JP2019018202A - Air purification device, filter for purifying air, water purification device, and cartridge for purifying water - Google Patents

Air purification device, filter for purifying air, water purification device, and cartridge for purifying water Download PDF

Info

Publication number
JP2019018202A
JP2019018202A JP2018170288A JP2018170288A JP2019018202A JP 2019018202 A JP2019018202 A JP 2019018202A JP 2018170288 A JP2018170288 A JP 2018170288A JP 2018170288 A JP2018170288 A JP 2018170288A JP 2019018202 A JP2019018202 A JP 2019018202A
Authority
JP
Japan
Prior art keywords
porous carbon
carbon material
gram
water
filter medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018170288A
Other languages
Japanese (ja)
Other versions
JP6645549B2 (en
Inventor
俊 山ノ井
Shun Yamanoi
俊 山ノ井
広範 飯田
Hironori Iida
広範 飯田
誠一郎 田畑
Seiichiro Tabata
誠一郎 田畑
街子 保木
Machiko Yasuki
街子 保木
山田 心一郎
Shinichiro Yamada
心一郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57241324&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2019018202(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sony Corp filed Critical Sony Corp
Publication of JP2019018202A publication Critical patent/JP2019018202A/en
Application granted granted Critical
Publication of JP6645549B2 publication Critical patent/JP6645549B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a water purification device which can exhibit a water purification function sufficiently even when a filtration flow rate is high and in which such a problem is hardly caused that a porous carbon material leaks from a water purifier together with purified water.SOLUTION: The water purification device includes a column or a cartridge in which the porous carbon material is packed, which material has 1×10m/g or larger specific surface area when measured by a nitrogen BET method, 0.3 cm/g or higher pore volume when measured by the BJH method, and 75 μm or larger particle diameter. The bulk density of the porous carbon material is from 0.1 g/cmto 0.8 g/cm.SELECTED DRAWING: Figure 1

Description

本発明は、汚染物質除去剤、炭素/ポリマー複合体、汚染物質除去シート部材及び濾材に関する。   The present invention relates to a contaminant removing agent, a carbon / polymer composite, a contaminant removing sheet member, and a filter medium.

水を浄化するための浄水器には、例えば、特開2001−205253、特開平06−106161に開示されているように、屡々、活性炭が使用されている。また、浄水器は、例えば、屡々、水道の蛇口に直接取り付けられて使用されている。   As a water purifier for purifying water, activated carbon is often used as disclosed in, for example, Japanese Patent Application Laid-Open Nos. 2001-205253 and 06-106161. Moreover, the water purifier is often used by being directly attached to a faucet, for example.

特開2001−205253JP 2001-205253 A 特開平06−106161JP-A-06-106161

このような従来の浄水器にあっては、濾過流量が多いと、即ち、浄水器中を流れる水の流速が早いと、浄水機能を十分に発揮できない場合があるといった問題がある。また、比表面積を増加させることを目的として、屡々、活性炭の粉砕品が使用されるが、粉砕された活性炭が浄化された水と一緒に浄水器から漏出するといった問題も生じ得る。更には、汚染物質を一層効果的に除去し得る汚染物質除去剤、炭素/ポリマー複合体、汚染物質除去シート部材に対する強い要求がある。また、濾材を通過させることで水の硬度の制御を行うことに対する要望もあるが、このような要望を達成し得る技術は、本発明者が調べた限りでは知られていない。   In such a conventional water purifier, there is a problem that if the flow rate of filtration is large, that is, if the flow rate of water flowing through the water purifier is high, the water purifying function may not be sufficiently exhibited. Moreover, although the pulverized product of activated carbon is often used for the purpose of increasing the specific surface area, there may be a problem that the pulverized activated carbon leaks from the water purifier together with the purified water. Furthermore, there is a strong demand for contaminant removers, carbon / polymer composites, and contaminant removal sheet members that can more effectively remove contaminants. In addition, there is a demand for controlling the hardness of water by passing through a filter medium, but a technique that can achieve such a demand is not known as long as the present inventors have investigated.

従って、本発明の第1の目的は、汚染物質を一層効果的に除去し得る汚染物質除去剤、炭素/ポリマー複合体、汚染物質除去シート部材、及び、濾材を提供することにある。また、本発明の第2の目的は、濾過流量が多くとも浄化機能を十分に発揮することができ、しかも、浄化された流体と共に流出するといった問題が生じ難い濾材を提供することにある。更には、本発明の第3の目的は、水の硬度の制御を行い得る濾材を提供することにある。   Accordingly, a first object of the present invention is to provide a pollutant removing agent, a carbon / polymer composite, a pollutant removing sheet member, and a filter medium that can more effectively remove pollutants. A second object of the present invention is to provide a filter medium that can sufficiently perform the purification function even when the filtration flow rate is large and that does not easily cause a problem of flowing out with the purified fluid. Furthermore, the third object of the present invention is to provide a filter medium that can control the hardness of water.

上記の第1の目的を達成するための本発明の第1の態様に係る汚染物質除去剤は、窒素BET法による比表面積の値が1×1022/グラム以上、BJH法による細孔の容積が0.3cm3/グラム以上、好ましくは0.4cm3/グラム以上、より好ましくは0.5cm3/グラム以上、粒径が75μm以上である多孔質炭素材料から成る。尚、このような多孔質炭素材料を、便宜上、『本発明の第1の態様に係る多孔質炭素材料』と呼ぶ場合がある。ここで、粒径が75μm未満の多孔質炭素材料を造粒して得られた粒径が75μm以上である多孔質炭素材料、あるいは又、粒径が75μm未満の多孔質炭素材料と75μm以上の多孔質炭素材料とが混在した多孔質炭素材料を造粒して得られた粒径が75μm以上である多孔質炭素材料も、本発明の「粒径が75μm以上である多孔質炭素材料」に包含される。以下の説明においても同様である。 The pollutant removing agent according to the first aspect of the present invention for achieving the first object has a specific surface area value of 1 × 10 2 m 2 / gram or more by the nitrogen BET method and pores by the BJH method. Is made of a porous carbon material having a volume of 0.3 cm 3 / gram or more, preferably 0.4 cm 3 / gram or more, more preferably 0.5 cm 3 / gram or more, and a particle size of 75 μm or more. Such a porous carbon material may be referred to as “a porous carbon material according to the first aspect of the present invention” for convenience. Here, a porous carbon material having a particle diameter of 75 μm or more obtained by granulating a porous carbon material having a particle diameter of less than 75 μm, or a porous carbon material having a particle diameter of less than 75 μm and 75 μm or more. A porous carbon material having a particle diameter of 75 μm or more obtained by granulating a porous carbon material mixed with a porous carbon material is also referred to as a “porous carbon material having a particle diameter of 75 μm or more” in the present invention. Is included. The same applies to the following description.

上記の第1の目的を達成するための本発明の第2の態様に係る汚染物質除去剤は、窒素BET法による比表面積の値が1×1022/グラム以上、非局在化密度汎関数法によって求められた直径1×10-9m乃至5×10-7mの細孔の容積の合計が1.0cm3/グラム以上、粒径が75μm以上である多孔質炭素材料から成る。尚、このような多孔質炭素材料を、便宜上、『本発明の第2の態様に係る多孔質炭素材料』と呼ぶ場合がある。 The pollutant removing agent according to the second aspect of the present invention for achieving the first object described above has a specific surface area value of 1 × 10 2 m 2 / gram or more according to the nitrogen BET method, a delocalization density It is made of a porous carbon material having a total volume of pores having a diameter of 1 × 10 −9 m to 5 × 10 −7 m determined by a functional method of 1.0 cm 3 / gram or more and a particle size of 75 μm or more. . Such a porous carbon material may be referred to as “a porous carbon material according to the second aspect of the present invention” for convenience.

上記の第1の目的を達成するための本発明の第3の態様に係る汚染物質除去剤は、窒素BET法による比表面積の値が1×1022/グラム以上、非局在化密度汎関数法によって求められた細孔径分布において、3nm乃至20nmの範囲内に少なくとも1つピークを有し、3nm乃至20nmの範囲内に細孔径を有する細孔の容積の合計の占める割合が全細孔の容積総計の0.2以上であり、粒径が75μm以上である多孔質炭素材料から成る。尚、このような多孔質炭素材料を、便宜上、『本発明の第3の態様に係る多孔質炭素材料』と呼ぶ場合がある。 The pollutant removing agent according to the third aspect of the present invention for achieving the first object described above has a specific surface area value of 1 × 10 2 m 2 / gram or more by nitrogen BET method, and a delocalization density In the pore size distribution obtained by the functional method, the ratio of the total volume of pores having at least one peak in the range of 3 nm to 20 nm and having the pore size in the range of 3 nm to 20 nm is completely fine. It is made of a porous carbon material having a total pore volume of 0.2 or more and a particle size of 75 μm or more. Such a porous carbon material may be referred to as “a porous carbon material according to the third aspect of the present invention” for convenience.

上記の第1の目的を達成するための本発明の第4の態様に係る汚染物質除去剤は、窒素BET法による比表面積の値が1×1022/グラム以上、水銀圧入法による細孔の容積が1.0cm3/グラム以上、粒径が75μm以上である多孔質炭素材料から成る。尚、このような多孔質炭素材料を、便宜上、『本発明の第4の態様に係る多孔質炭素材料』と呼ぶ場合がある。 The pollutant removing agent according to the fourth aspect of the present invention for achieving the first object described above has a specific surface area value of 1 × 10 2 m 2 / gram or more by nitrogen BET method and a fine particle size by mercury intrusion method. It is made of a porous carbon material having a pore volume of 1.0 cm 3 / gram or more and a particle size of 75 μm or more. Such a porous carbon material may be referred to as “a porous carbon material according to the fourth aspect of the present invention” for convenience.

上記の第1の目的を達成するための本発明の第1の態様に係る炭素/ポリマー複合体は、本発明の第1の態様に係る多孔質炭素材料、及び、バインダーから成る。   The carbon / polymer composite according to the first aspect of the present invention for achieving the first object comprises the porous carbon material according to the first aspect of the present invention and a binder.

上記の第1の目的を達成するための本発明の第2の態様に係る炭素/ポリマー複合体は、本発明の第2の態様に係る多孔質炭素材料、及び、バインダーから成る。   The carbon / polymer composite according to the second aspect of the present invention for achieving the first object comprises the porous carbon material according to the second aspect of the present invention and a binder.

上記の第1の目的を達成するための本発明の第3の態様に係る炭素/ポリマー複合体は、本発明の第3の態様に係る多孔質炭素材料、及び、バインダーから成る。   The carbon / polymer composite according to the third aspect of the present invention for achieving the first object comprises the porous carbon material according to the third aspect of the present invention and a binder.

上記の第1の目的を達成するための本発明の第4の態様に係る炭素/ポリマー複合体は、本発明の第4の態様に係る多孔質炭素材料、及び、バインダーから成る。   The carbon / polymer composite according to the fourth aspect of the present invention for achieving the first object comprises the porous carbon material according to the fourth aspect of the present invention and a binder.

上記の第1の目的を達成するための本発明の第1の態様に係る汚染物質除去シート部材は、本発明の第1の態様に係る多孔質炭素材料、及び、支持部材から成る。   The pollutant removal sheet member according to the first aspect of the present invention for achieving the first object comprises the porous carbon material according to the first aspect of the present invention and a support member.

上記の第1の目的を達成するための本発明の第2の態様に係る汚染物質除去シート部材は、本発明の第2の態様に係る多孔質炭素材料、及び、支持部材から成る。   The pollutant removal sheet member according to the second aspect of the present invention for achieving the first object comprises the porous carbon material according to the second aspect of the present invention and a support member.

上記の第1の目的を達成するための本発明の第3の態様に係る汚染物質除去シート部材は、本発明の第3の態様に係る多孔質炭素材料、及び、支持部材から成る。   The pollutant removal sheet member according to the third aspect of the present invention for achieving the first object comprises the porous carbon material according to the third aspect of the present invention and a support member.

上記の第1の目的を達成するための本発明の第4の態様に係る汚染物質除去シート部材は、本発明の第4の態様に係る多孔質炭素材料、及び、支持部材から成る。   The pollutant removal sheet member according to the fourth aspect of the present invention for achieving the first object comprises the porous carbon material according to the fourth aspect of the present invention and a support member.

上記の第2の目的を達成するための本発明の第1の態様に係る濾材は、本発明の第1の態様に係る多孔質炭素材料から成る。   The filter medium according to the first aspect of the present invention for achieving the second object is composed of the porous carbon material according to the first aspect of the present invention.

上記の第2の目的を達成するための本発明の第2の態様に係る濾材は、本発明の第2の態様に係る多孔質炭素材料から成る。   The filter medium according to the second aspect of the present invention for achieving the second object is composed of the porous carbon material according to the second aspect of the present invention.

上記の第2の目的を達成するための本発明の第3の態様に係る濾材は、本発明の第3の態様に係る多孔質炭素材料から成る。   The filter medium according to the third aspect of the present invention for achieving the second object is composed of the porous carbon material according to the third aspect of the present invention.

上記の第2の目的を達成するための本発明の第4の態様に係る濾材は、本発明の第4の態様に係る多孔質炭素材料から成る。   The filter medium according to the fourth aspect of the present invention for achieving the second object is composed of the porous carbon material according to the fourth aspect of the present invention.

上記の第3の目的を達成するための本発明の第5の態様に係る濾材は、窒素BET法による比表面積の値が1×1022/グラム以上、BJH法による細孔の容積が0.1cm3/グラム以上であり、ナトリウム、マグネシウム、カリウム及びカルシウムから成る群から選択された少なくとも1種類の成分を含む植物を原料とした多孔質炭素材料から成る。 The filter medium according to the fifth aspect of the present invention for achieving the above third object has a specific surface area value of 1 × 10 2 m 2 / gram or more by the nitrogen BET method and a pore volume by the BJH method. It consists of a porous carbon material made from a plant that is at least 0.1 cm 3 / gram and contains at least one component selected from the group consisting of sodium, magnesium, potassium and calcium.

上記の第3の目的を達成するための本発明の第6の態様に係る濾材は、窒素BET法による比表面積の値が1×1022/グラム以上、非局在化密度汎関数法によって求められた直径1×10-9m乃至5×10-7mの細孔の容積の合計が0.1cm3/グラム以上、好ましくは0.2cm3/グラム以上であり、ナトリウム、マグネシウム、カリウム及びカルシウムから成る群から選択された少なくとも1種類の成分を含む植物を原料とした多孔質炭素材料から成る。 The filter medium according to the sixth aspect of the present invention for achieving the above third object has a specific surface area value of 1 × 10 2 m 2 / gram or more by a nitrogen BET method, and a delocalized density functional method. The total volume of pores having a diameter of 1 × 10 −9 m to 5 × 10 −7 m determined by the above is 0.1 cm 3 / gram or more, preferably 0.2 cm 3 / gram or more, sodium, magnesium, It consists of a porous carbon material made from a plant containing at least one component selected from the group consisting of potassium and calcium.

上記の第3の目的を達成するための本発明の第7の態様に係る濾材は、窒素BET法による比表面積の値が1×1022/グラム以上、非局在化密度汎関数法によって求められた細孔径分布において、3nm乃至20nmの範囲内に少なくとも1つピークを有し、3nm乃至20nmの範囲内に細孔径を有する細孔の容積の合計の占める割合が全細孔の容積総計の0.1以上であり、ナトリウム、マグネシウム、カリウム及びカルシウムから成る群から選択された少なくとも1種類の成分を含む植物を原料とした多孔質炭素材料から成る。 The filter medium according to the seventh aspect of the present invention for achieving the third object described above has a specific surface area value of 1 × 10 2 m 2 / gram or more by a nitrogen BET method, and a delocalized density functional method. In the pore size distribution obtained by the above, the ratio of the total volume of pores having at least one peak in the range of 3 nm to 20 nm and having the pore size in the range of 3 nm to 20 nm is the volume of all pores The total is 0.1 or more, and is made of a porous carbon material made from a plant containing at least one component selected from the group consisting of sodium, magnesium, potassium and calcium.

上記の第3の目的を達成するための本発明の第8の態様に係る濾材は、窒素BET法による比表面積の値が1×1022/グラム以上、水銀圧入法による細孔の容積が1.0cm3/グラム以上であり、ナトリウム、マグネシウム、カリウム及びカルシウムから成る群から選択された少なくとも1種類の成分を含む植物を原料とした多孔質炭素材料から成る。 The filter medium according to the eighth aspect of the present invention for achieving the above third object has a specific surface area value of 1 × 10 2 m 2 / gram or more by the nitrogen BET method, and the pore volume by the mercury intrusion method. There is a 1.0 cm 3 / g or more, comprising sodium, magnesium, a plant comprising at least one component selected from the group consisting of potassium and calcium from the porous carbon material as a raw material.

上記の第1の目的を達成するための本発明の第9の態様〜第15の態様に係る濾材は、
本発明の第1の態様に係る多孔質炭素材料から成り、又は、
本発明の第2の態様に係る多孔質炭素材料から成り、又は、
本発明の第3の態様に係る多孔質炭素材料から成り、又は、
本発明の第4の態様に係る多孔質炭素材料から成る。
The filter medium according to the ninth to fifteenth aspects of the present invention for achieving the first object described above,
It consists of a porous carbon material according to the first aspect of the present invention, or
It consists of a porous carbon material according to the second aspect of the present invention, or
It consists of a porous carbon material according to the third aspect of the present invention, or
It consists of the porous carbon material which concerns on the 4th aspect of this invention.

そして、本発明の第9の態様に係る濾材は、分子量1×102乃至1×105の物質を1マイクログラム/リットル含む水を、空間速度1200時-1において48時間、連続して通液を行ったとき、該物質の除去率が80%に達する迄の時間が、ヤシガラ活性炭を用いたときの該物質の除去率が80%に達する迄の時間の2倍以上である。ここで、ヤシガラ活性炭として、クラレケミカル株式会社製クラレコールGWを用いる。 The filter medium according to the ninth aspect of the present invention continuously passes water containing 1 microgram / liter of a substance having a molecular weight of 1 × 10 2 to 1 × 10 5 at a space velocity of 1200 hours- 1 for 48 hours. When the liquid is applied, the time until the removal rate of the substance reaches 80% is more than twice the time until the removal rate of the substance reaches 80% when coconut shell activated carbon is used. Here, Kuraray Chemical Co., Ltd. Kuraray Coal GW is used as coconut shell activated carbon.

また、本発明の第10の態様に係る濾材は、ドデシルベンゼンスルホン酸塩を0.9ミリグラム/リットル含む水を、空間速度1200時-1において25時間、連続して通液を行ったとき、ドデシルベンゼンスルホン酸塩の除去率は10%以上である。 Moreover, when the filter medium according to the tenth aspect of the present invention was continuously passed through water containing 0.9 mg / liter of dodecylbenzenesulfonate at a space velocity of 1200 hours -1 for 25 hours, The removal rate of dodecylbenzene sulfonate is 10% or more.

また、本発明の第11の態様に係る濾材は、クロロタロニルを6マイクログラム/リットル含む水を、空間速度1200時-1において50時間、連続して通液を行ったとき、クロロタロニルの除去率は60%以上である。 In addition, when the filter medium according to the eleventh aspect of the present invention was continuously passed through water containing 6 microgram / liter of chlorothalonil at a space velocity of 1200 hr- 1 for 50 hours, the removal rate of chlorothalonil was 60% or more.

また、本発明の第12の態様に係る濾材は、ジクロロボスを6マイクログラム/リットル含む水を、空間速度1200時-1において25時間、連続して通液を行ったとき、ジクロロボスの除去率は60%以上である。 The filter medium according to the twelfth aspect of the present invention removes dichloroboss when water containing 6 microgram / liter of dichloroboss is continuously passed for 25 hours at a space velocity of 1200 hours- 1 . The rate is 60% or more.

また、本発明の第13の態様に係る濾材は、溶解性鉛を6マイクログラム/リットル含む水を、空間速度1200時-1において25時間、連続して通液を行ったとき、溶解性鉛の除去率は30%以上である。 Further, the filter medium according to the thirteenth aspect of the present invention is a soluble lead when water containing 6 microgram / liter of soluble lead is continuously passed through at a space velocity of 1200 hours- 1 for 25 hours. The removal rate is 30% or more.

また、本発明の第14の態様に係る濾材は、遊離塩素を0.2ミリグラム/リットル含む水を、空間速度1200時-1において50時間、連続して通液を行ったとき、遊離塩素の除去率は70%以上である。 The filter medium according to the fourteenth aspect of the present invention, when water containing 0.2 milligram / liter of free chlorine is continuously passed for 50 hours at a space velocity of 1200 hours- 1 , The removal rate is 70% or more.

また、本発明の第15の態様に係る濾材は、全有機ハロゲンを塩素換算で130マイクログラム/リットル含む水を、空間速度1200時-1において5時間、連続して通液を行ったとき、全有機ハロゲンの除去率は45%以上である。 The filter medium according to the fifteenth aspect of the present invention, when water containing 130 μg / liter of all organic halogens in terms of chlorine was continuously passed for 5 hours at a space velocity of 1200 hours- 1 , The removal rate of all organic halogens is 45% or more.

本発明の第1の態様〜第4の態様に係る汚染物質除去剤、本発明の第1の態様〜第4の態様に係る炭素/ポリマー複合体、本発明の第1の態様〜第4の態様に係る汚染物質除去シート部材あるいは本発明の第1の態様〜第4の態様、第9の態様〜第15の態様に係る濾材にあっては、使用する多孔質炭素材料の比表面積の値、各種細孔の容積の値、細孔分布が規定されているので、高い効率で汚染物質を除去することができるし、高い濾過流量にて、流体の浄化を行うことができるし、高い効率で所望の物質を除去することができる。また、多孔質炭素材料の粒径が規定されているので、多孔質炭素材料が流体に同伴されて流出するといった問題が生じ難い。尚、本発明の第1の態様〜第4の態様に係る汚染物質除去剤、本発明の第1の態様〜第4の態様に係る炭素/ポリマー複合体、本発明の第1の態様〜第4の態様に係る汚染物質除去シート部材あるいは本発明の第1の態様〜第4の態様に係る濾材にあっては、汚染物質の吸着以外にも、例えば、
HClO+C(多孔質炭素材料) → CO(多孔質炭素材料の表面)
+ H+ + Cl-
といった化学反応に基づき塩素分が除去される。また、本発明の第5の態様〜第8の態様に係る濾材にあっては、使用する多孔質炭素材料の比表面積の値、細孔の容積の値、細孔分布が規定されており、しかも、原料が規定されているので、濾材を通過した水の硬度の制御を行うことができる。
Contaminant remover according to first to fourth aspects of the present invention, carbon / polymer composite according to first to fourth aspects of the present invention, first to fourth aspects of the present invention In the pollutant removal sheet member according to the aspect or the filter medium according to the first aspect to the fourth aspect and the ninth aspect to the fifteenth aspect of the present invention, the value of the specific surface area of the porous carbon material to be used Since the volume value and pore distribution of various pores are regulated, it is possible to remove pollutants with high efficiency, and to purify fluid with high filtration flow rate, and high efficiency. The desired material can be removed. Further, since the particle size of the porous carbon material is regulated, it is difficult for the problem that the porous carbon material flows out with the fluid. The contaminant removing agent according to the first to fourth aspects of the present invention, the carbon / polymer composite according to the first to fourth aspects of the present invention, and the first to fourth aspects of the present invention. In the contaminant removal sheet member according to the aspect 4 or the filter medium according to the first aspect to the fourth aspect of the present invention, in addition to the adsorption of the contaminant, for example,
HClO + C (porous carbon material) → CO (surface of porous carbon material)
+ H + + Cl -
The chlorine content is removed based on the chemical reaction. Further, in the filter medium according to the fifth aspect to the eighth aspect of the present invention, the specific surface area value of the porous carbon material to be used, the value of the pore volume, and the pore distribution are defined, And since the raw material is prescribed | regulated, the hardness of the water which passed the filter medium can be controlled.

図1の(A)及び(B)は、それぞれ、実施例1Aの濾材、比較例1A及び比較例1Bの濾材の試験時間と濾材1グラム当たりのメチレンブルー及びブラック5吸着量との関係を示すグラフである。FIGS. 1A and 1B are graphs showing the relationship between the test time of the filter medium of Example 1A, the filter medium of Comparative Example 1A and Comparative Example 1B, and the amounts of methylene blue and black 5 adsorbed per gram of the filter medium, respectively. It is. 図2は、実施例1B、参考例1、比較例1C及び比較例1Dの試料を、それぞれ、カートリッジに充填し、メチレンブルー水溶液をカートリッジ内に流し、カートリッジから流出した水のメチレンブルー濃度を測定した結果を示すグラフである。FIG. 2 shows the results of measuring the concentration of methylene blue in the water flowing out of the cartridge by filling the cartridge with the samples of Example 1B, Reference Example 1, Comparative Example 1C, and Comparative Example 1D, and flowing the methylene blue aqueous solution into the cartridge. It is a graph which shows. 図3は、実施例1の浄水器の模式的な断面図である。FIG. 3 is a schematic cross-sectional view of the water purifier according to the first embodiment. 図4は、実施例1の汚染物質除去シート部材の模式的な断面構造を示す図である。4 is a schematic cross-sectional view of the contaminant removal sheet member of Example 1. FIG. 図5は、実施例2の多孔質炭素材料から成る濾材、比較例2A、比較例2B、比較例2Cの濾材における塩素除去率を示すグラフである。FIG. 5 is a graph showing the chlorine removal rate in the filter medium made of the porous carbon material of Example 2, the filter mediums of Comparative Example 2A, Comparative Example 2B, and Comparative Example 2C. 図6の(A)、(B)及び(C)は、それぞれ、実施例3の多孔質炭素材料から成る濾材及び比較例3の濾材における塩素、1,1,1−トリクロロエタン、CATの除去率を示すグラフである。(A), (B) and (C) in FIG. 6 show the removal rates of chlorine, 1,1,1-trichloroethane and CAT in the filter medium made of the porous carbon material of Example 3 and the filter medium of Comparative Example 3, respectively. It is a graph which shows. 図7は、実施例4の多孔質炭素材料から成る濾材及び比較例4の濾材におけるミクロシスチンLRの除去率を示すグラフである。FIG. 7 is a graph showing the removal rate of microcystin LR in the filter medium made of the porous carbon material of Example 4 and the filter medium of Comparative Example 4. 図8は、実施例5の多孔質炭素材料から成る濾材及び比較例5の濾材における高速吸着特性及び粒径依存性を示すグラフである。FIG. 8 is a graph showing the high-speed adsorption characteristics and particle size dependence of the filter medium made of the porous carbon material of Example 5 and the filter medium of Comparative Example 5. 図9の(A)〜(D)は、それぞれ、実施例6a、実施例6a’、実施例6b、実施例6b’、実施例6c、実施例6c’、実施例6d及び実施例6d’の試料のX線回折結果を示すグラフである。(A) to (D) of FIG. 9 respectively show Example 6a, Example 6a ′, Example 6b, Example 6b ′, Example 6c, Example 6c ′, Example 6d, and Example 6d ′. It is a graph which shows the X-ray-diffraction result of a sample. 図10の(A)及び(B)は、実施例6A、実施例6B、実施例6C及び実施例6Dの濾材、並びに、比較例6の細孔容積の測定結果を示すグラフである。10A and 10B are graphs showing the measurement results of the pore volume of Example 6A, Example 6B, Example 6C and Example 6D, and Comparative Example 6. FIG. 図11は、実施例6A、実施例6B、実施例6C及び実施例6Dの濾材、並びに、比較例6の非局在化密度汎関数法によって求められた細孔径分布の測定結果を示すグラフである。FIG. 11 is a graph showing the measurement results of the pore size distribution obtained by the filter media of Example 6A, Example 6B, Example 6C and Example 6D, and the delocalized density functional method of Comparative Example 6. is there. 図12の(A)及び(B)は、実施例7及び比較例7の試料のドデシルベンゼンスルホン酸ナトリウムの除去率測定結果を示すグラフである。12A and 12B are graphs showing the measurement results of the removal rate of sodium dodecylbenzenesulfonate in the samples of Example 7 and Comparative Example 7. FIG. 図13の(A)及び(B)は、実施例7及び比較例7の試料のクロロタロニルの除去率測定結果を示すグラフである。FIGS. 13A and 13B are graphs showing the results of measuring the chlorothalonil removal rate of the samples of Example 7 and Comparative Example 7. FIG. 図14は、実施例7及び比較例7の試料のジクロロボスの除去率測定結果を示すグラフである。FIG. 14 is a graph showing the results of measuring the dichloroboss removal rate of the samples of Example 7 and Comparative Example 7. 図15は、実施例7及び比較例7の試料の溶解性鉛の除去率測定結果を示すグラフである。FIG. 15 is a graph showing the measurement results of the removal rate of soluble lead in the samples of Example 7 and Comparative Example 7. 図16の(A)及び(B)は、実施例7及び比較例7の試料の遊離塩素の除去率測定結果を示すグラフである。16A and 16B are graphs showing the results of measuring the free chlorine removal rate of the samples of Example 7 and Comparative Example 7. FIG. 図17は、実施例7及び比較例7の試料の全有機ハロゲンの除去率測定結果を示すグラフである。FIG. 17 is a graph showing the measurement results of the total organic halogen removal rate of the samples of Example 7 and Comparative Example 7. 図18の(A)及び(B)は、実施例8におけるボトルの模式的な一部断面図及び模式的な断面図である。18A and 18B are a schematic partial cross-sectional view and a schematic cross-sectional view of a bottle in Example 8. FIG. 図19の(A)及び(B)は、実施例8におけるボトルの変形例の模式的な一部断面図及び一部を切り欠いた模式面である。FIGS. 19A and 19B are a schematic partial cross-sectional view of a modified example of the bottle in Example 8 and a schematic surface with a part cut away.

以下、図面を参照して、実施例に基づき本発明を説明するが、本発明は実施例に限定されるものではなく、実施例における種々の数値や材料は例示である。尚、説明は、以下の順序で行う。
1.本発明の第1の態様〜第4の態様に係る汚染物質除去剤、本発明の第1の態様〜第4の態様に係る炭素/ポリマー複合体、本発明の第1の態様〜第4の態様に係る汚染物質除去シート部材及び本発明の第1の態様〜第15の態様に係る濾材、全般に関する説明
2.実施例1(本発明の第1の態様〜第4の態様に係る汚染物質除去剤、本発明の第1の態様〜第4の態様に係る炭素/ポリマー複合体、本発明の第1の態様〜第4の態様に係る汚染物質除去シート部材及び本発明の第1の態様〜第4の態様に係る濾材)
3.実施例2(実施例1の変形)
4.実施例3(実施例1の別の変形)
5.実施例4(実施例1の更に別の変形)
6.実施例5(実施例1の更に別の変形)
7.実施例6(本発明の第5の態様〜第8の態様に係る濾材)
8.実施例7(本発明の第9の態様〜第15の態様に係る濾材)
9.実施例8(実施例1〜実施例7の変形)、その他
Hereinafter, the present invention will be described based on examples with reference to the drawings. However, the present invention is not limited to the examples, and various numerical values and materials in the examples are examples. The description will be given in the following order.
1. Contaminant remover according to first to fourth aspects of the present invention, carbon / polymer composite according to first to fourth aspects of the present invention, first to fourth aspects of the present invention 1. General description of the contaminant removing sheet member according to the aspect and the filter medium according to the first to fifteenth aspects of the present invention. Example 1 (pollutant removing agent according to the first to fourth aspects of the present invention, carbon / polymer composite according to the first to fourth aspects of the present invention, the first aspect of the present invention) -Contaminant removing sheet member according to fourth aspect and filter medium according to first aspect-fourth aspect of the present invention)
3. Example 2 (Modification of Example 1)
4). Example 3 (another modification of Example 1)
5. Example 4 (another modification of Example 1)
6). Example 5 (another modification of Example 1)
7). Example 6 (filter medium according to the fifth to eighth aspects of the present invention)
8). Example 7 (filter medium according to ninth to fifteenth aspects of the present invention)
9. Example 8 (modification of Example 1 to Example 7), others

[本発明の第1の態様〜第4の態様に係る汚染物質除去剤、本発明の第1の態様〜第4の態様に係る炭素/ポリマー複合体、本発明の第1の態様〜第4の態様に係る汚染物質除去シート部材及び本発明の第1の態様〜第15の態様に係る濾材、全般に関する説明]
以下の説明において、本発明の第1の態様〜第4の態様に係る汚染物質除去剤を総称して、単に、『本発明の汚染物質除去剤』と呼ぶ場合があるし、本発明の第1の態様〜第4の態様に係る炭素/ポリマー複合体を総称して、単に、『本発明の炭素/ポリマー複合体』と呼ぶ場合があるし、本発明の第1の態様〜第4の態様に係る汚染物質除去シート部材を総称して、単に、『本発明の汚染物質除去シート部材』と呼ぶ場合があるし、本発明の第1の態様〜第15の態様に係る濾材を総称して、単に、『本発明の濾材』と呼ぶ場合がある。また、本発明の汚染物質除去剤、本発明の炭素/ポリマー複合体、本発明の汚染物質除去シート部材及び本発明の濾材を総称して、単に、『本発明』と呼ぶ場合があるし、本発明の汚染物質除去剤、本発明の炭素/ポリマー複合体、本発明の汚染物質除去シート部材及び本発明の第1の態様〜第4の態様、第9の態様〜第15の態様に係る濾材を構成する多孔質炭素材料を総称して、『本発明における多孔質炭素材料』と呼ぶ場合がある。
[Contaminant removing agent according to first to fourth aspects of the present invention, carbon / polymer composite according to first to fourth aspects of the present invention, and first to fourth aspects of the present invention] Contaminant Removal Sheet Member According to Aspect of Aspect and Filter Media According to First to Fifteenth Aspects of the Present Invention, General Description]
In the following description, the pollutant removing agents according to the first to fourth aspects of the present invention may be collectively referred to simply as “pollutant removing agent of the present invention”. The carbon / polymer composite according to the first aspect to the fourth aspect may be collectively referred to simply as “the carbon / polymer composite of the present invention”, or the first to fourth aspects of the present invention may be referred to. The pollutant removal sheet member according to the embodiment may be collectively referred to simply as “pollutant removal sheet member of the present invention”, or the filter media according to the first to fifteenth embodiments of the present invention may be collectively referred to. In some cases, it is simply referred to as “the filter medium of the present invention”. Further, the pollutant removing agent of the present invention, the carbon / polymer composite of the present invention, the pollutant removing sheet member of the present invention and the filter medium of the present invention may be collectively referred to simply as “the present invention”, The pollutant removing agent of the present invention, the carbon / polymer composite of the present invention, the pollutant removing sheet member of the present invention, and the first to fourth aspects and the ninth to fifteenth aspects of the present invention. The porous carbon materials constituting the filter medium may be collectively referred to as “porous carbon material in the present invention”.

本発明の第1の態様に係る汚染物質除去剤、本発明の第1の態様に係る炭素/ポリマー複合体、本発明の第1の態様に係る汚染物質除去シート部材あるいは本発明の第1の態様に係る濾材を構成する多孔質炭素材料にあっては、限定するものではないが、水銀圧入法による細孔の容積が1.5cm3/グラム以上であることが好ましい。また、MP法による細孔の容積が0.1cm3/グラム以上であることが好ましい。 The pollutant removing agent according to the first aspect of the present invention, the carbon / polymer composite according to the first aspect of the present invention, the contaminant removing sheet member according to the first aspect of the present invention, or the first of the present invention Although it does not limit in the porous carbon material which comprises the filter medium which concerns on an aspect, It is preferable that the volume of the pore by a mercury intrusion method is 1.5 cm < 3 > / gram or more. Moreover, it is preferable that the volume of the pore by MP method is 0.1 cm < 3 > / gram or more.

上記の好ましい形態を含む本発明の第1の態様〜第4の態様に係る汚染物質除去剤あるいは本発明の第1の態様〜第4の態様、第9の態様〜第15の態様に係る濾材を構成する多孔質炭素材料にあっては、限定するものではないが、多孔質炭素材料の嵩密度は0.1グラム/cm3乃至0.8グラム/cm3であることが好ましい。多孔質炭素材料の嵩密度を上記の範囲のとおりに規定することで、多孔質炭素材料によって流体の流れが阻害される虞が無くなる。即ち、多孔質炭素材料に起因した流体の圧力損失を抑制することができる。 Contaminant remover according to the first to fourth aspects of the present invention including the above preferred embodiments, or the filter medium according to the first to fourth and ninth to fifteenth aspects of the present invention. In the porous carbon material constituting the material, the bulk density of the porous carbon material is preferably 0.1 gram / cm 3 to 0.8 gram / cm 3 , although not limited thereto. By defining the bulk density of the porous carbon material within the above range, there is no possibility that the flow of fluid is hindered by the porous carbon material. That is, the pressure loss of the fluid resulting from the porous carbon material can be suppressed.

以上に説明した好ましい形態を含む本発明の第5の態様〜第8の態様に係る濾材において、多孔質炭素材料は、上述したとおり、ナトリウム(Na)、マグネシウム(Mg)、カリウム(K)及びカルシウム(Ca)から成る群から選択された少なくとも1種類の成分を含む植物を原料としており、このような植物原料を用いることで、濾材として用いる場合、多孔質炭素材料から濾過水にミネラル成分が多く溶出する結果、濾過水の硬度の制御を行うことができる。そして、この場合、硬度0.1以下の水(試験用水)50ミリリットルに濾材を1グラム添加し、6時間、経過した後の硬度が5以上となる形態とすることができる。尚、多孔質炭素材料には、ナトリウム(Na)、マグネシウム(Mg)、カリウム(K)及びカルシウム(Ca)が、合計で0.4質量%以上を含まれることが好ましい。ここで、具体的には、植物原料として、ミカンの皮、オレンジの皮、グレープフルーツの皮といった柑橘類の皮、バナナの皮を挙げることができる。   In the filter medium according to the fifth to eighth aspects of the present invention including the preferred embodiments described above, the porous carbon material is sodium (Na), magnesium (Mg), potassium (K) and When a plant containing at least one component selected from the group consisting of calcium (Ca) is used as a raw material, and using such a plant raw material as a filter medium, a mineral component is contained in the filtered water from the porous carbon material. As a result of elution, the hardness of filtered water can be controlled. In this case, 1 gram of the filter medium is added to 50 ml of water having a hardness of 0.1 or less (test water), and the hardness after 5 hours can be 5 or more. In addition, it is preferable that sodium (Na), magnesium (Mg), potassium (K), and calcium (Ca) contain 0.4 mass% or more in total in a porous carbon material. Here, specific examples of plant raw materials include citrus peels such as mandarin orange peel, orange peel and grapefruit peel, and banana peel.

また、このような本発明の第5の態様〜第8の態様に係る濾材を構成する多孔質炭素材料から、ミネラル補充を目的としたミネラル調整材としての機能性食品を含む各種の機能性食品、ミネラル補充を目的としたミネラル調整材としての化粧品を含む化粧品、化粧料等を構成することができる。尚、機能性食品においては、その他、例えば、賦形剤、結合剤、崩壊剤、滑沢剤、希釈剤、矯味剤、保存剤、安定化剤、着色剤、香料、ビタミン類、発色剤、光沢剤、甘味料、苦味料、酸味料、うまみ調味料、発酵調味料、酸化防止剤、酵素、酵母エキス、栄養強化剤が含まれていてもよい。機能性食品の形態として、粉末状、固形状、錠剤状、粒状、顆粒状、カプセル状、クリーム状、ゾル状、ゲル状、コロイド状を挙げることができる。化粧品として、例えば、化粧水や化粧水含浸パック、汗や油脂、口紅等の汚れ成分を除去するクレンジング剤を例示することができるし、化粧料におけるその他の成分として、疎水性の美容成分を有する物質(例えばダイゼイン、ゲニステイン)を挙げることができるし、保湿効果及び/又は抗酸化効果を有する成分として、ヒアルロン酸、アスタキサンチン、トコフェロール、トロロックス、コエンザイムQ10等の化粧水中に含まれる有効成分を挙げることができる。   Moreover, from the porous carbon material which comprises the filter medium which concerns on such a 5th aspect of this invention-the 8th aspect, various functional foods including the functional food as a mineral adjustment material for the purpose of mineral supplementation Cosmetics including cosmetics as mineral adjusting materials for the purpose of supplementing minerals, cosmetics, and the like can be configured. In addition, in the functional food, for example, excipients, binders, disintegrants, lubricants, diluents, flavoring agents, preservatives, stabilizers, coloring agents, fragrances, vitamins, coloring agents, Brighteners, sweeteners, bitters, acidulants, umami seasonings, fermented seasonings, antioxidants, enzymes, yeast extracts, and nutrient enhancers may be included. Examples of the functional food include powder, solid, tablet, granule, granule, capsule, cream, sol, gel, and colloid. Examples of cosmetics include cleansing agents that remove dirt components such as lotion, lotion-impregnated packs, sweat, oils and fats, and lipsticks, and have other cosmetic components that are hydrophobic. Substances (for example, daidzein, genistein) can be mentioned, and examples of ingredients having a moisturizing effect and / or antioxidant effect include active ingredients contained in lotions such as hyaluronic acid, astaxanthin, tocopherol, Trolox, and coenzyme Q10. be able to.

本発明における多孔質炭素材料は、粒径が75μm以上であると規定されているが、係る規定は、JIS Z8801−1:2006 「試験用ふるい−第1部:金属製網ふるい」に基づく。即ち、公称目開き75μmの金網(所謂200メッシュの金網)を使用して試験を行い、この金網を通過しない多孔質炭素材料が90質量%以上であるとき、粒径が75μm以上であると規定する。また、以下の説明において、このような多孔質炭素材料を、『200メッシュオン品』と呼び、200メッシュの金網を通過した多孔質炭素材料を、『200メッシュパス品』と呼ぶ。粒径測定に際しては、本発明における多孔質炭素材料が使用されている状態、即ち、1次粒子、及び、1次粒子が複数集合した2次粒子を含めての測定とする。   The porous carbon material in the present invention is specified to have a particle size of 75 μm or more, and the specification is based on JIS Z8801-1: 2006 “Test sieve—Part 1: Metal mesh sieve”. That is, when a test is performed using a wire mesh having a nominal opening of 75 μm (so-called 200 mesh wire mesh) and the porous carbon material not passing through the wire mesh is 90% by mass or more, the particle size is defined as 75 μm or more. To do. In the following description, such a porous carbon material is referred to as a “200 mesh-on product”, and a porous carbon material that has passed through a 200-mesh wire mesh is referred to as a “200 mesh pass product”. When measuring the particle size, the measurement is performed in a state where the porous carbon material in the present invention is used, that is, primary particles and secondary particles in which a plurality of primary particles are aggregated.

また、水銀圧入法による細孔の測定は、JIS R1655:2003「ファインセラミックスの水銀圧入法による成形体気孔径分布試験方法」に準拠する。具体的には、水銀ポロシメーター(PASCAL440:Thermo Electron社製)を用いて、水銀圧入法測定を行った。細孔測定領域を15μm〜2nmとした。   The measurement of pores by the mercury intrusion method conforms to JIS R1655: 2003 “Method for testing pore size distribution of compacts by mercury intrusion method of fine ceramics”. Specifically, mercury porosimetry was performed using a mercury porosimeter (PASCAL 440: manufactured by Thermo Electron). The pore measurement area was 15 μm to 2 nm.

本発明の汚染物質除去剤は、例えば、水の浄化あるいは空気の浄化、広くは流体の浄化のために用いることができる。あるいは又、本発明の汚染物質除去剤は、例えば、有害物質や老廃物を除去することを目的とした除去剤として用いることができる。本発明の汚染物質除去剤の使用形態として、シート状での使用、カラムやカートリッジに充填された状態での使用、透水性を有する袋に納められた状態での使用、バインダー(結着剤)等を用いて所望の形状に賦形した状態での使用、粉状での使用を例示することができる。溶液中に分散させた汚染物質除去剤として用いる場合、表面を親水処理又は疎水処理して使用することができる。本発明の炭素/ポリマー複合体や汚染物質除去シート部材から、例えば、空気浄化装置のフィルター、マスク、防護手袋や防護靴を構成することができる。   The pollutant removing agent of the present invention can be used, for example, for water purification or air purification, and broadly for fluid purification. Alternatively, the contaminant removal agent of the present invention can be used as a removal agent for the purpose of removing harmful substances and waste products, for example. As a usage form of the contaminant removing agent of the present invention, it is used in a sheet form, in a state where it is packed in a column or a cartridge, in a state of being contained in a water-permeable bag, and a binder (binder). The use in the state shape | molded to the desired shape using etc., and the use in a powder form can be illustrated. When used as a contaminant removal agent dispersed in a solution, the surface can be used after being subjected to a hydrophilic treatment or a hydrophobic treatment. For example, a filter, a mask, a protective glove, and a protective shoe of an air purification device can be configured from the carbon / polymer composite and the contaminant removing sheet member of the present invention.

以上の好ましい形態を含む本発明の汚染物質除去シート部材において、支持部材として織布や不織布を挙げることができ、支持部材を構成する材料として、セルロースやポリプロピレン、ポリエステルを挙げることができる。そして、汚染物質除去シート部材の形態として、本発明における多孔質炭素材料が支持部材と支持部材との間に挟まれた形態、多孔質炭素材料が支持部材に練り込まれた形態を挙げることができる。あるいは又、汚染物質除去シート部材の形態として、本発明の炭素/ポリマー複合体が支持部材と支持部材との間に挟まれた形態、本発明の炭素/ポリマー複合体が支持部材に練り込まれた形態を挙げることができる。炭素/ポリマー複合体を構成するバインダーとして、例えば、カルボキシニトロセルロースを挙げることができる。   In the pollutant removal sheet member of the present invention including the preferred embodiments described above, examples of the support member include woven fabric and nonwoven fabric, and examples of the material constituting the support member include cellulose, polypropylene, and polyester. And as a form of a pollutant removal sheet member, the form in which the porous carbon material in the present invention is sandwiched between the support member and the support member, and the form in which the porous carbon material is kneaded into the support member can be mentioned. it can. Alternatively, as a form of the contaminant removing sheet member, the carbon / polymer composite of the present invention is sandwiched between the support member and the carbon / polymer composite of the present invention is kneaded into the support member. Can be mentioned. Examples of the binder constituting the carbon / polymer composite include carboxynitrocellulose.

上記の好ましい形態を含む本発明の濾材を組み込むのに適した浄化装置、具体的には、浄水器(以下、『本発明における浄水器』と呼ぶ場合がある)にあっては、濾過膜(例えば、0.4μm〜0.01μmの穴の開いた中空糸膜や平膜)を更に有する構成(本発明の濾材と濾過膜の併用)とすることができるし、逆浸透膜(RO)を更に有する構成(本発明の濾材と逆浸透膜の併用)とすることができるし、セラミックス製の濾材(微細な穴を有するセラミックス製の濾材)を更に有する構成(本発明の濾材とセラミックス製の濾材の併用)とすることができるし、イオン交換樹脂を更に有する構成(本発明の濾材とイオン交換樹脂の併用)とすることもできる。尚、一般に、逆浸透膜(RO)を通過した濾過水にはミネラル成分が殆ど含まれないが、逆浸透膜(RO)を通過させた後、本発明の濾材を通過させることで、濾過水にミネラル成分を含ませることができる。   In a purification device suitable for incorporating the filter medium of the present invention including the above preferred form, specifically, in a water purifier (hereinafter sometimes referred to as “water purifier in the present invention”), a filtration membrane ( For example, a hollow fiber membrane or flat membrane having a hole of 0.4 μm to 0.01 μm can be provided (a combination of the filter medium and the filtration membrane of the present invention), and a reverse osmosis membrane (RO) Furthermore, it can be set as the structure (combination of the filter medium of this invention and a reverse osmosis membrane), and also has the structure (the filter medium of this invention, and the product made from ceramics) which further has the filter material made of ceramics (the filter medium made of ceramics which has a fine hole) A combination of a filter medium) and a configuration further including an ion exchange resin (a combination of the filter medium of the present invention and an ion exchange resin). In general, the filtered water that has passed through the reverse osmosis membrane (RO) contains almost no mineral components, but after passing through the reverse osmosis membrane (RO), the filtered water of the present invention is passed through to pass the filtered water. Can contain mineral components.

本発明における浄水器の種類として、連続式浄水器、回分式浄水器、逆浸透膜浄水器を挙げることができるし、あるいは又、水道の蛇口の先端部に浄水器本体を直接取り付ける蛇口直結型、据え置き型(トップシンク型あるいは卓上型とも呼ばれる)、水栓に浄水器が組み込まれた水栓一体化型、キッチンのシンク内に設置するアンダーシンク型(ビルトイン型)、ポットや水差し等の容器内に浄水器を組み込んだポット型(ピッチャー型)、水道メーター以降の水道配管に直接取り付けるセントラル型、携帯型、ストロー型を挙げることができる。本発明における浄水器の構成、構造は、従来の浄水器と同じ構成、構造とすることができる。本発明における浄水器において、本発明の濾材(多孔質炭素材料)は、例えば、カートリッジに納めて使用することができ、カートリッジには水流入部及び水排出部を設ければよい。本発明における浄水器において浄化の対象とすべき「水」は、JIS S3201:2010「家庭用浄水器試験方法」の「3.用語及び定義」に規定された「水」に限定するものではない。   Examples of the water purifier in the present invention include a continuous water purifier, a batch water purifier, and a reverse osmosis membrane water purifier, or a faucet direct connection type in which a water purifier main body is directly attached to the tip of a water faucet. , Stationary type (also called top sink type or tabletop type), faucet integrated type with water purifier built into the faucet, under sink type (built-in type) installed in the kitchen sink, pots and jugs Examples include a pot type (pitcher type) incorporating a water purifier inside, a central type directly attached to a water pipe after a water meter, a portable type, and a straw type. The configuration and structure of the water purifier in the present invention can be the same configuration and structure as a conventional water purifier. In the water purifier of the present invention, the filter medium (porous carbon material) of the present invention can be used, for example, in a cartridge, and the cartridge may be provided with a water inflow portion and a water discharge portion. The “water” to be purified in the water purifier of the present invention is not limited to “water” defined in “3. Terms and Definitions” of JIS S3201: 2010 “Home Water Purifier Test Method”. .

あるいは又、本発明の濾材を組み込むのに適した部材として、キャップあるいは蓋付き、ストロー部材付き、スプレー部材付きのボトル(所謂ペットボトル)やラミネート容器、プラスチック容器、ガラス容器、ガラス瓶等におけるキャップあるいは蓋を挙げることができる。ここで、キャップや蓋の内部に本発明の濾材を配し、ボトルやラミネート容器、プラスチック容器、ガラス容器、ガラス瓶等の内の液体あるいは水(飲料水や化粧水等)を、キャップや蓋の内部に配された本発明の濾材を通過させて飲むことで、あるいは、使用することで、濾過水にミネラル成分を含ませることができる。あるいは又、透水性を有する袋の中に本発明の濾材を格納し、ボトル(所謂ペットボトル)やラミネート容器、プラスチック容器、ガラス容器、ガラス瓶、ポット水差し等の各種の容器内の液体あるいは水(飲料水や化粧水等)の中に、この袋を投入する形態を採用することもできる。   Alternatively, as a member suitable for incorporating the filter medium of the present invention, a cap in a cap or lid, a straw member, a bottle with a spray member (so-called PET bottle), a laminate container, a plastic container, a glass container, a glass bottle, or the like, A lid can be mentioned. Here, the filter medium of the present invention is arranged inside the cap or lid, and the liquid or water (drinking water, lotion, etc.) in the bottle, laminate container, plastic container, glass container, glass bottle, etc. Mineral components can be contained in the filtered water by passing through the filter medium of the present invention disposed inside and drinking or using the filter medium. Alternatively, the filter medium of the present invention is stored in a bag having water permeability, and liquid or water in various containers such as bottles (so-called PET bottles), laminate containers, plastic containers, glass containers, glass bottles, pot jugs, etc. It is also possible to adopt a form in which this bag is put into drinking water or lotion.

本発明における多孔質炭素材料の原料を、ケイ素(Si)を含有する植物由来の材料とする場合、具体的には、限定するものではないが、多孔質炭素材料における強熱残分(残留灰分)の含有率は15質量%以下であることが望ましい。また、次に述べる多孔質炭素材料前駆体あるいは炭素質物質における強熱残分(残留灰分)の含有率は20質量%以上であることが望ましい。ここで、強熱残分(残留灰分)は、120゜Cで12時間、乾燥させた試料を空気(ドライエアー)中で800゜Cまで加熱したときに残される物質の質量%を指し、具体的には、熱重量測定法(TG)法に基づき測定することができる。   When the raw material of the porous carbon material in the present invention is a plant-derived material containing silicon (Si), specifically, although not limited, an ignition residue (residual ash content) in the porous carbon material ) Content is preferably 15% by mass or less. Further, the content of the ignition residue (residual ash) in the porous carbon material precursor or carbonaceous material described below is preferably 20% by mass or more. Here, the ignition residue (residual ash) is the mass% of the substance left when a sample dried at 120 ° C. for 12 hours is heated to 800 ° C. in air (dry air). Specifically, it can be measured based on a thermogravimetry (TG) method.

本発明における多孔質炭素材料、あるいは、本発明の第5の態様〜第8の態様に係る濾材を構成する多孔質炭素材料は、例えば、植物由来の材料を400゜C乃至1400゜Cにて炭素化した後、酸又はアルカリで処理することによって得ることができる。このような多孔質炭素材料の製造方法(以下、単に、『多孔質炭素材料の製造方法』と呼ぶ場合がある)において、植物由来の材料を400゜C乃至1400゜Cにて炭素化することにより得られた材料であって、酸又はアルカリでの処理を行う前の材料を、『多孔質炭素材料前駆体』あるいは『炭素質物質』と呼ぶ。   The porous carbon material in the present invention or the porous carbon material constituting the filter medium according to the fifth to eighth aspects of the present invention is, for example, a plant-derived material at 400 ° C to 1400 ° C. After carbonization, it can be obtained by treatment with acid or alkali. In such a method for producing a porous carbon material (hereinafter sometimes simply referred to as “a method for producing a porous carbon material”), the plant-derived material is carbonized at 400 ° C. to 1400 ° C. The material obtained by the above process and before the treatment with acid or alkali is referred to as “porous carbon material precursor” or “carbonaceous substance”.

多孔質炭素材料の製造方法において、酸又はアルカリでの処理の後、賦活処理を施す工程を含めることができるし、賦活処理を施した後、酸又はアルカリでの処理を行ってもよい。また、このような好ましい形態を含む多孔質炭素材料の製造方法にあっては、使用する植物由来の材料にも依るが、植物由来の材料を炭素化する前に、炭素化のための温度よりも低い温度(例えば、400゜C〜700゜C)にて、酸素を遮断した状態で植物由来の材料に加熱処理(予備炭素化処理)を施してもよい。これによって、炭素化の過程において生成するであろうタール成分を抽出することが出来る結果、炭素化の過程において生成するであろうタール成分を減少あるいは除去することができる。尚、酸素を遮断した状態は、例えば、窒素ガスやアルゴンガスといった不活性ガス雰囲気とすることで、あるいは又、真空雰囲気とすることで、あるいは又、植物由来の材料を一種の蒸し焼き状態とすることで達成することができる。また、多孔質炭素材料の製造方法にあっては、使用する植物由来の材料にも依るが、場合によっては、植物由来の材料中に含まれるミネラル成分や水分を減少させるために、また、炭素化の過程での異臭の発生を防止するために、植物由来の材料を酸又はアルカリに浸漬してもよいし、アルコール(例えば、メチルアルコールやエチルアルコール、イソプロピルアルコール)に浸漬してもよい。尚、多孔質炭素材料の製造方法にあっては、その後、予備炭素化処理を実行してもよい。不活性ガス中で加熱処理を施すことが好ましい材料として、例えば、木酢液(タールや軽質油分)を多く発生する植物を挙げることができる。また、アルコールによる前処理を施すことが好ましい材料として、例えば、ヨウ素や各種ミネラルを多く含む海藻類を挙げることができる。   In the manufacturing method of a porous carbon material, the process of performing an activation process can be included after the process with an acid or an alkali, and after performing an activation process, you may perform the process with an acid or an alkali. Further, in the method for producing a porous carbon material including such a preferable form, depending on the plant-derived material to be used, before carbonizing the plant-derived material, the temperature for carbonization is determined. Alternatively, the plant-derived material may be subjected to a heat treatment (preliminary carbonization treatment) at a low temperature (for example, 400 ° C. to 700 ° C.) in a state where oxygen is blocked. As a result, the tar component that will be generated in the carbonization process can be extracted. As a result, the tar component that will be generated in the carbonization process can be reduced or eliminated. The state in which oxygen is shut off is, for example, an inert gas atmosphere such as nitrogen gas or argon gas, or a vacuum atmosphere, or a plant-derived material is in a kind of steamed state. Can be achieved. Further, in the method for producing a porous carbon material, depending on the plant-derived material used, depending on the case, in order to reduce mineral components and moisture contained in the plant-derived material, In order to prevent the generation of a strange odor during the conversion process, the plant-derived material may be immersed in an acid or alkali, or in an alcohol (for example, methyl alcohol, ethyl alcohol, or isopropyl alcohol). In addition, in the manufacturing method of a porous carbon material, you may perform a preliminary carbonization process after that. As a material that is preferably heat-treated in an inert gas, for example, a plant that generates a large amount of wood vinegar liquid (tar or light oil) can be mentioned. In addition, examples of materials that are preferably pretreated with alcohol include seaweeds that contain a large amount of iodine and various minerals.

多孔質炭素材料の製造方法にあっては、植物由来の材料を400゜C乃至1400゜Cにて炭素化するが、ここで、炭素化とは、一般に、有機物質(本発明における多孔質炭素材料、あるいは、本発明の第5の態様〜第8の態様に係る濾材を構成する多孔質炭素材料にあっては、植物由来の材料)を熱処理して炭素質物質に変換することを意味する(例えば、JIS M0104−1984参照)。尚、炭素化のための雰囲気として、酸素を遮断した雰囲気を挙げることができ、具体的には、真空雰囲気、窒素ガスやアルゴンガスといった不活性ガス雰囲気、植物由来の材料を一種の蒸し焼き状態とする雰囲気を挙げることができる。炭素化温度に至るまでの昇温速度として、限定するものではないが、係る雰囲気下、1゜C/分以上、好ましくは3゜C/分以上、より好ましくは5゜C/分以上を挙げることができる。また、炭素化時間の上限として、10時間、好ましくは7時間、より好ましくは5時間を挙げることができるが、これに限定するものではない。炭素化時間の下限は、植物由来の材料が確実に炭素化される時間とすればよい。また、植物由来の材料を、所望に応じて粉砕して所望の粒度としてもよいし、分級してもよい。植物由来の材料を予め洗浄してもよい。あるいは又、得られた多孔質炭素材料前駆体や多孔質炭素材料を、所望に応じて粉砕して所望の粒度としてもよいし、分級してもよい。あるいは又、賦活処理後の多孔質炭素材料を、所望に応じて粉砕して所望の粒度としてもよいし、分級してもよい。更には、最終的に得られた多孔質炭素材料に殺菌処理を施してもよい。炭素化のために使用する炉の形式、構成、構造に制限はなく、連続炉とすることもできるし、回分炉(バッチ炉)とすることもできる。   In the method for producing a porous carbon material, a plant-derived material is carbonized at 400 ° C. to 1400 ° C. Here, carbonization is generally an organic substance (porous carbon in the present invention). In the case of the porous carbon material constituting the filter medium according to the fifth aspect to the eighth aspect of the present invention or the material of the present invention, it means that the plant-derived material) is heat-treated and converted into a carbonaceous substance. (For example, see JIS M0104-1984). The atmosphere for carbonization can include an atmosphere in which oxygen is shut off. Specifically, a vacuum atmosphere, an inert gas atmosphere such as nitrogen gas or argon gas, and a plant-derived material as a kind of steamed state. The atmosphere to do can be mentioned. The rate of temperature rise until reaching the carbonization temperature is not limited, but in such an atmosphere, 1 ° C / min or more, preferably 3 ° C / min or more, more preferably 5 ° C / min or more. be able to. The upper limit of the carbonization time can be 10 hours, preferably 7 hours, more preferably 5 hours, but is not limited thereto. The lower limit of the carbonization time may be a time during which the plant-derived material is reliably carbonized. Moreover, the plant-derived material may be pulverized as desired to obtain a desired particle size, or may be classified. Plant-derived materials may be washed in advance. Alternatively, the obtained porous carbon material precursor or porous carbon material may be pulverized as desired to obtain a desired particle size or classified. Alternatively, the porous carbon material after the activation treatment may be pulverized as desired to obtain a desired particle size or may be classified. Further, the porous carbon material finally obtained may be sterilized. There is no restriction | limiting in the form, structure, and structure of the furnace used for carbonization, It can also be set as a continuous furnace and can also be set as a batch furnace (batch furnace).

多孔質炭素材料の製造方法において、上述したとおり、賦活処理を施せば、孔径が2nmよりも小さいマイクロ細孔(後述する)を増加させることができる。賦活処理の方法として、ガス賦活法、薬品賦活法を挙げることができる。ここで、ガス賦活法とは、賦活剤として酸素や水蒸気、炭酸ガス、空気等を用い、係るガス雰囲気下、700゜C乃至1400゜Cにて、好ましくは700゜C乃至1000゜Cにて、より好ましくは800゜C乃至950゜Cにて、数十分から数時間、多孔質炭素材料を加熱することにより、多孔質炭素材料中の揮発成分や炭素分子により微細構造を発達させる方法である。尚、より具体的には、加熱温度は、植物由来の材料の種類、ガスの種類や濃度等に基づき、適宜、選択すればよい。薬品賦活法とは、ガス賦活法で用いられる酸素や水蒸気の替わりに、塩化亜鉛、塩化鉄、リン酸カルシウム、水酸化カルシウム、炭酸マグネシウム、炭酸カリウム、硫酸等を用いて賦活させ、塩酸で洗浄、アルカリ性水溶液でpHを調整し、乾燥させる方法である。   In the method for producing a porous carbon material, as described above, when the activation treatment is performed, micropores (described later) having a pore diameter smaller than 2 nm can be increased. Examples of the activation treatment method include a gas activation method and a chemical activation method. Here, the gas activation method uses oxygen, water vapor, carbon dioxide gas, air or the like as an activator, and in such a gas atmosphere, at 700 ° C. to 1400 ° C., preferably at 700 ° C. to 1000 ° C. More preferably, by heating the porous carbon material at 800 ° C. to 950 ° C. for several tens of minutes to several hours, the microstructure is developed by the volatile components and carbon molecules in the porous carbon material. is there. More specifically, the heating temperature may be appropriately selected based on the type of plant-derived material, the type and concentration of gas, and the like. The chemical activation method is activated with zinc chloride, iron chloride, calcium phosphate, calcium hydroxide, magnesium carbonate, potassium carbonate, sulfuric acid, etc. instead of oxygen and water vapor used in the gas activation method, washed with hydrochloric acid, alkaline In this method, the pH is adjusted with an aqueous solution and dried.

本発明における多孔質炭素材料の表面、あるいは、本発明の第5の態様〜第8の態様に係る濾材を構成する多孔質炭素材料の表面に対して、化学処理又は分子修飾を行ってもよい。化学処理として、例えば、硝酸処理により表面にカルボキシ基を生成させる処理を挙げることができる。また、水蒸気、酸素、アルカリ等による賦活処理と同様の処理を行うことにより、多孔質炭素材料の表面に水酸基、カルボキシ基、ケトン基、エステル基等、種々の官能基を生成させることもできる。更には、多孔質炭素材料と反応可能な水酸基、カルボキシ基、アミノ基等を有する化学種又は蛋白質とを化学反応させることでも、分子修飾が可能である。   Chemical treatment or molecular modification may be performed on the surface of the porous carbon material in the present invention or the surface of the porous carbon material constituting the filter medium according to the fifth to eighth aspects of the present invention. . Examples of the chemical treatment include a treatment for generating a carboxy group on the surface by nitric acid treatment. Moreover, various functional groups, such as a hydroxyl group, a carboxy group, a ketone group, an ester group, can also be produced | generated on the surface of a porous carbon material by performing the process similar to the activation process by water vapor | steam, oxygen, an alkali. Furthermore, molecular modification can also be achieved by chemically reacting a chemical species or protein having a hydroxyl group, a carboxy group, an amino group or the like that can react with the porous carbon material.

多孔質炭素材料の製造方法にあっては、酸又はアルカリでの処理によって、炭素化後の植物由来の材料中のケイ素成分を除去する。ここで、ケイ素成分として、二酸化ケイ素や酸化ケイ素、酸化ケイ素塩といったケイ素酸化物を挙げることができる。このように、炭素化後の植物由来の材料中のケイ素成分を除去することで、高い比表面積を有する多孔質炭素材料を得ることができる。場合によっては、ドライエッチング法に基づき、炭素化後の植物由来の材料中のケイ素成分を除去してもよい。また、例えば、塩酸、硝酸、硫酸等の無機酸に浸漬することで、炭素化後の植物由来の材料中に含まれるミネラル成分を除去することが可能である。   In the method for producing a porous carbon material, the silicon component in the plant-derived material after carbonization is removed by treatment with acid or alkali. Here, examples of the silicon component include silicon oxides such as silicon dioxide, silicon oxide, and silicon oxide salts. Thus, the porous carbon material which has a high specific surface area can be obtained by removing the silicon component in the plant-derived material after carbonization. In some cases, the silicon component in the plant-derived material after carbonization may be removed based on a dry etching method. For example, it is possible to remove the mineral component contained in the plant-derived material after carbonization by immersing in an inorganic acid such as hydrochloric acid, nitric acid, and sulfuric acid.

本発明における多孔質炭素材料は、植物由来の材料を原料とすることができる。ここで、植物由来の材料として、米(稲)、大麦、小麦、ライ麦、稗(ヒエ)、粟(アワ)等の籾殻や藁、珈琲豆、茶葉(例えば、緑茶や紅茶等の葉)、サトウキビ類(より具体的には、サトウキビ類の絞り滓)、トウモロコシ類(より具体的には、トウモロコシ類の芯)、上述した果実の皮(例えば、ミカン等の柑橘類の皮やバナナの皮等)、あるいは又、葦、茎ワカメを挙げることができるが、これらに限定するものではなく、その他、例えば、陸上に植生する維管束植物、シダ植物、コケ植物、藻類、海草を挙げることができる。尚、これらの材料を、原料として、単独で用いてもよいし、複数種を混合して用いてもよい。また、植物由来の材料の形状や形態も特に限定はなく、例えば、籾殻や藁そのものでもよいし、あるいは乾燥処理品でもよい。更には、ビールや洋酒等の飲食品加工において、発酵処理、焙煎処理、抽出処理等の種々の処理を施されたものを使用することもできる。特に、産業廃棄物の資源化を図るという観点から、脱穀等の加工後の藁や籾殻を使用することが好ましい。これらの加工後の藁や籾殻は、例えば、農業協同組合や酒類製造会社、食品会社、食品加工会社から、大量、且つ、容易に入手することができる。   The porous carbon material in the present invention can be made from a plant-derived material. Here, as plant-derived materials, rice husks and straws such as rice (rice), barley, wheat, rye, rice husk and millet, rice beans, tea leaves (for example, leaves such as green tea and tea), Sugar cane (more specifically, sugar cane squeezed straw), corn (more specifically, corn core), the above-mentioned fruit skin (for example, citrus skin such as mandarin orange, banana skin, etc.) ), Or cocoons and stem wakame, but is not limited to these, and other examples include vascular plants, fern plants, moss plants, algae, and seaweeds that are vegetated on land. . In addition, these materials may be used independently as a raw material, and multiple types may be mixed and used. Further, the shape and form of the plant-derived material are not particularly limited, and may be, for example, rice husk or straw itself, or may be a dried product. Furthermore, what processed various processes, such as a fermentation process, a roasting process, an extraction process, can also be used in food-drinks processing, such as beer and western liquor. In particular, it is preferable to use straws and rice husks after processing such as threshing from the viewpoint of recycling industrial waste. These processed straws and rice husks can be easily obtained in large quantities from, for example, agricultural cooperatives, liquor manufacturers, food companies, and food processing companies.

本発明における多孔質炭素材料には、マグネシウム(Mg)、カリウム(K)、カルシウム(Ca)や、リン(P)、硫黄(S)等の非金属元素や、遷移元素等の金属元素が含まれていてもよい。マグネシウム(Mg)の含有率として0.01質量%以上3質量%以下、カリウム(K)の含有率として0.01質量%以上3質量%以下、カルシウム(Ca)の含有率として0.05質量%以上3質量%以下、リン(P)の含有率として0.01質量%以上3質量%以下、硫黄(S)の含有率として0.01質量%以上3質量%以下を挙げることができる。尚、これらの元素の含有率は、比表面積の値の増加といった観点からは、少ない方が好ましい。多孔質炭素材料には、上記した元素以外の元素を含んでいてもよく、上記した各種元素の含有率の範囲も、変更し得ることは云うまでもない。   The porous carbon material in the present invention includes magnesium (Mg), potassium (K), calcium (Ca), nonmetallic elements such as phosphorus (P) and sulfur (S), and metal elements such as transition elements. It may be. Magnesium (Mg) content of 0.01% by mass to 3% by mass, potassium (K) content of 0.01% by mass to 3% by mass, calcium (Ca) content of 0.05% by mass % To 3% by mass, phosphorus (P) content of 0.01% to 3% by mass, and sulfur (S) content of 0.01% to 3% by mass. The content of these elements is preferably smaller from the viewpoint of increasing the specific surface area. Needless to say, the porous carbon material may contain elements other than the above-described elements, and the range of the content of each of the above-mentioned various elements can be changed.

本発明における多孔質炭素材料、あるいは、本発明の第5の態様〜第8の態様に係る濾材を構成する多孔質炭素材料にあっては、各種元素の分析を、例えば、エネルギー分散型X線分析装置(例えば、日本電子株式会社製のJED−2200F)を用い、エネルギー分散法(EDS)により行うことができる。ここで、測定条件を、例えば、走査電圧15kV、照射電流10μAとすればよい。   In the porous carbon material according to the present invention or the porous carbon material constituting the filter medium according to the fifth to eighth aspects of the present invention, various elements are analyzed, for example, energy dispersive X-rays. An analysis apparatus (for example, JED-2200F manufactured by JEOL Ltd.) can be used, and can be performed by an energy dispersion method (EDS). Here, the measurement conditions may be, for example, a scanning voltage of 15 kV and an irradiation current of 10 μA.

本発明における多孔質炭素材料、あるいは、本発明の第5の態様〜第8の態様に係る濾材を構成する多孔質炭素材料は、細孔(ポア)を多く有している。細孔として、孔径が2nm乃至50nmの『メソ細孔』、孔径が2nmよりも小さい『マイクロ細孔』、及び、孔径が50nmを超える『マクロ細孔』が含まれる。また、本発明における多孔質炭素材料にあっては、MP法による細孔の容積は、上述したとおり、0.1cm3/グラム以上であることが好ましい。 The porous carbon material in the present invention or the porous carbon material constituting the filter medium according to the fifth to eighth aspects of the present invention has many pores. The pore includes “mesopore” having a pore diameter of 2 nm to 50 nm, “micropore” having a pore diameter smaller than 2 nm, and “macropore” having a pore diameter exceeding 50 nm. In the porous carbon material of the present invention, the pore volume by the MP method is preferably 0.1 cm 3 / gram or more as described above.

本発明における多孔質炭素材料、あるいは、本発明の第5の態様〜第8の態様に係る濾材を構成する多孔質炭素材料において、窒素BET法による比表面積の値(以下、単に、『比表面積の値』と呼ぶ場合がある)は、より一層優れた機能性を得るために、好ましくは4×1022/グラム以上であることが望ましい。 In the porous carbon material according to the present invention or the porous carbon material constituting the filter medium according to the fifth to eighth aspects of the present invention, the specific surface area value by the nitrogen BET method (hereinafter simply referred to as “specific surface area”). Is preferably 4 × 10 2 m 2 / gram or more in order to obtain even better functionality.

窒素BET法とは、吸着剤(ここでは、多孔質炭素材料)に吸着分子として窒素を吸脱着させることにより吸着等温線を測定し、測定したデータを式(1)で表されるBET式に基づき解析する方法であり、この方法に基づき比表面積や細孔容積等を算出することができる。具体的には、窒素BET法により比表面積の値を算出する場合、先ず、多孔質炭素材料に吸着分子として窒素を吸脱着させることにより、吸着等温線を求める。そして、得られた吸着等温線から、式(1)あるいは式(1)を変形した式(1’)に基づき[p/{Va(p0−p)}]を算出し、平衡相対圧(p/p0)に対してプロットする。そして、このプロットを直線と見なし、最小二乗法に基づき、傾きs(=[(C−1)/(C・Vm)])及び切片i(=[1/(C・Vm)])を算出する。そして、求められた傾きs及び切片iから式(2−1)、式(2−2)に基づき、Vm及びCを算出する。更には、Vmから、式(3)に基づき比表面積asBETを算出する(日本ベル株式会社製BELSORP−mini及びBELSORP解析ソフトウェアのマニュアル、第62頁〜第66頁参照)。尚、この窒素BET法は、JIS R 1626−1996「ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法」に準じた測定方法である。 The nitrogen BET method is an adsorption isotherm measured by adsorbing and desorbing nitrogen as an adsorbed molecule on an adsorbent (here, a porous carbon material), and the measured data is converted into a BET equation represented by equation (1). Based on this method, the specific surface area, pore volume, and the like can be calculated. Specifically, when calculating the value of the specific surface area by the nitrogen BET method, first, an adsorption isotherm is obtained by adsorbing and desorbing nitrogen as an adsorbed molecule on the porous carbon material. Then, [p / {V a (p 0 −p)}] is calculated from the obtained adsorption isotherm based on the formula (1) or the formula (1 ′) obtained by modifying the formula (1), and the equilibrium relative pressure is calculated. Plot against (p / p 0 ). Then, this plot is regarded as a straight line, and based on the least square method, the slope s (= [(C-1) / (C · V m )]) and the intercept i (= [1 / (C · V m )]) Is calculated. Then, V m and C are calculated from the obtained slope s and intercept i based on the equations (2-1) and (2-2). Furthermore, the specific surface area a sBET is calculated from V m based on the formula (3) (see BELSORP-mini and BELSORP analysis software manual, pages 62 to 66, manufactured by Bell Japan Co., Ltd.). The nitrogen BET method is a measurement method according to JIS R 1626-1996 “Measurement method of specific surface area of fine ceramic powder by gas adsorption BET method”.

a=(Vm・C・p)/[(p0−p){1+(C−1)(p/p0)}] (1)
[p/{Va(p0−p)}]
=[(C−1)/(C・Vm)](p/p0)+[1/(C・Vm)] (1’)
m=1/(s+i) (2−1)
C =(s/i)+1 (2−2)
sBET=(Vm・L・σ)/22414 (3)
V a = (V m · C · p) / [(p 0 -p) {1+ (C-1) (p / p 0)}] (1)
[P / {V a (p 0 −p)}]
= [(C-1) / (C · V m )] (p / p 0 ) + [1 / (C · V m )] (1 ′)
V m = 1 / (s + i) (2-1)
C = (s / i) +1 (2-2)
a sBET = (V m · L · σ) / 22414 (3)

但し、
a:吸着量
m:単分子層の吸着量
p :窒素の平衡時の圧力
0:窒素の飽和蒸気圧
L :アボガドロ数
σ :窒素の吸着断面積
である。
However,
V a : Adsorption amount V m : Adsorption amount of monolayer p: Nitrogen equilibrium pressure p 0 : Nitrogen saturated vapor pressure L: Avogadro number σ: Nitrogen adsorption cross section.

窒素BET法により細孔容積Vpを算出する場合、例えば、求められた吸着等温線の吸着データを直線補間し、細孔容積算出相対圧で設定した相対圧での吸着量Vを求める。この吸着量Vから式(4)に基づき細孔容積Vpを算出することができる(日本ベル株式会社製BELSORP−mini及びBELSORP解析ソフトウェアのマニュアル、第62頁〜第65頁参照)。尚、窒素BET法に基づく細孔容積を、以下、単に『細孔容積』と呼ぶ場合がある。 When the pore volume V p is calculated by the nitrogen BET method, for example, the adsorption data of the obtained adsorption isotherm is linearly interpolated to obtain the adsorption amount V at the relative pressure set by the pore volume calculation relative pressure. The pore volume V p can be calculated from this adsorption amount V based on the formula (4) (see BELSORP-mini and BELSORP analysis software manual, page 62 to page 65, manufactured by Bell Japan Co., Ltd.). Hereinafter, the pore volume based on the nitrogen BET method may be simply referred to as “pore volume”.

p=(V/22414)×(Mg/ρg) (4) V p = (V / 22414) × (M g / ρ g ) (4)

但し、
V :相対圧での吸着量
g:窒素の分子量
ρg:窒素の密度
である。
However,
V: Adsorption amount at relative pressure M g : Nitrogen molecular weight ρ g : Nitrogen density.

メソ細孔の孔径は、例えば、BJH法に基づき、その孔径に対する細孔容積変化率から細孔の分布として算出することができる。BJH法は、細孔分布解析法として広く用いられている方法である。BJH法に基づき細孔分布解析をする場合、先ず、多孔質炭素材料に吸着分子として窒素を吸脱着させることにより、脱着等温線を求める。そして、求められた脱着等温線に基づき、細孔が吸着分子(例えば窒素)によって満たされた状態から吸着分子が段階的に着脱する際の吸着層の厚さ、及び、その際に生じた孔の内径(コア半径の2倍)を求め、式(5)に基づき細孔半径rpを算出し、式(6)に基づき細孔容積を算出する。そして、細孔半径及び細孔容積から細孔径(2rp)に対する細孔容積変化率(dVp/drp)をプロットすることにより細孔分布曲線が得られる(日本ベル株式会社製BELSORP−mini及びBELSORP解析ソフトウェアのマニュアル、第85頁〜第88頁参照)。 The pore diameter of the mesopores can be calculated as a pore distribution from the pore volume change rate with respect to the pore diameter, for example, based on the BJH method. The BJH method is widely used as a pore distribution analysis method. When pore distribution analysis is performed based on the BJH method, first, desorption isotherms are obtained by adsorbing and desorbing nitrogen as adsorbed molecules on the porous carbon material. Then, based on the obtained desorption isotherm, the thickness of the adsorption layer when the adsorption molecules are attached and detached in stages from the state where the pores are filled with the adsorption molecules (for example, nitrogen), and the pores generated at that time obtains an inner diameter (twice the core radius) of calculating the pore radius r p based on equation (5) to calculate the pore volume based on the equation (6). Then, the pore radius and the pore volume variation rate relative to the pore diameter (2r p) from the pore volume (dV p / dr p) pore distribution curve is obtained by plotting the (Nippon Bel Co. Ltd. BELSORP-mini And BELSORP analysis software manual, pages 85-88).

p=t+rk (5)
pn=Rn・dVn−Rn・dtn・c・ΣApj (6)
但し、
n=rpn 2/(rkn−1+dtn2 (7)
r p = t + r k (5)
V pn = R n · dV n -R n · dt n · c · ΣA pj (6)
However,
R n = r pn 2 / (r kn −1 + dt n ) 2 (7)

ここで、
p:細孔半径
k:細孔半径rpの細孔の内壁にその圧力において厚さtの吸着層が吸着した場合のコア半径(内径/2)
pn:窒素の第n回目の着脱が生じたときの細孔容積
dVn:そのときの変化量
dtn:窒素の第n回目の着脱が生じたときの吸着層の厚さtnの変化量
kn:その時のコア半径
c:固定値
pn:窒素の第n回目の着脱が生じたときの細孔半径
である。また、ΣApjは、j=1からj=n−1までの細孔の壁面の面積の積算値を表す。
here,
r p : pore radius r k : core radius (inner diameter / 2) when the adsorption layer having a thickness t is adsorbed on the inner wall of the pore having the pore radius r p at that pressure
V pn : pore volume dV n when the nth attachment / detachment of nitrogen occurs: change amount dt n at that time: change in the thickness t n of the adsorption layer when the nth attachment / detachment of nitrogen occurs Amount r kn : Core radius c at that time c: Fixed value r pn : Pore radius when the nth attachment / detachment of nitrogen occurs. ΣA pj represents the integrated value of the area of the wall surfaces of the pores from j = 1 to j = n−1.

マイクロ細孔の孔径は、例えば、MP法に基づき、その孔径に対する細孔容積変化率から細孔の分布として算出することができる。MP法により細孔分布解析を行う場合、先ず、多孔質炭素材料に窒素を吸着させることにより、吸着等温線を求める。そして、この吸着等温線を吸着層の厚さtに対する細孔容積に変換する(tプロットする)。そして、このプロットの曲率(吸着層の厚さtの変化量に対する細孔容積の変化量)に基づき細孔分布曲線を得ることができる(日本ベル株式会社製BELSORP−mini及びBELSORP解析ソフトウェアのマニュアル、第72頁〜第73頁、第82頁参照)。   The pore diameter of the micropores can be calculated as a pore distribution from the pore volume change rate with respect to the pore diameter, for example, based on the MP method. When performing pore distribution analysis by the MP method, first, an adsorption isotherm is obtained by adsorbing nitrogen to a porous carbon material. Then, this adsorption isotherm is converted into a pore volume with respect to the thickness t of the adsorption layer (t plotted). A pore distribution curve can be obtained based on the curvature of this plot (the amount of change in pore volume with respect to the amount of change in the thickness t of the adsorption layer) (BELSORP-mini and BELSORP analysis software manuals manufactured by Bell Japan Co., Ltd.). 72 to 73 and 82).

JIS Z8831−2:2010 「粉体(固体)の細孔径分布及び細孔特性−第2部:ガス吸着によるメソ細孔及びマクロ細孔の測定方法」、及び、JIS Z8831−3:2010 「粉体(固体)の細孔径分布及び細孔特性−第3部:ガス吸着によるミクロ細孔の測定方法」に規定された非局在化密度汎関数法(NLDFT法)にあっては、解析ソフトウェアとして、日本ベル株式会社製自動比表面積/細孔分布測定装置「BELSORP−MAX」に付属するソフトウェアを用いる。前提条件としてモデルをシリンダ形状としてカーボンブラック(CB)を仮定し、細孔分布パラメータの分布関数を「no−assumption」とし、得られた分布データにはスムージングを10回施す。   JIS Z8831-2: 2010 “Pore size distribution and pore characteristics of powder (solid) —Part 2: Method for measuring mesopores and macropores by gas adsorption” and JIS Z8831-3: 2010 “Powder” Analysis software for the delocalized density functional method (NLDFT method) defined in "Particle size distribution and pore characteristics of solid bodies (solid)-Part 3: Method for measuring micropores by gas adsorption" As an example, software attached to an automatic specific surface area / pore distribution measuring device “BELSORP-MAX” manufactured by Nippon Bell Co., Ltd. is used. As a precondition, the model is assumed to be a cylinder shape and carbon black (CB) is assumed, the distribution function of the pore distribution parameter is “no-assumtion”, and the obtained distribution data is smoothed 10 times.

多孔質炭素材料前駆体を酸又はアルカリで処理するが、具体的な処理方法として、例えば、酸あるいはアルカリの水溶液に多孔質炭素材料前駆体を浸漬する方法や、多孔質炭素材料前駆体と酸又はアルカリとを気相で反応させる方法を挙げることができる。より具体的には、酸によって処理する場合、酸として、例えば、フッ化水素、フッ化水素酸、フッ化アンモニウム、フッ化カルシウム、フッ化ナトリウム等の酸性を示すフッ素化合物を挙げることができる。フッ素化合物を用いる場合、多孔質炭素材料前駆体に含まれるケイ素成分におけるケイ素元素に対してフッ素元素が4倍量となればよく、フッ素化合物水溶液の濃度は10質量%以上であることが好ましい。フッ化水素酸によって、多孔質炭素材料前駆体に含まれるケイ素成分(例えば、二酸化ケイ素)を除去する場合、二酸化ケイ素は、化学式(A)又は化学式(B)に示すようにフッ化水素酸と反応し、ヘキサフルオロケイ酸(H2SiF6)あるいは四フッ化ケイ素(SiF4)として除去され、多孔質炭素材料を得ることができる。そして、その後、洗浄、乾燥を行えばよい。酸によって処理する場合、例えば、塩酸、硝酸、硫酸等の無機酸で処理することで、多孔質炭素材料前駆体中に含まれるミネラル成分を除去することが可能である。 The porous carbon material precursor is treated with an acid or alkali. Specific treatment methods include, for example, a method of immersing the porous carbon material precursor in an acid or alkali aqueous solution, or a porous carbon material precursor and an acid. Or the method of making it react with an alkali by a gaseous phase can be mentioned. More specifically, when treating with an acid, examples of the acid include fluorine compounds exhibiting acidity such as hydrogen fluoride, hydrofluoric acid, ammonium fluoride, calcium fluoride, and sodium fluoride. When a fluorine compound is used, it is sufficient that the amount of fluorine element is 4 times the amount of silicon element in the silicon component contained in the porous carbon material precursor, and the concentration of the fluorine compound aqueous solution is preferably 10% by mass or more. When the silicon component (for example, silicon dioxide) contained in the porous carbon material precursor is removed by hydrofluoric acid, the silicon dioxide is mixed with hydrofluoric acid as shown in chemical formula (A) or chemical formula (B). It reacts and is removed as hexafluorosilicic acid (H 2 SiF 6 ) or silicon tetrafluoride (SiF 4 ) to obtain a porous carbon material. Thereafter, washing and drying may be performed. In the case of treating with an acid, for example, the mineral component contained in the porous carbon material precursor can be removed by treating with an inorganic acid such as hydrochloric acid, nitric acid or sulfuric acid.

SiO2+6HF → H2SiF6+2H2O (A)
SiO2+4HF → SiF4+2H2O (B)
SiO 2 + 6HF → H 2 SiF 6 + 2H 2 O (A)
SiO 2 + 4HF → SiF 4 + 2H 2 O (B)

また、アルカリ(塩基)によって処理する場合、アルカリとして、例えば、水酸化ナトリウムを挙げることができる。アルカリの水溶液を用いる場合、水溶液のpHは11以上であればよい。水酸化ナトリウム水溶液によって、多孔質炭素材料前駆体に含まれるケイ素成分(例えば、二酸化ケイ素)を除去する場合、水酸化ナトリウム水溶液を熱することにより、二酸化ケイ素は、化学式(C)に示すように反応し、ケイ酸ナトリウム(Na2SiO3)として除去され、多孔質炭素材料を得ることができる。また、水酸化ナトリウムを気相で反応させて処理する場合、水酸化ナトリウムの固体を熱することにより、化学式(C)に示すように反応し、ケイ酸ナトリウム(Na2SiO3)として除去され、多孔質炭素材料を得ることができる。そして、その後、洗浄、乾燥を行えばよい。 Moreover, when processing with an alkali (base), sodium hydroxide can be mentioned as an alkali, for example. When an alkaline aqueous solution is used, the pH of the aqueous solution may be 11 or more. When the silicon component (for example, silicon dioxide) contained in the porous carbon material precursor is removed with the aqueous sodium hydroxide solution, the silicon dioxide is heated as shown in the chemical formula (C) by heating the aqueous sodium hydroxide solution. It reacts and is removed as sodium silicate (Na 2 SiO 3 ) to obtain a porous carbon material. In addition, when processing by reacting sodium hydroxide in the gas phase, the sodium hydroxide solid is heated to react as shown in the chemical formula (C) and is removed as sodium silicate (Na 2 SiO 3 ). A porous carbon material can be obtained. Thereafter, washing and drying may be performed.

SiO2+2NaOH → Na2SiO3+H2O (C) SiO 2 + 2NaOH → Na 2 SiO 3 + H 2 O (C)

あるいは又、本発明における多孔質炭素材料、あるいは、本発明の第5の態様〜第8の態様に係る濾材を構成する多孔質炭素材料として、例えば、特開2010−106007に開示された空孔が3次元的規則性を有する多孔質炭素材料(所謂、逆オパール構造を有する多孔質炭素材料)、具体的には、1×10-9m乃至1×10-5mの平均直径を有する3次元的に配列された球状の空孔を備え、表面積が3×1022/グラム以上の多孔質炭素材料、好ましくは、巨視的に、結晶構造に相当する配置状態にて空孔が配列されており、あるいは又、巨視的に、面心立方構造における(111)面配向に相当する配置状態にて、その表面に空孔が配列されている多孔質炭素材料を用いることもできる。 Alternatively, as the porous carbon material in the present invention or the porous carbon material constituting the filter medium according to the fifth to eighth aspects of the present invention, for example, pores disclosed in JP 2010-106007 A Is a porous carbon material having a three-dimensional regularity (so-called porous carbon material having an inverse opal structure), specifically, an average diameter of 3 × 10 −9 m to 1 × 10 −5 m. Porous carbon material having dimensionally arranged spherical holes and a surface area of 3 × 10 2 m 2 / gram or more, preferably macroscopically arranged in an arrangement corresponding to the crystal structure Alternatively, it is possible to use a porous carbon material in which pores are arranged on the surface in an arrangement state corresponding to the (111) plane orientation in the face-centered cubic structure macroscopically.

実施例1は、本発明の第1の態様〜第4の態様に係る汚染物質除去剤、本発明の第1の態様〜第4の態様に係る炭素/ポリマー複合体、本発明の第1の態様〜第4の態様に係る汚染物質除去シート部材及び本発明の第1の態様〜第4の態様に係る濾材に関する。   Example 1 is a contaminant removing agent according to the first to fourth aspects of the present invention, the carbon / polymer composite according to the first to fourth aspects of the present invention, and the first of the present invention. The present invention relates to a pollutant removing sheet member according to the fourth to fourth aspects and the filter medium according to the first to fourth aspects of the present invention.

実施例1の汚染物質除去剤あるいは濾材は、本発明の第1の態様に係る汚染物質除去剤あるいは濾材に則って表現すると、窒素BET法による比表面積の値が1×1022/グラム以上、BJH法による細孔の容積が0.3cm3/グラム以上、好ましくは0.4cm3/グラム以上、より好ましくは0.5cm3/グラム以上、粒径が75μm以上である多孔質炭素材料から成る。また、本発明の第2の態様に係る汚染物質除去剤あるいは濾材に則って表現すると、窒素BET法による比表面積の値が1×1022/グラム以上、非局在化密度汎関数法(NLDFT法,Non Localized Density Functional Theory 法)によって求められた直径1×10-9m乃至5×10-7mの細孔の容積の合計(便宜上、『容積A』と呼ぶ)が1.0cm3/グラム以上、粒径が75μm以上である多孔質炭素材料から成る。更には、本発明の第3の態様に係る汚染物質除去剤あるいは濾材に則って表現すると、窒素BET法による比表面積の値が1×1022/グラム以上、非局在化密度汎関数法によって求められた細孔径分布において、3nm乃至20nmの範囲内に少なくとも1つピークを有し、3nm乃至20nmの範囲内に細孔径を有する細孔の容積の合計の占める割合が全細孔の容積総計の0.2以上であり、粒径が75μm以上である多孔質炭素材料から成る。また、本発明の第4の態様に係る汚染物質除去剤あるいは濾材に則って表現すると、窒素BET法による比表面積の値が1×1022/グラム以上、水銀圧入法による細孔の容積が1.0cm3/グラム以上、粒径が75μm以上である多孔質炭素材料から成る。 When the contaminant removal agent or filter medium of Example 1 is expressed according to the contaminant removal agent or filter medium according to the first aspect of the present invention, the specific surface area value by the nitrogen BET method is 1 × 10 2 m 2 / gram. As described above, a porous carbon material having a pore volume by the BJH method of 0.3 cm 3 / gram or more, preferably 0.4 cm 3 / gram or more, more preferably 0.5 cm 3 / gram or more and a particle size of 75 μm or more. Consists of. Further, when expressed in accordance with the contaminant removing agent or filter medium according to the second aspect of the present invention, the value of the specific surface area by the nitrogen BET method is 1 × 10 2 m 2 / gram or more, the delocalized density functional method The total volume of pores having a diameter of 1 × 10 −9 m to 5 × 10 −7 m obtained by (NLDFT method, Non Localized Density Functional Theory method) (referred to as “volume A” for convenience) is 1.0 cm. 3 / gram or more and a porous carbon material having a particle size of 75 μm or more. Furthermore, when expressed in accordance with the contaminant removal agent or filter medium according to the third aspect of the present invention, the value of the specific surface area by the nitrogen BET method is 1 × 10 2 m 2 / gram or more, the delocalized density functional In the pore size distribution obtained by the method, the proportion of the total volume of pores having at least one peak in the range of 3 nm to 20 nm and having the pore size in the range of 3 nm to 20 nm is the total pore size. It is made of a porous carbon material having a volume total of 0.2 or more and a particle size of 75 μm or more. Further, when expressed in accordance with the contaminant removing agent or filter medium according to the fourth aspect of the present invention, the specific surface area value by the nitrogen BET method is 1 × 10 2 m 2 / gram or more, and the pore volume by the mercury intrusion method. Is made of a porous carbon material having a diameter of 1.0 cm 3 / gram or more and a particle diameter of 75 μm or more.

尚、BJH法による細孔(メソ細孔)、MP法による細孔(マイクロ細孔)、及び、水銀圧入法による細孔は、少なくとも、ケイ素を含有する植物由来の材料からのケイ素の除去によって得られる。多孔質炭素材料の水銀圧入法による細孔の容積は2.0cm3/グラム以上であることがより好ましく、MP法による細孔の容積は0.1cm3/グラム以上であることが好ましい。また、多孔質炭素材料の嵩密度は、0.1グラム/cm3乃至0.8グラム/cm3であることが好ましい。 Incidentally, the pores by the BJH method (mesopores), the pores by the MP method (micropores), and the pores by the mercury intrusion method are at least due to the removal of silicon from the plant-derived material containing silicon. can get. The pore volume of the porous carbon material by mercury porosimetry is more preferably 2.0 cm 3 / gram or more, and the pore volume by MP method is preferably 0.1 cm 3 / gram or more. The bulk density of the porous carbon material is preferably 0.1 gram / cm 3 to 0.8 gram / cm 3 .

実施例1にあっては、多孔質炭素材料の原料である植物由来の材料を米(稲)の籾殻とした。そして、実施例1における多孔質炭素材料は、原料としての籾殻を炭素化して炭素質物質(多孔質炭素材料前駆体)に変換し、次いで、酸処理を施すことで得られる。以下、実施例1における多孔質炭素材料の製造方法を説明する。   In Example 1, rice (rice) rice husk was used as the plant-derived material that is the raw material of the porous carbon material. And the porous carbon material in Example 1 is obtained by carbonizing the chaff as a raw material, converting it into a carbonaceous substance (porous carbon material precursor), and then performing an acid treatment. Hereinafter, the manufacturing method of the porous carbon material in Example 1 is demonstrated.

実施例1における多孔質炭素材料の製造においては、植物由来の材料を400゜C乃至1400゜Cにて炭素化した後、酸又はアルカリで処理することによって、多孔質炭素材料を得た。即ち、先ず、籾殻に対して、不活性ガス中で加熱処理(予備炭素化処理)を施す。具体的には、籾殻を、窒素気流中において500゜C、5時間、加熱することにより炭化させ、炭化物を得た。尚、このような処理を行うことで、次の炭素化の際に生成されるであろうタール成分を減少あるいは除去することができる。その後、この炭化物の10グラムをアルミナ製の坩堝に入れ、窒素気流中(10リットル/分)において5゜C/分の昇温速度で800゜Cまで昇温させた。そして、800゜Cで1時間、炭素化して、炭素質物質(多孔質炭素材料前駆体)に変換した後、室温まで冷却した。尚、炭素化及び冷却中、窒素ガスを流し続けた。次に、この多孔質炭素材料前駆体を46容積%のフッ化水素酸水溶液に一晩浸漬することで酸処理を行った後、水及びエチルアルコールを用いてpH7になるまで洗浄した。次いで、120°Cにて乾燥させた後、900゜Cで水蒸気気流中(5リットル/分)にて3時間加熱させることで賦活処理を行うことで、実施例1の多孔質炭素材料を得ることができた。そして、実施例1の多孔質炭素材料を粉砕し、篩にかけ、60メッシュパス・200メッシュオンの部分を採取することで、実施例1Aを得ることができた。   In the production of the porous carbon material in Example 1, the plant-derived material was carbonized at 400 ° C. to 1400 ° C. and then treated with an acid or an alkali to obtain a porous carbon material. That is, first, heat treatment (preliminary carbonization treatment) is performed on the rice husk in an inert gas. Specifically, the rice husk was carbonized by heating at 500 ° C. for 5 hours in a nitrogen stream to obtain a carbide. In addition, by performing such a process, the tar component which will be produced | generated at the time of the next carbonization can be reduced or removed. Thereafter, 10 grams of this carbide was put in an alumina crucible and heated to 800 ° C. at a rate of 5 ° C./minute in a nitrogen stream (10 liters / minute). And it carbonized at 800 degreeC for 1 hour, after converting into a carbonaceous substance (porous carbon material precursor), it cooled to room temperature. In addition, nitrogen gas was continued to flow during carbonization and cooling. Next, this porous carbon material precursor was subjected to an acid treatment by immersing it in a 46% by volume hydrofluoric acid aqueous solution overnight, and then washed with water and ethyl alcohol until pH 7 was reached. Next, after drying at 120 ° C, the porous carbon material of Example 1 is obtained by performing activation treatment by heating at 900 ° C in a water vapor stream (5 liters / minute) for 3 hours. I was able to. And Example 1A was able to be obtained by grind | pulverizing the porous carbon material of Example 1, passing through a sieve, and extract | collecting the part of 60 mesh pass and 200 mesh on.

市販の浄水器に使用されている濾材を、篩にかけることで、60メッシュパス・200メッシュオンの部分を採取し、比較例1A及び比較例1Bとした。尚、比較例1Aにおける濾材はシリカから成り、比較例1Bにおける濾材は竹炭から成る。   The filter medium used in a commercially available water purifier was passed through a sieve to collect a portion of 60 mesh pass / 200 mesh on to be Comparative Example 1A and Comparative Example 1B. The filter medium in Comparative Example 1A is made of silica, and the filter medium in Comparative Example 1B is made of bamboo charcoal.

比表面積及び細孔容積を求めるための測定機器として、BELSORP−mini(日本ベル株式会社製)を用い、窒素吸脱着試験を行った。測定条件として、測定平衡相対圧(p/p0)を0.01〜0.99とした。そして、BELSORP解析ソフトウェアに基づき、比表面積及び細孔容積を算出した。また、メソ細孔及びマイクロ細孔の細孔径分布は、上述した測定機器を用いた窒素吸脱着試験を行い、BELSORP解析ソフトウェアによりBJH法及びMP法に基づき算出した。更には、非局在化密度汎関数法(NLDFT法)に基づく測定にあっては、日本ベル株式会社製自動比表面積/細孔分布測定装置「BELSORP−MAX」を使用した。尚、測定に際しては、試料の前処理として、200゜Cで3時間の乾燥を行った。 A nitrogen adsorption / desorption test was performed using BELSORP-mini (manufactured by Nippon Bell Co., Ltd.) as a measuring instrument for determining the specific surface area and pore volume. As measurement conditions, the measurement equilibrium relative pressure (p / p 0 ) was set to 0.01 to 0.99. The specific surface area and pore volume were calculated based on BELSORP analysis software. In addition, the pore size distribution of mesopores and micropores was calculated based on the BJH method and the MP method using BELSORP analysis software after performing a nitrogen adsorption / desorption test using the above-described measuring instrument. Furthermore, in the measurement based on the delocalized density functional method (NLDFT method), an automatic specific surface area / pore distribution measuring device “BELSORP-MAX” manufactured by Nippon Bell Co., Ltd. was used. In the measurement, the sample was dried at 200 ° C. for 3 hours as a pretreatment.

実施例1A、比較例1A及び比較例1Bの濾材について、比表面積及び細孔容積を測定したところ、表1に示す結果が得られた。尚、表1中、「比表面積」は窒素BET法による比表面積の値を指し、単位はm2/グラムである。また、「MP法」、「BJH法」は、MP法による細孔(マイクロ細孔)の容積測定結果、BJH法による細孔(メソ細孔〜マクロ細孔)の容積測定結果を示し、単位はcm3/グラムである。また、表1中、「全細孔容積」は、窒素BET法による全細孔容積の値を指し、単位はcm3/グラムである。更には、非局在化密度汎関数法(NLDFT法)に基づく、直径1×10-9m乃至5×10-7mの細孔の容積の合計(容積A、全細孔の容積総計)に対する3nm乃至20nmの範囲内に細孔径を有する細孔の容積の合計の占める割合(容積割合)を表2に示す。尚、比較例1AにおけるBJH法に基づく細孔容積測定結果、及び、NLDFT法に基づく全細孔の容積総計(容積A)測定結果が大きい値を示しているが、これは、比較例1Aにおける濾材が、多孔質炭素材料から成るのではなく、シリカから成るためである。 When the specific surface area and pore volume were measured for the filter media of Example 1A, Comparative Example 1A, and Comparative Example 1B, the results shown in Table 1 were obtained. In Table 1, “specific surface area” refers to the value of the specific surface area by the nitrogen BET method, and the unit is m 2 / gram. “MP method” and “BJH method” indicate the volume measurement results of pores (micropores) by the MP method and the volume measurement results of pores (mesopores to macropores) by the BJH method. Is cm 3 / gram. In Table 1, “total pore volume” refers to the value of the total pore volume according to the nitrogen BET method, and the unit is cm 3 / gram. Furthermore, the total volume of pores having a diameter of 1 × 10 −9 m to 5 × 10 −7 m based on the delocalized density functional method (NLDFT method) (volume A, total volume of all pores) Table 2 shows the ratio (volume ratio) of the total volume of pores having a pore diameter in the range of 3 nm to 20 nm with respect to. In addition, although the pore volume measurement result based on the BJH method in Comparative Example 1A and the volume total (volume A) measurement result of all pores based on the NLDFT method show large values, this is the same as in Comparative Example 1A. This is because the filter medium is not made of a porous carbon material but is made of silica.

吸着量測定のため、0.03モル/リットルのメチレンブルー及び0.5ミリモル/リットルのブラック5の水溶液を調製し、各40ミリリットルの水溶液に対して試料を10ミリグラム投入した。そして、ミックスローター(攪拌機)を用いて100rpmで攪拌し、攪拌時間を、0.5分、1分、3分、5分、15分、30分、60分、180分として攪拌後、濾過し、得られた濾液の吸光度変化を測定する試験法に基づき、攪拌時間と濾材1グラム当たりのメチレンブルー及びブラック5の吸着量との関係を、単位質量当たりの吸光度から得られた検量線の値から算出した。   To measure the amount of adsorption, an aqueous solution of 0.03 mol / liter of methylene blue and 0.5 mmol / liter of black 5 was prepared, and 10 milligrams of the sample was added to each 40 milliliter of the aqueous solution. And it stirs at 100 rpm using a mix rotor (stirrer), stirs as 0.5 minutes, 1 minute, 3 minutes, 5 minutes, 15 minutes, 30 minutes, 60 minutes, 180 minutes, and filters. Based on the test method for measuring the change in absorbance of the obtained filtrate, the relationship between the stirring time and the amount of adsorption of methylene blue and black 5 per gram of the filter medium is determined from the value of the calibration curve obtained from the absorbance per unit mass. Calculated.

その結果を図1の(A)及び(B)に示すが、実施例1Aの濾材のメチレンブルー及びブラック5の吸着量は、比較例1A及び比較例1Bの濾材の吸着量よりも格段に大きく、これは、比較例では観察されない大容積のメソ細孔及びマクロ細孔の影響であると考えられる。尚、図1の縦軸は吸着量(単位:ミリグラム/グラム)であり、横軸は試験時間(濾材を試験液に浸漬した時間であり、単位は分)である。また、三角印は実施例1Aのデータを示し、四角印は比較例1Aのデータを示し、丸印は比較例1Bのデータを示す。   The results are shown in FIG. 1 (A) and (B), the amount of adsorption of methylene blue and black 5 of the filter medium of Example 1A is much larger than the amount of adsorption of the filter medium of Comparative Example 1A and Comparative Example 1B, This is considered to be an effect of large-volume mesopores and macropores that are not observed in the comparative example. In addition, the vertical axis | shaft of FIG. 1 is adsorption amount (unit: milligram / gram), and a horizontal axis is a test time (Time which immersed the filter medium in the test solution, and a unit is a minute). Further, the triangle mark indicates data of Example 1A, the square mark indicates data of Comparative Example 1A, and the circle mark indicates data of Comparative Example 1B.

また、別の製造ロットにおける実施例1の濾材を、乳鉢を用いて人手で粉砕して、実施例1Bの濾材としたが、実施例1Bの濾材は、200メッシュオン品であり、粒径は0.50mm乃至0.85mmである。また、同時に得られた200メッシュパス品の濾材を参考例1とした。比表面積及び細孔容積を測定したところ、表1に示す結果が得られた。更には、市販の浄水器から活性炭を取り出し、これらの活性炭から粒径が0.50mm乃至0.85mmのものを採取し、比較例1C及び比較例1Dとして評価した。   In addition, the filter medium of Example 1 in another production lot was manually pulverized using a mortar to obtain the filter medium of Example 1B. However, the filter medium of Example 1B was a 200 mesh-on product, and the particle size was 0.50 mm to 0.85 mm. Also, a 200-mesh pass filter medium obtained at the same time was used as Reference Example 1. When the specific surface area and pore volume were measured, the results shown in Table 1 were obtained. Furthermore, activated carbon was taken out from a commercially available water purifier, and those having a particle size of 0.50 mm to 0.85 mm were collected from these activated carbons and evaluated as Comparative Example 1C and Comparative Example 1D.

更には、実施例1B、参考例1、比較例1C及び比較例1Dの試料を、それぞれ、200ミリグラム、カートリッジに充填し、メチレンブルー水溶液を50ミリリットル/分の流速でカートリッジに流し、カートリッジから流出した水のメチレンブルー濃度を測定した。その結果を図2に示す。尚、図2の縦軸はメチレンブルー吸着率(除去率)であり、参考例1の濾材の吸着量(除去率)を100%として規格化した値である。また、横軸は、メチレンブルー水溶液の流量である。図2からも、実施例1B(四角印で示す)、参考例1(菱形印で示す)の濾材のメチレンブルー吸着量は、比較例1C(三角印で示す)あるいは比較例1D(丸印で示す)と比較して、格段に高いことが判る。   Furthermore, 200 mg of the sample of Example 1B, Reference Example 1, Comparative Example 1C, and Comparative Example 1D was filled in the cartridge, respectively, and the methylene blue aqueous solution was flowed through the cartridge at a flow rate of 50 ml / min, and was discharged from the cartridge. The methylene blue concentration of water was measured. The result is shown in FIG. The vertical axis in FIG. 2 is the methylene blue adsorption rate (removal rate), which is a value normalized with the adsorption amount (removal rate) of the filter medium of Reference Example 1 as 100%. The horizontal axis represents the flow rate of the methylene blue aqueous solution. Also from FIG. 2, the amount of methylene blue adsorbed on the filter media of Example 1B (indicated by square marks) and Reference Example 1 (indicated by rhombus marks) is Comparative Example 1C (indicated by triangular marks) or Comparative Example 1D (indicated by circular marks). ) Is much higher than

実施例1の浄水器の断面図を図3に示す。実施例1の浄水器は、連続式浄水器であり、水道の蛇口の先端部に浄水器本体を直接取り付ける蛇口直結型の浄水器である。実施例1の浄水器は、浄水器本体10、浄水器本体10の内部に配置され、実施例1Aあるいは実施例1B、参考例1の多孔質炭素材料11が充填された第1充填部12、綿13が充填された第2充填部14を備えている。水道の蛇口から排出された水道水は、浄水器本体10に設けられた流入口15から、多孔質炭素材料11、綿13を通過して、浄水器本体10に設けられた流出口16から排出される。   A sectional view of the water purifier of Example 1 is shown in FIG. The water purifier of Example 1 is a continuous water purifier, and is a faucet-directly connected water purifier in which a water purifier body is directly attached to the tip of a water faucet. The water purifier of Example 1 is disposed inside the water purifier main body 10 and the water purifier main body 10, and is filled with the porous carbon material 11 of Example 1A or Example 1B and Reference Example 1, A second filling portion 14 filled with cotton 13 is provided. The tap water discharged from the tap is discharged from the inlet 15 provided in the water purifier main body 10 through the porous carbon material 11 and cotton 13 and discharged from the outlet 16 provided in the water purifier main body 10. Is done.

実施例1の汚染物質除去シート部材の断面構造を示す模式的な図を図4に示す。実施例1の汚染物質除去シート部材は、実施例1Aあるいは実施例1B、参考例1の多孔質炭素材料、及び、支持部材を備えている。具体的には、実施例1の汚染物質除去シート部材は、セルロースから成る支持部材(不織布2)と支持部材(不織布2)との間に、シート状にした多孔質炭素材料、即ち、炭素/ポリマー複合体1が挟み込まれた構造を有する。炭素/ポリマー複合体1は、実施例1Aあるいは実施例1B、参考例1の多孔質炭素材料、及び、バインダーから成り、バインダーは、例えば、カルボキシニトロセルロースから成る。尚、汚染物質除去シート部材を、実施例1Aあるいは実施例1B、参考例1の多孔質炭素材料が支持部材に塗布され、あるいは又、実施例1の多孔質炭素材料が支持部材に練り込まれた形態とすることもできる。   A schematic diagram showing the cross-sectional structure of the contaminant removal sheet member of Example 1 is shown in FIG. The contaminant removal sheet member of Example 1 includes Example 1A or Example 1B, the porous carbon material of Reference Example 1, and a support member. Specifically, the pollutant removal sheet member of Example 1 is a porous carbon material formed into a sheet between a support member (nonwoven fabric 2) and a support member (nonwoven fabric 2) made of cellulose, that is, carbon / It has a structure in which the polymer composite 1 is sandwiched. The carbon / polymer composite 1 is composed of the porous carbon material of Example 1A or Example 1B and Reference Example 1, and a binder, and the binder is composed of, for example, carboxynitrocellulose. In addition, the porous carbon material of Example 1A or Example 1B and Reference Example 1 is applied to the support member, or the porous carbon material of Example 1 is kneaded into the support member. It can also be made into a form.

実施例2は、実施例1の変形である。実施例2にあっては、塩素の除去率に関する評価試験を行った。   The second embodiment is a modification of the first embodiment. In Example 2, an evaluation test on the removal rate of chlorine was performed.

実施例2における多孔質炭素材料の製造においては、植物由来の材料を400゜C乃至1400゜Cにて炭素化した後、酸又はアルカリで処理することによって、多孔質炭素材料を得た。即ち、先ず、籾殻に対して、不活性ガス中で加熱処理(予備炭素化処理)を施す。具体的には、籾殻を、窒素気流中において500゜C、5時間、加熱することにより炭化させ、炭化物を得た。尚、このような処理を行うことで、次の炭素化の際に生成されるであろうタール成分を減少あるいは除去することができる。その後、この炭化物の10グラムをアルミナ製の坩堝に入れ、窒素気流中(10リットル/分)において5゜C/分の昇温速度で800゜Cまで昇温させた。そして、800゜Cで1時間、炭素化して、炭素質物質(多孔質炭素材料前駆体)に変換した後、室温まで冷却した。尚、炭素化及び冷却中、窒素ガスを流し続けた。次に、この多孔質炭素材料前駆体を46容積%のフッ化水素酸水溶液に一晩浸漬することで酸処理を行った後、水及びエチルアルコールを用いてpH7になるまで洗浄した。次いで、120°Cにて乾燥させた後、900゜Cで水蒸気気流中(3.5リットル/分)にて3時間加熱させることで賦活処理を行うことで、実施例2の多孔質炭素材料を得ることができた。   In the production of the porous carbon material in Example 2, the plant-derived material was carbonized at 400 ° C. to 1400 ° C. and then treated with an acid or alkali to obtain a porous carbon material. That is, first, heat treatment (preliminary carbonization treatment) is performed on the rice husk in an inert gas. Specifically, the rice husk was carbonized by heating at 500 ° C. for 5 hours in a nitrogen stream to obtain a carbide. In addition, by performing such a process, the tar component which will be produced | generated at the time of the next carbonization can be reduced or removed. Thereafter, 10 grams of this carbide was put in an alumina crucible and heated to 800 ° C. at a rate of 5 ° C./minute in a nitrogen stream (10 liters / minute). And it carbonized at 800 degreeC for 1 hour, after converting into a carbonaceous substance (porous carbon material precursor), it cooled to room temperature. In addition, nitrogen gas was continued to flow during carbonization and cooling. Next, this porous carbon material precursor was subjected to an acid treatment by immersing it in a 46% by volume hydrofluoric acid aqueous solution overnight, and then washed with water and ethyl alcohol until pH 7 was reached. Next, after drying at 120 ° C., the activation treatment is performed by heating at 900 ° C. in a steam stream (3.5 liter / min) for 3 hours, so that the porous carbon material of Example 2 is used. Could get.

実施例2における濾材の比表面積及び細孔容積を測定したところ、表1に示す結果が得られた。実施例2の濾材を粉砕して粒度調整を行い、200メッシュオン品とした。尚、2種類の粒度分布を有する実施例2A及び実施例2Bの試料を調製した。篩を用いた粒度分布測定結果を表3に示す。更には、市販の浄水器から活性炭を取り出し、これらの活性炭を、比較例2A、比較例2B及び比較例2Cとして評価した。また、同じ容積(2.0cm3)の第1充填部12に各試料を充填したときの質量(単位:グラム)を表1に示すが、第1充填部12に各試料を充填したときの充填割合を『充填率』と呼ぶ場合がある。更には、NLDFT法に基づく、直径1×10-9m乃至5×10-7mの細孔の容積の合計(全細孔の容積総計)に対する3nm乃至20nmの範囲内に細孔径を有する細孔の容積の合計の占める容積割合を、表2に示す。また、水銀圧入法の測定結果を、以下に示す。更には、120゜Cで12時間、乾燥させた試料を、熱重量測定法(TG)法に基づき、ドライエアー300ミリリットル/分で800゜Cまで加熱したときに残された強熱残分(残留灰分)の測定結果を以下に示す。尚、実施例1、実施例7の多孔質炭素材料における強熱残分(残留灰分)の測定結果、酸処理を行う前の多孔質炭素材料前駆体における強熱残分(残留灰分)の測定結果も併せて示す。 When the specific surface area and pore volume of the filter medium in Example 2 were measured, the results shown in Table 1 were obtained. The filter medium of Example 2 was pulverized to adjust the particle size to obtain a 200 mesh-on product. Samples of Example 2A and Example 2B having two types of particle size distributions were prepared. Table 3 shows the particle size distribution measurement results using a sieve. Furthermore, activated carbon was taken out from a commercially available water purifier, and these activated carbons were evaluated as Comparative Example 2A, Comparative Example 2B, and Comparative Example 2C. In addition, the mass (unit: grams) when each sample is filled in the first filling portion 12 having the same volume (2.0 cm 3 ) is shown in Table 1, and when the first filling portion 12 is filled with each sample, The filling rate may be called “filling rate”. Furthermore, a fine pore having a pore diameter within a range of 3 nm to 20 nm based on the total volume of pores having a diameter of 1 × 10 −9 m to 5 × 10 −7 m (total volume of all pores) based on the NLDFT method. Table 2 shows the volume ratio of the total pore volume. Moreover, the measurement result of the mercury intrusion method is shown below. Furthermore, a sample obtained by drying at 120 ° C. for 12 hours was heated to 800 ° C. with 300 ml / min of dry air based on the thermogravimetry (TG) method. The measurement results of residual ash) are shown below. In addition, the measurement result of the ignition residue (residual ash content) in the porous carbon material of Example 1 and Example 7, the measurement of the ignition residue (residual ash content) in the porous carbon material precursor before the acid treatment. The results are also shown.

[水銀圧入法の測定結果]
実施例2 4.12cm3/グラム
比較例2A 0.26cm3/グラム
比較例2B 0.35cm3/グラム
比較例2C 0.24cm3/グラム
[Measurement results of mercury intrusion method]
Example 2 4.12 cm 3 / gram Comparative Example 2A 0.26 cm 3 / gram Comparative Example 2B 0.35 cm 3 / gram Comparative Example 2C 0.24 cm 3 / gram

[強熱残分]
実施例1 5.83%
実施例2 3.49%
実施例7 7.29%
多孔質炭素材料前駆体 43.27%
[Still heat]
Example 1 5.83%
Example 2 3.49%
Example 7 7.29%
Porous carbon material precursor 43.27%

試験においては、内径7.0mmのガラス管を容積2ミリリットルの各試料で充填し、2.0ミリグラム/リットルの濃度の塩素水を400ミリリットル/分の流速でガラス管内を流した。そして、
DPD吸光光度法に基づく除去率(%)
=(原水測定値−通過水測定値)/原水測定値×100
といった方法に基づき得られた塩素の除去率測定結果を図5に示す。尚、400ミリリットル/分の流量を空間速度(SV)に換算すると以下のとおりである。
In the test, a glass tube having an inner diameter of 7.0 mm was filled with each sample having a volume of 2 ml, and chlorine water having a concentration of 2.0 mg / liter was caused to flow through the glass tube at a flow rate of 400 ml / min. And
Removal rate based on DPD spectrophotometry (%)
= (Raw water measured value-passing water measured value) / raw water measured value x 100
FIG. 5 shows the chlorine removal rate measurement results obtained based on the above method. The flow rate of 400 ml / min is converted into space velocity (SV) as follows.

SV=400×60(ミリリットル/時)/2cm3 =12000時-1 SV = 400 × 60 (milliliter / hour) / 2 cm 3 = 12000 hour −1

図5から、実施例2A及び実施例2Bの多孔質炭素材料から成る濾材は、比較例2A、比較例2B、比較例2Cと比較して、格段に高い塩素除去率を有している。   From FIG. 5, the filter medium made of the porous carbon material of Example 2A and Example 2B has a remarkably high chlorine removal rate as compared with Comparative Example 2A, Comparative Example 2B, and Comparative Example 2C.

実施例3も、実施例1の変形である。実施例3にあっては、塩素の除去率、1,1,1−トリクロロエタンの除去率、2−クロロ−4,6ビスエチルアミノ−1,3,5−トリアジン(CAT)の除去率に関する評価試験を行った。除去率は、ガスクロマトグラフ分析法により、以下の式から算出した。実施例3の濾材を構成する多孔質炭素材料として、実施例2Aの多孔質炭素材料(200メッシュオン品)を使用した。尚、比較例3として、比較例2Cと同じ濾材を使用した。
除去率(%)=(原水測定値−通過水測定値)/原水測定値×100
The third embodiment is also a modification of the first embodiment. In Example 3, the removal rate of chlorine, the removal rate of 1,1,1-trichloroethane, and the removal rate of 2-chloro-4,6 bisethylamino-1,3,5-triazine (CAT) A test was conducted. The removal rate was calculated from the following equation by gas chromatography analysis. As the porous carbon material constituting the filter medium of Example 3, the porous carbon material (200 mesh-on product) of Example 2A was used. As Comparative Example 3, the same filter medium as Comparative Example 2C was used.
Removal rate (%) = (raw water measured value−passing water measured value) / raw water measured value × 100

実施例3及び比較例3の濾材を用いて、内径10.0mmのガラス管を容積10ミリリットルの各試料で充填し、2.0ミリグラム/リットルの濃度の塩素水、0.3ミリグラム/リットルの濃度の1,1,1−トリクロロエタン水溶液、0.003ミリグラム/リットルの濃度のCAT水溶液を400ミリリットル/分の流速でガラス管内を流した。塩素、1,1,1−トリクロロエタン、CATの除去率を図6の(A)、(B)及び(C)に示す。図6の(A)、(B)及び(C)から、実施例3の多孔質炭素材料から成る濾材は、比較例3と比較して、格段に高い除去率を有していることが判った。尚、400ミリリットル/分の流量を空間速度(SV)に換算すると以下のとおりである。   Using the filter medium of Example 3 and Comparative Example 3, a glass tube having an inner diameter of 10.0 mm was filled with each sample having a volume of 10 milliliters, chlorine water having a concentration of 2.0 milligrams / liter, 0.3 milligrams / liter of chlorine water. A 1,1,1-trichloroethane aqueous solution having a concentration and a CAT aqueous solution having a concentration of 0.003 milligram / liter were allowed to flow through the glass tube at a flow rate of 400 ml / min. The removal rates of chlorine, 1,1,1-trichloroethane and CAT are shown in FIGS. 6 (A), (B) and (C). 6 (A), (B) and (C), it can be seen that the filter medium made of the porous carbon material of Example 3 has a remarkably high removal rate as compared with Comparative Example 3. It was. The flow rate of 400 ml / min is converted into space velocity (SV) as follows.

SV=400×60(ミリリットル/時)/10cm3 =2400時-1 SV = 400 × 60 (milliliter / hour) / 10 cm 3 = 2400 hour −1

富栄養化した湖沼や池では、夏期を中心に、藍藻類(ミクロキスティス等)が異常増殖して、水の表面が緑色の粉をふいたような厚い層が形成されることがあり、これはアオコと呼ばれている。この藍藻類は人体に有害な毒素を発生することが知られているが、多くの毒素の中でミクロシスチンLRという毒素が特に警戒されている。ミクロシスチンLRが生体内に入ると肝臓が大きな損傷を受け、その毒性はマウスによる実験でも報告されている。ミクロシスチンLRを出す有毒アオコは、オーストラリアやヨーロッパ、アメリカの湖、アジア各地で発生している。被害の大きい中国の湖では、一年中、大発生したアオコが消えることはない。そして、湖水は飲料水や農業用水に利用されているため、湖沼において藍藻類が生み出す毒素が人間の飲料水の確保において問題になっており、その解決が強く望まれている。   In eutrophied lakes and ponds, cyanobacteria (microkistis, etc.) grow abnormally, especially in the summer, and a thick layer of water is covered with green powder. Is called Aoko. This cyanobacteria is known to generate toxins that are harmful to the human body. Among many toxins, a toxin called microcystin LR is particularly wary. When microcystin LR enters the living body, the liver is severely damaged, and its toxicity has been reported in experiments with mice. Toxic sea cucumbers that produce microcystin LR occur in Australia, Europe, American lakes, and other parts of Asia. In the devastated lakes of China, large-sized blue-tailed sea cucumbers do not disappear throughout the year. And since lake water is used for drinking water and agricultural water, the toxins produced by cyanobacteria in the lake become a problem in securing human drinking water, and there is a strong demand for a solution.

実施例4においては、ミクロシスチンLR(数平均分子量:994)の吸着を評価した。実施例4の濾材を構成する多孔質炭素材料を、実施例1にて説明した方法と概ね同様の方法で得た。具体的には、実施例4においては、賦活処理を、900゜Cで水蒸気気流中(2.5リットル/分)にて3時間加熱させる処理とした。この点を除き、実施例1にて説明した方法と同様の方法で得た。実施例4における濾材の比表面積及び細孔容積を測定したところ、表1に示す結果が得られた。また、NLDFT法に基づく、直径1×10-9m乃至5×10-7mの細孔の容積の合計(容積A、全細孔の容積総計)に対する3nm乃至20nmの範囲内に細孔径を有する細孔の容積の合計の占める容積割合を表2に示す。尚、実施例4における濾材は60メッシュパス・200メッシュオン品である。また、比較例4として、和光純薬工業株式会社製の粒状活性炭(60メッシュパス・200メッシュオン品)を使用した。 In Example 4, the adsorption of microcystin LR (number average molecular weight: 994) was evaluated. A porous carbon material constituting the filter medium of Example 4 was obtained by a method substantially similar to the method described in Example 1. Specifically, in Example 4, the activation process was a process of heating at 900 ° C. in a steam stream (2.5 liters / minute) for 3 hours. Except this point, it was obtained by the same method as described in Example 1. When the specific surface area and pore volume of the filter medium in Example 4 were measured, the results shown in Table 1 were obtained. Further, the pore diameter is within a range of 3 nm to 20 nm with respect to the total volume of pores having a diameter of 1 × 10 −9 m to 5 × 10 −7 m (volume A, total volume of all pores) based on the NLDFT method. Table 2 shows the volume ratio of the total pore volume. The filter medium in Example 4 is a 60 mesh pass / 200 mesh on product. Further, as Comparative Example 4, granular activated carbon (60 mesh pass / 200 mesh on product) manufactured by Wako Pure Chemical Industries, Ltd. was used.

実施例4及び比較例4の濾材を用いて、紫外・可視分光光度計を用いた比色法にて反応前後の溶液のミクロシスチン濃度を求め、除去率を算出した。その結果を図7に示すが、実施例4の多孔質炭素材料から成る濾材は、比較例4と比較して、格段に高い除去率を有していることが判った。   Using the filter media of Example 4 and Comparative Example 4, the microcystin concentration of the solution before and after the reaction was determined by a colorimetric method using an ultraviolet / visible spectrophotometer, and the removal rate was calculated. The result is shown in FIG. 7, and it was found that the filter medium made of the porous carbon material of Example 4 had a remarkably higher removal rate than that of Comparative Example 4.

実施例5においては、粒径依存性の評価を行った。実施例5の濾材を構成する多孔質炭素材料として、実施例1における多孔質炭素材料(60メッシュパス・200メッシュオン品)を用いた。また、実施例1における多孔質炭素材料ではあるが、200メッシュパス品を参考例5とした。更には、比較例5Aとして、比較例4の粒状活性炭(60メッシュパス・200メッシュオン品)を使用し、比較例5Bとして、比較例4の粒状活性炭を粉砕した200メッシュパス品を使用した。   In Example 5, the particle size dependency was evaluated. The porous carbon material (60 mesh pass / 200 mesh on product) in Example 1 was used as the porous carbon material constituting the filter medium of Example 5. Further, although it is a porous carbon material in Example 1, a 200 mesh pass product was used as Reference Example 5. Furthermore, as the comparative example 5A, the granular activated carbon (60 mesh pass / 200 mesh on product) of the comparative example 4 was used, and as the comparative example 5B, the 200 mesh pass product obtained by pulverizing the granular activated carbon of the comparative example 4 was used.

実施例5、参考例5、比較例5A及び比較例5Bの濾材を試料として用いて、50ミリリットルのスクリュー管に10ミリグラムの試料及び50ミリリットルのインドール溶液(3×10-4モル/リットル)を入れ、1時間後のインドール吸着量を定量する方法に基づき、粒径依存性を評価した。その結果を図8に示すが、実施例5、参考例5の多孔質炭素材料から成る濾材は、比較例5A、比較例5Bと比較して、粒径依存性の無いことが判った。 Using the filter media of Example 5, Reference Example 5, Comparative Example 5A and Comparative Example 5B as samples, 10 milligrams of sample and 50 milliliters of indole solution (3 × 10 −4 mol / liter) were placed in a 50 milliliter screw tube. The particle size dependence was evaluated based on the method of quantifying the amount of adsorbed indole after 1 hour. The results are shown in FIG. 8, and it was found that the filter medium made of the porous carbon material of Example 5 and Reference Example 5 has no particle size dependency as compared with Comparative Example 5A and Comparative Example 5B.

従来のヤシガラや石油ピッチを原料とした活性炭は、浄水用等のフィルター部材を始め、機能性食品、化粧品等に用いられているが、これらの活性炭はミネラル含有量が少なく、水等へのミネラルの放出量を調整する目的には適していない。   Conventional activated carbon made from coconut husk and petroleum pitch is used in filter materials for water purification, functional foods, cosmetics, etc., but these activated carbons have a low mineral content and are minerals in water. It is not suitable for the purpose of adjusting the amount of release.

実施例6は、本発明の第5の態様〜第8の態様に係る濾材に関する。実施例6の濾材は、窒素BET法による比表面積の値が1×1022/グラム以上、BJH法による細孔の容積が0.1cm3/グラム以上であり、ナトリウム、マグネシウム、カリウム及びカルシウムから成る群から選択された少なくとも1種類の成分を含む植物を原料とした多孔質炭素材料から成る。あるいは又、実施例6の濾材は、窒素BET法による比表面積の値が1×1022/グラム以上、非局在化密度汎関数法によって求められた直径1×10-9m乃至5×10-7mの細孔の容積の合計が0.1cm3/グラム以上、好ましくは0.2cm3/グラム以上であり、ナトリウム、マグネシウム、カリウム及びカルシウムから成る群から選択された少なくとも1種類の成分を含む植物を原料とした多孔質炭素材料から成る。あるいは又、実施例6の濾材は、窒素BET法による比表面積の値が1×1022/グラム以上、非局在化密度汎関数法によって求められた細孔径分布において、3nm乃至20nmの範囲内に少なくとも1つピークを有し、3nm乃至20nmの範囲内に細孔径を有する細孔の容積の合計の占める割合が全細孔の容積総計の0.1以上であり、ナトリウム、マグネシウム、カリウム及びカルシウムから成る群から選択された少なくとも1種類の成分を含む植物を原料とした多孔質炭素材料から成る。あるいは又、実施例6の濾材は、窒素BET法による比表面積の値が1×1022/グラム以上、水銀圧入法による細孔の容積が1.0cm3/グラム以上であり、ナトリウム、マグネシウム、カリウム及びカルシウムから成る群から選択された少なくとも1種類の成分を含む植物を原料とした多孔質炭素材料から成る。 Example 6 relates to the filter medium according to the fifth to eighth aspects of the present invention. The filter medium of Example 6 has a specific surface area value of 1 × 10 2 m 2 / gram or more by nitrogen BET method, a pore volume of 0.1 cm 3 / gram or more by BJH method, sodium, magnesium, potassium, and It consists of a porous carbon material made from a plant containing at least one component selected from the group consisting of calcium. Alternatively, the filter medium of Example 6 has a specific surface area value of 1 × 10 2 m 2 / gram or more by the nitrogen BET method and a diameter of 1 × 10 −9 m to 5 determined by the delocalized density functional method. The total volume of pores of × 10 −7 m is at least 0.1 cm 3 / gram, preferably at least 0.2 cm 3 / gram, and at least one selected from the group consisting of sodium, magnesium, potassium and calcium It consists of a porous carbon material made from a plant containing these components. Alternatively, the filter medium of Example 6 has a specific surface area value of 1 × 10 2 m 2 / gram or more according to the nitrogen BET method, and a pore size distribution determined by the delocalized density functional method is 3 nm to 20 nm. The proportion of the total volume of pores having at least one peak in the range and having a pore diameter in the range of 3 nm to 20 nm is 0.1 or more of the total volume of all pores, sodium, magnesium, It consists of a porous carbon material made from a plant containing at least one component selected from the group consisting of potassium and calcium. Alternatively, the filter medium of Example 6 has a specific surface area value of 1 × 10 2 m 2 / gram or more by nitrogen BET method, and a pore volume of 1.0 cm 3 / gram or more by mercury intrusion method, sodium, It consists of a porous carbon material made from a plant containing at least one component selected from the group consisting of magnesium, potassium and calcium.

実施例6において、多孔質炭素材料は、ナトリウム(Na)、マグネシウム(Mg)、カリウム(K)及びカルシウム(Ca)から成る群から選択された少なくとも1種類の成分を含む植物を原料としている。このような植物原料を用いることで、濾材として用いたとき、多孔質炭素材料から濾過水にミネラル成分が多く溶出する結果、水の硬度の制御を行うことができる。そして、この場合、硬度0.1以下の水(試験用水)50ミリリットルに濾材を1グラム添加し、6時間、経過した後の硬度が5以上となる。   In Example 6, the porous carbon material is made from a plant containing at least one component selected from the group consisting of sodium (Na), magnesium (Mg), potassium (K), and calcium (Ca). By using such a plant raw material, when used as a filter medium, a large amount of mineral components are eluted from the porous carbon material into the filtered water, so that the hardness of the water can be controlled. In this case, 1 gram of the filter medium is added to 50 ml of water having a hardness of 0.1 or less (test water), and the hardness after 5 hours is 5 or more.

より具体的には、実施例6にあっては、ミカンの皮(実施例6A)、オレンジの皮(実施例6B)、グレープフルーツの皮(実施例6C)といった柑橘類の皮、バナナの皮(実施例6D)を原料として用いた。また、 比較例6としてクラレケミカル株式会社製クラレコールGWを使用した。   More specifically, in Example 6, citrus peel such as mandarin peel (Example 6A), orange peel (Example 6B), grapefruit peel (Example 6C), banana peel (implementation) Example 6D) was used as a raw material. As Comparative Example 6, Kuraray Coal GW manufactured by Kuraray Chemical Co., Ltd. was used.

実施例6の濾材を構成する多孔質炭素材料の製造にあっては、上記の各種植物原料を120゜Cにて24時間乾燥処理した。その後、500゜Cの窒素気流中にて3時間、予備炭素化処理を施した。次いで、800゜Cにて1時間焼成処理した後、室温まで冷却し、乳鉢を用いて粉砕処理した。こうして得られた試料(炭素質物質、多孔質炭素材料前駆体)を、便宜上、実施例6a、実施例6b、実施例6c及び実施例6dの試料と呼ぶ。その後、各試料を濃塩酸に24時間浸漬させて後に、洗浄液が中性になるまで洗浄することで、実施例6a’、実施例6b’、実施例6c’及び実施例6d’の試料を得た。次に、実施例6a’、実施例6b’、実施例6c’及び実施例6d’の試料を、900゜C、水蒸気気流中で1時間、賦活処理することによって、実施例6A、実施例6B、実施例6C及び実施例6Dの多孔質炭素材料から成る濾材を得ることができた。   In the production of the porous carbon material constituting the filter medium of Example 6, the above-mentioned various plant materials were dried at 120 ° C. for 24 hours. Thereafter, a preliminary carbonization treatment was performed in a nitrogen stream at 500 ° C. for 3 hours. Subsequently, after baking at 800 degreeC for 1 hour, it cooled to room temperature and grind | pulverized using the mortar. The samples (carbonaceous material and porous carbon material precursor) thus obtained are referred to as samples of Example 6a, Example 6b, Example 6c, and Example 6d for convenience. Then, after immersing each sample in concentrated hydrochloric acid for 24 hours and washing until the cleaning solution becomes neutral, the samples of Example 6a ′, Example 6b ′, Example 6c ′ and Example 6d ′ are obtained. It was. Next, the samples of Example 6a ′, Example 6b ′, Example 6c ′, and Example 6d ′ were subjected to activation treatment at 900 ° C. in a steam stream for 1 hour, thereby causing Example 6A and Example 6B. A filter medium composed of the porous carbon material of Example 6C and Example 6D could be obtained.

実施例6A、実施例6B、実施例6C及び実施例6Dの試料、並びに、比較例6の試料の組成分析結果を以下の表4に示す。また、実施例6a、実施例6b、実施例6c及び実施例6dの試料、並びに、実施例6a’、実施例6b’、実施例6c’及び実施例6d’の多孔質炭素材料のX線回折結果を図9の(A)〜(D)に示す。尚、実施例6A、実施例6B、実施例6C及び実施例6Dの濾材は、全て、200メッシュパス品とした。また、比表面積及び細孔容積を測定したところ、表1及び図10の(A)、(B)に示す結果が得られた。また、NLDFT法に基づく、直径1×10-9m乃至5×10-7mの細孔の容積の合計(容積A、全細孔の容積総計)に対する3nm乃至20nmの範囲内に細孔径を有する細孔の容積の合計の占める容積割合を、表2に示す。更には、実施例6A、実施例6B、実施例6C及び実施例6Dの濾材、並びに、比較例6の非局在化密度汎関数法によって求められた細孔径分布の測定結果を示すグラフを図11に示す。 Table 4 below shows the composition analysis results of the samples of Example 6A, Example 6B, Example 6C, and Example 6D, and the sample of Comparative Example 6. Also, X-ray diffraction of the samples of Example 6a, Example 6b, Example 6c and Example 6d, and the porous carbon materials of Example 6a ′, Example 6b ′, Example 6c ′ and Example 6d ′. A result is shown to (A)-(D) of FIG. In addition, all the filter media of Example 6A, Example 6B, Example 6C, and Example 6D were 200 mesh pass products. Moreover, when the specific surface area and the pore volume were measured, the results shown in Table 1 and FIGS. 10A and 10B were obtained. Further, the pore diameter is within a range of 3 nm to 20 nm with respect to the total volume of pores having a diameter of 1 × 10 −9 m to 5 × 10 −7 m (volume A, total volume of all pores) based on the NLDFT method. Table 2 shows the volume ratio of the total pore volume. Furthermore, the graph which shows the measurement result of the pore diameter distribution calculated | required by the filter material of Example 6A, Example 6B, Example 6C, and Example 6D and the delocalization density functional method of the comparative example 6 is shown. 11 shows.

表4より、実施例6A、実施例6B、実施例6C及び実施例6Dの試料は、比較例6の試料と比べて、多くのミネラル成分が含有されていることが判った。また、X線回折結果から、実施例6a’、実施例6b’、実施例6c’及び実施例6d’の濾材からは、実施例6a、実施例6b、実施例6c及び実施例6dの試料に見られたミネラル成分由来の結晶性ピークは観測されなかった。このことから、ミネラル分は、濃塩酸による酸処理によって、部分的に、一旦は除去されるが、賦活処理によって濾材内部のミネラル分が再び顕在化すると考えられる。   From Table 4, it was found that the samples of Example 6A, Example 6B, Example 6C, and Example 6D contained more mineral components than the sample of Comparative Example 6. Further, from the results of X-ray diffraction, the filter media of Example 6a ′, Example 6b ′, Example 6c ′ and Example 6d ′ were converted into samples of Example 6a, Example 6b, Example 6c and Example 6d. The crystallinity peak derived from the mineral component was not observed. From this, the mineral content is partly removed once by acid treatment with concentrated hydrochloric acid, but it is considered that the mineral content inside the filter medium becomes obvious again by the activation treatment.

実施例6A、実施例6B、実施例6C及び実施例6Dの試料、並びに、比較例6の試料を用いて、各試料を純水である試験用水(硬度:<0.066)へ1グラム/50ミリリットルの割合で添加し、6時間撹拌した後、濾過し、濾液中に含まれる各種ミネラル量をICP−AESにより定量した。表5に各試料から得られた濾液中のミネラル量及び濾液の硬度を示す。尚、硬度(ミリグラム/リットル)は、
カルシウム濃度(ミリグラム/リットル)×2.5
+マグネシウム濃度(ミリグラム/リットル)×4.1
として算出した。参考までに世界保健機関(WHO)の基準(軟水:0以上、60未満、中程度の軟水(中硬水):60以上、120未満、硬水:120以上、180未満、非常な硬水:180以上)に従った水の分類も示した。
Using the samples of Example 6A, Example 6B, Example 6C and Example 6D, and the sample of Comparative Example 6, each sample was added to test water (hardness: <0.066) as pure water at 1 gram / The mixture was added at a rate of 50 ml, stirred for 6 hours, filtered, and the amounts of various minerals contained in the filtrate were quantified by ICP-AES. Table 5 shows the mineral amount in the filtrate obtained from each sample and the hardness of the filtrate. The hardness (milligram / liter) is
Calcium concentration (milligram / liter) x 2.5
+ Magnesium concentration (milligram / liter) x 4.1
Calculated as For reference, World Health Organization (WHO) standards (soft water: 0 or more, less than 60, moderate soft water (medium hard water): 60 or more, less than 120, hard water: 120 or more, less than 180, very hard water: 180 or more) The classification of water according to

表5より、実施例6の各試料にあっては、比較例6よりも高いミネラル溶出特性が確認でき、濾液の硬度の調整に実施例6の多孔質炭素材料から成る濾材が適していることが示された。また、用いる植物原料によって、得られる濾液の硬度を軟水〜中硬水〜硬水〜非常な硬水と調整できることが判った。   From Table 5, in each sample of Example 6, the mineral elution characteristic higher than Comparative Example 6 can be confirmed, and the filter medium made of the porous carbon material of Example 6 is suitable for adjusting the hardness of the filtrate. It has been shown. Moreover, it turned out that the hardness of the obtained filtrate can be adjusted with soft water-medium hard water-hard water-very hard water by the plant raw material to be used.

[表1]
比表面積 全細孔容積 MP法 BJH法 質量
実施例1A 1753 1.65 0.66 1.19
実施例1B 2056 1.83 0.73 1.37
参考例1 1804 1.64 0.67 1.27
比較例1A 1015 1.04 0.80 1.12
比較例1B 375 0.21 0.16 0.07
比較例1C 848 0.43 0.40 0.08
比較例1D 1109 0.62 0.49 0.21
実施例2 1612 1.51 0.51 1.13 0.16
比較例2A 1099 0.57 0.50 0.14 1.00
比較例2B 908 0.48 0.42 0.12 0.85
比較例2C 1090 0.54 0.50 0.18 1.00
実施例4 1321 1.13 0.70 0.56
実施例6A 802 0.434 0.40 0.15
実施例6B 372 0.223 0.20 0.096
実施例6C 605 0.402 0.33 0.21
実施例6D 843 0.396 0.33 0.080
比較例6 929 0.414 0.40 0.061
[Table 1]
Specific surface area Total pore volume MP method BJH method Mass Example 1A 1753 1.65 0.66 1.19
Example 1B 2056 1.83 0.73 1.37
Reference Example 1 1804 1.64 0.67 1.27
Comparative Example 1A 1015 1.04 0.80 1.12.
Comparative Example 1B 375 0.21 0.16 0.07
Comparative Example 1C 848 0.43 0.40 0.08
Comparative Example 1D 1109 0.62 0.49 0.21
Example 2 1612 1.51 0.51 1.13 0.16
Comparative Example 2A 1099 0.57 0.50 0.14 1.00
Comparative Example 2B 908 0.48 0.42 0.12 0.85
Comparative Example 2C 1090 0.54 0.50 0.18 1.00
Example 4 1321 1.13 0.70 0.56
Example 6A 802 0.434 0.40 0.15
Example 6B 372 0.223 0.20 0.096
Example 6C 605 0.402 0.33 0.21
Example 6D 843 0.396 0.33 0.080
Comparative Example 6 929 0.414 0.40 0.061

[表2]
容積割合 全細孔の容積総計(容積A)
実施例1A 0.5354 2.0168cm3/グラム
実施例1B 0.4820 2.2389cm3/グラム
参考例1 0.4774 2.0595cm3/グラム
比較例1A 0.2755 1.8993cm3/グラム
比較例1B 0.0951 0.3228cm3/グラム
比較例1C 0.0526 0.7105cm3/グラム
比較例1D 0.1125 0.8427cm3/グラム
実施例2 0.5036 1.8934cm3/グラム
比較例2A 0.1170 0.8836cm3/グラム
比較例2B 0.0818 0.7869cm3/グラム
比較例2C 0.0300 0.8765cm3/グラム
実施例4 0.4661 1.4396cm3/グラム
比較例4 0.1340 0.7557cm3/グラム
実施例6A 0.4006 0.5567cm3/グラム
実施例6B 0.0553 0.3038cm3/グラム
実施例6C 0.1566 0.7171cm3/グラム
実施例6D 0.2597 0.5044cm3/グラム
比較例6 0.0216 0.6935cm3/グラム
[Table 2]
Volume ratio Total volume of all pores (volume A)
Example 1A 0.5354 2.0168 cm 3 / gram Example 1B 0.4820 2.2389 cm 3 / gram Reference Example 1 0.4774 2.0595 cm 3 / gram Comparative Example 1A 0.2755 1.8993 cm 3 / gram Comparative Example 1B 0.0951 0.3228 cm 3 / gram Comparative Example 1C 0.0526 0.7105 cm 3 / gram Comparative Example 1D 0.1125 0.8427 cm 3 / gram Example 2 0.5036 1.8934 cm 3 / gram Comparative Example 2A 0 .1170 0.8836cm 3 / g Comparative example 2B 0.0818 0.7869cm 3 / g Comparative example 2C 0.0300 0.8765cm 3 / g example 4 0.4661 1.4396cm 3 / g Comparative example 4 0.1340 0.7557 cm 3 / gram Example 6A 0.4006 0.556 7 cm 3 / g EXAMPLE 6B 0.0553 0.3038cm 3 / g Example 6C 0.1566 0.7171cm 3 / g Example 6D 0.2597 0.5044cm 3 / g Comparative Example 6 0.0216 0.6935cm 3 / G

[表3]
[Table 3]

[表4]
[Table 4]

[表5]
[Table 5]

実施例7は、本開示の第9の態様〜第15の態様に係る濾材に関する。実施例7にあっては、水環境中に多量に排出されている合成洗剤成分のドデシルベンゼンスルホン酸塩(具体的には、直鎖ドデシルベンゼンスルホン酸ナトリウム)、大量に使用されている農薬の殺菌剤クロロタロニル(TPN,C8Cl4N)と殺虫剤ジクロロボス(DDVP,C47Cl24P)、水道管等から溶出する可溶性鉛、水道水中の典型的な汚染物質である遊離残留塩素、塩素消毒で副生する多様な有機ハロゲン化合物類(フミン質から生じた有機ハロゲン化合物を含む)の除去を目的としている。 Example 7 relates to the filter medium according to the ninth to fifteenth aspects of the present disclosure. In Example 7, dodecylbenzenesulfonate (specifically sodium linear dodecylbenzenesulfonate), a synthetic detergent component that is discharged in a large amount in the water environment, pesticides used in large amounts. Disinfectant chlorothalonil (TPN, C 8 Cl 4 N) and insecticide dichlorovos (DDVP, C 4 H 7 Cl 2 O 4 P), soluble lead eluted from water pipes, etc., is a typical pollutant in tap water The purpose is to remove free residual chlorine and various organic halogen compounds (including organic halogen compounds generated from humic substances) by-produced by chlorine disinfection.

実施例7にあっては、以下の方法で多孔質炭素材料を製造した。また、比較例7として、クラレコールGWを使用した。   In Example 7, a porous carbon material was produced by the following method. As Comparative Example 7, Kuraray Coal GW was used.

実施例7における多孔質炭素材料の製造においては、植物由来の材料を400゜C乃至1400゜Cにて炭素化した後、アルカリで処理することによって、多孔質炭素材料を得た。即ち、先ず、籾殻に対して、不活性ガス中で加熱処理(予備炭素化処理)を施す。具体的には、籾殻を、窒素気流中において500゜C、5時間、加熱することにより炭化させ、炭化物を得た。尚、このような処理を行うことで、次の炭素化の際に生成されるであろうタール成分を減少あるいは除去することができる。その後、この炭化物の10グラムをアルミナ製の坩堝に入れ、窒素気流中(10リットル/分)において5゜C/分の昇温速度で800゜Cまで昇温させた。そして、800゜Cで1時間、炭素化して、炭素質物質(多孔質炭素材料前駆体)に変換した後、室温まで冷却した。尚、炭素化及び冷却中、窒素ガスを流し続けた。次に、この多孔質炭素材料前駆体を80゜C、10質量%の水酸化ナトリウム水溶液に一晩浸漬することでアルカリ処理を行った後、水及びエチルアルコールを用いてpH7になるまで洗浄した。次いで、120°Cにて乾燥させた後、900゜Cで水蒸気気流中(2.5リットル/分)にて3時間加熱させることで賦活処理を行うことで、実施例7の多孔質炭素材料を得ることができた。   In the production of the porous carbon material in Example 7, the plant-derived material was carbonized at 400 ° C. to 1400 ° C. and then treated with an alkali to obtain a porous carbon material. That is, first, heat treatment (preliminary carbonization treatment) is performed on the rice husk in an inert gas. Specifically, the rice husk was carbonized by heating at 500 ° C. for 5 hours in a nitrogen stream to obtain a carbide. In addition, by performing such a process, the tar component which will be produced | generated at the time of the next carbonization can be reduced or removed. Thereafter, 10 grams of this carbide was put in an alumina crucible and heated to 800 ° C. at a rate of 5 ° C./minute in a nitrogen stream (10 liters / minute). And it carbonized at 800 degreeC for 1 hour, after converting into a carbonaceous substance (porous carbon material precursor), it cooled to room temperature. In addition, nitrogen gas was continued to flow during carbonization and cooling. Next, this porous carbon material precursor was subjected to an alkali treatment by immersing it in a 10% by mass aqueous sodium hydroxide solution at 80 ° C. overnight, and then washed with water and ethyl alcohol until the pH reached 7. . Next, after drying at 120 ° C., the porous carbon material of Example 7 was subjected to activation treatment by heating at 900 ° C. in a steam stream (2.5 liters / minute) for 3 hours. Could get.

実施例7及び比較例7の試料の粒度分布測定結果を表3に示す。また、実施例7及び比較例7の試料の比表面積及び細孔容積の測定結果を以下の表6及び表7に示す。表6及び表7の測定項目、単位は表1及び表2と同じである。更には、水銀圧入法の測定結果を表8に示す。   Table 3 shows the particle size distribution measurement results of the samples of Example 7 and Comparative Example 7. The measurement results of the specific surface area and pore volume of the samples of Example 7 and Comparative Example 7 are shown in Tables 6 and 7 below. The measurement items and units in Tables 6 and 7 are the same as those in Tables 1 and 2. Furthermore, Table 8 shows the measurement results of the mercury intrusion method.

[表6]
比表面積 全細孔容積 MP法 BJH法 質量
実施例7 1280 0.93 0.44 0.52 0.30
比較例7 820 0.41 0.39 0.08 1.15
[Table 6]
Specific surface area Total pore volume MP method BJH method Mass Example 7 1280 0.93 0.44 0.52 0.30
Comparative Example 7 820 0.41 0.39 0.08 1.15

[表7]
容積割合 全細孔の容積総計(容積A)
実施例7 0.3723 1.2534cm3/グラム
比較例7 0.0219 0.6935cm3/グラム
[Table 7]
Volume ratio Total volume of all pores (volume A)
Example 7 0.3723 1.2534 cm < 3 > / gram Comparative Example 7 0.0219 0.6935 cm < 3 > / gram

[表8]
実施例7 1.94cm3/グラム
比較例7 0.26cm3/グラム
[Table 8]
Example 7 1.94 cm 3 / gram Comparative Example 7 0.26 cm 3 / gram

実施例7及び比較例7の試料2cm3をサンプリングし、ステンレスネット付きカラムに格納した。そして、水1リットル当たり、
(A)ドデシルベンゼンスルホン酸ナトリウム0.9ミリグラム
(B)クロロタロニル6.0マイクログラム
(C)ジクロロボス6.0マイクログラム
(D)溶解性鉛(具体的には酢酸鉛)6マイクログラム(鉛換算)
(E)遊離塩素として次亜塩素酸ナトリウム0.2ミリグラム(塩素換算)
(F)全有機ハロゲンとしてTOX濃度130±20マイクログラム(塩素換算)
をそれぞれ溶解した溶液を調製し、流量40ミリリットル/分にて、2cm3の各試料を通過させた。そして、通水前後の濃度を測定し、除去率を算出した。尚、流量40ミリリットル/分は、以下の空間速度(SV)に対応する。
Samples 2 cm 3 of Example 7 and Comparative Example 7 were sampled and stored in a column with a stainless steel net. And per liter of water,
(A) Sodium dodecylbenzenesulfonate 0.9 milligrams (B) Chlorotalonyl 6.0 micrograms (C) Dichlorobos 6.0 micrograms (D) Dissolvable lead (specifically lead acetate) 6 micrograms (lead Conversion)
(E) 0.2 mg of sodium hypochlorite as free chlorine (chlorine conversion)
(F) TOX concentration of 130 ± 20 micrograms as total organic halogen (chlorine conversion)
Each solution was dissolved, and 2 cm 3 of each sample was passed at a flow rate of 40 ml / min. And the density | concentration before and behind water flow was measured, and the removal rate was computed. A flow rate of 40 ml / min corresponds to the following space velocity (SV).

また、水1リットル当たり、
(A)ドデシルベンゼンスルホン酸ナトリウム0.9ミリグラム
(B)クロロタロニル6マイクログラム
(E)遊離塩素として次亜塩素酸ナトリウム2.0ミリグラム(塩素換算)
をそれぞれ溶解した溶液を調製し、流量240ミリリットル/分にて、2cm3の各試料を通過させた。そして、通水前後の濃度を測定し、除去率を算出した。尚、流量240ミリリットル/分は、以下の空間速度(SV)に対応する。
Also, per liter of water,
(A) 0.9 mg of sodium dodecylbenzenesulfonate (B) 6 micrograms of chlorothalonil (E) 2.0 mg of sodium hypochlorite as free chlorine (chlorine conversion)
Each solution was dissolved, and 2 cm 3 of each sample was passed at a flow rate of 240 ml / min. And the density | concentration before and behind water flow was measured, and the removal rate was computed. The flow rate of 240 ml / min corresponds to the following space velocity (SV).

流量40ミリリットル/分:
SV=40×60(ミリリットル/時)/2cm3 =1200時-1
流量240ミリリットル/分:
SV=240×60(ミリリットル/時)/2cm3=7200時-1
Flow rate 40ml / min:
SV = 40 × 60 (milliliter / hour) / 2 cm 3 = 1200 hour −1
Flow rate 240ml / min:
SV = 240 × 60 (milliliter / hour) / 2 cm 3 = 7200 hour −1

そして、ドデシルベンゼンスルホン酸ナトリウムの除去率測定をセル吸光度法に基づき行い、クロロタロニル及びジクロロボスの除去率測定を電子捕獲検出器付きガスクロマトグラフ(ECO−GC)法に基づき行い、溶解性鉛の除去率測定を誘導結合プラズマ−質量分析(IPC/MS)法に基づき行い、遊離塩素の除去率測定をセル吸光度法に基づき行い、全有機ハロゲンの除去率測定をイオンクロマトグラフ法に基づき行った。   Then, the removal rate of sodium dodecylbenzenesulfonate is measured based on the cell absorbance method, and the removal rate of chlorothalonil and dichloroboss is measured based on the gas chromatograph (ECO-GC) method with an electron capture detector to remove soluble lead. The rate measurement was performed based on the inductively coupled plasma-mass spectrometry (IPC / MS) method, the free chlorine removal rate measurement was performed based on the cell absorbance method, and the total organic halogen removal rate measurement was performed based on the ion chromatograph method.

ドデシルベンゼンスルホン酸ナトリウム(DBS)の除去率測定結果を図12の(A)及び(B)に示し、クロロタロニル(TPN)の除去率測定結果を図13の(A)及び(B)に示し、ジクロロボス(DDVP)の除去率測定結果を図14に示し、溶解性鉛の除去率測定結果を図15に示し、遊離塩素の除去率測定結果を図16の(A)及び(B)に示し、全有機ハロゲンの除去率測定結果を図17に示す。全てにおいて、実施例7の方が、比較例7よりも除去率が高いことが示された。   The removal rate measurement results of sodium dodecylbenzenesulfonate (DBS) are shown in FIGS. 12 (A) and (B), and the removal rate measurement results of chlorothalonil (TPN) are shown in FIGS. 13 (A) and (B). The removal rate measurement result of dichloroboss (DDVP) is shown in FIG. 14, the removal rate measurement result of soluble lead is shown in FIG. 15, and the removal rate measurement result of free chlorine is shown in (A) and (B) of FIG. FIG. 17 shows the measurement results of the removal rate of all organic halogens. In all, it was shown that the removal rate of Example 7 was higher than that of Comparative Example 7.

即ち、実施例7の濾材にあっては、分子量1×102乃至1×105の物質を1マイクログラム/リットル含む水を、空間速度1200時-1において48時間、連続して通液を行ったとき、該物質の除去率が80%に達する迄の時間が、ヤシガラ活性炭を用いたときの該物質の除去率が80%に達する迄の時間の2倍以上である。 That is, in the filter medium of Example 7, water containing 1 microgram / liter of a substance having a molecular weight of 1 × 10 2 to 1 × 10 5 was continuously passed for 48 hours at a space velocity of 1200 hours −1 . When performed, the time until the removal rate of the substance reaches 80% is more than twice the time until the removal rate of the substance reaches 80% when coconut shell activated carbon is used.

また、実施例7の濾材にあっては、ドデシルベンゼンスルホン酸塩を0.9ミリグラム/リットル含む水を、空間速度1200時-1において25時間、連続して通液を行ったとき、ドデシルベンゼンスルホン酸塩の除去率は10%以上である。 In the filter medium of Example 7, when water containing 0.9 mg / liter of dodecylbenzenesulfonate was continuously passed through at a space velocity of 1200 hours- 1 for 25 hours, dodecylbenzene was used. The removal rate of sulfonate is 10% or more.

また、実施例7の濾材にあっては、クロロタロニルを6マイクログラム/リットル含む水を、空間速度1200時-1において50時間、連続して通液を行ったとき、クロロタロニルの除去率は60%以上である。 In the filter medium of Example 7, when water containing 6 microgram / liter of chlorothalonil was continuously passed for 50 hours at a space velocity of 1200 hr- 1 , the removal rate of chlorothalonil was 60%. That's it.

また、実施例7の濾材にあっては、ジクロロボスを6マイクログラム/リットル含む水を、空間速度1200時-1において25時間、連続して通液を行ったとき、ジクロロボスの除去率は60%以上である。 In the filter medium of Example 7, when water containing 6 microgram / liter of dichloroboss was continuously passed through at a space velocity of 1200 hours- 1 for 25 hours, the removal rate of dichloroboss was 60% or more.

また、実施例7の濾材にあっては、溶解性鉛を6マイクログラム/リットル含む水を、空間速度1200時-1において25時間、連続して通液を行ったとき、溶解性鉛の除去率は30%以上である。 In the filter medium of Example 7, when lead containing 6 microgram / liter of soluble lead was continuously passed for 25 hours at a space velocity of 1200 hr- 1 , removal of soluble lead was achieved. The rate is 30% or more.

また、実施例7の濾材にあっては、遊離塩素を0.2ミリグラム/リットル含む水を、空間速度1200時-1において50時間、連続して通液を行ったとき、遊離塩素の除去率は70%以上である。 Moreover, in the filter medium of Example 7, when water containing 0.2 mg / liter of free chlorine was continuously passed through at a space velocity of 1200 hours- 1 for 50 hours, the free chlorine removal rate. Is 70% or more.

また、実施例7の濾材にあっては、全有機ハロゲンを塩素換算で130マイクログラム/リットル含む水を、空間速度1200時-1において5時間、連続して通液を行ったとき、全有機ハロゲンの除去率は45%以上である。 Further, in the filter medium of Example 7, when water containing 130 micrograms / liter of all organic halogens in terms of chlorine was continuously passed for 5 hours at a space velocity of 1200 hours- 1 , all organic halogens were obtained. The halogen removal rate is 45% or more.

尚、ドデシルベンゼンスルホン酸ナトリウム(DBS)の除去率測定結果から、SV=1200時-1では、実施例7の濾材は、充填率が比較例7の活性炭の約27%しかないにも拘わらず、比較例7の活性炭より高い除去率が維持され、通水約5時間では100%、通水約27時間では50%以上の除去率を示した。これに対して、比較例7の活性炭は、通水後、まもなく除去率が急速に低下している。これは、小さな細孔しか有さない比較例7の活性炭では、分子量の大きなDBSの吸着速度が遅いためと考えられる。そして、試験の結果から、実施例7にあっては、実施例7の濾材を150ミリリットル含む据え置き型浄水器(以下、便宜上、『据え置き型浄水器−A』と呼ぶ)を用いて、0.2ミリグラム/リットルのDBSを含む水とした場合、3.0リットル/分の流速で、1日25リットル、濾過すると仮定した場合、約18ヶ月、DBSを100%除去できると推定された。また、SV=7200時-1でも、比較例7の活性炭より高い除去率が維持された。そして、0.2ミリグラム/リットルのDBSを含む水を、1.8リットル/分の流速で、1日15リットル、濾過すると仮定した場合、実施例7の濾材を15ミリリットル含む据え置き型浄水器(以下、便宜上、『据え置き型浄水器−B』と呼ぶ)を用いて、約4ヶ月、DBSを50%以上除去できると推定された。 From the results of measuring the removal rate of sodium dodecylbenzenesulfonate (DBS), at SV = 1200 hr- 1 , the filter medium of Example 7 had a packing rate of only about 27% of the activated carbon of Comparative Example 7. The removal rate higher than that of the activated carbon of Comparative Example 7 was maintained, and the removal rate was 100% at about 5 hours of water flow and 50% or more at about 27 hours of water flow. On the other hand, the removal rate of the activated carbon of Comparative Example 7 decreases rapidly soon after passing water. This is probably because the adsorption rate of DBS having a large molecular weight is slow in the activated carbon of Comparative Example 7 having only small pores. From the results of the test, in Example 7, using a stationary water purifier containing 150 ml of the filter medium of Example 7 (hereinafter referred to as “stationary water purifier-A” for convenience), 0. When water containing 2 milligrams / liter of DBS was used, it was estimated that 100% of DBS could be removed for about 18 months, assuming 25 liters per day at a flow rate of 3.0 liters / minute. Further, even at SV = 7200 hr −1 , a higher removal rate than the activated carbon of Comparative Example 7 was maintained. Then, assuming that water containing 0.2 milligram / liter of DBS is filtered at a flow rate of 1.8 liter / minute for 15 liters a day, a stationary water purifier containing 15 milliliters of the filter medium of Example 7 ( Hereinafter, for convenience, it is estimated that 50% or more of DBS can be removed for about 4 months using “stationary water purifier-B”.

また、クロロタロニル(TPN)の除去率測定結果から、SV=1200時-1では、実施例7の濾材は、比較例7の活性炭よりTPNの除去率が高く維持され、比較例7の活性炭の通水20時間といった値の2.05倍の約50時間まで除去率80%以上となっていた。これは、TPNの分子量が265.9と大きいため、吸着速度が速い実施例7の濾材の方が比較例7の活性炭より有利になり、また、TPNは水に対する溶解度が小さいために吸着性が高いので、高い除去率が長時間維持されたものと考えられる。そして、試験の結果から、実施例7にあっては、据え置き型浄水器−Aを用いて、6.0マイクログラム/リットルのTPNを含む水を、3.0リットル/分の流速で、1日25リットル、濾過すると仮定した場合、約1年、TNPを80%以上除去できると推定された。一方、SV=7200時-1では、SV=1200時-1の場合より除去率が低いものの、6.0マイクログラム/リットルのTPNを含む水を、1.8リットル/分の流速で、1日15リットル、濾過すると仮定した場合、据え置き型浄水器−Bを用いて、約7ヶ月、TNPを50%以上除去できると推定された。 In addition, from the measurement result of the removal rate of chlorothalonil (TPN), at SV = 1200 hr- 1 , the filter medium of Example 7 maintains a higher removal rate of TPN than the activated carbon of Comparative Example 7, and the passage of the activated carbon of Comparative Example 7 The removal rate was 80% or more up to about 50 hours, which is 2.05 times the value of 20 hours of water. This is because the molecular weight of TPN is as large as 265.9, so the filter medium of Example 7, which has a high adsorption rate, is more advantageous than the activated carbon of Comparative Example 7, and because TPN has a low solubility in water, it has an adsorptivity. Since it is high, it is considered that a high removal rate was maintained for a long time. From the results of the test, in Example 7, using stationary water purifier-A, water containing 6.0 microgram / liter of TPN was added at a flow rate of 3.0 liter / minute. Assuming 25 liters per day for filtration, it was estimated that more than 80% of TNP could be removed for about 1 year. On the other hand, at SV = 7200 hr- 1 , the removal rate is lower than that at SV = 1200 hr- 1 , but water containing 6.0 microgram / liter TPN is 1 at a flow rate of 1.8 liter / min. Assuming 15 liters per day for filtration, it was estimated that 50% or more of TNP could be removed using stationary water purifier-B for about 7 months.

また、ジクロロボス(DDVP)の除去率測定結果から、SV=1200時-1では、実施例7の濾材は、比較例7の活性炭より除去率が高く維持され、通水約32時間まで除去率80%以上となっている。これは、DDVPの分子量221とやや大きいため、吸着速度が速い実施例7の濾材の方が比較例7の活性炭より有利になったと考えられる。尚、DDVPは、水に対する溶解度が10グラム/リットルと非常に大きいので、平衡吸着量が小さいため、通水約32時間までは除去率80%以上であったが、それ以降は除去率が低下し、通水約43時間で除去率50%となった。尚、通水約32時間は、据え置き型浄水器−Aを用いて、6.0マイクログラム/リットルのDDVPを含む水を、3.0リットル/分の流速で、1日25リットル、濾過すると仮定した場合、約8ヶ月使用したことに相当し、通水約43時間は、約10ヶ月使用したことに相当する。 Moreover, from the removal rate measurement result of dichloro boss (DDVP), at SV = 1200 hr- 1 , the removal rate of the filter medium of Example 7 is maintained higher than that of the activated carbon of Comparative Example 7, and the removal rate is up to about 32 hours. 80% or more. This is because the molecular weight 221 of DDVP is slightly larger, so the filter medium of Example 7 having a higher adsorption rate is considered to be more advantageous than the activated carbon of Comparative Example 7. Since DDVP has a very high water solubility of 10 grams / liter, the equilibrium adsorption amount is small, so the removal rate was 80% or more until about 32 hours of water flow, but the removal rate decreased thereafter. In about 43 hours, the removal rate was 50%. For about 32 hours, the water containing 6.0 micrograms / liter of DDVP is filtered at a flow rate of 3.0 liters / minute for 25 liters a day using the stationary water purifier-A. Assuming that it is used for about 8 months, about 43 hours of water flow is equivalent to using for about 10 months.

また、溶解性鉛の除去率測定結果から、SV=1200時-1では、実施例7の濾材は、比較例7の活性炭より高い除去率が維持され、通水約22時間で除去率50%以上であった。尚、比較例7の活性炭では、通水約8時間で除去率が50%以下になってしまっている。このことは、実施例7の濾材には鉛を吸着しやすい活性点が多く存在することを示していると考えられる。そして、試験の結果から、据え置き型浄水器−Aを用いて、6マイクログラム/リットル(鉛換算)の溶解性鉛を含む水を、3.0リットル/分の流速で、1日25リットル、濾過すると仮定した場合、約5ヶ月間、鉛を50%以上除去できると推定された。 Further, from the measurement results of the removal rate of soluble lead, at SV = 1200 hr- 1 , the filter medium of Example 7 maintains a higher removal rate than the activated carbon of Comparative Example 7, and the removal rate is 50% in about 22 hours of water flow. That was all. In addition, in the activated carbon of the comparative example 7, the removal rate has become 50% or less in about 8 hours of water flow. This is considered to indicate that the filter medium of Example 7 has many active sites that easily adsorb lead. And from the result of the test, using stationary water purifier-A, water containing soluble lead of 6 microgram / liter (lead conversion) at a flow rate of 3.0 liter / minute, 25 liters a day, Assuming filtration, it was estimated that 50% or more of lead could be removed for about 5 months.

また、遊離塩素の除去率測定結果から、SV=1200時-1では、実施例7の濾材は、比較例7より除去率が高く維持され、通水48時間後も約80%となっている。遊離塩素は濾材表面での還元反応によって除去されることから、実施例7の濾材は、粒内拡散速度が速いだけでなく、表面に遊離塩素を還元し易い活性点が多いと推定される。そして、試験の結果から、据え置き型浄水器−Aを用いて、0.2ミリグラム/リットル(塩素換算)の遊離塩素を含む水を、3.0リットル/分の流速で、1日25リットル、濾過すると仮定した場合、約1年間、遊離塩素を80%以上除去できると推定された。一方、SV=7200時-1でも、通水48時間後も約60%の除去率となっている。そして、試験の結果から、据え置き型浄水器−Bを用いて、2.0ミリグラム/リットル(塩素換算)の遊離塩素を含む水を、1.8リットル/分の流速で、1日15リットル、濾過すると仮定した場合、約1年間、遊離塩素を60%以上除去できると推定された。 Further, from the measurement result of the removal rate of free chlorine, at SV = 1200 hr- 1 , the filter medium of Example 7 maintains a higher removal rate than Comparative Example 7, and is about 80% after 48 hours of water flow. . Since free chlorine is removed by a reduction reaction on the surface of the filter medium, it is presumed that the filter medium of Example 7 not only has a high intragranular diffusion rate, but also has many active sites on the surface where free chlorine can be easily reduced. And from the result of the test, using stationary water purifier-A, water containing 0.2 milligram / liter (chlorine conversion) of free chlorine at a flow rate of 3.0 liter / minute, 25 liters a day, Assuming filtration, it was estimated that 80% or more of free chlorine could be removed for about one year. On the other hand, even at SV = 7200 hr −1 , the removal rate is about 60% even after 48 hours of water flow. And from the result of the test, using stationary water purifier-B, water containing 2.0 milligrams / liter (in terms of chlorine) of free chlorine at a flow rate of 1.8 liters / minute, 15 liters a day, Assuming filtration, it was estimated that 60% or more of free chlorine could be removed for about one year.

また、全有機ハロゲン(フミン質から生じた有機ハロゲン化合物を含む)の除去率測定結果から、SV=1200時-1では、実施例7の濾材は、通水48時間まで、比較例7の活性炭より除去率が高くなった。尚、TOX成分の中には分子量の大きめな物質が含まれているため、吸着速度が速い実施例7の濾材の方が比較例7の活性炭よりも大きな除去率となると考えられる。そして、試験の結果から、据え置き型浄水器−Aを用いて、TOX濃度130マイクログラム(塩素換算)/リットルの全有機ハロゲンを含む水を、3.0リットル/分の流速で、1日25リットル、濾過すると仮定した場合、約4ヶ月間、50%以上除去できると推定された。 In addition, from the measurement results of the removal rate of all organic halogens (including organic halogen compounds generated from humic substances), when SV = 1200 hours −1 , the filter medium of Example 7 was activated carbon of Comparative Example 7 up to 48 hours of water flow. The removal rate became higher. Since the TOX component contains a substance having a large molecular weight, it is considered that the filter medium of Example 7 having a higher adsorption rate has a higher removal rate than the activated carbon of Comparative Example 7. Based on the test results, using a stationary water purifier-A, water containing all organic halogens with a TOX concentration of 130 micrograms (chlorine conversion) / liter at a flow rate of 3.0 liters / min. Assuming filtration of liters, it was estimated that over 50% could be removed for about 4 months.

実施例8は、実施例1〜実施例7の変形である。実施例8にあっては、模式的な一部断面図を図18の(A)に示すように、実施例1〜実施例7において説明した濾材を、キャップ部材30の付いたボトル(所謂ペットボトル)20に組み込んだ。具体的には、キャップ部材30の内部に実施例1〜実施例7の濾材40を配し、濾材40が流出しないように、フィルター31,32をキャップ部材30の液体流入側及び液体排出側に配置した。そして、ボトル20の内の液体あるいは水(飲料水や化粧水等)21を、キャップ部材30の内部に配された濾材40を通過させて飲むことで、あるいは、使用することで、例えば、液体(水)の中のミネラル成分を増加させることができる。尚、キャップ部材30は、通常、図示しない蓋を用いて閉じておく。   The eighth embodiment is a modification of the first to seventh embodiments. In Example 8, as shown in FIG. 18A, which is a schematic partial cross-sectional view, the filter medium described in Examples 1 to 7 is used as a bottle with a cap member 30 (so-called pet). Bottle) 20. Specifically, the filter medium 40 of Examples 1 to 7 is arranged inside the cap member 30, and the filters 31 and 32 are placed on the liquid inflow side and the liquid discharge side of the cap member 30 so that the filter medium 40 does not flow out. Arranged. Then, the liquid or water (drinking water, skin lotion, etc.) 21 in the bottle 20 is allowed to pass through the filter medium 40 arranged in the cap member 30 or is used. The mineral component in (water) can be increased. The cap member 30 is normally closed using a lid (not shown).

あるいは又、模式的な断面図を図18の(B)に示すように、透水性を有する袋50の中に実施例1〜実施例7の濾材40を格納し、ボトル20内の液体あるいは水(飲料水や化粧水等)21の中に、この袋50を投入する形態を採用することもできる。尚、参照番号22は、ボトル20の口部を閉鎖するためのキャップである。あるいは又、模式的な断面図を図19の(A)に示すように、ストロー部材60の内部に実施例1〜実施例7の濾材40を配し、濾材40が流出しないように、図示しないフィルターをストロー部材の液体流入側及び液体排出側に配置する。そして、ボトル20の内の液体あるいは水(飲料水)21を、ストロー部材60の内部に配された実施例1〜実施例7の濾材40を通過させて飲むことで、液体(水)の中のミネラル成分を増加させることができる。あるいは又、一部を切り欠いた模式面を図19の(B)に示すように、スプレー部材70の内部に実施例1〜実施例7の濾材40を配し、濾材40が流出しないように、図示しないフィルターをスプレー部材70の液体流入側及び液体排出側に配置する。そして、スプレー部材70に設けられた押しボタン71を押すことで、ボトル20の内の液体あるいは水(飲料水や化粧水等)21を、スプレー部材70の内部に配された実施例1〜実施例7の濾材40を通過させて、スプレー穴72から噴霧することで、液体(水)の中のミネラル成分を増加させることができる。   Alternatively, as shown in a schematic cross-sectional view of FIG. 18B, the filter medium 40 of Examples 1 to 7 is stored in a water-permeable bag 50, and the liquid or water in the bottle 20 is stored. A form in which the bag 50 is put into the (drinking water, lotion, etc.) 21 can also be adopted. Reference numeral 22 is a cap for closing the mouth of the bottle 20. Alternatively, as shown in a schematic cross-sectional view of FIG. 19A, the filter medium 40 according to the first to seventh embodiments is arranged inside the straw member 60 so that the filter medium 40 does not flow out. Filters are disposed on the liquid inflow side and the liquid discharge side of the straw member. Then, the liquid or water (drinking water) 21 in the bottle 20 is allowed to pass through the filter medium 40 of Examples 1 to 7 disposed inside the straw member 60, so that the liquid (water) The mineral component of can be increased. Alternatively, as shown in FIG. 19B, a schematic surface with a part cut away, the filter medium 40 of Examples 1 to 7 is arranged inside the spray member 70 so that the filter medium 40 does not flow out. The filter (not shown) is disposed on the liquid inflow side and the liquid discharge side of the spray member 70. Then, by pressing a push button 71 provided on the spray member 70, the liquid or water (drinking water, lotion, etc.) 21 in the bottle 20 is disposed in the spray member 70. The mineral component in the liquid (water) can be increased by passing through the filter medium 40 of Example 7 and spraying from the spray hole 72.

以上、好ましい実施例に基づき本発明を説明したが、本発明はこれらの実施例に限定されるものではなく、種々の変形が可能である。濾材として、実施例1にて説明した濾材とセラミックス製の濾材(微細な穴を有するセラミックス製の濾材)とを組み合わせた浄水器、実施例1にて説明した濾材とイオン交換樹脂とを組み合わせた浄水器とすることもできる。また、本発明の濾材を構成する多孔質炭素材料を造粒して使用してもよい。   As mentioned above, although this invention was demonstrated based on the preferable Example, this invention is not limited to these Examples, A various deformation | transformation is possible. As a filter medium, a water purifier in which the filter medium described in Example 1 and a ceramic filter medium (ceramic filter medium having fine holes) are combined, and the filter medium described in Example 1 and an ion exchange resin are combined. It can also be a water purifier. Moreover, you may granulate and use the porous carbon material which comprises the filter medium of this invention.

実施例にあっては、多孔質炭素材料の原料として、籾殻を用いる場合について説明したが、他の植物を原料として用いてもよい。ここで、他の植物として、例えば、藁、葦あるいは茎ワカメ、陸上に植生する維管束植物、シダ植物、コケ植物、藻類及び海草等を挙げることができ、これらを、単独で用いてもよいし、複数種を混合して用いてもよい。具体的には、例えば、多孔質炭素材料の原料である植物由来の材料を稲の藁(例えば、鹿児島産;イセヒカリ)とし、多孔質炭素材料を、原料としての藁を炭素化して炭素質物質(多孔質炭素材料前駆体)に変換し、次いで、酸処理を施すことで得ることができる。あるいは又、多孔質炭素材料の原料である植物由来の材料を稲科の葦とし、多孔質炭素材料を、原料としての稲科の葦を炭素化して炭素質物質(多孔質炭素材料前駆体)に変換し、次いで、酸処理を施すことで得ることができる。また、フッ化水素酸水溶液の代わりに、水酸化ナトリウム水溶液といったアルカリ(塩基)にて処理して得られた多孔質炭素材料においても、同様の結果が得られた。   In the examples, the case where rice husk is used as the raw material of the porous carbon material has been described, but other plants may be used as the raw material. Here, examples of other plants include pods, cocoons or stem wakame, vascular plants vegetated on land, fern plants, moss plants, algae and seaweeds, and these may be used alone. Further, a plurality of types may be mixed and used. Specifically, for example, plant-derived materials that are raw materials for porous carbon materials are rice straw (eg, from Kagoshima; Isehikari), and porous carbon materials are carbonized from raw straw as a carbonaceous material. It can be obtained by converting to (porous carbon material precursor) and then performing acid treatment. Alternatively, a plant-derived material, which is a raw material of the porous carbon material, is used as a rice bran, and a carbonaceous material (porous carbon material precursor) is obtained by carbonizing the porous carbon material as a raw material. And then acid treatment. Similar results were obtained with a porous carbon material obtained by treatment with an alkali (base) such as an aqueous sodium hydroxide solution instead of an aqueous hydrofluoric acid solution.

あるいは又、多孔質炭素材料の原料である植物由来の材料を茎ワカメ(岩手県三陸産)とし、多孔質炭素材料を、原料としての茎ワカメを炭素化して炭素質物質(多孔質炭素材料前駆体)に変換し、次いで、酸処理を施すことで得ることができる。具体的には、先ず、例えば、茎ワカメを500゜C程度の温度で加熱し、炭化する。尚、加熱前に、例えば、原料となる茎ワカメをアルコールで処理してもよい。具体的な処理方法として、エチルアルコール等に浸漬する方法が挙げられ、これによって、原料に含まれる水分を減少させると共に、最終的に得られる多孔質炭素材料に含まれる炭素以外の他の元素や、ミネラル成分を溶出させることができる。また、このアルコールでの処理により、炭素化時のガスの発生を抑制することができる。より具体的には、茎ワカメをエチルアルコールに48時間浸漬する。尚、エチルアルコール中では超音波処理を施すことが好ましい。次いで、この茎ワカメを、窒素気流中において500゜C、5時間、加熱することにより炭化させ、炭化物を得る。尚、このような処理(予備炭素化処理)を行うことで、次の炭素化の際に生成されるであろうタール成分を減少あるいは除去することができる。その後、この炭化物の10グラムをアルミナ製の坩堝に入れ、窒素気流中(10リットル/分)において5゜C/分の昇温速度で1000゜Cまで昇温する。そして、1000゜Cで5時間、炭素化して、炭素質物質(多孔質炭素材料前駆体)に変換した後、室温まで冷却する。尚、炭素化及び冷却中、窒素ガスを流し続ける。次に、この多孔質炭素材料前駆体を46容積%のフッ化水素酸水溶液に一晩浸漬することで酸処理を行った後、水及びエチルアルコールを用いてpH7になるまで洗浄する。そして、最後に乾燥させることにより、多孔質炭素材料を得ることができる。   Alternatively, the plant-derived material, which is the raw material of the porous carbon material, is used as stem wakame (from Sanriku, Iwate Prefecture), and the porous carbon material is carbonized from the stem wakame as raw material to produce a carbonaceous material (precursor of porous carbon material) Body) and then subjected to acid treatment. Specifically, first, for example, the stem wakame is heated at a temperature of about 500 ° C. and carbonized. In addition, you may process the stem wakame used as a raw material with alcohol before a heating, for example. As a specific treatment method, there is a method of immersing in ethyl alcohol or the like, thereby reducing moisture contained in the raw material, and other elements other than carbon contained in the porous carbon material finally obtained or , Mineral components can be eluted. Moreover, generation | occurrence | production of the gas at the time of carbonization can be suppressed by the process with this alcohol. More specifically, the stem wakame is soaked in ethyl alcohol for 48 hours. In addition, it is preferable to perform ultrasonic treatment in ethyl alcohol. Subsequently, this stem wakame is carbonized by heating in a nitrogen stream at 500 ° C. for 5 hours to obtain a carbide. In addition, by performing such a process (preliminary carbonization process), a tar component that will be generated in the next carbonization can be reduced or removed. Thereafter, 10 grams of this carbide is put in an alumina crucible and heated to 1000 ° C. at a rate of 5 ° C./minute in a nitrogen stream (10 liters / minute). And it carbonizes at 1000 degreeC for 5 hours, and after converting into a carbonaceous substance (porous carbon material precursor), it cools to room temperature. In addition, nitrogen gas is kept flowing during carbonization and cooling. Next, the porous carbon material precursor is subjected to an acid treatment by immersing it in a 46% by volume hydrofluoric acid aqueous solution overnight, and then washed until it becomes pH 7 using water and ethyl alcohol. And the porous carbon material can be obtained by making it dry at the end.

1・・・炭素/ポリマー複合体、2・・・不織布、10・・・浄水器本体、11・・・多孔質炭素材料、12・・・第1充填部、13・・・綿、14・・・第2充填部、15・・・流入口、16・・・流出口、20・・・ボトル、21・・・液体あるいは水、22・・・キャップ、30・・・キャップ部材、31,32・・・フィルター、40・・・濾材、50・・・袋、60・・・ストロー部材、70・・・スプレー部材、71・・・押しボタン、72・・・スプレー穴 DESCRIPTION OF SYMBOLS 1 ... Carbon / polymer composite, 2 ... Nonwoven fabric, 10 ... Water purifier main body, 11 ... Porous carbon material, 12 ... 1st filling part, 13 ... Cotton, 14 * ..Second filling part, 15 ... inlet, 16 ... outlet, 20 ... bottle, 21 ... liquid or water, 22 ... cap, 30 ... cap member, 31, 32 ... Filter, 40 ... Filter material, 50 ... Bag, 60 ... Straw member, 70 ... Spray member, 71 ... Push button, 72 ... Spray hole

Claims (16)

窒素BET法による比表面積の値が1×1022/グラム以上、BJH法による細孔の容積が0.3cm3/グラム以上、粒径が75μm以上である多孔質炭素材料が充填されたカラム、フィルター又はカートリッジを備えた空気浄化装置であって、
多孔質炭素材料の嵩密度は0.1グラム/cm3乃至0.8グラム/cm3である空気浄化装置。
A porous carbon material having a specific surface area value by nitrogen BET method of 1 × 10 2 m 2 / gram or more, a pore volume by BJH method of 0.3 cm 3 / gram or more, and a particle size of 75 μm or more was filled. An air purification device comprising a column, a filter or a cartridge,
An air purifier having a bulk density of the porous carbon material of 0.1 g / cm 3 to 0.8 g / cm 3 .
窒素BET法による比表面積の値が1×1022/グラム以上、非局在化密度汎関数法によって求められた直径1×10-9m乃至5×10-7mの細孔の容積の合計が1.0cm3/グラム以上、粒径が75μm以上である多孔質炭素材料が充填されたカラム、フィルター又はカートリッジを備えた空気浄化装置であって、
多孔質炭素材料の嵩密度は0.1グラム/cm3乃至0.8グラム/cm3である空気浄化装置。
Volume of pores having a specific surface area of 1 × 10 2 m 2 / gram or more determined by the nitrogen BET method and a diameter of 1 × 10 −9 m to 5 × 10 −7 m determined by the delocalized density functional method An air purification device comprising a column, filter or cartridge filled with a porous carbon material having a total of 1.0 cm 3 / gram or more and a particle size of 75 μm or more,
An air purifier having a bulk density of the porous carbon material of 0.1 g / cm 3 to 0.8 g / cm 3 .
窒素BET法による比表面積の値が1×1022/グラム以上、非局在化密度汎関数法によって求められた細孔径分布において、3nm乃至20nmの範囲内に少なくとも1つピークを有し、3nm乃至20nmの範囲内に細孔径を有する細孔の容積の合計の占める割合が全細孔の容積総計の0.2以上であり、粒径が75μm以上である多孔質炭素材料が充填されたカラム、フィルター又はカートリッジを備えた空気浄化装置であって、
多孔質炭素材料の嵩密度は0.1グラム/cm3乃至0.8グラム/cm3である空気浄化装置。
The value of specific surface area by nitrogen BET method is 1 × 10 2 m 2 / gram or more, and the pore size distribution obtained by delocalized density functional method has at least one peak in the range of 3 nm to 20 nm. The ratio of the total volume of pores having a pore diameter in the range of 3 nm to 20 nm is 0.2 or more of the total volume of all pores, and a porous carbon material having a particle diameter of 75 μm or more is filled. An air purification device comprising a column, filter or cartridge,
An air purifier having a bulk density of the porous carbon material of 0.1 g / cm 3 to 0.8 g / cm 3 .
窒素BET法による比表面積の値が1×1022/グラム以上、水銀圧入法による細孔の容積が1.0cm3/グラム以上、粒径が75μm以上である多孔質炭素材料が充填されたカラム、フィルター又はカートリッジを備えた空気浄化装置であって、
多孔質炭素材料の嵩密度は0.1グラム/cm3乃至0.8グラム/cm3である空気浄化装置。
Filled with a porous carbon material having a specific surface area value of 1 × 10 2 m 2 / gram or more by nitrogen BET method, a pore volume of 1.0 cm 3 / gram or more by mercury intrusion method, and a particle size of 75 μm or more. An air purification device comprising a column, filter or cartridge,
An air purifier having a bulk density of the porous carbon material of 0.1 g / cm 3 to 0.8 g / cm 3 .
窒素BET法による比表面積の値が1×1022/グラム以上、BJH法による細孔の容積が0.3cm3/グラム以上、粒径が75μm以上である多孔質炭素材料が充填された空気清浄用のフィルターであって、
多孔質炭素材料の嵩密度は0.1グラム/cm3乃至0.8グラム/cm3である空気清浄用のフィルター。
A porous carbon material having a specific surface area value by nitrogen BET method of 1 × 10 2 m 2 / gram or more, a pore volume by BJH method of 0.3 cm 3 / gram or more, and a particle size of 75 μm or more was filled. An air cleaning filter,
A filter for air cleaning in which the bulk density of the porous carbon material is 0.1 g / cm 3 to 0.8 g / cm 3 .
窒素BET法による比表面積の値が1×1022/グラム以上、非局在化密度汎関数法によって求められた直径1×10-9m乃至5×10-7mの細孔の容積の合計が1.0cm3/グラム以上、粒径が75μm以上である多孔質炭素材料が充填された空気清浄用のフィルターであって、
多孔質炭素材料の嵩密度は0.1グラム/cm3乃至0.8グラム/cm3である空気清浄用のフィルター。
Volume of pores having a specific surface area of 1 × 10 2 m 2 / gram or more determined by the nitrogen BET method and a diameter of 1 × 10 −9 m to 5 × 10 −7 m determined by the delocalized density functional method A filter for air purification filled with a porous carbon material having a total of 1.0 cm 3 / gram or more and a particle size of 75 μm or more,
A filter for air cleaning in which the bulk density of the porous carbon material is 0.1 g / cm 3 to 0.8 g / cm 3 .
窒素BET法による比表面積の値が1×1022/グラム以上、非局在化密度汎関数法によって求められた細孔径分布において、3nm乃至20nmの範囲内に少なくとも1つピークを有し、3nm乃至20nmの範囲内に細孔径を有する細孔の容積の合計の占める割合が全細孔の容積総計の0.2以上であり、粒径が75μm以上である多孔質炭素材料が充填された空気清浄用のフィルターであって、
多孔質炭素材料の嵩密度は0.1グラム/cm3乃至0.8グラム/cm3である空気清浄用のフィルター。
The value of specific surface area by nitrogen BET method is 1 × 10 2 m 2 / gram or more, and the pore size distribution obtained by delocalized density functional method has at least one peak in the range of 3 nm to 20 nm. The ratio of the total volume of pores having a pore diameter in the range of 3 nm to 20 nm is 0.2 or more of the total volume of all pores, and a porous carbon material having a particle diameter of 75 μm or more is filled. A filter for cleaning air,
A filter for air cleaning in which the bulk density of the porous carbon material is 0.1 g / cm 3 to 0.8 g / cm 3 .
窒素BET法による比表面積の値が1×1022/グラム以上、水銀圧入法による細孔の容積が1.0cm3/グラム以上、粒径が75μm以上である多孔質炭素材料が充填された空気清浄用のフィルターであって、
多孔質炭素材料の嵩密度は0.1グラム/cm3乃至0.8グラム/cm3である空気清浄用のフィルター。
Filled with a porous carbon material having a specific surface area value of 1 × 10 2 m 2 / gram or more by nitrogen BET method, a pore volume of 1.0 cm 3 / gram or more by mercury intrusion method, and a particle size of 75 μm or more. A filter for cleaning air,
A filter for air cleaning in which the bulk density of the porous carbon material is 0.1 g / cm 3 to 0.8 g / cm 3 .
窒素BET法による比表面積の値が1×1022/グラム以上、BJH法による細孔の容積が0.3cm3/グラム以上、粒径が75μm以上である多孔質炭素材料が充填されたカラム又はカートリッジを備えた水浄化装置であって、
多孔質炭素材料の嵩密度は0.1グラム/cm3乃至0.8グラム/cm3である水浄化装置。
A porous carbon material having a specific surface area value by nitrogen BET method of 1 × 10 2 m 2 / gram or more, a pore volume by BJH method of 0.3 cm 3 / gram or more, and a particle size of 75 μm or more was filled. A water purification device comprising a column or cartridge,
A water purification apparatus in which the porous carbon material has a bulk density of 0.1 g / cm 3 to 0.8 g / cm 3 .
窒素BET法による比表面積の値が1×1022/グラム以上、非局在化密度汎関数法によって求められた直径1×10-9m乃至5×10-7mの細孔の容積の合計が1.0cm3/グラム以上、粒径が75μm以上である多孔質炭素材料が充填されたカラム又はカートリッジを備えた水浄化装置であって、
多孔質炭素材料の嵩密度は0.1グラム/cm3乃至0.8グラム/cm3である水浄化装置。
Volume of pores having a specific surface area of 1 × 10 2 m 2 / gram or more determined by the nitrogen BET method and a diameter of 1 × 10 −9 m to 5 × 10 −7 m determined by the delocalized density functional method A water purification apparatus comprising a column or cartridge filled with a porous carbon material having a total of 1.0 cm 3 / gram or more and a particle size of 75 μm or more,
A water purification apparatus in which the porous carbon material has a bulk density of 0.1 g / cm 3 to 0.8 g / cm 3 .
窒素BET法による比表面積の値が1×1022/グラム以上、非局在化密度汎関数法によって求められた細孔径分布において、3nm乃至20nmの範囲内に少なくとも1つピークを有し、3nm乃至20nmの範囲内に細孔径を有する細孔の容積の合計の占める割合が全細孔の容積総計の0.2以上であり、粒径が75μm以上である多孔質炭素材料が充填されたカラム又はカートリッジを備えた水浄化装置であって、
多孔質炭素材料の嵩密度は0.1グラム/cm3乃至0.8グラム/cm3である水浄化装置。
The value of specific surface area by nitrogen BET method is 1 × 10 2 m 2 / gram or more, and the pore size distribution obtained by delocalized density functional method has at least one peak in the range of 3 nm to 20 nm. The ratio of the total volume of pores having a pore diameter in the range of 3 nm to 20 nm is 0.2 or more of the total volume of all pores, and a porous carbon material having a particle diameter of 75 μm or more is filled. A water purification device comprising a column or cartridge comprising:
A water purification apparatus in which the porous carbon material has a bulk density of 0.1 g / cm 3 to 0.8 g / cm 3 .
窒素BET法による比表面積の値が1×1022/グラム以上、水銀圧入法による細孔の容積が1.0cm3/グラム以上、粒径が75μm以上である多孔質炭素材料が充填されたカラム又はカートリッジを備えた水浄化装置であって、
多孔質炭素材料の嵩密度は0.1グラム/cm3乃至0.8グラム/cm3である水浄化装置。
Filled with a porous carbon material having a specific surface area value of 1 × 10 2 m 2 / gram or more by nitrogen BET method, a pore volume of 1.0 cm 3 / gram or more by mercury intrusion method, and a particle size of 75 μm or more. A water purification device comprising a column or cartridge comprising:
A water purification apparatus in which the porous carbon material has a bulk density of 0.1 g / cm 3 to 0.8 g / cm 3 .
窒素BET法による比表面積の値が1×1022/グラム以上、BJH法による細孔の容積が0.3cm3/グラム以上、粒径が75μm以上である多孔質炭素材料が充填された水浄化用のカートリッジであって、
多孔質炭素材料の嵩密度は0.1グラム/cm3乃至0.8グラム/cm3である水浄化用のカートリッジ。
A porous carbon material having a specific surface area value by nitrogen BET method of 1 × 10 2 m 2 / gram or more, a pore volume by BJH method of 0.3 cm 3 / gram or more, and a particle size of 75 μm or more was filled. A cartridge for water purification,
A cartridge for water purification in which the bulk density of the porous carbon material is 0.1 g / cm 3 to 0.8 g / cm 3 .
窒素BET法による比表面積の値が1×1022/グラム以上、非局在化密度汎関数法によって求められた直径1×10-9m乃至5×10-7mの細孔の容積の合計が1.0cm3/グラム以上、粒径が75μm以上である多孔質炭素材料が充填された水浄化用のカートリッジであって、
多孔質炭素材料の嵩密度は0.1グラム/cm3乃至0.8グラム/cm3である水浄化用のカートリッジ。
Volume of pores having a specific surface area of 1 × 10 2 m 2 / gram or more determined by the nitrogen BET method and a diameter of 1 × 10 −9 m to 5 × 10 −7 m determined by the delocalized density functional method A cartridge for water purification filled with a porous carbon material having a total of 1.0 cm 3 / gram or more and a particle size of 75 μm or more,
A cartridge for water purification in which the bulk density of the porous carbon material is 0.1 g / cm 3 to 0.8 g / cm 3 .
窒素BET法による比表面積の値が1×1022/グラム以上、非局在化密度汎関数法によって求められた細孔径分布において、3nm乃至20nmの範囲内に少なくとも1つピークを有し、3nm乃至20nmの範囲内に細孔径を有する細孔の容積の合計の占める割合が全細孔の容積総計の0.2以上であり、粒径が75μm以上である多孔質炭素材料が充填された水浄化用のカートリッジであって、
多孔質炭素材料の嵩密度は0.1グラム/cm3乃至0.8グラム/cm3である水浄化用のカートリッジ。
The value of specific surface area by nitrogen BET method is 1 × 10 2 m 2 / gram or more, and the pore size distribution obtained by delocalized density functional method has at least one peak in the range of 3 nm to 20 nm. The ratio of the total volume of pores having a pore diameter in the range of 3 nm to 20 nm is 0.2 or more of the total volume of all pores, and a porous carbon material having a particle diameter of 75 μm or more is filled. Water purification cartridge,
A cartridge for water purification in which the bulk density of the porous carbon material is 0.1 g / cm 3 to 0.8 g / cm 3 .
窒素BET法による比表面積の値が1×1022/グラム以上、水銀圧入法による細孔の容積が1.0cm3/グラム以上、粒径が75μm以上である多孔質炭素材料が充填された水浄化用のカートリッジであって、
多孔質炭素材料の嵩密度は0.1グラム/cm3乃至0.8グラム/cm3である水浄化用のカートリッジ。
Filled with a porous carbon material having a specific surface area value of 1 × 10 2 m 2 / gram or more by nitrogen BET method, a pore volume of 1.0 cm 3 / gram or more by mercury intrusion method, and a particle size of 75 μm or more. Water purification cartridge,
A cartridge for water purification in which the bulk density of the porous carbon material is 0.1 g / cm 3 to 0.8 g / cm 3 .
JP2018170288A 2011-02-10 2018-09-12 Air purification device, air purification filter, water purification device, and water purification cartridge Active JP6645549B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011026858 2011-02-10
JP2011026858 2011-02-10

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016122715A Division JP6402864B2 (en) 2011-02-10 2016-06-21 Method for producing porous carbon material for air purification, method for producing porous carbon material constituting filter for air purification, method for producing porous carbon material for water purification, porous material constituting cartridge for water purification Carbon material manufacturing method and porous carbon material manufacturing method

Publications (2)

Publication Number Publication Date
JP2019018202A true JP2019018202A (en) 2019-02-07
JP6645549B2 JP6645549B2 (en) 2020-02-14

Family

ID=57241324

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016122715A Active JP6402864B2 (en) 2011-02-10 2016-06-21 Method for producing porous carbon material for air purification, method for producing porous carbon material constituting filter for air purification, method for producing porous carbon material for water purification, porous material constituting cartridge for water purification Carbon material manufacturing method and porous carbon material manufacturing method
JP2017141885A Pending JP2017214279A (en) 2011-02-10 2017-07-21 Manufacturing method of porous carbon material
JP2018170288A Active JP6645549B2 (en) 2011-02-10 2018-09-12 Air purification device, air purification filter, water purification device, and water purification cartridge

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2016122715A Active JP6402864B2 (en) 2011-02-10 2016-06-21 Method for producing porous carbon material for air purification, method for producing porous carbon material constituting filter for air purification, method for producing porous carbon material for water purification, porous material constituting cartridge for water purification Carbon material manufacturing method and porous carbon material manufacturing method
JP2017141885A Pending JP2017214279A (en) 2011-02-10 2017-07-21 Manufacturing method of porous carbon material

Country Status (1)

Country Link
JP (3) JP6402864B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020203242A (en) * 2019-06-14 2020-12-24 進和テック株式会社 Filter unit for on-vehicle air cleaner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114502273A (en) * 2019-11-01 2022-05-13 株式会社可乐丽 Adsorption filter, and filter for purifying plating solution, plating solution purification device and plating solution purification method using same
KR102313771B1 (en) * 2020-01-07 2021-10-20 에스케이씨 주식회사 Engineered carbon and manufacturing method thereof
US20230025111A1 (en) * 2020-01-07 2023-01-26 Skc Co., Ltd. Engineered carbon and method for preparing same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549921A (en) * 1991-08-22 1993-03-02 Tokai Carbon Co Ltd Porous carbon material for treatment of waste water
JP2000313610A (en) * 1999-04-28 2000-11-14 Matsushita Electric Ind Co Ltd Active carbon and water purifier using the same
JP2001205253A (en) * 2000-01-31 2001-07-31 Matsushita Electric Ind Co Ltd Activated carbon and water cleaner provided with the same
WO2007094364A1 (en) * 2006-02-14 2007-08-23 Mrc Home Products Co., Ltd. Water drinking device
JP2008535754A (en) * 2005-03-29 2008-09-04 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド Porous carbon material and smoking article and smoke filter containing the material
JP2008273816A (en) * 2007-04-04 2008-11-13 Sony Corp Porous carbon material, its manufacturing process and adsorbent, mask, adsorption sheet, and supporting member
JP2009072712A (en) * 2007-09-21 2009-04-09 Japan Energy Corp Method for producing adsorbent for removing microingredient in hydrocarbon oil and adsorbent
JP2010509174A (en) * 2006-11-08 2010-03-25 キュレーターズ オブ ザ ユニバーシティ オブ ミズーリ High surface area carbon and method for producing the same
JP2010100516A (en) * 2008-09-29 2010-05-06 Sony Corp Porous carbon material composite, method for producing the same, adsorbent, cosmetic preparation, purifying agent and photocatalyst composite material
JP2010104979A (en) * 2008-07-31 2010-05-13 Sony Corp Adsorbent, cleansing agent, therapeutic agent for kidney disease, and functional food
US20100219131A1 (en) * 2003-11-26 2010-09-02 Selecto, Inc. Water purification apparatus and system
JP2011225521A (en) * 2010-03-30 2011-11-10 Sony Corp Fungicide, photo catalytic composite material, adsorbent, and depurative

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4893944B2 (en) * 2004-08-30 2012-03-07 クラレケミカル株式会社 Nitrogen gas separation method and molecular sieve carbon

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549921A (en) * 1991-08-22 1993-03-02 Tokai Carbon Co Ltd Porous carbon material for treatment of waste water
JP2000313610A (en) * 1999-04-28 2000-11-14 Matsushita Electric Ind Co Ltd Active carbon and water purifier using the same
JP2001205253A (en) * 2000-01-31 2001-07-31 Matsushita Electric Ind Co Ltd Activated carbon and water cleaner provided with the same
US20100219131A1 (en) * 2003-11-26 2010-09-02 Selecto, Inc. Water purification apparatus and system
JP2008535754A (en) * 2005-03-29 2008-09-04 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド Porous carbon material and smoking article and smoke filter containing the material
WO2007094364A1 (en) * 2006-02-14 2007-08-23 Mrc Home Products Co., Ltd. Water drinking device
JP2010509174A (en) * 2006-11-08 2010-03-25 キュレーターズ オブ ザ ユニバーシティ オブ ミズーリ High surface area carbon and method for producing the same
JP2008273816A (en) * 2007-04-04 2008-11-13 Sony Corp Porous carbon material, its manufacturing process and adsorbent, mask, adsorption sheet, and supporting member
JP2009072712A (en) * 2007-09-21 2009-04-09 Japan Energy Corp Method for producing adsorbent for removing microingredient in hydrocarbon oil and adsorbent
JP2010104979A (en) * 2008-07-31 2010-05-13 Sony Corp Adsorbent, cleansing agent, therapeutic agent for kidney disease, and functional food
JP2010100516A (en) * 2008-09-29 2010-05-06 Sony Corp Porous carbon material composite, method for producing the same, adsorbent, cosmetic preparation, purifying agent and photocatalyst composite material
JP2011225521A (en) * 2010-03-30 2011-11-10 Sony Corp Fungicide, photo catalytic composite material, adsorbent, and depurative

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020203242A (en) * 2019-06-14 2020-12-24 進和テック株式会社 Filter unit for on-vehicle air cleaner

Also Published As

Publication number Publication date
JP6402864B2 (en) 2018-10-10
JP6645549B2 (en) 2020-02-14
JP2016182602A (en) 2016-10-20
JP2017214279A (en) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6218355B2 (en) Filter media
JP7255647B2 (en) A material to which a functional material is attached and its manufacturing method, a water purifier and its manufacturing method, a water purifier cartridge and its manufacturing method, an air purifier and its manufacturing method, a filter member and its manufacturing method, a support member and its manufacturing method, Polyurethane foam and manufacturing method thereof, bottle and manufacturing method thereof, container and manufacturing method thereof, member comprising cap or lid and manufacturing method thereof, solidified porous carbon material or pulverized product of said porous carbon material combined with A material comprising an adhesive, a method for producing the same, and a porous carbon material and a method for producing the same
JP6645549B2 (en) Air purification device, air purification filter, water purification device, and water purification cartridge
US11707068B2 (en) Fungicide, photo catalytic composite material, adsorbent, and depurative
EP2412432B1 (en) Nicotine Adsorbent, Quinoline Adsorbent, Benzopyrene Adsorbent, Toluidine Adsorbent, and Carcinogen Adsorbent
JP2014176821A (en) Adsorbent
WO2012108160A1 (en) Method for removing oxidative stress substance, method for reducing oxidation-reduction potential, filtering material, and water
Mounaouer et al. Henna wood as an adsorptive material for bentazon

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191223

R151 Written notification of patent or utility model registration

Ref document number: 6645549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157