から成る不織布から構成されており、平面形状は矩形である。具体的には、周知の方法に基づき、繊維質部材を構成する繊維(綿)に予め練り込み、紡糸し、不織布とすることで、実施例1の液体塗布用繊維複合体を得ることができる。   In Example 1, the fiber composite for liquid application has a form such as cosmetic cotton. The fibrous member is made of a non-woven fabric made of cotton and has a rectangular planar shape. Specifically, based on a well-known method, the fiber composite for Example 1 can be obtained by kneading into fibers (cotton) constituting the fibrous member in advance, spinning, and forming a nonwoven fabric. .

そして、実施例1にあっては、液体を繊維質部材に含ませて、液体を塗布する。より具体的には、周知の化粧水といった液体を繊維質部材に含ませて、この繊維質部材を使用者の顔面や腕、手足等の肌に当てることで、これらに液体(化粧水)を塗布・付着させる。ここで、液体(化粧水)を多孔質炭素材料と接触させることで液体(化粧水)に含まれる酸化ストレス物質を除去し、あるいは又、液体(化粧水)を多孔質炭素材料と接触させることで液体(化粧水)の酸化還元電位を低下させる。即ち、抗酸化性といった特質を液体(化粧水)に付与する。   And in Example 1, a liquid is included in a fibrous member and a liquid is apply | coated. More specifically, a liquid such as a well-known skin lotion is contained in a fibrous member, and the liquid member (skin lotion) is applied to the skin of the user's face, arms, limbs, etc. Apply and adhere. Here, the oxidative stress substance contained in the liquid (skin lotion) is removed by contacting the liquid (skin lotion) with the porous carbon material, or the liquid (skin lotion) is contacted with the porous carbon material. To lower the redox potential of the liquid (skin lotion). That is, a property such as antioxidant properties is imparted to the liquid (skin lotion).

実施例1にあっては、多孔質炭素材料の原料である植物由来の材料を米(稲)の籾殻とした。そして、実施例1における多孔質炭素材料は、原料としての籾殻を炭素化して炭素質物質(多孔質炭素材料前駆体)に変換し、次いで、酸処理を施すことで得られる。以下、実施例1における多孔質炭素材料の製造方法を説明する。   In Example 1, rice (rice) rice husk was used as the plant-derived material that is the raw material of the porous carbon material. And the porous carbon material in Example 1 is obtained by carbonizing the chaff as a raw material, converting it into a carbonaceous substance (porous carbon material precursor), and then performing an acid treatment. Hereinafter, the manufacturing method of the porous carbon material in Example 1 is demonstrated.

実施例1における多孔質炭素材料の製造においては、植物由来の材料(ケイ素の含有率:約20質量%)を400゜C乃至1400゜Cにて炭素化した後、酸又はアルカリで処理することによって、多孔質炭素材料を得た。即ち、先ず、籾殻に対して、不活性ガス中で加熱処理(予備炭素化処理)を施す。具体的には、籾殻を、窒素気流中において500゜C、5時間、加熱することにより炭化させ、炭化物を得た。尚、このような処理を行うことで、次の炭素化の際に生成されるであろうタール成分を減少あるいは除去することができる。その後、この炭化物の10グラムをアルミナ製の坩堝に入れ、窒素気流中(10リットル/分)において5゜C/分の昇温速度で800゜Cまで昇温させた。そして、800゜Cで1時間、炭素化して、炭素質物質(多孔質炭素材料前駆体)に変換した後、室温まで冷却した。尚、炭素化及び冷却中、窒素ガスを流し続けた。次に、この多孔質炭素材料前駆体を46容積%のフッ化水素酸水溶液に一晩浸漬することで酸処理を行った後、水及びエチルアルコールを用いてpH7になるまで洗浄した。次いで、120°Cにて乾燥させた後、900゜Cで水蒸気気流中(5リットル/分)にて3時間加熱させることで賦活処理を行うことで、実施例1の多孔質炭素材料(ケイ素の含有率:約0.5質量%)を得ることができた。   In the production of the porous carbon material in Example 1, a plant-derived material (silicon content: about 20% by mass) is carbonized at 400 ° C. to 1400 ° C. and then treated with an acid or an alkali. Thus, a porous carbon material was obtained. That is, first, heat treatment (preliminary carbonization treatment) is performed on the rice husk in an inert gas. Specifically, the rice husk was carbonized by heating at 500 ° C. for 5 hours in a nitrogen stream to obtain a carbide. In addition, by performing such a process, the tar component which will be produced | generated at the time of the next carbonization can be reduced or removed. Thereafter, 10 grams of this carbide was put in an alumina crucible and heated to 800 ° C. at a rate of 5 ° C./minute in a nitrogen stream (10 liters / minute). And it carbonized at 800 degreeC for 1 hour, after converting into a carbonaceous substance (porous carbon material precursor), it cooled to room temperature. In addition, nitrogen gas was continued to flow during carbonization and cooling. Next, this porous carbon material precursor was subjected to an acid treatment by immersing it in a 46% by volume hydrofluoric acid aqueous solution overnight, and then washed with water and ethyl alcohol until pH 7 was reached. Next, after drying at 120 ° C., the activation treatment was performed by heating at 900 ° C. in a steam stream (5 liters / minute) for 3 hours, so that the porous carbon material of Example 1 (silicon Content: about 0.5% by mass).

比較例1として、和光純薬株式会社製の活性炭を使用した。   As Comparative Example 1, activated carbon manufactured by Wako Pure Chemical Industries, Ltd. was used.

比表面積及び細孔容積を求めるための測定機器として、BELSORP−mini(日本ベル株式会社製)を用い、窒素吸脱着試験を行った。測定条件として、測定平衡相対圧(p/p0)を0.01〜0.99とした。そして、BELSORP解析ソフトウェアに基づき、比表面積及び細孔容積を算出した。また、メソ細孔及びマイクロ細孔の細孔径分布は、上述した測定機器を用いた窒素吸脱着試験を行い、BELSORP解析ソフトウェアによりBJH法及びMP法に基づき算出した。多孔質炭素材料の細孔を水銀圧入法にて測定した。具体的には、水銀ポロシメーター(PASCAL440:Thermo Electron社製)を用いて、水銀圧入法測定を行った。細孔測定領域を10μm〜2nmとした。更には、非局在化密度汎関数法(NLDFT法)に基づく測定にあっては、日本ベル株式会社製自動比表面積/細孔分布測定装置「BELSORP−MAX」を使用した。尚、測定に際しては、試料の前処理として、200゜Cで3時間の乾燥を行った。 A nitrogen adsorption / desorption test was performed using BELSORP-mini (manufactured by Nippon Bell Co., Ltd.) as a measuring instrument for determining the specific surface area and pore volume. As measurement conditions, the measurement equilibrium relative pressure (p / p 0 ) was set to 0.01 to 0.99. The specific surface area and pore volume were calculated based on BELSORP analysis software. In addition, the pore size distribution of mesopores and micropores was calculated based on the BJH method and the MP method using BELSORP analysis software after performing a nitrogen adsorption / desorption test using the above-described measuring instrument. The pores of the porous carbon material were measured by a mercury intrusion method. Specifically, mercury porosimetry was performed using a mercury porosimeter (PASCAL 440: manufactured by Thermo Electron). The pore measurement region was 10 μm to 2 nm. Furthermore, in the measurement based on the delocalized density functional method (NLDFT method), an automatic specific surface area / pore distribution measuring device “BELSORP-MAX” manufactured by Nippon Bell Co., Ltd. was used. In the measurement, the sample was dried at 200 ° C. for 3 hours as a pretreatment.

実施例1の多孔質炭素材料、後述する実施例2の多孔質炭素材料複合体、及び、比較例1の活性炭について、比表面積及び細孔容積を測定したところ、表1に示す結果が得られた。尚、表1中、「比表面積」は窒素BET法による比表面積の値を指し、単位はm2/グラムである。また、「MP法」、「BJH法」、「水銀圧入法」は、MP法による細孔(マイクロ細孔)の容積測定結果、BJH法による細孔(メソ細孔〜マクロ細孔)の容積測定結果、水銀圧入法による細孔の容積測定結果を示し、単位はcm3/グラムである。更には、NLDFT法に基づく測定を行った結果を表2に示す。尚、全細孔の容積総計の値は、上記の容積Aの値に相当する。 When the specific surface area and the pore volume were measured for the porous carbon material of Example 1, the porous carbon material composite of Example 2 described later, and the activated carbon of Comparative Example 1, the results shown in Table 1 were obtained. It was. In Table 1, “specific surface area” refers to the value of the specific surface area by the nitrogen BET method, and the unit is m 2 / gram. The “MP method”, “BJH method”, and “mercury intrusion method” are the results of volume measurement of pores (micropores) by the MP method, and the volume of pores (mesopores to macropores) by the BJH method. The measurement results and the volume measurement results of the pores by the mercury intrusion method are shown, and the unit is cm 3 / gram. Furthermore, Table 2 shows the results of measurement based on the NLDFT method. Note that the value of the total volume of all pores corresponds to the value of the volume A described above.

[表1]
比表面積 BJH法 MP法 水銀圧入法
実施例1 1700 1.08 0.60 4.12
実施例2 1286 0.65 0.50
比較例1 982 0.08 0.38 1.10
[Table 1]
Specific surface area BJH method MP method Mercury intrusion method Example 1 1700 1.08 0.60 4.12
Example 2 1286 0.65 0.50
Comparative Example 1 982 0.08 0.38 1.10

[表2]
容積割合 全細孔の容積総計(容積A)
実施例1 0.479 1.33cm3/グラム
実施例2 0.432 1.38cm3/グラム
比較例1 0.125 0.40cm3/グラム
[Table 2]
Volume ratio Total volume of all pores (volume A)
Example 1 0.479 1.33 cm < 3 > / gram Example 2 0.432 1.38 cm < 3 > / gram Comparative Example 1 0.125 0.40 cm < 3 > / gram

実施例1の多孔質炭素材料、実施例2の多孔質炭素材料複合体、及び、比較例1の活性炭の水中でのヒドロキシルラジカル(OH・)の除去量を、電子スピン共鳴装置(ESR)で測定した。具体的には、50ミリリットルのヒドロキシルラジカル発生水溶液中に15ミリグラムの試料を添加し、1分間撹拌した後、溶液をESRにて測定した。その結果、比較例1を「1」とした場合のヒドロキシルラジカルの相対除去量は、実施例1にあっては3.2であった。また、後述する実施例2にあっては7.4であった。   The removal amount of hydroxyl radicals (OH.) In water of the porous carbon material of Example 1, the porous carbon material composite of Example 2, and the activated carbon of Comparative Example 1 was measured with an electron spin resonance apparatus (ESR). It was measured. Specifically, 15 milligrams of sample was added to 50 milliliters of hydroxyl radical generating aqueous solution and stirred for 1 minute, and then the solution was measured by ESR. As a result, the relative removal amount of hydroxyl radicals when Comparative Example 1 was set to “1” was 3.2 in Example 1. In Example 2 described later, it was 7.4.

また、実施例1の多孔質炭素材料、実施例2の多孔質炭素材料複合体、及び、比較例1の活性炭を用いたときの水のpH、酸化還元電位の測定結果を、以下の表3に示す。更には、参考のため、水道水等の酸化還元電位の測定結果も、以下の表3に示す。   In addition, the measurement results of the pH and redox potential of water when using the porous carbon material of Example 1, the porous carbon material composite of Example 2, and the activated carbon of Comparative Example 1 are shown in Table 3 below. Shown in Furthermore, for reference, the measurement results of redox potentials of tap water and the like are also shown in Table 3 below.

[表3]
添加前のpH 添加後のpH
実施例1 7.1 9.3
比較例1 7.1 6.4
添加前の酸化還元電位 添加後の酸化還元電位
実施例1 333mV 142mV
比較例1 333mV 297mV
酸化還元電位
水道水 547mV
蒸留水 333mV
市販天然水A 321mV
市販天然水B 258mV
[Table 3]
PH before addition pH after addition
Example 1 7.1 9.3
Comparative Example 1 7.1 6.4
Redox potential before addition Redox potential after addition Example 1 333 mV 142 mV
Comparative Example 1 333 mV 297 mV
Redox potential tap water 547 mV
Distilled water 333mV
Commercial natural water A 321mV
Commercial natural water B 258mV

また、実施例1の多孔質炭素材料及び比較例1の活性炭の添加量とpHの関係を調べた結果を、図1のグラフに示す。更には、実施例1の多孔質炭素材料及び比較例1の活性炭の添加量と酸化還元電位の関係を図2のグラフに示す。尚、20ミリリットルの蒸留水に対して、試料を、300ミリグラム、150ミリグラム、70ミリグラム、30ミリグラム、10ミリグラム、添加し、1分間撹拌し、濾過後の水の酸化還元電位及びpHを測定した。   Moreover, the graph of FIG. 1 shows the result of investigating the relationship between the addition amount of the porous carbon material of Example 1 and the activated carbon of Comparative Example 1 and pH. Furthermore, the relationship between the addition amount of the porous carbon material of Example 1 and the activated carbon of Comparative Example 1 and the oxidation-reduction potential is shown in the graph of FIG. In addition, 300 milligrams, 150 milligrams, 70 milligrams, 30 milligrams, and 10 milligrams of sample were added to 20 milliliters of distilled water, stirred for 1 minute, and the redox potential and pH of the filtered water were measured. .

実施例1にあっては、比較例1と比較して、多孔質炭素材料を添加した後の水のpHの値が上昇し、添加後の酸化還元電位の値が大幅に低下している。しかも、上述したとおり、ヒドロキシルラジカルの相対除去量が3.2であり、高い効率にてヒドロキシルラジカルを除去することができることが判った。   In Example 1, as compared with Comparative Example 1, the pH value of water after the addition of the porous carbon material is increased, and the redox potential value after the addition is significantly decreased. And as above-mentioned, the relative removal amount of the hydroxyl radical was 3.2, and it turned out that a hydroxyl radical can be removed with high efficiency.

実施例2は、実施例1の変形であり、多孔質炭素材料複合体に関する。実施例2にあっては、機能性材料として、多孔質炭素材料に付着した金属系材料(具体的には、白金微粒子,白金ナノ粒子)を用いた。多孔質炭素材料は、実施例1において説明したと概ね同様の方法に基づき製造した。   Example 2 is a modification of Example 1 and relates to a porous carbon material composite. In Example 2, a metal material (specifically, platinum fine particles, platinum nanoparticles) attached to a porous carbon material was used as the functional material. The porous carbon material was manufactured based on a method substantially similar to that described in Example 1.

より具体的には、実施例2にあっては蒸留水182ミリリットルに対して5ミリモルのH2PtCl6水溶液を8ミリリットル、L−アスコルビン酸(表面保護剤)を3.5ミリグラム添加して、暫く撹拌した。その後、実施例1において説明した多孔質炭素材料を0.43グラム添加して、20分間、超音波照射した後、40ミリモルのNaBH4水溶液を10ミリリットル加え、3時間撹拌した。その後、吸引濾過し、120゜Cで乾燥させることによって、黒色の粉末試料である実施例2の多孔質炭素材料複合体を得た。そして、実施例1と同様の方法で、液体塗布用繊維複合体である化粧用コットンを作製した。 More specifically, in Example 2 5 mM H 2 PtCl 6 aqueous solution 8 ml against distilled water 182 ml, the L- ascorbic acid (surface protective agent) was added 3.5 milligrams, Stir for a while. Thereafter, 0.43 g of the porous carbon material described in Example 1 was added, and after ultrasonic irradiation for 20 minutes, 10 ml of 40 mmol NaBH 4 aqueous solution was added and stirred for 3 hours. Then, it filtered by suction and dried at 120 ° C. to obtain a porous carbon material composite of Example 2 as a black powder sample. Then, in the same manner as in Example 1, a cosmetic cotton that was a fiber composite for liquid application was produced.

実施例2にあっても、液体を繊維質部材に含ませて、液体を塗布する。より具体的には、周知の化粧水といった液体を繊維質部材に含ませて、この繊維質部材を使用者の顔面や腕、手足等の肌に当てることで、これらに液体(化粧水)を塗布・付着させる。ここで、液体(化粧水)を多孔質炭素材料と接触させることで液体(化粧水)に含まれる酸化ストレス物質を除去し、あるいは又、液体(化粧水)を多孔質炭素材料と接触させることで液体(化粧水)の酸化還元電位を低下させる。即ち、抗酸化性といった特質を液体(化粧水)に付与する。   Even in Example 2, the liquid is applied to the fibrous member. More specifically, a liquid such as a well-known skin lotion is contained in a fibrous member, and the liquid member (skin lotion) is applied to the skin of the user's face, arms, limbs, etc. Apply and adhere. Here, the oxidative stress substance contained in the liquid (skin lotion) is removed by contacting the liquid (skin lotion) with the porous carbon material, or the liquid (skin lotion) is contacted with the porous carbon material. To lower the redox potential of the liquid (skin lotion). That is, a property such as antioxidant properties is imparted to the liquid (skin lotion).

実施例2にあっては、上述したとおり、ヒドロキシルラジカルの相対除去量が7.4であり、実施例1よりも更に高い効率にてヒドロキシルラジカルを除去することができることが判った。   In Example 2, as described above, the relative removal amount of hydroxyl radicals was 7.4, and it was found that hydroxyl radicals can be removed with higher efficiency than in Example 1.

以上、好ましい実施例に基づき本開示を説明したが、本開示はこれらの実施例に限定されるものではなく、種々の変形が可能である。実施例にあっては、多孔質炭素材料の原料として、籾殻を用いる場合について説明したが、他の植物を原料として用いてもよい。ここで、他の植物として、例えば、藁、葦あるいは茎ワカメ、陸上に植生する維管束植物、シダ植物、コケ植物、藻類及び海草等を挙げることができ、これらを、単独で用いてもよいし、複数種を混合して用いてもよい。具体的には、例えば、多孔質炭素材料の原料である植物由来の材料を稲の藁(例えば、鹿児島産;イセヒカリ)とし、多孔質炭素材料を、原料としての藁を炭素化して炭素質物質(多孔質炭素材料前駆体)に変換し、次いで、酸処理を施すことで得ることができる。あるいは又、多孔質炭素材料の原料である植物由来の材料を稲科の葦とし、多孔質炭素材料を、原料としての稲科の葦を炭素化して炭素質物質(多孔質炭素材料前駆体)に変換し、次いで、酸処理を施すことで得ることができる。また、フッ化水素酸水溶液の代わりに、水酸化ナトリウム水溶液といったアルカリ(塩基)にて処理して得られた多孔質炭素材料においても、同様の結果が得られた。尚、多孔質炭素材料あるいは多孔質炭素材料複合体の製造方法は、実施例1、実施例2と同様とすることができる。   Although the present disclosure has been described based on the preferred embodiments, the present disclosure is not limited to these embodiments, and various modifications can be made. In the examples, the case where rice husk is used as the raw material of the porous carbon material has been described, but other plants may be used as the raw material. Here, examples of other plants include pods, cocoons or stem wakame, vascular plants vegetated on land, fern plants, moss plants, algae and seaweeds, and these may be used alone. Further, a plurality of types may be mixed and used. Specifically, for example, plant-derived materials that are raw materials for porous carbon materials are rice straw (eg, from Kagoshima; Isehikari), and porous carbon materials are carbonized from raw straw as a carbonaceous material. It can be obtained by converting to (porous carbon material precursor) and then performing acid treatment. Alternatively, a plant-derived material, which is a raw material of the porous carbon material, is used as a rice bran, and a carbonaceous material (porous carbon material precursor) is obtained by carbonizing the porous carbon material as a raw material. And then acid treatment. Similar results were obtained with a porous carbon material obtained by treatment with an alkali (base) such as an aqueous sodium hydroxide solution instead of an aqueous hydrofluoric acid solution. In addition, the manufacturing method of a porous carbon material or a porous carbon material composite body can be made the same as that of Example 1 and Example 2.

あるいは又、多孔質炭素材料の原料である植物由来の材料を茎ワカメ(岩手県三陸産)とし、多孔質炭素材料を、原料としての茎ワカメを炭素化して炭素質物質(多孔質炭素材料前駆体)に変換し、次いで、酸処理を施すことで得ることができる。具体的には、先ず、例えば、茎ワカメを500゜C程度の温度で加熱し、炭化する。尚、加熱前に、例えば、原料となる茎ワカメをアルコールで処理してもよい。具体的な処理方法として、エチルアルコール等に浸漬する方法が挙げられ、これによって、原料に含まれる水分を減少させると共に、最終的に得られる多孔質炭素材料に含まれる炭素以外の他の元素や、ミネラル成分を溶出させることができる。また、このアルコールでの処理により、炭素化時のガスの発生を抑制することができる。より具体的には、茎ワカメをエチルアルコールに48時間浸漬する。尚、エチルアルコール中では超音波処理を施すことが好ましい。次いで、この茎ワカメを、窒素気流中において500゜C、5時間、加熱することにより炭化させ、炭化物を得る。尚、このような処理(予備炭素化処理)を行うことで、次の炭素化の際に生成されるであろうタール成分を減少あるいは除去することができる。その後、この炭化物の10グラムをアルミナ製の坩堝に入れ、窒素気流中(10リットル/分)において5゜C/分の昇温速度で1000゜Cまで昇温する。そして、1000゜Cで5時間、炭素化して、炭素質物質(多孔質炭素材料前駆体)に変換した後、室温まで冷却する。尚、炭素化及び冷却中、窒素ガスを流し続ける。次に、この多孔質炭素材料前駆体を46容積%のフッ化水素酸水溶液に一晩浸漬することで酸処理を行った後、水及びエチルアルコールを用いてpH7になるまで洗浄する。そして、最後に乾燥させることにより、多孔質炭素材料を得ることができる。   Alternatively, the plant-derived material, which is the raw material of the porous carbon material, is used as stem wakame (from Sanriku, Iwate Prefecture), and the porous carbon material is carbonized from the stem wakame as raw material to produce a carbonaceous material (porous carbon material precursor) Body) and then subjected to acid treatment. Specifically, first, for example, the stem wakame is heated at a temperature of about 500 ° C. and carbonized. In addition, you may process the stem wakame used as a raw material with alcohol before a heating, for example. As a specific treatment method, there is a method of immersing in ethyl alcohol or the like, thereby reducing moisture contained in the raw material, and other elements other than carbon contained in the porous carbon material finally obtained or , Mineral components can be eluted. Moreover, generation | occurrence | production of the gas at the time of carbonization can be suppressed by the process with this alcohol. More specifically, the stem wakame is soaked in ethyl alcohol for 48 hours. In addition, it is preferable to perform ultrasonic treatment in ethyl alcohol. Subsequently, this stem wakame is carbonized by heating in a nitrogen stream at 500 ° C. for 5 hours to obtain a carbide. In addition, by performing such a process (preliminary carbonization process), a tar component that will be generated in the next carbonization can be reduced or removed. Thereafter, 10 grams of this carbide is put in an alumina crucible and heated to 1000 ° C. at a rate of 5 ° C./minute in a nitrogen stream (10 liters / minute). And it carbonizes at 1000 degreeC for 5 hours, and after converting into a carbonaceous substance (porous carbon material precursor), it cools to room temperature. In addition, nitrogen gas is kept flowing during carbonization and cooling. Next, the porous carbon material precursor is subjected to an acid treatment by immersing it in a 46% by volume hydrofluoric acid aqueous solution overnight, and then washed until it becomes pH 7 using water and ethyl alcohol. And the porous carbon material can be obtained by making it dry at the end.

また、ナトリウム、マグネシウム、カリウム及びカルシウムから成る群から選択された少なくとも1種類の成分を含む植物(具体的には、例えば、ミカンの皮、オレンジの皮、グレープフルーツの皮といった柑橘類の皮、バナナの皮)を原料とした多孔質炭素材料とすれば、多孔質炭素材料から水にミネラル成分を多く溶出させることができ、水の硬度の制御を行うことができる。尚、この場合、多孔質炭素材料には、ナトリウム(Na)、マグネシウム(Mg)、カリウム(K)及びカルシウム(Ca)が、合計で0.4質量%以上を含まれることが好ましい。   Also, a plant containing at least one component selected from the group consisting of sodium, magnesium, potassium and calcium (specifically, for example, citrus peel such as mandarin peel, orange peel, grapefruit peel, banana peel, etc. If the porous carbon material is made from the skin), a large amount of mineral components can be eluted from the porous carbon material into the water, and the hardness of the water can be controlled. In this case, the porous carbon material preferably contains 0.4 mass% or more in total of sodium (Na), magnesium (Mg), potassium (K), and calcium (Ca).

尚、本開示は、以下のような構成を取ることもできる。
[1]《液体塗布用繊維複合体:第1の態様》
窒素BET法による比表面積の値が10m2/グラム以上、BJH法による細孔の容積が0.2cm3/グラム以上である多孔質炭素材料を含んだ繊維質部材から成る液体塗布用繊維複合体。
[2]《液体塗布用繊維複合体:第2の態様》
窒素BET法による比表面積の値が10m2/グラム以上、非局在化密度汎関数法によって求められた直径1×10-9m乃至5×10-7mの細孔の容積の合計が0.5cm3/グラム以上である多孔質炭素材料を含んだ繊維質部材から成る液体塗布用繊維複合体。
[3]《液体塗布用繊維複合体:第3の態様》
窒素BET法による比表面積の値が10m2/グラム以上、非局在化密度汎関数法によって求められた細孔径分布において、3nm乃至20nmの範囲内に少なくとも1つのピークを有し、3nm乃至20nmの範囲内に細孔径を有する細孔の容積の合計の占める割合が全細孔の容積総計の0.2以上である多孔質炭素材料を含んだ繊維質部材から成る液体塗布用繊維複合体。
[4]多孔質炭素材料には機能性材料が付着している[1]乃至[3]のいずれか1項に記載の液体塗布用繊維複合体。
[5]液体を繊維質部材に含ませて、液体を塗布する[1]乃至[4]のいずれか1項に記載の液体塗布用繊維複合体。
[6]液体を多孔質炭素材料と接触させることで、液体に含まれる酸化ストレス物質を除去する[5]に記載の液体塗布用繊維複合体。
[7]液体を多孔質炭素材料と接触させることで、液体の酸化還元電位を低下させる[5]に記載の液体塗布用繊維複合体。
[8]多孔質炭素材料の原料は、ケイ素を含有する植物由来の材料である[1]乃至[7]のいずれか1項に記載の液体塗布用繊維複合体。
[9]多孔質炭素材料のケイ素の含有率は1質量%以下である[8]に記載の液体塗布用繊維複合体。
In addition, this indication can also take the following structures.
[1] << Liquid Composite for Liquid Application: First Aspect >>
A fiber composite for liquid application comprising a fibrous member containing a porous carbon material having a specific surface area value of 10 m 2 / gram or more by nitrogen BET method and a pore volume of 0.2 cm 3 / gram or more by BJH method .
[2] << Liquid composite for applying liquid: second embodiment >>
The value of specific surface area by nitrogen BET method is 10 m 2 / g or more, and the total volume of pores with diameters of 1 × 10 −9 m to 5 × 10 −7 m determined by delocalized density functional method is 0 A fiber composite for liquid application comprising a fibrous member containing a porous carbon material of 5 cm 3 / gram or more.
[3] << Liquid composite for liquid application: third aspect >>
In the pore size distribution determined by the delocalized density functional method having a specific surface area value of 10 m 2 / gram or more by nitrogen BET method, it has at least one peak in the range of 3 nm to 20 nm, and 3 nm to 20 nm The fiber composite for liquid application which consists of the fibrous member containing the porous carbon material whose ratio of the total of the volume of the pore which has a pore diameter in the range is 0.2 or more of the total volume of all the pores.
[4] The liquid composite for fiber application according to any one of [1] to [3], wherein a functional material is attached to the porous carbon material.
[5] The fiber composite for liquid application according to any one of [1] to [4], wherein the liquid is applied to the fibrous member.
[6] The fiber composite for liquid application according to [5], in which the oxidative stress substance contained in the liquid is removed by bringing the liquid into contact with the porous carbon material.
[7] The fiber composite for liquid application according to [5], wherein the liquid is brought into contact with the porous carbon material to reduce the redox potential of the liquid.
[8] The liquid composite for fiber application according to any one of [1] to [7], wherein the raw material of the porous carbon material is a plant-derived material containing silicon.
[9] The fiber composite for liquid application according to [8], wherein the silicon content of the porous carbon material is 1% by mass or less.

Claims (9)

窒素BET法による比表面積の値が10m2/グラム以上、BJH法による細孔の容積が0.2cm3/グラム以上である多孔質炭素材料を含んだ繊維質部材から成る液体塗布用繊維複合体。 A fiber composite for liquid application comprising a fibrous member containing a porous carbon material having a specific surface area value of 10 m 2 / gram or more by nitrogen BET method and a pore volume of 0.2 cm 3 / gram or more by BJH method . 窒素BET法による比表面積の値が10m2/グラム以上、非局在化密度汎関数法によって求められた直径1×10-9m乃至5×10-7mの細孔の容積の合計が0.5cm3/グラム以上である多孔質炭素材料を含んだ繊維質部材から成る液体塗布用繊維複合体。 The value of specific surface area by nitrogen BET method is 10 m 2 / g or more, and the total volume of pores with diameters of 1 × 10 −9 m to 5 × 10 −7 m determined by delocalized density functional method is 0 A fiber composite for liquid application comprising a fibrous member containing a porous carbon material of 5 cm 3 / gram or more. 窒素BET法による比表面積の値が10m2/グラム以上、非局在化密度汎関数法によって求められた細孔径分布において、3nm乃至20nmの範囲内に少なくとも1つのピークを有し、3nm乃至20nmの範囲内に細孔径を有する細孔の容積の合計の占める割合が全細孔の容積総計の0.2以上である多孔質炭素材料を含んだ繊維質部材から成る液体塗布用繊維複合体。 In the pore size distribution determined by the delocalized density functional method having a specific surface area value of 10 m 2 / gram or more by nitrogen BET method, it has at least one peak in the range of 3 nm to 20 nm, and 3 nm to 20 nm The fiber composite for liquid application which consists of the fibrous member containing the porous carbon material whose ratio of the total of the volume of the pore which has a pore diameter in the range is 0.2 or more of the total volume of all the pores. 多孔質炭素材料には機能性材料が付着している請求項1乃至請求項3のいずれか1項に記載の液体塗布用繊維複合体。   The fiber composite for liquid application according to any one of claims 1 to 3, wherein a functional material is attached to the porous carbon material. 液体を繊維質部材に含ませて、液体を塗布する請求項1乃至請求項3のいずれか1項に記載の液体塗布用繊維複合体。   The fiber composite for liquid application according to any one of claims 1 to 3, wherein the liquid is applied by including the liquid in a fibrous member. 液体を多孔質炭素材料と接触させることで、液体に含まれる酸化ストレス物質を除去する請求項5に記載の液体塗布用繊維複合体。   The fiber composite for liquid application according to claim 5, wherein the oxidative stress substance contained in the liquid is removed by bringing the liquid into contact with the porous carbon material. 液体を多孔質炭素材料と接触させることで、液体の酸化還元電位を低下させる請求項5に記載の液体塗布用繊維複合体。   The fiber composite for liquid application according to claim 5, wherein the redox potential of the liquid is lowered by bringing the liquid into contact with the porous carbon material. 多孔質炭素材料の原料は、ケイ素を含有する植物由来の材料である請求項1乃至請求項3のいずれか1項に記載の液体塗布用繊維複合体。   The fiber composite for liquid application according to any one of claims 1 to 3, wherein the raw material of the porous carbon material is a plant-derived material containing silicon. 多孔質炭素材料のケイ素の含有率は1質量%以下である請求項8に記載の液体塗布用繊維複合体。   The fiber composite for liquid application according to claim 8, wherein the content of silicon in the porous carbon material is 1% by mass or less.
JP2011130967A 2011-06-13 2011-06-13 Fiber composite for liquid application Active JP5810652B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011130967A JP5810652B2 (en) 2011-06-13 2011-06-13 Fiber composite for liquid application
CN2012101854217A CN102824017A (en) 2011-06-13 2012-06-06 Fiber composite for application of a liquid
US13/489,864 US20120315477A1 (en) 2011-06-13 2012-06-06 Fiber composite for application of a liquid
US14/707,494 US20150237988A1 (en) 2011-06-13 2015-05-08 Fiber composite for application of a liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011130967A JP5810652B2 (en) 2011-06-13 2011-06-13 Fiber composite for liquid application

Publications (2)

Publication Number Publication Date
JP2013000156A true JP2013000156A (en) 2013-01-07
JP5810652B2 JP5810652B2 (en) 2015-11-11

Family

ID=47293446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011130967A Active JP5810652B2 (en) 2011-06-13 2011-06-13 Fiber composite for liquid application

Country Status (3)

Country Link
US (2) US20120315477A1 (en)
JP (1) JP5810652B2 (en)
CN (1) CN102824017A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035251A (en) * 2011-08-10 2013-02-21 Sony Corp Three-dimensional shaped article, method of manufacturing the same, and liquid composition for manufacturing three-dimensional shaped article
JP2014154225A (en) * 2013-02-05 2014-08-25 Sony Corp Electrode material, electrode, and battery
US10517879B2 (en) * 2015-12-17 2019-12-31 Performance Labs PTE. LTD. Device and method of using volatile organic compounds that affect mood, emotion or a physiologic state
MX2020012381A (en) * 2018-07-31 2021-02-09 Toray Industries Carrier for adsorbing organic matter.
CN113913969B (en) * 2021-11-18 2023-03-17 因达孚先进材料(苏州)有限公司 Method for preparing hydrophobic activated carbon fiber from carbon felt leftover material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146626A (en) * 1999-11-17 2001-05-29 Lion Corp Carbon particle-containing fiber and fiber product using the fiber
JP2003153738A (en) * 2001-11-19 2003-05-27 Takashi Kosako Cleansing cotton for astringent lotion
JP2008174864A (en) * 2007-01-18 2008-07-31 Kenji Nakamura Make-up cotton
JP2009299211A (en) * 2008-06-11 2009-12-24 Omikenshi Co Ltd Moisture-retaining rayon fiber and moisture-retaining nonwoven fabric sheet
JP2010100516A (en) * 2008-09-29 2010-05-06 Sony Corp Porous carbon material composite, method for producing the same, adsorbent, cosmetic preparation, purifying agent and photocatalyst composite material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7901776B2 (en) * 2006-12-29 2011-03-08 3M Innovative Properties Company Plasma deposited microporous carbon material
JP4618308B2 (en) * 2007-04-04 2011-01-26 ソニー株式会社 Porous carbon material and method for producing the same, adsorbent, mask, adsorbing sheet, and carrier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146626A (en) * 1999-11-17 2001-05-29 Lion Corp Carbon particle-containing fiber and fiber product using the fiber
JP2003153738A (en) * 2001-11-19 2003-05-27 Takashi Kosako Cleansing cotton for astringent lotion
JP2008174864A (en) * 2007-01-18 2008-07-31 Kenji Nakamura Make-up cotton
JP2009299211A (en) * 2008-06-11 2009-12-24 Omikenshi Co Ltd Moisture-retaining rayon fiber and moisture-retaining nonwoven fabric sheet
JP2010100516A (en) * 2008-09-29 2010-05-06 Sony Corp Porous carbon material composite, method for producing the same, adsorbent, cosmetic preparation, purifying agent and photocatalyst composite material

Also Published As

Publication number Publication date
CN102824017A (en) 2012-12-19
JP5810652B2 (en) 2015-11-11
US20120315477A1 (en) 2012-12-13
US20150237988A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
US11707068B2 (en) Fungicide, photo catalytic composite material, adsorbent, and depurative
JP7255647B2 (en) A material to which a functional material is attached and its manufacturing method, a water purifier and its manufacturing method, a water purifier cartridge and its manufacturing method, an air purifier and its manufacturing method, a filter member and its manufacturing method, a support member and its manufacturing method, Polyurethane foam and manufacturing method thereof, bottle and manufacturing method thereof, container and manufacturing method thereof, member comprising cap or lid and manufacturing method thereof, solidified porous carbon material or pulverized product of said porous carbon material combined with A material comprising an adhesive, a method for producing the same, and a porous carbon material and a method for producing the same
JP5810652B2 (en) Fiber composite for liquid application
JP5471142B2 (en) POROUS CARBON MATERIAL COMPOSITE AND PROCESS FOR PRODUCING THE SAME, AND ADSORBENT, COSMETIC, PURIFIER, AND PHOTOCATALYST COMPOSITE MATERIAL
WO2012108160A1 (en) Method for removing oxidative stress substance, method for reducing oxidation-reduction potential, filtering material, and water
JP5929148B2 (en) Adsorbent that adsorbs virus and / or bacteria, carbon / polymer composite, and adsorption sheet
JP6218355B2 (en) Filter media
CN102343255A (en) Nicotine absorbent, quinoline absorbent, benzopyrene absorbent, toluidine absorbent, and carcinogen absorbent
JP2019018202A (en) Air purification device, filter for purifying air, water purification device, and cartridge for purifying water
JPWO2014167981A1 (en) Electrode, manufacturing method thereof, and secondary battery
JP6592472B2 (en) Disinfectant manufacturing method and photocatalytic composite material manufacturing method
CN107974831A (en) Polypropylene non-woven fabric that a kind of calcium alginate is modified and preparation method thereof
CN111329785A (en) Frosted hand sanitizer emitting far infrared rays and preparation method thereof
KR100693011B1 (en) Method for depositing fine particles of transition metal into fabrics
KR102243090B1 (en) A composition for mask pack and a mask pack comprising the same
JP2009280931A (en) Deodorant fiber
KR102295800B1 (en) A composition for mask pack comprising scoria and a mask pack comprising the same
TW201031483A (en) Manufacturing method for combining a substrate surface and metallic nano-particles
JP2016144807A (en) Air purifier, cartridge for purifying air, water purifier, cartridge for purifying water, filter and mask for purifying air
Ale Preparation of Waste Betel Nut Based Activated Carbon and Test its Energy Storage Performance
CN115928446A (en) Anti-mite and deodorant treatment method for down feather
CN114369959A (en) Anti-leakage multilayer composite fabric capable of actively eliminating old people odor and preparation method thereof
KR20040072361A (en) Manufacturing method of fiber containing tourmaline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150831

R151 Written notification of patent or utility model registration

Ref document number: 5810652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250